research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and structures of two coordination polymers formed by Ni(cyclam)2+ cations and sulfate anions

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kyiv, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, RO 700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 17 December 2024; accepted 20 December 2024; online 3 January 2025)

The asymmetric units of catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4], [Ni(SO4)(C10H24N4)]n (I), and catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sul­fato-κ2O3:O4] hemi[4,4′,4′′,4′′′-(2,2′,4,4′,6,6′-hexa­methyl-[1,1′-biphen­yl]-3,3′,5,5′-tetra­yl)tetra­benzoic acid] nona­hydrate], {[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O}n (II), consist of two crystallographically unique centrosymmetric macrocyclic dications and a sulfate dianion. In II it includes additionally a mol­ecule of the undissociated acid (2,2′,4,4′,6,6′-hexa­meth­yl[1,1′-biphen­yl]-3,3′,5,5′-tetra­yl)tetra­(benzoic acid) located on a crystallographic twofold axis and nine highly disordered water mol­ecules of crystallization. In both compounds, the metal ions are coordinated in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetic­ally stable trans-III conformation. Two O atoms of the sulfate anions occupy the trans-axial positions resulting in a slightly tetra­gonally distorted trans-NiN4O2 octa­hedral coordination geometry. The crystals of both compounds are composed of parallel coordination polymeric chains running along the [101] and [100] directions in I and II, respectively. The distances between the neighboring metal ions in the chains are significantly different [6.5121 (6) Å in I and 6.0649 (3) Å in II] and this peculiarity is explained by the different spatial directivity of the Ni—O coordination bonds (different S—O—Ni angles). As a result of the C—H⋯O hydrogen bonds between the methyl­ene groups of the macrocyclic ligands and the non-coordinated O atoms of the sulfate anion, the coordination-polymeric chains in I are arranged in the two-dimensional layers oriented parallel to the (010) and (101) planes, the inter­section of which provides the three-dimensional coherence of the crystals. The three-dimensional supra­molecular structure of the crystals II is determined by the network of strong hydrogen bonds formed by the carb­oxy­lic acid and the non-coordinated O atoms of the sulfate anions.

1. Chemical context

Nickel(II) complexes of 14-membered tetra­dentate aza­macrocyclic ligands, in particular, cyclam and its analogues (cyclam = 1,4,8,11-tetra­aza­cyclo­tetra­decane, C10H24N4, L), are widely used in the formation of coordination polymers and metal–organic frameworks based on oligo­carboxyl­ate linkers, which possess many promising applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154-165.]). At the same time, examples of coordination polymers formed by these NiII-containing nodes and simple inorganic oxoanions are rare and are limited mainly to compounds containing bridging chromate ligands (see Database survey). Surprisingly, no polymers formed by the sulfate dianion and tetra­aza­macrocyclic NiII cations have been described to date. At the same time, it can be expected that the formation of structures containing two different types of bridging ligand (i.e., organic carboxyl­ates and inorganic oxoanions) will enrich the topological variability of the coordination polymers and their functional characteristics. To check such a possibility, we conducted the reaction between an excess (8:1) of [Ni(L)](ClO4)2 and (2,2′,4,4′,6,6′-hexa­meth­yl[1,1′-biphen­yl]-3,3′,5,5′-tetra­yl)tetra­(benzoic acid) (H4A) in the presence of Na2SO4.

[Scheme 1]

The present work describes the preparation and structural characterization of the products of this reaction which are the first representatives of polymeric complexes formed by the [Ni(L)]2+ cation and SO42– anions, namely, catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4], [Ni(SO4)(C10H24N4)]n (I), and catena-poly[[(1,4,8,11-tetra­aza­cyclo­tetra­decane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sul­fato-κ2O3:O4] hemi[4,4′,4′′,4′′′-(2,2′,4,4′,6,6′-hexa­methyl-[1,1′-biphen­yl]-3,3′,5,5′-tetra­yl)tetra­benz­oic acid] nona­hydrate], {[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O}n (II).

2. Structural commentary

The asymmetric units of both compounds contain two crystallographically unique centrosymmetric macrocyclic cations [Ni(L)]2+ and one sulfate anion (Fig. 1[link]). In II it includes additionally the mol­ecule of the acid H4A and, according to SQUEEZE calculations, nine highly disordered water mol­ecules of crystallization.

[Figure 1]
Figure 1
The extended asymmetric units involving complex cations in (a) I and (b) II showing the atom-labeling scheme (displacement ellipsoids are drawn at the 30% probability level, C-bound H atoms are omitted for clarity, intra­molecular hydrogen bonds are shown as dotted lines). The relative orientations of the coordination links Ni1—O1—SO2—O2—Ni2 in each compound are shown on the right. Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) −x + 1, −y + 1, −z + 2; (iii) −x + [{1\over 2}], −y + [{3\over 2}], −z + [{3\over 2}]; (iv) −x + [{3\over 2}], −y + [{3\over 2}], −z + [{3\over 2}].

The coordination environments of the metal ions in I and II are very similar. The NiII ions are equatorially coordinated to the four secondary N atoms of the macrocycle L, while the axial positions in the coordination spheres are occupied by the O atoms of the sulfate anions. Since the Ni—N bond lengths, which are typical of high-spin NiII 3d8 electronic configuration, are slightly shorter than the Ni—O ones (Table 1[link]), the coordination polyhedra in both compounds can be described as tetra­gonally elongated trans-NiN4O2 octa­hedra. Inter­estingly, the Ni—O distances are nearly equal in I, while they differ significantly in II (Table 1[link]).

Table 1
Selected geometric parameters (Å, °)

  I II
Ni1—N1 2.064 (2) 2.061 (4)
Ni1—N2 2.072 (2) 2.065 (4)
Ni2—N3 2.063 (2) 2.073 (4)
Ni2—N4 2.072 (2) 2.062 (4)
Ni1—O1 2.1625 (16) 2.191 (2)
Ni2—O2 2.1696 (16) 2.107 (3)
     
N1—Ni1—N2i 85.51 (9) 85.28 (19)
N1—Ni1—N2 94.49 (9) 94.72 (19)
N3—Ni2—N4ii 85.41 (9) 85.84 (19)
N3—Ni2—N4 94.59 (9) 94.16 (19)
Symmetry codes: (i) −x, −y + 1, −z + 1 in I[link] and −x + [{1\over 2}], −y + [{3\over 2}], −z + [{3\over 2}] in II[link]; (ii) −x + 1, −y + 1, −z + 2 in I[link] and −x + [{3\over 2}], −y + [{3\over 2}], −z + [{3\over 2}] in II[link].

The macrocyclic ligands L adopt the most energetically stable trans-III (R,R,S,S) conformation (Barefield et al., 1986[Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197-4202.]) with the five-membered (N—Ni—N bite angles ca 85°) and six-membered (N—Ni—N bite angles ca 95°) chelate rings being in gauche and chair conformations, respectively (Table 1[link]).

The NiN4 coordination moieties in I and II are strictly planar because of the location of the metal ions on crystallographic inversion centers. The axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 4°). Analogously to other complexes of the NiII macrocyclic cations and carboxyl­ate ligands (Tsymbal et al., 2021[Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355-2370.]) the Ni—O coordination inter­actions in I and II are reinforced by intra­molecular hydrogen bonds between the secondary NH atoms of the amine groups and the non-coordinated O atoms of the sulfate anions (Fig. 1[link], Tables 2[link] and 3[link]).

Table 2
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3 0.98 2.02 2.916 (3) 151
N2—H2⋯O4 0.98 2.05 2.960 (3) 154
N3—H3⋯O4 0.98 2.01 2.938 (3) 157
N4—H4⋯O3 0.98 2.04 2.946 (3) 153
C5—H5A⋯O3i 0.97 2.52 3.336 (4) 141
C6—H6B⋯O4ii 0.97 2.51 3.245 (3) 133
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+2].

Table 3
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.98 2.32 3.113 (5) 138
N2—H2⋯O3 0.98 2.42 3.267 (4) 144
N4—H4⋯O3i 0.98 2.10 3.012 (5) 154
O5—H5⋯O4 0.82 1.79 2.597 (5) 169
O7—H7⋯O3ii 0.82 1.85 2.654 (5) 166
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

In both complexes, the sulfate ligands display a μ2-bis-monodentate bridging mode resulting in the formation of linear (i.e., an angle Ni⋯Ni⋯Ni of 180°), parallel, coordination-polymeric chains running along the [101] and [100] directions in I and II, respectively. Despite close similarities in coordination bond lengths in both compounds, there are several differences in the structures of the polymeric chains connected with the mutual orientation of the constituents. In particular, the angle between the mean NiN4 planes of the structurally non-equivalent macrocyclic cations in I is 31.44 (9)°, while in II it is 41.6 (2)°. Additionally, the angles between the long axes of these macrocyclic cations passing through the symmetry-related central C atoms of the tri­methyl­ene fragments (C2 or C7) and the NiII ion are 7.51 (9) and 56.2 (2)° in I and II, respectively. Besides, the distances between the neighboring metal ions in the chains are significantly different [6.5121 (6) Å in I and 6.0649 (3) Å in II]. Obviously, this feature is explained by different mutual spatial directivity of the Ni—O coordination bonds. That is to say, though the angles S1—O1—Ni1 are nearly equal in I and II [126.17 (11) and 127.61 (19)°, respectively], the angles S1—O2—Ni2 differ significantly [126.36 (11) and 135.8 (2)°] (Fig. 1[link]).

The clathrated mol­ecule of the acid H4A in the crystal of II is localized on a crystallographic twofold axis passing through the C20/C29 carbon atoms (Fig. 2[link]) and is characterized by the non-planar structure manifesting itself in substantial mutual tilting of the aromatic rings. This is caused by repulsive inter­actions of the hydrogen atoms of the methyl substituents between themselves [the angle between the mean planes of the central tri­methyl­benzene fragments is 75.3 (2)°] or with the hydrogen atoms of the pendant aromatic rings [the angles between the mean planes of tri­methyl­benzene rings and the lateral carboxyl-substituted ones are 71.4 (2) and 77.8 (2)°]. The latter values are close to those observed in the complex of a structurally related tri­phenyl­phospho­nic acid built on a tri­methyl­benzene core (Tsymbal et al., 2022[Tsymbal, L. V., Ardeleanu, R., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 750-754.]). The angles C11—Cg—C11(−x + [{3\over 2}], y, −z + 1) and C36—Cg—C36(−x + [{3\over 2}], y, −z + 1) are 131.2 (1) and 114.8 (1)° (Cg represents the centroid of the corresponding tri­methyl­benzene ring) and, because of the tilting of these rings, the mol­ecule H4A as a whole possesses a tetra­hedron-like shape. The carb­oxy­lic acid groups in H4A are close to coplanar with their corresponding benzene rings (the angles between their mean planes are smaller than 8°) and are non-delocalized as indicated by the large differences in the lengths of the C—OH (ca 1.30 Å) and C=O (ca 1.20 Å) bonds.

[Figure 2]
Figure 2
The conformation of the acid H4A in II with the hydrogen bonds (dotted lines) it forms with the sulfate anions (displacement ellipsoids are drawn at the 30% probability level, C-bound H atoms are omitted for clarity). Symmetry codes: (i) −x + [{3\over 2}], y, −z + 1; (ii) x, −y + [{1\over 2}], z − [{1\over 2}]; (iii) −x + [{3\over 2}], −y + [{1\over 2}], −z + [{3\over 2}].

3. Supra­molecular features

The three-dimensional coherence of the crystal of I is supported by weak C—H⋯O hydrogen bonds between the C5 and C6 methyl­ene groups belonging to the structurally non-equivalent macrocyclic cations and the non-coordinated O3 and O4 atoms of the sulfate anion (Table 2[link]). In particular, the polymeric chains in I are arranged in pseudo layers oriented parallel to the (010) plane due to C5—H5A⋯O3 contacts (Fig. 3[link]a). Simultaneously, similar layers, though oriented parallel to the (10[\overline{1}]) plane (Fig. 3[link]b), are formed as a result of the C6—H6B⋯O4 inter­actions. The inter­section of these layers results in the formation of a three-dimensional system of hydrogen bonds in the crystal. The shortest distance between the NiII ions in neighboring chains is ca 8.0 and 8.3 Å in the former and the latter cases, respectively. It is noteworthy that both the non-coordinated O atoms of the sulfate anion in I are saturated by hydrogen bonds, acting as triple proton acceptors. According to PLATON calculations (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), the crystals of I are non-porous.

[Figure 3]
Figure 3
The hydrogen-bonded (dashed lines) sheets in I parallel to the (a) (010) and (b) (10[\overline{1}]) planes (only atoms H5A and H6B participating in inter­chain hydrogen bonding are shown). Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x + 1, −y + 2, −z + 2.

A pivotal role in the formation of the extended structure of the crystals of II is played by the carb­oxy­lic acid H4A. Acting as the proton donor, it forms strong hydrogen bonds with the non-coordinated O3 and O4 atoms of the sulfate anion (Table 3[link]), which belong to four different polymeric chains. These chains act as pillars and, in turn, the anions of each asymmetric units inter­act with four mol­ecules of the acid (Fig. 4[link]). At the same time, the tetra­hedral shape of this mol­ecule prevents the formation of any two-dimensional aggregates, thus resulting in a three-dimensional system of hydrogen bonds in the crystals II. As estimated by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), the volume of the solvent-accessible void in II in the form of isolated cavities equals 1667 Å3 (20.9% of the unit-cell volume) which, according to SQUEEZE calculations, are filled with eighteen highly disordered water mol­ecules of crystallization.

[Figure 4]
Figure 4
Fragment of the crystal structure of II showing the hydrogen bonds (dashed lines) between carboxyl­ate groups of the acid H4L and the non-coordinated oxygen atoms of the sulfate anions. H atoms at C atoms and methyl­ene groups in benzene rings are not shown. The coordination environment of the NiII ions is shown in polyhedral presentation. Symmetry code: (i) x, −y + [{1\over 2}], z − [{1\over 2}].

4. Database survey

Data concerning the crystal structure of sulfate complexes of the Ni(L) cation(s) are very limited. In particular, the Cambridge Structural Database (CSD, Version 5.45, last update September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains characterization of the only one non-polymeric NiII complex anion trans-[NiII(L)(SO4)2]2− (refcode FAFLUV; Churchard et al., 2010[Churchard, A. J., Cyrański, M. K. & Grochala, W. (2010). Acta Cryst. C66, m263-m265.]) and two compounds of the NiIII complex cation trans-[NiIII(L)(HSO4)2]+ (RIGFUM and RIGGIB; Morrison et al., 2023[Morrison, T. L., Bhowmick, I. & Shores, M. P. (2023). Cryst. Growth Des. 23, 3186-3194.]). Additionally, the one-dimensional coordination polymer based on the trans-[NiIII(L)(SO4)2] unit has also been described (RIGGEX; Morrison et al., 2023[Morrison, T. L., Bhowmick, I. & Shores, M. P. (2023). Cryst. Growth Des. 23, 3186-3194.]). It is noteworthy that, despite the different chemical nature of FAFLUV and I and II (i.e. non-polymeric and polymeric, respectively), the coordination bond lengths in all complexes are very similar (cf. average Ni—N and Ni—O distances in FAFLUV of 2.07 and 2.15 Å, respectively, with the corresponding parameters presented in Table 1[link]).

Despite the lack of structurally characterized polymeric NiII(L)–sulfate compounds, there is one example of a polymeric complex of this cation with the chromate anion – a ligand that is closely related to sulfate (NAYWUF; Oshio et al., 1997[Oshio, H., Okamoto, H., Kikuchi, T. & Ito, T. (1997). Inorg. Chem. 36, 3201-3203.]). In addition, a number of polymeric complexes of the [Ni(di­aza­cyclam)]2+ macrocyclic cation [di­aza­cyclam = (3,10)-R2-1,3,5,8,10,12-hexa­aza­cyclo­tetra­deca­ne] with the CrO42– anion have been described [GUJNUU; Kim et al., 2000[Kim, C., Lough, A. J., Fettinger, J. C., Choi, K.-Y., Kim, D., Pyun, S.-Y. & Cho, J. (2000). Inorg. Chim. Acta, 303, 163-167.], and GUJNUU01, Gu et al., 2008[Gu, J.-Z., Jiang, L., Feng, X.-L., Tan, M.-Y. & Lu, T.-B. (2008). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 38, 28-31.] (R = 2-hy­droxy­eth­yl); RAHZAD; Ou et al., 2011[Ou, G.-C., Zou, L.-S. & Yuan, Z.-H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543-544.] (R = prop­yl); VEWWEB and VEWWIF; Shin et al., 2013[Shin, J. W., Son, H. J., Kim, S. K. & Min, K. S. (2013). Polyhedron, 52, 1206-1212.] (R = S,S- or R,R-1-phenyl­eth­yl)], as well as the coordination polymer with the molybdate anion [GUJPAC; Kim et al., 2000[Kim, C., Lough, A. J., Fettinger, J. C., Choi, K.-Y., Kim, D., Pyun, S.-Y. & Cho, J. (2000). Inorg. Chim. Acta, 303, 163-167.] (R = 2-hy­droxy­eth­yl)].

In general, the crystal structures of all of the above-mentioned polymeric complexes of the NiII ion are rather similar and related to I and II. Their crystals are also built from parallel polymeric chains and the lengths of the NiII—O axial coordination bonds (2.06–2.10 Å) are only slightly shorter than those observed in I and II. This feature, together with strictly linear (NAYWUF and RAHZAD) or close to linear (other complexes) arrangement of the Ni2+ ions in the chains and a similar mode of coordination of the MO42– anions to that observed in I, results in a narrow spread of the intra­chain metal–metal distances (6.6–6.8 Å). Inter­estingly, though the average NiIII—O bond length in RIGGEX (2.11 Å) does not differs significantly from that observed in I or II, a shorter Ni⋯Ni intra­chain distance (6.28 Å) in the former polymer is explained by the essential non-linearity of the chains (the angle Ni⋯Ni⋯Ni is ca 164°).

The acid H4A has been used for the preparation of several polymeric compounds, including complexes of ZrIV and HfIV (Yan et al., 2018[Yan, Y., O'Connor, A. E., Kanthasamy, G., Atkinson, G., Allan, D. R., Blake, A. J. & Schröder, M. (2018). J. Am. Chem. Soc. 140, 3952-3958.]; Lv et al., 2019[Lv, X.-L., Yuan, S., Xie, L.-H., Darke, H. F., Chen, Y., He, T., Dong, C., Wang, B., Zhang, Y.-Z., Li, J.-R. & Zhou, H.-C. (2019). J. Am. Chem. Soc. 141, 10283-10293.]; Zhang et al., 2020[Zhang, X., Wang, X., Fan, W., Wang, Y., Wang, X., Zhang, K. & Sun, D. (2020). Mater. Chem. Front. 4, 1150-1157.]), EuIII (Lv et al., 2021[Lv, X.-L., Feng, L., Xie, L.-H., He, T., Wu, W., Wang, K.-Y., Si, G., Wang, B., Li, J.-R. & Zhou, H.-C. (2021). J. Am. Chem. Soc. 143, 2784-2791.]), CdII (Wang et al., 2019[Wang, X., Fan, W., Zhang, M., Shang, Y., Wang, Y., Liu, D., Guo, H., Dai, F. & Sun, D. (2019). Chin. Chem. Lett. 30, 801-805.]) and alkali- and alkaline-earth metal ions (Bahrin et al., 2019[Bahrin, L. G., Bejan, D., Shova, S., Gdaniec, M., Fronc, M., Lozan, V. & Janiak, C. (2019). Polyhedron, 173, 114128.]; Li et al., 2022[Li, X., Lin, Y., Yu, L., Zou, J. & Wang, H. (2022). Inorg. Chem. 61, 13229-13233.]). Additionally, the structures of the uncoordinated acid in solvated (RAXXIY; Moorthy et al., 2005[Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Org. Chem. 70, 8568-8571.]) and unsolvated (HEGCEF; Wang et al., 2021[Wang, J.-X., Gu, X.-W., Lin, Y.-X., Li, B. & Qian, G. (2021). Mater. Lett. pp. 497-503.]) states as well as in mono- and dianionic forms (BOVNEI; Bahrin et al., 2019[Bahrin, L. G., Bejan, D., Shova, S., Gdaniec, M., Fronc, M., Lozan, V. & Janiak, C. (2019). Polyhedron, 173, 114128.]) have been reported. The comparison of structural data available in the literature for uncoordinated HnA(4–n)– with those of H4A in II demonstrates rather minor differences in inter­atomic distances and angles and in general shapes of the ions and mol­ecules, which obviously is connected with their low conformational flexibility caused by strong intra­molecular inter­atomic repulsions.

5. Synthesis and crystallization

All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H4A was synthesized according to a procedure described previously (Bahrin et al., 2019[Bahrin, L. G., Bejan, D., Shova, S., Gdaniec, M., Fronc, M., Lozan, V. & Janiak, C. (2019). Polyhedron, 173, 114128.]). The complex [Ni(L)](ClO4)2 was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965[Bosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109-1112.]).

The coordination polymers I and II were prepared as by-products of the reaction between the excess of the perchlorate salt of [Ni(L)]2+ cation and the acid H4A (8:1) in the presence of Na2SO4 as follows.

A solution of H4A (35 mg, 0.050 mmol) in 5 ml of DMF was mixed with a solution of [Ni(L)](ClO4)2 (183 mg, 0.40 mmol) dissolved in 5 ml of a DMF/H2O mixture (1:1 by volume). Na2SO4 (100 mg, 0.70 mmol) was then added and a solution was heated at 353 K for 30 min and left to stand at ambient conditions. Light-violet prisms of I, which formed in a week, were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 14 mg (10% based on nickel complex). Analysis calculated for C10H24N4NiO4S: C 33.83, H 6.81, N 15.58%. Found: C 33.71, H 6.92, N 15.39%.

Refrigerating the mother liquor obtained after filtering off complex I resulted in the formation of II after one day in the form of nearly colorless light-pink plates. These were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 22 mg (7% based on nickel complex). Analysis calculated for C66H122N8Ni2O34S2: C 45.22, H 7.01, N 6.39%. Found: C 45.41, H 7.47, N 6.59%. Single crystals of I and II suitable for X-ray diffraction analysis were selected from the samples resulting from the synthesis.

Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93, 0.96 and 0.97 Å (ring, methyl and methyl­ene H atoms, respectively), N—H distances of 0.98 Å, O—H distances of 0.82 Å (protonated carb­oxy­lic group) with Uiso(H) values of 1.2Ueq or 1.5Ueq times those of the corresponding parent atoms. SQUEEZE calculations indicate the presence of nine water mol­ecules of crystallization per asymmetric unit of II.

Table 4
Experimental details

  I II
Crystal data
Chemical formula [Ni(SO4)(C10H24N4)] [Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O
Mr 355.10 1428.96
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, I2/a
Temperature (K) 293 293
a, b, c (Å) 7.9935 (6), 8.3181 (6), 12.1998 (9) 12.1299 (5), 18.5163 (11), 35.621 (2)
α, β, γ (°) 108.308 (7), 102.767 (7), 99.145 (6) 90, 94.777 (4), 90
V3) 727.88 (10) 7972.7 (8)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.50 0.59
Crystal size (mm) 0.10 × 0.05 × 0.04 0.10 × 0.04 × 0.01
 
Data collection
Diffractometer Xcalibur, Eos Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.986, 1.000 0.920, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 7381, 2965, 2356 20054, 8085, 3223
Rint 0.036 0.086
(sin θ/λ)max−1) 0.625 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.080, 1.02 0.077, 0.123, 0.99
No. of reflections 2965 8085
No. of parameters 184 432
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.41, −0.41 0.25, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ2-sulfato-κ2O3:O4] (I) top
Crystal data top
[Ni(SO4)(C10H24N4)]Z = 2
Mr = 355.10F(000) = 376
Triclinic, P1Dx = 1.620 Mg m3
a = 7.9935 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.3181 (6) ÅCell parameters from 2779 reflections
c = 12.1998 (9) Åθ = 2.6–27.9°
α = 108.308 (7)°µ = 1.50 mm1
β = 102.767 (7)°T = 293 K
γ = 99.145 (6)°Prism, clear light violet
V = 727.88 (10) Å30.10 × 0.05 × 0.04 mm
Data collection top
Xcalibur, Eos
diffractometer
2965 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source2356 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.1593 pixels mm-1θmax = 26.4°, θmin = 1.8°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1010
Tmin = 0.986, Tmax = 1.000l = 1515
7381 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0285P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
2965 reflectionsΔρmax = 0.41 e Å3
184 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.0000000.5000000.5000000.01844 (14)
Ni20.5000000.5000001.0000000.01761 (14)
S10.25415 (9)0.52446 (9)0.75638 (5)0.02297 (18)
O20.2854 (2)0.4234 (2)0.83542 (14)0.0247 (4)
O30.4087 (3)0.5606 (4)0.71535 (19)0.0627 (8)
O10.0987 (2)0.4245 (2)0.65152 (14)0.0255 (5)
O40.2186 (3)0.6902 (3)0.82444 (17)0.0520 (7)
N40.6885 (3)0.5545 (3)0.91572 (18)0.0234 (5)
H40.6253810.5521170.8364030.028*
N10.2431 (3)0.5189 (3)0.46653 (18)0.0257 (5)
H10.3267320.5133750.5365220.031*
N20.0549 (3)0.7614 (3)0.60765 (18)0.0241 (5)
H20.1261280.7755900.6881020.029*
N30.4696 (3)0.7518 (3)1.05788 (18)0.0227 (5)
H30.3895410.7649870.9895360.027*
C40.1178 (4)0.7948 (4)0.6181 (3)0.0375 (8)
H4A0.1817480.8083850.5454370.045*
H4B0.1003210.9015240.6859330.045*
C50.2222 (4)0.3575 (4)0.3638 (2)0.0342 (8)
H5A0.3376160.3393750.3587320.041*
H5B0.1608410.3676270.2891810.041*
C100.3754 (4)0.7608 (4)1.1497 (2)0.0316 (7)
H10A0.3250080.8615141.1635560.038*
H10B0.4568460.7722941.2251930.038*
C70.7280 (4)0.8752 (4)1.0018 (3)0.0354 (8)
H7A0.8164410.9836021.0251670.043*
H7B0.6429610.8609160.9269650.043*
C60.6331 (4)0.8916 (3)1.0980 (3)0.0322 (7)
H6A0.7118890.8875241.1694910.039*
H6B0.6038061.0040111.1196760.039*
C30.1549 (4)0.8829 (4)0.5660 (2)0.0330 (7)
H3A0.1761171.0014340.6221390.040*
H3B0.0848410.8755430.4879660.040*
C20.3306 (4)0.8428 (4)0.5557 (3)0.0377 (8)
H2A0.3902750.8296080.6296420.045*
H2B0.4036530.9421280.5490180.045*
C90.7699 (4)0.4053 (4)0.8955 (2)0.0301 (7)
H9A0.8526020.4155290.9701570.036*
H9B0.8341920.4030400.8364690.036*
C80.8185 (4)0.7247 (4)0.9782 (2)0.0314 (7)
H8A0.8963440.7393950.9294860.038*
H8B0.8902600.7271491.0543620.038*
C10.3180 (4)0.6798 (4)0.4498 (3)0.0360 (8)
H1A0.2442930.6841030.3765060.043*
H1B0.4350790.6779070.4403700.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0161 (3)0.0253 (3)0.0139 (2)0.0052 (2)0.00150 (19)0.0091 (2)
Ni20.0177 (3)0.0196 (3)0.0146 (2)0.0044 (2)0.00097 (19)0.0076 (2)
S10.0191 (4)0.0317 (4)0.0166 (3)0.0020 (3)0.0022 (3)0.0138 (3)
O20.0273 (11)0.0258 (10)0.0180 (9)0.0037 (9)0.0044 (8)0.0129 (8)
O30.0203 (12)0.136 (2)0.0444 (14)0.0038 (13)0.0024 (10)0.0619 (15)
O10.0251 (11)0.0296 (11)0.0165 (9)0.0023 (9)0.0044 (8)0.0104 (8)
O40.0816 (18)0.0276 (12)0.0285 (12)0.0197 (12)0.0156 (12)0.0046 (10)
N40.0214 (13)0.0282 (13)0.0193 (11)0.0051 (10)0.0006 (10)0.0111 (10)
N10.0221 (13)0.0386 (14)0.0181 (12)0.0080 (11)0.0036 (10)0.0138 (11)
N20.0276 (14)0.0272 (13)0.0167 (11)0.0078 (11)0.0007 (10)0.0106 (10)
N30.0233 (13)0.0203 (12)0.0197 (11)0.0052 (10)0.0020 (10)0.0065 (10)
C40.040 (2)0.0401 (19)0.0343 (17)0.0225 (16)0.0109 (15)0.0104 (15)
C50.0279 (18)0.050 (2)0.0317 (17)0.0179 (16)0.0165 (14)0.0151 (15)
C100.0370 (19)0.0306 (17)0.0246 (15)0.0150 (14)0.0076 (13)0.0039 (13)
C70.0340 (19)0.0276 (16)0.0391 (18)0.0032 (13)0.0011 (14)0.0179 (14)
C60.0355 (19)0.0190 (15)0.0340 (17)0.0024 (13)0.0006 (14)0.0085 (13)
C30.043 (2)0.0235 (16)0.0248 (16)0.0008 (14)0.0003 (14)0.0089 (13)
C20.0333 (19)0.0409 (19)0.0334 (17)0.0101 (15)0.0016 (14)0.0213 (15)
C90.0266 (17)0.0396 (18)0.0251 (15)0.0134 (14)0.0077 (13)0.0104 (14)
C80.0240 (17)0.0365 (18)0.0302 (16)0.0023 (13)0.0021 (13)0.0160 (14)
C10.0240 (17)0.058 (2)0.0313 (16)0.0046 (15)0.0089 (13)0.0247 (16)
Geometric parameters (Å, º) top
Ni1—O1i2.1625 (16)N3—C61.475 (4)
Ni1—O12.1625 (16)C4—H4A0.9700
Ni1—N12.064 (2)C4—H4B0.9700
Ni1—N1i2.064 (2)C4—C5i1.507 (4)
Ni1—N22.072 (2)C5—H5A0.9700
Ni1—N2i2.072 (2)C5—H5B0.9700
Ni2—O2ii2.1696 (16)C10—H10A0.9700
Ni2—O22.1696 (16)C10—H10B0.9700
Ni2—N4ii2.072 (2)C10—C9ii1.514 (4)
Ni2—N42.072 (2)C7—H7A0.9700
Ni2—N3ii2.063 (2)C7—H7B0.9700
Ni2—N32.063 (2)C7—C61.516 (4)
S1—O21.4722 (17)C7—C81.526 (4)
S1—O31.455 (2)C6—H6A0.9700
S1—O11.4742 (17)C6—H6B0.9700
S1—O41.477 (2)C3—H3A0.9700
N4—H40.9800C3—H3B0.9700
N4—C91.470 (3)C3—C21.517 (4)
N4—C81.473 (3)C2—H2A0.9700
N1—H10.9800C2—H2B0.9700
N1—C51.476 (3)C2—C11.522 (4)
N1—C11.471 (4)C9—H9A0.9700
N2—H20.9800C9—H9B0.9700
N2—C41.475 (3)C8—H8A0.9700
N2—C31.470 (3)C8—H8B0.9700
N3—H30.9800C1—H1A0.9700
N3—C101.471 (3)C1—H1B0.9700
O1i—Ni1—O1180.0C6—N3—H3107.1
N1—Ni1—O190.53 (7)N2—C4—H4A110.0
N1i—Ni1—O189.47 (7)N2—C4—H4B110.0
N1i—Ni1—O1i90.53 (7)N2—C4—C5i108.6 (2)
N1—Ni1—O1i89.47 (7)H4A—C4—H4B108.3
N1i—Ni1—N1180.0C5i—C4—H4A110.0
N1—Ni1—N294.49 (9)C5i—C4—H4B110.0
N1—Ni1—N2i85.51 (9)N1—C5—C4i108.9 (2)
N1i—Ni1—N285.51 (9)N1—C5—H5A109.9
N1i—Ni1—N2i94.49 (9)N1—C5—H5B109.9
N2i—Ni1—O187.02 (7)C4i—C5—H5A109.9
N2—Ni1—O192.98 (7)C4i—C5—H5B109.9
N2i—Ni1—O1i92.98 (7)H5A—C5—H5B108.3
N2—Ni1—O1i87.02 (7)N3—C10—H10A110.1
N2—Ni1—N2i180.00 (7)N3—C10—H10B110.1
O2—Ni2—O2ii180.0N3—C10—C9ii108.2 (2)
N4ii—Ni2—O2ii92.22 (7)H10A—C10—H10B108.4
N4—Ni2—O2ii87.78 (7)C9ii—C10—H10A110.1
N4ii—Ni2—O287.78 (7)C9ii—C10—H10B110.1
N4—Ni2—O292.22 (7)H7A—C7—H7B107.5
N4—Ni2—N4ii180.0C6—C7—H7A108.5
N3ii—Ni2—O287.88 (7)C6—C7—H7B108.5
N3—Ni2—O2ii87.87 (7)C6—C7—C8115.2 (2)
N3ii—Ni2—O2ii92.12 (7)C8—C7—H7A108.5
N3—Ni2—O292.13 (7)C8—C7—H7B108.5
N3ii—Ni2—N485.41 (9)N3—C6—C7112.4 (2)
N3—Ni2—N494.59 (9)N3—C6—H6A109.1
N3—Ni2—N4ii85.41 (9)N3—C6—H6B109.1
N3ii—Ni2—N4ii94.58 (9)C7—C6—H6A109.1
N3—Ni2—N3ii180.00 (11)C7—C6—H6B109.1
O2—S1—O1109.61 (11)H6A—C6—H6B107.8
O2—S1—O4108.92 (11)N2—C3—H3A109.2
O3—S1—O2109.99 (12)N2—C3—H3B109.2
O3—S1—O1109.64 (12)N2—C3—C2111.9 (2)
O3—S1—O4109.85 (16)H3A—C3—H3B107.9
O1—S1—O4108.81 (11)C2—C3—H3A109.2
S1—O2—Ni2126.36 (11)C2—C3—H3B109.2
S1—O1—Ni1126.17 (11)C3—C2—H2A108.5
Ni2—N4—H4107.4C3—C2—H2B108.5
C9—N4—Ni2104.98 (17)C3—C2—C1115.1 (2)
C9—N4—H4107.4H2A—C2—H2B107.5
C9—N4—C8113.3 (2)C1—C2—H2A108.5
C8—N4—Ni2116.05 (17)C1—C2—H2B108.5
C8—N4—H4107.4N4—C9—C10ii108.4 (2)
Ni1—N1—H1106.9N4—C9—H9A110.0
C5—N1—Ni1105.39 (17)N4—C9—H9B110.0
C5—N1—H1106.9C10ii—C9—H9A110.0
C1—N1—Ni1116.45 (17)C10ii—C9—H9B110.0
C1—N1—H1106.9H9A—C9—H9B108.4
C1—N1—C5113.8 (2)N4—C8—C7111.5 (2)
Ni1—N2—H2107.5N4—C8—H8A109.3
C4—N2—Ni1105.35 (17)N4—C8—H8B109.3
C4—N2—H2107.5C7—C8—H8A109.3
C3—N2—Ni1114.87 (16)C7—C8—H8B109.3
C3—N2—H2107.5H8A—C8—H8B108.0
C3—N2—C4113.8 (2)N1—C1—C2112.0 (2)
Ni2—N3—H3107.1N1—C1—H1A109.2
C10—N3—Ni2105.45 (16)N1—C1—H1B109.2
C10—N3—H3107.1C2—C1—H1A109.2
C10—N3—C6114.1 (2)C2—C1—H1B109.2
C6—N3—Ni2115.61 (16)H1A—C1—H1B107.9
Ni1—N1—C5—C4i41.9 (2)O4—S1—O1—Ni165.05 (16)
Ni1—N1—C1—C254.9 (3)N2—C3—C2—C173.0 (3)
Ni1—N2—C4—C5i41.8 (2)C4—N2—C3—C2179.6 (2)
Ni1—N2—C3—C258.0 (2)C5—N1—C1—C2177.9 (2)
Ni2—N4—C9—C10ii43.1 (2)C10—N3—C6—C7178.8 (2)
Ni2—N4—C8—C756.2 (3)C6—N3—C10—C9ii170.5 (2)
Ni2—N3—C10—C9ii42.5 (2)C6—C7—C8—N471.5 (3)
Ni2—N3—C6—C756.2 (3)C3—N2—C4—C5i168.5 (2)
O2—S1—O1—Ni1175.93 (11)C3—C2—C1—N170.7 (3)
O3—S1—O2—Ni257.29 (17)C9—N4—C8—C7177.7 (2)
O3—S1—O1—Ni155.11 (17)C8—N4—C9—C10ii170.7 (2)
O1—S1—O2—Ni2177.90 (11)C8—C7—C6—N371.8 (3)
O4—S1—O2—Ni263.16 (16)C1—N1—C5—C4i170.7 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O30.982.022.916 (3)151
N2—H2···O40.982.052.960 (3)154
N3—H3···O40.982.012.938 (3)157
N4—H4···O30.982.042.946 (3)153
C5—H5A···O3iii0.972.523.336 (4)141
C6—H6B···O4iv0.972.513.245 (3)133
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y+2, z+2.
catena-Poly[[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-µ2-sulfato-κ2O3:O4] hemi[4,4',4'',4'''-(2,2',4,4',6,6'-hexamethyl-[1,1'-biphenyl]-3,3',5,5'-tetrayl)tetrabenzoic acid] nonahydrate] (II) top
Crystal data top
[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2OF(000) = 3016
Mr = 1428.96Dx = 1.190 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 12.1299 (5) ÅCell parameters from 2340 reflections
b = 18.5163 (11) Åθ = 2.0–21.1°
c = 35.621 (2) ŵ = 0.59 mm1
β = 94.777 (4)°T = 293 K
V = 7972.7 (8) Å3Plate, clear light colourless
Z = 40.10 × 0.04 × 0.01 mm
Data collection top
Xcalibur, Eos
diffractometer
8085 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3223 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 16.1593 pixels mm-1θmax = 26.4°, θmin = 2.0°
ω scansh = 1515
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1523
Tmin = 0.920, Tmax = 1.000l = 2344
20054 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.077H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0206P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
8085 reflectionsΔρmax = 0.25 e Å3
432 parametersΔρmin = 0.35 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.2500000.7500000.7500000.0562 (3)
Ni20.7500000.7500000.7500000.0628 (3)
S10.50054 (10)0.67856 (9)0.75649 (4)0.0648 (5)
O30.5194 (2)0.6766 (2)0.79768 (10)0.0784 (12)
O20.60695 (19)0.68618 (17)0.73957 (8)0.0637 (10)
N30.8460 (3)0.6578 (3)0.74746 (15)0.0723 (14)
H30.9230740.6734610.7472400.087*
O10.4286 (2)0.74068 (18)0.74571 (9)0.0633 (10)
O40.4467 (2)0.6099 (2)0.74284 (10)0.0839 (13)
N10.2244 (3)0.6743 (3)0.70776 (12)0.0646 (13)
H10.2961880.6517090.7047610.078*
N20.2493 (3)0.6758 (3)0.79323 (12)0.0724 (15)
H20.3227250.6534310.7962490.087*
N40.7455 (3)0.7698 (3)0.69294 (12)0.0752 (15)
H40.8155710.7929870.6881670.090*
C300.6311 (4)0.1028 (2)0.43972 (16)0.0549 (15)
O60.3958 (3)0.6092 (2)0.64754 (11)0.1048 (15)
C110.4785 (4)0.5740 (3)0.6510 (2)0.0739 (19)
O80.3879 (3)0.0478 (2)0.34768 (11)0.0993 (15)
C180.6922 (3)0.4520 (2)0.52586 (16)0.0565 (15)
C150.6387 (4)0.4891 (3)0.55700 (18)0.0578 (16)
O50.5273 (3)0.5560 (3)0.68365 (12)0.1085 (17)
H50.4948480.5746040.7004540.163*
C350.6920 (4)0.0749 (3)0.41216 (17)0.0641 (17)
H350.7674120.0846870.4133910.077*
O70.5501 (4)0.0438 (2)0.32448 (15)0.141 (2)
H70.5446460.0870060.3196640.212*
C240.7500000.2565 (4)0.5000000.061 (2)
C100.8358 (4)0.6201 (4)0.7837 (2)0.099 (2)
H10A0.8942790.5845560.7879110.118*
H10B0.7652340.5952170.7830700.118*
C120.5369 (4)0.5458 (3)0.61875 (18)0.0632 (17)
C330.5339 (4)0.0202 (2)0.37979 (15)0.0549 (15)
C320.4706 (4)0.0485 (3)0.40693 (17)0.0667 (17)
H320.3948320.0400270.4052220.080*
C290.7500000.0240 (3)0.5000000.081 (3)
H29A0.6822000.0066730.5088600.122*0.5
H29B0.8114200.0066730.5162700.122*0.5
H29C0.7563700.0066730.4748600.122*0.5
C250.6867 (4)0.2198 (3)0.47185 (17)0.0632 (16)
C310.5178 (4)0.0887 (3)0.43612 (17)0.0724 (18)
H310.4734560.1070600.4539630.087*
C210.6887 (4)0.3754 (2)0.52488 (16)0.0598 (16)
C20.1792 (4)0.5761 (3)0.7521 (2)0.102 (3)
H2A0.1346030.5327450.7526290.123*
H2B0.2557890.5610340.7519810.123*
C140.5408 (4)0.5268 (3)0.55178 (17)0.0761 (18)
H140.5073980.5336550.5275910.091*
C190.7500000.4897 (4)0.5000000.059 (2)
C70.8269 (4)0.6526 (4)0.67781 (18)0.100 (2)
H7A0.8277530.6181100.6573310.120*
H7B0.8962940.6788430.6790270.120*
C10.1470 (4)0.6156 (3)0.71504 (19)0.091 (2)
H1A0.1450340.5812710.6944450.109*
H1B0.0733040.6355650.7158240.109*
C340.6463 (4)0.0332 (3)0.38290 (16)0.0628 (16)
H340.6908470.0140290.3653520.075*
C260.6144 (4)0.2602 (3)0.44165 (17)0.093 (2)
H26A0.6285240.3111300.4437190.140*
H26B0.5379240.2510100.4449990.140*
H26C0.6309240.2436900.4171990.140*
C280.7500000.1063 (3)0.5000000.053 (2)
C360.4816 (5)0.0268 (3)0.34931 (17)0.0710 (18)
C60.8214 (4)0.6113 (3)0.7142 (2)0.093 (2)
H6A0.7480340.5907910.7149470.112*
H6B0.8740450.5717890.7148970.112*
C270.6889 (4)0.1440 (3)0.47161 (16)0.0581 (15)
C230.7500000.3381 (3)0.5000000.059 (2)
C40.2352 (4)0.7191 (4)0.82776 (17)0.092 (2)
H4A0.2571070.6907530.8500390.111*
H4B0.1582130.7327070.8285780.111*
C130.4922 (4)0.5543 (3)0.5823 (2)0.077 (2)
H130.4262780.5798400.5781090.092*
C170.6369 (4)0.5105 (3)0.62374 (17)0.087 (2)
H170.6712190.5049530.6478930.105*
C160.6867 (4)0.4833 (3)0.5933 (2)0.099 (2)
H160.7548400.4604140.5974360.118*
C50.1940 (4)0.7144 (4)0.67308 (16)0.089 (2)
H5A0.1165640.7280530.6720490.106*
H5B0.2047550.6843290.6514000.106*
C30.1672 (4)0.6173 (4)0.7876 (2)0.099 (2)
H3A0.0934170.6377730.7868180.119*
H3B0.1757580.5844180.8088690.119*
C90.6560 (4)0.8245 (4)0.68479 (18)0.100 (2)
H9A0.5841520.8011360.6833890.120*
H9B0.6646110.8478490.6608470.120*
C220.6150 (4)0.3346 (3)0.55038 (16)0.096 (2)
H22A0.6525190.3303700.5751010.144*
H22B0.5989690.2873500.5403110.144*
H22C0.5471790.3608100.5518910.144*
C80.7330 (4)0.7059 (4)0.66839 (17)0.099 (2)
H8A0.7330690.7206820.6422700.119*
H8B0.6627770.6826100.6716250.119*
C200.7500000.5710 (3)0.5000000.086 (3)
H20A0.6754400.5883070.5002200.129*0.5
H20B0.7813200.5883070.4778100.129*0.5
H20C0.7932400.5883070.5219700.129*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0282 (5)0.1032 (8)0.0381 (6)0.0154 (5)0.0081 (4)0.0213 (6)
Ni20.0268 (5)0.1156 (8)0.0474 (7)0.0160 (5)0.0113 (4)0.0303 (7)
S10.0272 (6)0.1131 (13)0.0562 (11)0.0168 (8)0.0155 (6)0.0301 (11)
O30.047 (2)0.140 (3)0.049 (3)0.029 (2)0.0138 (17)0.044 (3)
O20.0217 (16)0.117 (3)0.055 (3)0.0142 (16)0.0150 (15)0.018 (2)
N30.030 (2)0.122 (4)0.066 (4)0.014 (2)0.010 (2)0.023 (4)
O10.0313 (16)0.104 (3)0.055 (2)0.0224 (17)0.0082 (15)0.026 (2)
O40.040 (2)0.105 (3)0.110 (4)0.005 (2)0.028 (2)0.009 (3)
N10.032 (2)0.117 (4)0.046 (3)0.022 (2)0.010 (2)0.001 (3)
N20.030 (2)0.132 (4)0.057 (4)0.025 (3)0.015 (2)0.042 (3)
N40.037 (2)0.139 (5)0.051 (4)0.010 (3)0.014 (2)0.029 (3)
C300.068 (4)0.033 (3)0.066 (5)0.004 (3)0.020 (3)0.004 (3)
O60.065 (3)0.143 (4)0.108 (4)0.053 (2)0.011 (2)0.008 (3)
C110.047 (4)0.084 (5)0.092 (6)0.012 (3)0.015 (4)0.009 (4)
O80.051 (2)0.133 (3)0.116 (4)0.020 (2)0.025 (2)0.044 (3)
C180.041 (3)0.044 (3)0.085 (5)0.009 (2)0.010 (3)0.007 (3)
C150.045 (3)0.048 (3)0.082 (5)0.002 (3)0.011 (3)0.004 (4)
O50.075 (3)0.167 (4)0.084 (4)0.057 (3)0.010 (3)0.005 (4)
C350.056 (3)0.059 (4)0.079 (5)0.010 (3)0.015 (3)0.000 (4)
O70.103 (3)0.163 (4)0.172 (5)0.076 (3)0.096 (3)0.115 (4)
C240.069 (5)0.032 (5)0.086 (8)0.0000.026 (5)0.000
C100.047 (4)0.144 (7)0.105 (7)0.021 (4)0.008 (4)0.048 (6)
C120.042 (3)0.068 (4)0.081 (5)0.012 (3)0.009 (3)0.004 (4)
C330.049 (3)0.052 (3)0.067 (5)0.001 (2)0.021 (3)0.003 (3)
C320.043 (3)0.072 (4)0.087 (5)0.004 (3)0.018 (3)0.019 (4)
C290.116 (6)0.044 (5)0.081 (7)0.0000.010 (5)0.000
C250.072 (4)0.037 (4)0.082 (5)0.002 (3)0.012 (3)0.010 (3)
C310.062 (4)0.073 (4)0.086 (5)0.003 (3)0.032 (3)0.015 (4)
C210.055 (3)0.042 (3)0.086 (5)0.006 (3)0.024 (3)0.004 (3)
C20.042 (4)0.105 (6)0.161 (9)0.005 (3)0.019 (4)0.025 (6)
C140.052 (3)0.097 (4)0.079 (5)0.020 (3)0.003 (3)0.020 (4)
C190.041 (4)0.041 (5)0.095 (7)0.0000.013 (4)0.000
C70.071 (4)0.156 (6)0.077 (6)0.007 (4)0.027 (4)0.004 (5)
C10.043 (3)0.121 (6)0.111 (7)0.003 (4)0.011 (4)0.022 (5)
C340.054 (3)0.057 (4)0.082 (5)0.006 (3)0.030 (3)0.007 (3)
C260.105 (5)0.053 (4)0.121 (6)0.009 (3)0.000 (4)0.005 (4)
C280.083 (5)0.010 (4)0.068 (7)0.0000.013 (4)0.000
C360.066 (4)0.077 (4)0.074 (5)0.014 (3)0.029 (4)0.022 (4)
C60.040 (3)0.134 (6)0.107 (7)0.011 (3)0.018 (4)0.011 (6)
C270.055 (3)0.045 (4)0.074 (5)0.000 (3)0.008 (3)0.001 (3)
C230.050 (4)0.028 (5)0.099 (8)0.0000.014 (4)0.000
C40.059 (4)0.168 (7)0.054 (5)0.046 (4)0.027 (3)0.041 (5)
C130.049 (4)0.081 (4)0.100 (6)0.027 (3)0.008 (4)0.004 (4)
C170.058 (3)0.121 (5)0.082 (5)0.040 (3)0.004 (3)0.005 (4)
C160.055 (4)0.139 (6)0.103 (6)0.046 (4)0.016 (4)0.015 (5)
C50.064 (4)0.159 (7)0.043 (4)0.039 (4)0.008 (3)0.002 (5)
C30.050 (4)0.129 (6)0.123 (7)0.015 (4)0.032 (4)0.057 (5)
C90.053 (4)0.178 (7)0.067 (5)0.018 (4)0.002 (3)0.064 (5)
C220.103 (5)0.064 (4)0.129 (6)0.008 (3)0.051 (4)0.017 (4)
C80.057 (4)0.181 (7)0.062 (5)0.000 (4)0.013 (3)0.021 (5)
C200.111 (6)0.019 (4)0.135 (9)0.0000.055 (5)0.000
Geometric parameters (Å, º) top
Ni1—O12.191 (2)C33—C361.491 (6)
Ni1—O1i2.191 (2)C32—H320.9300
Ni1—N12.061 (4)C32—C311.365 (6)
Ni1—N1i2.061 (4)C29—H29A0.9600
Ni1—N22.065 (4)C29—H29B0.9600
Ni1—N2i2.065 (4)C29—H29C0.9602
Ni2—O22.107 (3)C29—C281.524 (8)
Ni2—O2ii2.107 (3)C25—C261.526 (6)
Ni2—N3ii2.073 (4)C25—C271.403 (6)
Ni2—N32.073 (4)C31—H310.9300
Ni2—N42.062 (4)C21—C231.388 (5)
Ni2—N4ii2.062 (4)C21—C221.526 (6)
S1—O31.466 (3)C2—H2A0.9700
S1—O21.476 (3)C2—H2B0.9700
S1—O11.476 (3)C2—C11.530 (7)
S1—O41.491 (4)C2—C31.496 (7)
N3—H30.9800C14—H140.9300
N3—C101.481 (6)C14—C131.378 (7)
N3—C61.476 (6)C19—C201.506 (8)
N1—H10.9800C7—H7A0.9700
N1—C11.473 (6)C7—H7B0.9700
N1—C51.462 (6)C7—C61.510 (7)
N2—H20.9800C7—C81.523 (7)
N2—C41.490 (6)C1—H1A0.9700
N2—C31.473 (6)C1—H1B0.9700
N4—H40.9800C34—H340.9300
N4—C91.495 (6)C26—H26A0.9599
N4—C81.472 (6)C26—H26B0.9601
C30—C351.377 (6)C26—H26C0.9600
C30—C311.395 (6)C28—C27iii1.391 (5)
C30—C271.494 (7)C28—C271.391 (5)
O6—C111.194 (5)C6—H6A0.9700
C11—O51.305 (6)C6—H6B0.9700
C11—C121.492 (7)C4—H4A0.9700
O8—C361.198 (5)C4—H4B0.9700
C18—C151.498 (6)C4—C5i1.503 (7)
C18—C211.419 (6)C13—H130.9300
C18—C191.391 (5)C17—H170.9300
C15—C141.377 (6)C17—C161.380 (7)
C15—C161.377 (7)C16—H160.9300
O5—H50.8200C5—H5A0.9700
C35—H350.9300C5—H5B0.9700
C35—C341.376 (6)C3—H3A0.9700
O7—H70.8200C3—H3B0.9700
O7—C361.302 (5)C9—H9A0.9700
C24—C25iii1.389 (6)C9—H9B0.9700
C24—C251.389 (6)C22—H22A0.9602
C24—C231.510 (9)C22—H22B0.9600
C10—H10A0.9700C22—H22C0.9601
C10—H10B0.9700C8—H8A0.9700
C10—C9ii1.519 (7)C8—H8B0.9700
C12—C131.372 (7)C20—H20A0.9600
C12—C171.376 (6)C20—H20B0.9599
C33—C321.386 (6)C20—H20C0.9600
C33—C341.381 (5)
O1—Ni1—O1i180.0C32—C31—C30121.3 (5)
N1i—Ni1—O190.85 (13)C32—C31—H31119.4
N1—Ni1—O1i90.85 (13)C18—C21—C22119.8 (4)
N1—Ni1—O189.15 (13)C23—C21—C18119.8 (5)
N1i—Ni1—O1i89.15 (13)C23—C21—C22120.3 (4)
N1—Ni1—N1i180.0H2A—C2—H2B107.3
N1i—Ni1—N2i94.72 (19)C1—C2—H2A108.1
N1i—Ni1—N285.28 (19)C1—C2—H2B108.1
N1—Ni1—N2i85.28 (19)C3—C2—H2A108.1
N1—Ni1—N294.72 (19)C3—C2—H2B108.1
N2—Ni1—O1i86.26 (12)C3—C2—C1116.8 (6)
N2—Ni1—O193.74 (12)C15—C14—H14119.9
N2i—Ni1—O1i93.74 (12)C15—C14—C13120.1 (6)
N2i—Ni1—O186.26 (12)C13—C14—H14119.9
N2—Ni1—N2i180.0C18—C19—C18iii119.8 (6)
O2ii—Ni2—O2180.0C18iii—C19—C20120.1 (3)
N3ii—Ni2—O2ii89.28 (14)C18—C19—C20120.1 (3)
N3—Ni2—O289.28 (14)H7A—C7—H7B107.5
N3ii—Ni2—O290.72 (14)C6—C7—H7A108.4
N3—Ni2—O2ii90.72 (14)C6—C7—H7B108.4
N3ii—Ni2—N3180.0C6—C7—C8115.6 (5)
N4—Ni2—O2ii91.61 (15)C8—C7—H7A108.4
N4ii—Ni2—O291.61 (15)C8—C7—H7B108.4
N4ii—Ni2—O2ii88.39 (15)N1—C1—C2112.6 (5)
N4—Ni2—O288.39 (15)N1—C1—H1A109.1
N4—Ni2—N3ii85.84 (19)N1—C1—H1B109.1
N4ii—Ni2—N3ii94.16 (19)C2—C1—H1A109.1
N4ii—Ni2—N385.84 (19)C2—C1—H1B109.1
N4—Ni2—N394.16 (19)H1A—C1—H1B107.8
N4ii—Ni2—N4180.00 (4)C35—C34—C33119.5 (5)
O3—S1—O2110.02 (18)C35—C34—H34120.3
O3—S1—O1108.6 (2)C33—C34—H34120.3
O3—S1—O4109.5 (2)C25—C26—H26A109.8
O2—S1—O4108.8 (2)C25—C26—H26B109.3
O1—S1—O2109.74 (19)C25—C26—H26C109.4
O1—S1—O4110.2 (2)H26A—C26—H26B109.5
S1—O2—Ni2135.8 (2)H26A—C26—H26C109.5
Ni2—N3—H3107.2H26B—C26—H26C109.5
C10—N3—Ni2105.2 (3)C27iii—C28—C29120.2 (3)
C10—N3—H3107.2C27—C28—C29120.2 (3)
C6—N3—Ni2116.0 (3)C27iii—C28—C27119.7 (7)
C6—N3—H3107.2O8—C36—O7123.0 (6)
C6—N3—C10113.6 (5)O8—C36—C33124.7 (5)
S1—O1—Ni1127.61 (19)O7—C36—C33112.3 (5)
Ni1—N1—H1106.8N3—C6—C7111.9 (6)
C1—N1—Ni1115.6 (3)N3—C6—H6A109.2
C1—N1—H1106.8N3—C6—H6B109.2
C5—N1—Ni1106.5 (4)C7—C6—H6A109.2
C5—N1—H1106.8C7—C6—H6B109.2
C5—N1—C1113.8 (5)H6A—C6—H6B107.9
Ni1—N2—H2107.6C25—C27—C30120.5 (5)
C4—N2—Ni1105.4 (4)C28—C27—C30118.9 (5)
C4—N2—H2107.6C28—C27—C25120.5 (6)
C3—N2—Ni1115.7 (3)C21—C23—C24119.9 (3)
C3—N2—H2107.6C21iii—C23—C24119.9 (3)
C3—N2—C4112.6 (4)C21—C23—C21iii120.2 (6)
Ni2—N4—H4107.3N2—C4—H4A110.0
C9—N4—Ni2105.7 (3)N2—C4—H4B110.0
C9—N4—H4107.3N2—C4—C5i108.6 (4)
C8—N4—Ni2115.8 (4)H4A—C4—H4B108.3
C8—N4—H4107.3C5i—C4—H4A110.0
C8—N4—C9113.1 (5)C5i—C4—H4B110.0
C35—C30—C31116.6 (5)C12—C13—C14122.8 (5)
C35—C30—C27119.2 (5)C12—C13—H13118.6
C31—C30—C27124.2 (5)C14—C13—H13118.6
O6—C11—O5123.1 (6)C12—C17—H17119.6
O6—C11—C12124.2 (6)C12—C17—C16120.7 (6)
O5—C11—C12112.8 (5)C16—C17—H17119.6
C21—C18—C15117.5 (5)C15—C16—C17122.1 (5)
C19—C18—C15122.3 (4)C15—C16—H16119.0
C19—C18—C21120.1 (5)C17—C16—H16119.0
C14—C15—C18123.7 (6)N1—C5—C4i109.2 (5)
C16—C15—C18119.0 (5)N1—C5—H5A109.8
C16—C15—C14117.3 (5)N1—C5—H5B109.8
C11—O5—H5109.5C4i—C5—H5A109.8
C30—C35—H35118.5C4i—C5—H5B109.8
C30—C35—C34123.0 (5)H5A—C5—H5B108.3
C34—C35—H35118.5N2—C3—C2112.1 (5)
C36—O7—H7109.5N2—C3—H3A109.2
C25—C24—C25iii121.4 (7)N2—C3—H3B109.2
C25iii—C24—C23119.3 (4)C2—C3—H3A109.2
C25—C24—C23119.3 (4)C2—C3—H3B109.2
N3—C10—H10A110.0H3A—C3—H3B107.9
N3—C10—H10B110.0N4—C9—C10ii108.2 (5)
N3—C10—C9ii108.7 (5)N4—C9—H9A110.1
H10A—C10—H10B108.3N4—C9—H9B110.1
C9ii—C10—H10A110.0C10ii—C9—H9A110.1
C9ii—C10—H10B110.0C10ii—C9—H9B110.1
C13—C12—C11120.7 (5)H9A—C9—H9B108.4
C13—C12—C17116.8 (5)C21—C22—H22A109.3
C17—C12—C11122.5 (6)C21—C22—H22B109.8
C32—C33—C36120.2 (5)C21—C22—H22C109.3
C34—C33—C32118.5 (5)H22A—C22—H22B109.5
C34—C33—C36121.2 (5)H22A—C22—H22C109.5
C33—C32—H32119.4H22B—C22—H22C109.5
C31—C32—C33121.1 (5)N4—C8—C7110.6 (5)
C31—C32—H32119.4N4—C8—H8A109.5
H29A—C29—H29B109.5N4—C8—H8B109.5
H29A—C29—H29C109.5C7—C8—H8A109.5
H29B—C29—H29C109.5C7—C8—H8B109.5
C28—C29—H29A109.5H8A—C8—H8B108.1
C28—C29—H29B109.5C19—C20—H20A109.5
C28—C29—H29C109.5C19—C20—H20B109.5
C24—C25—C26121.3 (5)C19—C20—H20C109.5
C24—C25—C27118.9 (6)H20A—C20—H20B109.5
C27—C25—C26119.7 (5)H20A—C20—H20C109.5
C30—C31—H31119.4H20B—C20—H20C109.5
Ni1—N1—C1—C254.6 (6)C25iii—C24—C23—C21iii102.8 (3)
Ni1—N1—C5—C4i40.7 (4)C25—C24—C23—C21102.8 (3)
Ni1—N2—C4—C5i41.7 (5)C25—C24—C23—C21iii77.2 (3)
Ni1—N2—C3—C256.4 (6)C25iii—C24—C23—C2177.2 (3)
Ni2—N3—C10—C9ii42.8 (5)C31—C30—C35—C342.0 (8)
Ni2—N3—C6—C755.0 (5)C31—C30—C27—C2580.6 (7)
Ni2—N4—C9—C10ii41.2 (5)C31—C30—C27—C28103.0 (5)
Ni2—N4—C8—C758.2 (5)C21—C18—C15—C14107.6 (6)
O3—S1—O2—Ni244.7 (3)C21—C18—C15—C1669.7 (7)
O3—S1—O1—Ni175.3 (3)C21—C18—C19—C18iii2.5 (3)
O2—S1—O1—Ni1164.4 (2)C21—C18—C19—C20177.5 (3)
O1—S1—O2—Ni274.7 (3)C14—C15—C16—C173.4 (9)
O4—S1—O2—Ni2164.6 (2)C19—C18—C15—C1476.6 (6)
O4—S1—O1—Ni144.6 (3)C19—C18—C15—C16106.1 (6)
C30—C35—C34—C332.3 (8)C19—C18—C21—C235.0 (7)
O6—C11—C12—C135.3 (9)C19—C18—C21—C22173.3 (4)
O6—C11—C12—C17174.5 (6)C1—N1—C5—C4i169.2 (4)
C11—C12—C13—C14177.4 (5)C1—C2—C3—N270.0 (6)
C11—C12—C17—C16178.1 (6)C34—C33—C32—C310.2 (8)
C18—C15—C14—C13174.6 (5)C34—C33—C36—O8170.1 (5)
C18—C15—C16—C17174.1 (5)C34—C33—C36—O79.0 (8)
C18—C21—C23—C24177.6 (3)C26—C25—C27—C306.9 (8)
C18—C21—C23—C21iii2.4 (3)C26—C25—C27—C28176.8 (4)
C15—C18—C21—C23171.0 (4)C36—C33—C32—C31176.7 (5)
C15—C18—C21—C2210.8 (7)C36—C33—C34—C35177.8 (5)
C15—C18—C19—C18iii173.3 (5)C6—N3—C10—C9ii170.7 (4)
C15—C18—C19—C206.7 (5)C6—C7—C8—N473.2 (7)
C15—C14—C13—C120.3 (9)C27—C30—C35—C34176.6 (5)
O5—C11—C12—C13174.5 (6)C27—C30—C31—C32177.7 (5)
O5—C11—C12—C175.7 (8)C27iii—C28—C27—C30175.1 (5)
C35—C30—C31—C320.8 (8)C27iii—C28—C27—C251.3 (3)
C35—C30—C27—C25101.0 (6)C23—C24—C25—C262.0 (5)
C35—C30—C27—C2875.5 (6)C23—C24—C25—C27178.7 (3)
C24—C25—C27—C30173.8 (4)C4—N2—C3—C2177.7 (5)
C24—C25—C27—C282.6 (7)C13—C12—C17—C162.1 (9)
C10—N3—C6—C7177.0 (4)C17—C12—C13—C142.8 (9)
C12—C17—C16—C151.0 (10)C16—C15—C14—C132.8 (8)
C33—C32—C31—C300.1 (9)C5—N1—C1—C2178.3 (5)
C32—C33—C34—C351.3 (7)C3—N2—C4—C5i168.6 (4)
C32—C33—C36—O86.3 (9)C3—C2—C1—N169.3 (6)
C32—C33—C36—O7174.6 (5)C9—N4—C8—C7179.5 (4)
C29—C28—C27—C304.9 (5)C22—C21—C23—C244.2 (5)
C29—C28—C27—C25178.7 (3)C22—C21—C23—C21iii175.7 (5)
C25iii—C24—C25—C26178.0 (5)C8—N4—C9—C10ii169.0 (5)
C25iii—C24—C25—C271.3 (3)C8—C7—C6—N371.6 (7)
Symmetry codes: (i) x+1/2, y+3/2, z+3/2; (ii) x+3/2, y+3/2, z+3/2; (iii) x+3/2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.982.323.113 (5)138
N2—H2···O30.982.423.267 (4)144
N4—H4···O3ii0.982.103.012 (5)154
O5—H5···O40.821.792.597 (5)169
O7—H7···O3iv0.821.852.654 (5)166
Symmetry codes: (ii) x+3/2, y+3/2, z+3/2; (iv) x, y+1/2, z1/2.
Selected geometric parameters (Å, °) top
III
Ni1—N12.064 (2)2.061 (4)
Ni1—N22.072 (2)2.065 (4)
Ni2—N32.063 (2)2.073 (4)
Ni2—N42.072 (2)2.062 (4)
Ni1—O12.1625 (16)2.191 (2)
Ni2—O22.1696 (16)2.107 (3)
N1—Ni1—N2i85.51 (9)85.28 (19)
N1—Ni1—N294.49 (9)94.72 (19)
N3—Ni2—N4ii85.41 (9)85.84 (19)
N3—Ni2—N494.59 (9)94.16 (19)
Symmetry codes: (i) -x, -y + 1, -z + 1 in (I) and -x + 1/2, -y + 3/2, -z + 3/2 in (II); (ii) -x + 1, -y + 1, -z + 2 in (I) and -x + 3/2, -y + 3/2, -z + 3/2 in (II).
 

References

First citationBahrin, L. G., Bejan, D., Shova, S., Gdaniec, M., Fronc, M., Lozan, V. & Janiak, C. (2019). Polyhedron, 173, 114128.  CrossRef Google Scholar
First citationBarefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.  CSD CrossRef CAS Web of Science Google Scholar
First citationBosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109–1112.  CrossRef CAS Web of Science Google Scholar
First citationChurchard, A. J., Cyrański, M. K. & Grochala, W. (2010). Acta Cryst. C66, m263–m265.  CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGu, J.-Z., Jiang, L., Feng, X.-L., Tan, M.-Y. & Lu, T.-B. (2008). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 38, 28–31.  CrossRef CAS Google Scholar
First citationKim, C., Lough, A. J., Fettinger, J. C., Choi, K.-Y., Kim, D., Pyun, S.-Y. & Cho, J. (2000). Inorg. Chim. Acta, 303, 163–167.  CrossRef CAS Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLi, X., Lin, Y., Yu, L., Zou, J. & Wang, H. (2022). Inorg. Chem. 61, 13229–13233.  CrossRef CAS PubMed Google Scholar
First citationLv, X.-L., Feng, L., Xie, L.-H., He, T., Wu, W., Wang, K.-Y., Si, G., Wang, B., Li, J.-R. & Zhou, H.-C. (2021). J. Am. Chem. Soc. 143, 2784–2791.  CrossRef CAS PubMed Google Scholar
First citationLv, X.-L., Yuan, S., Xie, L.-H., Darke, H. F., Chen, Y., He, T., Dong, C., Wang, B., Zhang, Y.-Z., Li, J.-R. & Zhou, H.-C. (2019). J. Am. Chem. Soc. 141, 10283–10293.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Org. Chem. 70, 8568–8571.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMorrison, T. L., Bhowmick, I. & Shores, M. P. (2023). Cryst. Growth Des. 23, 3186–3194.  CrossRef CAS Google Scholar
First citationOshio, H., Okamoto, H., Kikuchi, T. & Ito, T. (1997). Inorg. Chem. 36, 3201–3203.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationOu, G.-C., Zou, L.-S. & Yuan, Z.-H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543–544.  CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, J. W., Son, H. J., Kim, S. K. & Min, K. S. (2013). Polyhedron, 52, 1206–1212.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165.  Web of Science CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationTsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370.  Web of Science CSD CrossRef CAS Google Scholar
First citationTsymbal, L. V., Ardeleanu, R., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 750–754.  CrossRef IUCr Journals Google Scholar
First citationWang, J.-X., Gu, X.-W., Lin, Y.-X., Li, B. & Qian, G. (2021). Mater. Lett. pp. 497–503.  Google Scholar
First citationWang, X., Fan, W., Zhang, M., Shang, Y., Wang, Y., Liu, D., Guo, H., Dai, F. & Sun, D. (2019). Chin. Chem. Lett. 30, 801–805.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, Y., O'Connor, A. E., Kanthasamy, G., Atkinson, G., Allan, D. R., Blake, A. J. & Schröder, M. (2018). J. Am. Chem. Soc. 140, 3952–3958.  CrossRef CAS PubMed Google Scholar
First citationZhang, X., Wang, X., Fan, W., Wang, Y., Wang, X., Zhang, K. & Sun, D. (2020). Mater. Chem. Front. 4, 1150–1157.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds