research communications
Syntheses and structures of two coordination polymers formed by Ni(cyclam)2+ cations and sulfate anions
aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kyiv, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, RO 700487 Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net
The asymmetric units of catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4], [Ni(SO4)(C10H24N4)]n (I), and catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4] hemi[4,4′,4′′,4′′′-(2,2′,4,4′,6,6′-hexamethyl-[1,1′-biphenyl]-3,3′,5,5′-tetrayl)tetrabenzoic acid] nonahydrate], {[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O}n (II), consist of two crystallographically unique centrosymmetric macrocyclic dications and a sulfate dianion. In II it includes additionally a molecule of the undissociated acid (2,2′,4,4′,6,6′-hexamethyl[1,1′-biphenyl]-3,3′,5,5′-tetrayl)tetra(benzoic acid) located on a crystallographic twofold axis and nine highly disordered water molecules of crystallization. In both compounds, the metal ions are coordinated in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation. Two O atoms of the sulfate anions occupy the trans-axial positions resulting in a slightly tetragonally distorted trans-NiN4O2 octahedral coordination geometry. The crystals of both compounds are composed of parallel coordination polymeric chains running along the [101] and [100] directions in I and II, respectively. The distances between the neighboring metal ions in the chains are significantly different [6.5121 (6) Å in I and 6.0649 (3) Å in II] and this peculiarity is explained by the different spatial directivity of the Ni—O coordination bonds (different S—O—Ni angles). As a result of the C—H⋯O hydrogen bonds between the methylene groups of the macrocyclic ligands and the non-coordinated O atoms of the sulfate anion, the coordination-polymeric chains in I are arranged in the two-dimensional layers oriented parallel to the (010) and (101) planes, the intersection of which provides the three-dimensional coherence of the crystals. The three-dimensional supramolecular structure of the crystals II is determined by the network of strong hydrogen bonds formed by the carboxylic acid and the non-coordinated O atoms of the sulfate anions.
Keywords: crystal structure; coordination polymer; cyclam; nickel; sulfate; hydrogen bonds.
1. Chemical context
Nickel(II) complexes of 14-membered tetradentate azamacrocyclic ligands, in particular, cyclam and its analogues (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4, L), are widely used in the formation of coordination polymers and metal–organic frameworks based on oligocarboxylate linkers, which possess many promising applications (Lampeka & Tsymbal, 2004; Suh & Moon, 2007; Stackhouse & Ma, 2018). At the same time, examples of coordination polymers formed by these NiII-containing nodes and simple inorganic oxoanions are rare and are limited mainly to compounds containing bridging chromate ligands (see Database survey). Surprisingly, no polymers formed by the sulfate dianion and tetraazamacrocyclic NiII cations have been described to date. At the same time, it can be expected that the formation of structures containing two different types of bridging ligand (i.e., organic carboxylates and inorganic oxoanions) will enrich the topological variability of the coordination polymers and their functional characteristics. To check such a possibility, we conducted the reaction between an excess (8:1) of [Ni(L)](ClO4)2 and (2,2′,4,4′,6,6′-hexamethyl[1,1′-biphenyl]-3,3′,5,5′-tetrayl)tetra(benzoic acid) (H4A) in the presence of Na2SO4.
The present work describes the preparation and structural characterization of the products of this reaction which are the first representatives of polymeric complexes formed by the [Ni(L)]2+ cation and SO42– anions, namely, catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4], [Ni(SO4)(C10H24N4)]n (I), and catena-poly[[(1,4,8,11-tetraazacyclotetradecane-κ4N1,N4,N8,N11)nickel(II)]-μ2-sulfato-κ2O3:O4] hemi[4,4′,4′′,4′′′-(2,2′,4,4′,6,6′-hexamethyl-[1,1′-biphenyl]-3,3′,5,5′-tetrayl)tetrabenzoic acid] nonahydrate], {[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O}n (II).
2. Structural commentary
The asymmetric units of both compounds contain two crystallographically unique centrosymmetric macrocyclic cations [Ni(L)]2+ and one sulfate anion (Fig. 1). In II it includes additionally the molecule of the acid H4A and, according to SQUEEZE calculations, nine highly disordered water molecules of crystallization.
The coordination environments of the metal ions in I and II are very similar. The NiII ions are equatorially coordinated to the four secondary N atoms of the macrocycle L, while the axial positions in the coordination spheres are occupied by the O atoms of the sulfate anions. Since the Ni—N bond lengths, which are typical of high-spin NiII 3d8 are slightly shorter than the Ni—O ones (Table 1), the coordination polyhedra in both compounds can be described as tetragonally elongated trans-NiN4O2 octahedra. Interestingly, the Ni—O distances are nearly equal in I, while they differ significantly in II (Table 1).
The macrocyclic ligands L adopt the most energetically stable trans-III (R,R,S,S) conformation (Barefield et al., 1986) with the five-membered (N—Ni—N bite angles ca 85°) and six-membered (N—Ni—N bite angles ca 95°) chelate rings being in gauche and chair conformations, respectively (Table 1).
The NiN4 coordination moieties in I and II are strictly planar because of the location of the metal ions on crystallographic inversion centers. The axial Ni—O bonds are nearly orthogonal to the NiN4 planes (deviations of the angles N—Ni—O from 90° do not exceed 4°). Analogously to other complexes of the NiII macrocyclic cations and carboxylate ligands (Tsymbal et al., 2021) the Ni—O coordination interactions in I and II are reinforced by intramolecular hydrogen bonds between the secondary NH atoms of the amine groups and the non-coordinated O atoms of the sulfate anions (Fig. 1, Tables 2 and 3).
|
|
In both complexes, the sulfate ligands display a μ2-bis-monodentate bridging mode resulting in the formation of linear (i.e., an angle Ni⋯Ni⋯Ni of 180°), parallel, coordination-polymeric chains running along the [101] and [100] directions in I and II, respectively. Despite close similarities in coordination bond lengths in both compounds, there are several differences in the structures of the polymeric chains connected with the mutual orientation of the constituents. In particular, the angle between the mean NiN4 planes of the structurally non-equivalent macrocyclic cations in I is 31.44 (9)°, while in II it is 41.6 (2)°. Additionally, the angles between the long axes of these macrocyclic cations passing through the symmetry-related central C atoms of the trimethylene fragments (C2 or C7) and the NiII ion are 7.51 (9) and 56.2 (2)° in I and II, respectively. Besides, the distances between the neighboring metal ions in the chains are significantly different [6.5121 (6) Å in I and 6.0649 (3) Å in II]. Obviously, this feature is explained by different mutual spatial directivity of the Ni—O coordination bonds. That is to say, though the angles S1—O1—Ni1 are nearly equal in I and II [126.17 (11) and 127.61 (19)°, respectively], the angles S1—O2—Ni2 differ significantly [126.36 (11) and 135.8 (2)°] (Fig. 1).
The clathrated molecule of the acid H4A in the crystal of II is localized on a crystallographic twofold axis passing through the C20/C29 carbon atoms (Fig. 2) and is characterized by the non-planar structure manifesting itself in substantial mutual tilting of the aromatic rings. This is caused by repulsive interactions of the hydrogen atoms of the methyl substituents between themselves [the angle between the mean planes of the central trimethylbenzene fragments is 75.3 (2)°] or with the hydrogen atoms of the pendant aromatic rings [the angles between the mean planes of trimethylbenzene rings and the lateral carboxyl-substituted ones are 71.4 (2) and 77.8 (2)°]. The latter values are close to those observed in the complex of a structurally related triphenylphosphonic acid built on a trimethylbenzene core (Tsymbal et al., 2022). The angles C11—Cg—C11(−x + , y, −z + 1) and C36—Cg—C36(−x + , y, −z + 1) are 131.2 (1) and 114.8 (1)° (Cg represents the centroid of the corresponding trimethylbenzene ring) and, because of the tilting of these rings, the molecule H4A as a whole possesses a tetrahedron-like shape. The carboxylic acid groups in H4A are close to coplanar with their corresponding benzene rings (the angles between their mean planes are smaller than 8°) and are non-delocalized as indicated by the large differences in the lengths of the C—OH (ca 1.30 Å) and C=O (ca 1.20 Å) bonds.
3. Supramolecular features
The three-dimensional coherence of the crystal of I is supported by weak C—H⋯O hydrogen bonds between the C5 and C6 methylene groups belonging to the structurally non-equivalent macrocyclic cations and the non-coordinated O3 and O4 atoms of the sulfate anion (Table 2). In particular, the polymeric chains in I are arranged in pseudo layers oriented parallel to the (010) plane due to C5—H5A⋯O3 contacts (Fig. 3a). Simultaneously, similar layers, though oriented parallel to the (10) plane (Fig. 3b), are formed as a result of the C6—H6B⋯O4 interactions. The intersection of these layers results in the formation of a three-dimensional system of hydrogen bonds in the crystal. The shortest distance between the NiII ions in neighboring chains is ca 8.0 and 8.3 Å in the former and the latter cases, respectively. It is noteworthy that both the non-coordinated O atoms of the sulfate anion in I are saturated by hydrogen bonds, acting as triple proton acceptors. According to PLATON calculations (Spek, 2020), the crystals of I are non-porous.
A pivotal role in the formation of the extended structure of the crystals of II is played by the carboxylic acid H4A. Acting as the proton donor, it forms strong hydrogen bonds with the non-coordinated O3 and O4 atoms of the sulfate anion (Table 3), which belong to four different polymeric chains. These chains act as pillars and, in turn, the anions of each asymmetric units interact with four molecules of the acid (Fig. 4). At the same time, the tetrahedral shape of this molecule prevents the formation of any two-dimensional aggregates, thus resulting in a three-dimensional system of hydrogen bonds in the crystals II. As estimated by PLATON (Spek, 2020), the volume of the solvent-accessible void in II in the form of isolated cavities equals 1667 Å3 (20.9% of the unit-cell volume) which, according to SQUEEZE calculations, are filled with eighteen highly disordered water molecules of crystallization.
4. Database survey
Data concerning the L) cation(s) are very limited. In particular, the Cambridge Structural Database (CSD, Version 5.45, last update September 2024; Groom et al., 2016) contains characterization of the only one non-polymeric NiII complex anion trans-[NiII(L)(SO4)2]2− (refcode FAFLUV; Churchard et al., 2010) and two compounds of the NiIII complex cation trans-[NiIII(L)(HSO4)2]+ (RIGFUM and RIGGIB; Morrison et al., 2023). Additionally, the one-dimensional coordination polymer based on the trans-[NiIII(L)(SO4)2]− unit has also been described (RIGGEX; Morrison et al., 2023). It is noteworthy that, despite the different chemical nature of FAFLUV and I and II (i.e. non-polymeric and polymeric, respectively), the coordination bond lengths in all complexes are very similar (cf. average Ni—N and Ni—O distances in FAFLUV of 2.07 and 2.15 Å, respectively, with the corresponding parameters presented in Table 1).
of sulfate complexes of the Ni(Despite the lack of structurally characterized polymeric NiII(L)–sulfate compounds, there is one example of a polymeric complex of this cation with the chromate anion – a ligand that is closely related to sulfate (NAYWUF; Oshio et al., 1997). In addition, a number of polymeric complexes of the [Ni(diazacyclam)]2+ macrocyclic cation [diazacyclam = (3,10)-R2-1,3,5,8,10,12-hexaazacyclotetradecane] with the CrO42– anion have been described [GUJNUU; Kim et al., 2000, and GUJNUU01, Gu et al., 2008 (R = 2-hydroxyethyl); RAHZAD; Ou et al., 2011 (R = propyl); VEWWEB and VEWWIF; Shin et al., 2013 (R = S,S- or R,R-1-phenylethyl)], as well as the coordination polymer with the molybdate anion [GUJPAC; Kim et al., 2000 (R = 2-hydroxyethyl)].
In general, the crystal structures of all of the above-mentioned polymeric complexes of the NiII ion are rather similar and related to I and II. Their crystals are also built from parallel polymeric chains and the lengths of the NiII—O axial coordination bonds (2.06–2.10 Å) are only slightly shorter than those observed in I and II. This feature, together with strictly linear (NAYWUF and RAHZAD) or close to linear (other complexes) arrangement of the Ni2+ ions in the chains and a similar mode of coordination of the MO42– anions to that observed in I, results in a narrow spread of the intrachain metal–metal distances (6.6–6.8 Å). Interestingly, though the average NiIII—O bond length in RIGGEX (2.11 Å) does not differs significantly from that observed in I or II, a shorter Ni⋯Ni intrachain distance (6.28 Å) in the former polymer is explained by the essential non-linearity of the chains (the angle Ni⋯Ni⋯Ni is ca 164°).
The acid H4A has been used for the preparation of several polymeric compounds, including complexes of ZrIV and HfIV (Yan et al., 2018; Lv et al., 2019; Zhang et al., 2020), EuIII (Lv et al., 2021), CdII (Wang et al., 2019) and alkali- and alkaline-earth metal ions (Bahrin et al., 2019; Li et al., 2022). Additionally, the structures of the uncoordinated acid in solvated (RAXXIY; Moorthy et al., 2005) and unsolvated (HEGCEF; Wang et al., 2021) states as well as in mono- and dianionic forms (BOVNEI; Bahrin et al., 2019) have been reported. The comparison of structural data available in the literature for uncoordinated HnA(4–n)– with those of H4A in II demonstrates rather minor differences in interatomic distances and angles and in general shapes of the ions and molecules, which obviously is connected with their low conformational flexibility caused by strong intramolecular interatomic repulsions.
5. Synthesis and crystallization
All chemicals and solvents used in this work were purchased from Sigma–Aldrich and used without further purification. The acid H4A was synthesized according to a procedure described previously (Bahrin et al., 2019). The complex [Ni(L)](ClO4)2 was prepared from ethanol solutions as described in the literature (Bosnich et al., 1965).
The coordination polymers I and II were prepared as by-products of the reaction between the excess of the perchlorate salt of [Ni(L)]2+ cation and the acid H4A (8:1) in the presence of Na2SO4 as follows.
A solution of H4A (35 mg, 0.050 mmol) in 5 ml of DMF was mixed with a solution of [Ni(L)](ClO4)2 (183 mg, 0.40 mmol) dissolved in 5 ml of a DMF/H2O mixture (1:1 by volume). Na2SO4 (100 mg, 0.70 mmol) was then added and a solution was heated at 353 K for 30 min and left to stand at ambient conditions. Light-violet prisms of I, which formed in a week, were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 14 mg (10% based on nickel complex). Analysis calculated for C10H24N4NiO4S: C 33.83, H 6.81, N 15.58%. Found: C 33.71, H 6.92, N 15.39%.
Refrigerating the mother liquor obtained after filtering off complex I resulted in the formation of II after one day in the form of nearly colorless light-pink plates. These were filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 22 mg (7% based on nickel complex). Analysis calculated for C66H122N8Ni2O34S2: C 45.22, H 7.01, N 6.39%. Found: C 45.41, H 7.47, N 6.59%. Single crystals of I and II suitable for X-ray were selected from the samples resulting from the synthesis.
Caution! Perchlorate salts of metal complexes are potentially explosive and should be handled with care.
6. Refinement
Crystal data, data collection and structure . The H atoms in I and II were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.93, 0.96 and 0.97 Å (ring, methyl and methylene H atoms, respectively), N—H distances of 0.98 Å, O—H distances of 0.82 Å (protonated carboxylic group) with Uiso(H) values of 1.2Ueq or 1.5Ueq times those of the corresponding parent atoms. SQUEEZE calculations indicate the presence of nine water molecules of crystallization per of II.
details are summarized in Table 4
|
Supporting information
https://doi.org/10.1107/S2056989024012337/hb8118sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989024012337/hb8118Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989024012337/hb8118IIsup3.hkl
[Ni(SO4)(C10H24N4)] | Z = 2 |
Mr = 355.10 | F(000) = 376 |
Triclinic, P1 | Dx = 1.620 Mg m−3 |
a = 7.9935 (6) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.3181 (6) Å | Cell parameters from 2779 reflections |
c = 12.1998 (9) Å | θ = 2.6–27.9° |
α = 108.308 (7)° | µ = 1.50 mm−1 |
β = 102.767 (7)° | T = 293 K |
γ = 99.145 (6)° | Prism, clear light violet |
V = 727.88 (10) Å3 | 0.10 × 0.05 × 0.04 mm |
Xcalibur, Eos diffractometer | 2965 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 2356 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.036 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 26.4°, θmin = 1.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −10→10 |
Tmin = 0.986, Tmax = 1.000 | l = −15→15 |
7381 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.038 | H-atom parameters constrained |
wR(F2) = 0.080 | w = 1/[σ2(Fo2) + (0.0285P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.001 |
2965 reflections | Δρmax = 0.41 e Å−3 |
184 parameters | Δρmin = −0.41 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.000000 | 0.500000 | 0.500000 | 0.01844 (14) | |
Ni2 | 0.500000 | 0.500000 | 1.000000 | 0.01761 (14) | |
S1 | 0.25415 (9) | 0.52446 (9) | 0.75638 (5) | 0.02297 (18) | |
O2 | 0.2854 (2) | 0.4234 (2) | 0.83542 (14) | 0.0247 (4) | |
O3 | 0.4087 (3) | 0.5606 (4) | 0.71535 (19) | 0.0627 (8) | |
O1 | 0.0987 (2) | 0.4245 (2) | 0.65152 (14) | 0.0255 (5) | |
O4 | 0.2186 (3) | 0.6902 (3) | 0.82444 (17) | 0.0520 (7) | |
N4 | 0.6885 (3) | 0.5545 (3) | 0.91572 (18) | 0.0234 (5) | |
H4 | 0.625381 | 0.552117 | 0.836403 | 0.028* | |
N1 | 0.2431 (3) | 0.5189 (3) | 0.46653 (18) | 0.0257 (5) | |
H1 | 0.326732 | 0.513375 | 0.536522 | 0.031* | |
N2 | 0.0549 (3) | 0.7614 (3) | 0.60765 (18) | 0.0241 (5) | |
H2 | 0.126128 | 0.775590 | 0.688102 | 0.029* | |
N3 | 0.4696 (3) | 0.7518 (3) | 1.05788 (18) | 0.0227 (5) | |
H3 | 0.389541 | 0.764987 | 0.989536 | 0.027* | |
C4 | −0.1178 (4) | 0.7948 (4) | 0.6181 (3) | 0.0375 (8) | |
H4A | −0.181748 | 0.808385 | 0.545437 | 0.045* | |
H4B | −0.100321 | 0.901524 | 0.685933 | 0.045* | |
C5 | 0.2222 (4) | 0.3575 (4) | 0.3638 (2) | 0.0342 (8) | |
H5A | 0.337616 | 0.339375 | 0.358732 | 0.041* | |
H5B | 0.160841 | 0.367627 | 0.289181 | 0.041* | |
C10 | 0.3754 (4) | 0.7608 (4) | 1.1497 (2) | 0.0316 (7) | |
H10A | 0.325008 | 0.861514 | 1.163556 | 0.038* | |
H10B | 0.456846 | 0.772294 | 1.225193 | 0.038* | |
C7 | 0.7280 (4) | 0.8752 (4) | 1.0018 (3) | 0.0354 (8) | |
H7A | 0.816441 | 0.983602 | 1.025167 | 0.043* | |
H7B | 0.642961 | 0.860916 | 0.926965 | 0.043* | |
C6 | 0.6331 (4) | 0.8916 (3) | 1.0980 (3) | 0.0322 (7) | |
H6A | 0.711889 | 0.887524 | 1.169491 | 0.039* | |
H6B | 0.603806 | 1.004011 | 1.119676 | 0.039* | |
C3 | 0.1549 (4) | 0.8829 (4) | 0.5660 (2) | 0.0330 (7) | |
H3A | 0.176117 | 1.001434 | 0.622139 | 0.040* | |
H3B | 0.084841 | 0.875543 | 0.487966 | 0.040* | |
C2 | 0.3306 (4) | 0.8428 (4) | 0.5557 (3) | 0.0377 (8) | |
H2A | 0.390275 | 0.829608 | 0.629642 | 0.045* | |
H2B | 0.403653 | 0.942128 | 0.549018 | 0.045* | |
C9 | 0.7699 (4) | 0.4053 (4) | 0.8955 (2) | 0.0301 (7) | |
H9A | 0.852602 | 0.415529 | 0.970157 | 0.036* | |
H9B | 0.834192 | 0.403040 | 0.836469 | 0.036* | |
C8 | 0.8185 (4) | 0.7247 (4) | 0.9782 (2) | 0.0314 (7) | |
H8A | 0.896344 | 0.739395 | 0.929486 | 0.038* | |
H8B | 0.890260 | 0.727149 | 1.054362 | 0.038* | |
C1 | 0.3180 (4) | 0.6798 (4) | 0.4498 (3) | 0.0360 (8) | |
H1A | 0.244293 | 0.684103 | 0.376506 | 0.043* | |
H1B | 0.435079 | 0.677907 | 0.440370 | 0.043* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0161 (3) | 0.0253 (3) | 0.0139 (2) | 0.0052 (2) | 0.00150 (19) | 0.0091 (2) |
Ni2 | 0.0177 (3) | 0.0196 (3) | 0.0146 (2) | 0.0044 (2) | 0.00097 (19) | 0.0076 (2) |
S1 | 0.0191 (4) | 0.0317 (4) | 0.0166 (3) | 0.0020 (3) | −0.0022 (3) | 0.0138 (3) |
O2 | 0.0273 (11) | 0.0258 (10) | 0.0180 (9) | 0.0037 (9) | −0.0044 (8) | 0.0129 (8) |
O3 | 0.0203 (12) | 0.136 (2) | 0.0444 (14) | 0.0038 (13) | 0.0024 (10) | 0.0619 (15) |
O1 | 0.0251 (11) | 0.0296 (11) | 0.0165 (9) | 0.0023 (9) | −0.0044 (8) | 0.0104 (8) |
O4 | 0.0816 (18) | 0.0276 (12) | 0.0285 (12) | 0.0197 (12) | −0.0156 (12) | 0.0046 (10) |
N4 | 0.0214 (13) | 0.0282 (13) | 0.0193 (11) | 0.0051 (10) | 0.0006 (10) | 0.0111 (10) |
N1 | 0.0221 (13) | 0.0386 (14) | 0.0181 (12) | 0.0080 (11) | 0.0036 (10) | 0.0138 (11) |
N2 | 0.0276 (14) | 0.0272 (13) | 0.0167 (11) | 0.0078 (11) | 0.0007 (10) | 0.0106 (10) |
N3 | 0.0233 (13) | 0.0203 (12) | 0.0197 (11) | 0.0052 (10) | −0.0020 (10) | 0.0065 (10) |
C4 | 0.040 (2) | 0.0401 (19) | 0.0343 (17) | 0.0225 (16) | 0.0109 (15) | 0.0104 (15) |
C5 | 0.0279 (18) | 0.050 (2) | 0.0317 (17) | 0.0179 (16) | 0.0165 (14) | 0.0151 (15) |
C10 | 0.0370 (19) | 0.0306 (17) | 0.0246 (15) | 0.0150 (14) | 0.0076 (13) | 0.0039 (13) |
C7 | 0.0340 (19) | 0.0276 (16) | 0.0391 (18) | −0.0032 (13) | −0.0011 (14) | 0.0179 (14) |
C6 | 0.0355 (19) | 0.0190 (15) | 0.0340 (17) | 0.0024 (13) | −0.0006 (14) | 0.0085 (13) |
C3 | 0.043 (2) | 0.0235 (16) | 0.0248 (16) | 0.0008 (14) | 0.0003 (14) | 0.0089 (13) |
C2 | 0.0333 (19) | 0.0409 (19) | 0.0334 (17) | −0.0101 (15) | 0.0016 (14) | 0.0213 (15) |
C9 | 0.0266 (17) | 0.0396 (18) | 0.0251 (15) | 0.0134 (14) | 0.0077 (13) | 0.0104 (14) |
C8 | 0.0240 (17) | 0.0365 (18) | 0.0302 (16) | −0.0023 (13) | 0.0021 (13) | 0.0160 (14) |
C1 | 0.0240 (17) | 0.058 (2) | 0.0313 (16) | 0.0046 (15) | 0.0089 (13) | 0.0247 (16) |
Ni1—O1i | 2.1625 (16) | N3—C6 | 1.475 (4) |
Ni1—O1 | 2.1625 (16) | C4—H4A | 0.9700 |
Ni1—N1 | 2.064 (2) | C4—H4B | 0.9700 |
Ni1—N1i | 2.064 (2) | C4—C5i | 1.507 (4) |
Ni1—N2 | 2.072 (2) | C5—H5A | 0.9700 |
Ni1—N2i | 2.072 (2) | C5—H5B | 0.9700 |
Ni2—O2ii | 2.1696 (16) | C10—H10A | 0.9700 |
Ni2—O2 | 2.1696 (16) | C10—H10B | 0.9700 |
Ni2—N4ii | 2.072 (2) | C10—C9ii | 1.514 (4) |
Ni2—N4 | 2.072 (2) | C7—H7A | 0.9700 |
Ni2—N3ii | 2.063 (2) | C7—H7B | 0.9700 |
Ni2—N3 | 2.063 (2) | C7—C6 | 1.516 (4) |
S1—O2 | 1.4722 (17) | C7—C8 | 1.526 (4) |
S1—O3 | 1.455 (2) | C6—H6A | 0.9700 |
S1—O1 | 1.4742 (17) | C6—H6B | 0.9700 |
S1—O4 | 1.477 (2) | C3—H3A | 0.9700 |
N4—H4 | 0.9800 | C3—H3B | 0.9700 |
N4—C9 | 1.470 (3) | C3—C2 | 1.517 (4) |
N4—C8 | 1.473 (3) | C2—H2A | 0.9700 |
N1—H1 | 0.9800 | C2—H2B | 0.9700 |
N1—C5 | 1.476 (3) | C2—C1 | 1.522 (4) |
N1—C1 | 1.471 (4) | C9—H9A | 0.9700 |
N2—H2 | 0.9800 | C9—H9B | 0.9700 |
N2—C4 | 1.475 (3) | C8—H8A | 0.9700 |
N2—C3 | 1.470 (3) | C8—H8B | 0.9700 |
N3—H3 | 0.9800 | C1—H1A | 0.9700 |
N3—C10 | 1.471 (3) | C1—H1B | 0.9700 |
O1i—Ni1—O1 | 180.0 | C6—N3—H3 | 107.1 |
N1—Ni1—O1 | 90.53 (7) | N2—C4—H4A | 110.0 |
N1i—Ni1—O1 | 89.47 (7) | N2—C4—H4B | 110.0 |
N1i—Ni1—O1i | 90.53 (7) | N2—C4—C5i | 108.6 (2) |
N1—Ni1—O1i | 89.47 (7) | H4A—C4—H4B | 108.3 |
N1i—Ni1—N1 | 180.0 | C5i—C4—H4A | 110.0 |
N1—Ni1—N2 | 94.49 (9) | C5i—C4—H4B | 110.0 |
N1—Ni1—N2i | 85.51 (9) | N1—C5—C4i | 108.9 (2) |
N1i—Ni1—N2 | 85.51 (9) | N1—C5—H5A | 109.9 |
N1i—Ni1—N2i | 94.49 (9) | N1—C5—H5B | 109.9 |
N2i—Ni1—O1 | 87.02 (7) | C4i—C5—H5A | 109.9 |
N2—Ni1—O1 | 92.98 (7) | C4i—C5—H5B | 109.9 |
N2i—Ni1—O1i | 92.98 (7) | H5A—C5—H5B | 108.3 |
N2—Ni1—O1i | 87.02 (7) | N3—C10—H10A | 110.1 |
N2—Ni1—N2i | 180.00 (7) | N3—C10—H10B | 110.1 |
O2—Ni2—O2ii | 180.0 | N3—C10—C9ii | 108.2 (2) |
N4ii—Ni2—O2ii | 92.22 (7) | H10A—C10—H10B | 108.4 |
N4—Ni2—O2ii | 87.78 (7) | C9ii—C10—H10A | 110.1 |
N4ii—Ni2—O2 | 87.78 (7) | C9ii—C10—H10B | 110.1 |
N4—Ni2—O2 | 92.22 (7) | H7A—C7—H7B | 107.5 |
N4—Ni2—N4ii | 180.0 | C6—C7—H7A | 108.5 |
N3ii—Ni2—O2 | 87.88 (7) | C6—C7—H7B | 108.5 |
N3—Ni2—O2ii | 87.87 (7) | C6—C7—C8 | 115.2 (2) |
N3ii—Ni2—O2ii | 92.12 (7) | C8—C7—H7A | 108.5 |
N3—Ni2—O2 | 92.13 (7) | C8—C7—H7B | 108.5 |
N3ii—Ni2—N4 | 85.41 (9) | N3—C6—C7 | 112.4 (2) |
N3—Ni2—N4 | 94.59 (9) | N3—C6—H6A | 109.1 |
N3—Ni2—N4ii | 85.41 (9) | N3—C6—H6B | 109.1 |
N3ii—Ni2—N4ii | 94.58 (9) | C7—C6—H6A | 109.1 |
N3—Ni2—N3ii | 180.00 (11) | C7—C6—H6B | 109.1 |
O2—S1—O1 | 109.61 (11) | H6A—C6—H6B | 107.8 |
O2—S1—O4 | 108.92 (11) | N2—C3—H3A | 109.2 |
O3—S1—O2 | 109.99 (12) | N2—C3—H3B | 109.2 |
O3—S1—O1 | 109.64 (12) | N2—C3—C2 | 111.9 (2) |
O3—S1—O4 | 109.85 (16) | H3A—C3—H3B | 107.9 |
O1—S1—O4 | 108.81 (11) | C2—C3—H3A | 109.2 |
S1—O2—Ni2 | 126.36 (11) | C2—C3—H3B | 109.2 |
S1—O1—Ni1 | 126.17 (11) | C3—C2—H2A | 108.5 |
Ni2—N4—H4 | 107.4 | C3—C2—H2B | 108.5 |
C9—N4—Ni2 | 104.98 (17) | C3—C2—C1 | 115.1 (2) |
C9—N4—H4 | 107.4 | H2A—C2—H2B | 107.5 |
C9—N4—C8 | 113.3 (2) | C1—C2—H2A | 108.5 |
C8—N4—Ni2 | 116.05 (17) | C1—C2—H2B | 108.5 |
C8—N4—H4 | 107.4 | N4—C9—C10ii | 108.4 (2) |
Ni1—N1—H1 | 106.9 | N4—C9—H9A | 110.0 |
C5—N1—Ni1 | 105.39 (17) | N4—C9—H9B | 110.0 |
C5—N1—H1 | 106.9 | C10ii—C9—H9A | 110.0 |
C1—N1—Ni1 | 116.45 (17) | C10ii—C9—H9B | 110.0 |
C1—N1—H1 | 106.9 | H9A—C9—H9B | 108.4 |
C1—N1—C5 | 113.8 (2) | N4—C8—C7 | 111.5 (2) |
Ni1—N2—H2 | 107.5 | N4—C8—H8A | 109.3 |
C4—N2—Ni1 | 105.35 (17) | N4—C8—H8B | 109.3 |
C4—N2—H2 | 107.5 | C7—C8—H8A | 109.3 |
C3—N2—Ni1 | 114.87 (16) | C7—C8—H8B | 109.3 |
C3—N2—H2 | 107.5 | H8A—C8—H8B | 108.0 |
C3—N2—C4 | 113.8 (2) | N1—C1—C2 | 112.0 (2) |
Ni2—N3—H3 | 107.1 | N1—C1—H1A | 109.2 |
C10—N3—Ni2 | 105.45 (16) | N1—C1—H1B | 109.2 |
C10—N3—H3 | 107.1 | C2—C1—H1A | 109.2 |
C10—N3—C6 | 114.1 (2) | C2—C1—H1B | 109.2 |
C6—N3—Ni2 | 115.61 (16) | H1A—C1—H1B | 107.9 |
Ni1—N1—C5—C4i | −41.9 (2) | O4—S1—O1—Ni1 | 65.05 (16) |
Ni1—N1—C1—C2 | 54.9 (3) | N2—C3—C2—C1 | 73.0 (3) |
Ni1—N2—C4—C5i | 41.8 (2) | C4—N2—C3—C2 | −179.6 (2) |
Ni1—N2—C3—C2 | −58.0 (2) | C5—N1—C1—C2 | 177.9 (2) |
Ni2—N4—C9—C10ii | 43.1 (2) | C10—N3—C6—C7 | 178.8 (2) |
Ni2—N4—C8—C7 | −56.2 (3) | C6—N3—C10—C9ii | −170.5 (2) |
Ni2—N3—C10—C9ii | −42.5 (2) | C6—C7—C8—N4 | 71.5 (3) |
Ni2—N3—C6—C7 | 56.2 (3) | C3—N2—C4—C5i | 168.5 (2) |
O2—S1—O1—Ni1 | −175.93 (11) | C3—C2—C1—N1 | −70.7 (3) |
O3—S1—O2—Ni2 | 57.29 (17) | C9—N4—C8—C7 | −177.7 (2) |
O3—S1—O1—Ni1 | −55.11 (17) | C8—N4—C9—C10ii | 170.7 (2) |
O1—S1—O2—Ni2 | 177.90 (11) | C8—C7—C6—N3 | −71.8 (3) |
O4—S1—O2—Ni2 | −63.16 (16) | C1—N1—C5—C4i | −170.7 (2) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3 | 0.98 | 2.02 | 2.916 (3) | 151 |
N2—H2···O4 | 0.98 | 2.05 | 2.960 (3) | 154 |
N3—H3···O4 | 0.98 | 2.01 | 2.938 (3) | 157 |
N4—H4···O3 | 0.98 | 2.04 | 2.946 (3) | 153 |
C5—H5A···O3iii | 0.97 | 2.52 | 3.336 (4) | 141 |
C6—H6B···O4iv | 0.97 | 2.51 | 3.245 (3) | 133 |
Symmetry codes: (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+2, −z+2. |
[Ni(SO4)(C10H24N4)]2·C46H38O8·18H2O | F(000) = 3016 |
Mr = 1428.96 | Dx = 1.190 Mg m−3 |
Monoclinic, I2/a | Mo Kα radiation, λ = 0.71073 Å |
a = 12.1299 (5) Å | Cell parameters from 2340 reflections |
b = 18.5163 (11) Å | θ = 2.0–21.1° |
c = 35.621 (2) Å | µ = 0.59 mm−1 |
β = 94.777 (4)° | T = 293 K |
V = 7972.7 (8) Å3 | Plate, clear light colourless |
Z = 4 | 0.10 × 0.04 × 0.01 mm |
Xcalibur, Eos diffractometer | 8085 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3223 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.086 |
Detector resolution: 16.1593 pixels mm-1 | θmax = 26.4°, θmin = 2.0° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −15→23 |
Tmin = 0.920, Tmax = 1.000 | l = −23→44 |
20054 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.077 | H-atom parameters constrained |
wR(F2) = 0.123 | w = 1/[σ2(Fo2) + (0.0206P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.99 | (Δ/σ)max < 0.001 |
8085 reflections | Δρmax = 0.25 e Å−3 |
432 parameters | Δρmin = −0.35 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ni1 | 0.250000 | 0.750000 | 0.750000 | 0.0562 (3) | |
Ni2 | 0.750000 | 0.750000 | 0.750000 | 0.0628 (3) | |
S1 | 0.50054 (10) | 0.67856 (9) | 0.75649 (4) | 0.0648 (5) | |
O3 | 0.5194 (2) | 0.6766 (2) | 0.79768 (10) | 0.0784 (12) | |
O2 | 0.60695 (19) | 0.68618 (17) | 0.73957 (8) | 0.0637 (10) | |
N3 | 0.8460 (3) | 0.6578 (3) | 0.74746 (15) | 0.0723 (14) | |
H3 | 0.923074 | 0.673461 | 0.747240 | 0.087* | |
O1 | 0.4286 (2) | 0.74068 (18) | 0.74571 (9) | 0.0633 (10) | |
O4 | 0.4467 (2) | 0.6099 (2) | 0.74284 (10) | 0.0839 (13) | |
N1 | 0.2244 (3) | 0.6743 (3) | 0.70776 (12) | 0.0646 (13) | |
H1 | 0.296188 | 0.651709 | 0.704761 | 0.078* | |
N2 | 0.2493 (3) | 0.6758 (3) | 0.79323 (12) | 0.0724 (15) | |
H2 | 0.322725 | 0.653431 | 0.796249 | 0.087* | |
N4 | 0.7455 (3) | 0.7698 (3) | 0.69294 (12) | 0.0752 (15) | |
H4 | 0.815571 | 0.792987 | 0.688167 | 0.090* | |
C30 | 0.6311 (4) | 0.1028 (2) | 0.43972 (16) | 0.0549 (15) | |
O6 | 0.3958 (3) | 0.6092 (2) | 0.64754 (11) | 0.1048 (15) | |
C11 | 0.4785 (4) | 0.5740 (3) | 0.6510 (2) | 0.0739 (19) | |
O8 | 0.3879 (3) | −0.0478 (2) | 0.34768 (11) | 0.0993 (15) | |
C18 | 0.6922 (3) | 0.4520 (2) | 0.52586 (16) | 0.0565 (15) | |
C15 | 0.6387 (4) | 0.4891 (3) | 0.55700 (18) | 0.0578 (16) | |
O5 | 0.5273 (3) | 0.5560 (3) | 0.68365 (12) | 0.1085 (17) | |
H5 | 0.494848 | 0.574604 | 0.700454 | 0.163* | |
C35 | 0.6920 (4) | 0.0749 (3) | 0.41216 (17) | 0.0641 (17) | |
H35 | 0.767412 | 0.084687 | 0.413391 | 0.077* | |
O7 | 0.5501 (4) | −0.0438 (2) | 0.32448 (15) | 0.141 (2) | |
H7 | 0.544646 | −0.087006 | 0.319664 | 0.212* | |
C24 | 0.750000 | 0.2565 (4) | 0.500000 | 0.061 (2) | |
C10 | 0.8358 (4) | 0.6201 (4) | 0.7837 (2) | 0.099 (2) | |
H10A | 0.894279 | 0.584556 | 0.787911 | 0.118* | |
H10B | 0.765234 | 0.595217 | 0.783070 | 0.118* | |
C12 | 0.5369 (4) | 0.5458 (3) | 0.61875 (18) | 0.0632 (17) | |
C33 | 0.5339 (4) | 0.0202 (2) | 0.37979 (15) | 0.0549 (15) | |
C32 | 0.4706 (4) | 0.0485 (3) | 0.40693 (17) | 0.0667 (17) | |
H32 | 0.394832 | 0.040027 | 0.405222 | 0.080* | |
C29 | 0.750000 | 0.0240 (3) | 0.500000 | 0.081 (3) | |
H29A | 0.682200 | 0.006673 | 0.508860 | 0.122* | 0.5 |
H29B | 0.811420 | 0.006673 | 0.516270 | 0.122* | 0.5 |
H29C | 0.756370 | 0.006673 | 0.474860 | 0.122* | 0.5 |
C25 | 0.6867 (4) | 0.2198 (3) | 0.47185 (17) | 0.0632 (16) | |
C31 | 0.5178 (4) | 0.0887 (3) | 0.43612 (17) | 0.0724 (18) | |
H31 | 0.473456 | 0.107060 | 0.453963 | 0.087* | |
C21 | 0.6887 (4) | 0.3754 (2) | 0.52488 (16) | 0.0598 (16) | |
C2 | 0.1792 (4) | 0.5761 (3) | 0.7521 (2) | 0.102 (3) | |
H2A | 0.134603 | 0.532745 | 0.752629 | 0.123* | |
H2B | 0.255789 | 0.561034 | 0.751981 | 0.123* | |
C14 | 0.5408 (4) | 0.5268 (3) | 0.55178 (17) | 0.0761 (18) | |
H14 | 0.507398 | 0.533655 | 0.527591 | 0.091* | |
C19 | 0.750000 | 0.4897 (4) | 0.500000 | 0.059 (2) | |
C7 | 0.8269 (4) | 0.6526 (4) | 0.67781 (18) | 0.100 (2) | |
H7A | 0.827753 | 0.618110 | 0.657331 | 0.120* | |
H7B | 0.896294 | 0.678843 | 0.679027 | 0.120* | |
C1 | 0.1470 (4) | 0.6156 (3) | 0.71504 (19) | 0.091 (2) | |
H1A | 0.145034 | 0.581271 | 0.694445 | 0.109* | |
H1B | 0.073304 | 0.635565 | 0.715824 | 0.109* | |
C34 | 0.6463 (4) | 0.0332 (3) | 0.38290 (16) | 0.0628 (16) | |
H34 | 0.690847 | 0.014029 | 0.365352 | 0.075* | |
C26 | 0.6144 (4) | 0.2602 (3) | 0.44165 (17) | 0.093 (2) | |
H26A | 0.628524 | 0.311130 | 0.443719 | 0.140* | |
H26B | 0.537924 | 0.251010 | 0.444999 | 0.140* | |
H26C | 0.630924 | 0.243690 | 0.417199 | 0.140* | |
C28 | 0.750000 | 0.1063 (3) | 0.500000 | 0.053 (2) | |
C36 | 0.4816 (5) | −0.0268 (3) | 0.34931 (17) | 0.0710 (18) | |
C6 | 0.8214 (4) | 0.6113 (3) | 0.7142 (2) | 0.093 (2) | |
H6A | 0.748034 | 0.590791 | 0.714947 | 0.112* | |
H6B | 0.874045 | 0.571789 | 0.714897 | 0.112* | |
C27 | 0.6889 (4) | 0.1440 (3) | 0.47161 (16) | 0.0581 (15) | |
C23 | 0.750000 | 0.3381 (3) | 0.500000 | 0.059 (2) | |
C4 | 0.2352 (4) | 0.7191 (4) | 0.82776 (17) | 0.092 (2) | |
H4A | 0.257107 | 0.690753 | 0.850039 | 0.111* | |
H4B | 0.158213 | 0.732707 | 0.828578 | 0.111* | |
C13 | 0.4922 (4) | 0.5543 (3) | 0.5823 (2) | 0.077 (2) | |
H13 | 0.426278 | 0.579840 | 0.578109 | 0.092* | |
C17 | 0.6369 (4) | 0.5105 (3) | 0.62374 (17) | 0.087 (2) | |
H17 | 0.671219 | 0.504953 | 0.647893 | 0.105* | |
C16 | 0.6867 (4) | 0.4833 (3) | 0.5933 (2) | 0.099 (2) | |
H16 | 0.754840 | 0.460414 | 0.597436 | 0.118* | |
C5 | 0.1940 (4) | 0.7144 (4) | 0.67308 (16) | 0.089 (2) | |
H5A | 0.116564 | 0.728053 | 0.672049 | 0.106* | |
H5B | 0.204755 | 0.684329 | 0.651400 | 0.106* | |
C3 | 0.1672 (4) | 0.6173 (4) | 0.7876 (2) | 0.099 (2) | |
H3A | 0.093417 | 0.637773 | 0.786818 | 0.119* | |
H3B | 0.175758 | 0.584418 | 0.808869 | 0.119* | |
C9 | 0.6560 (4) | 0.8245 (4) | 0.68479 (18) | 0.100 (2) | |
H9A | 0.584152 | 0.801136 | 0.683389 | 0.120* | |
H9B | 0.664611 | 0.847849 | 0.660847 | 0.120* | |
C22 | 0.6150 (4) | 0.3346 (3) | 0.55038 (16) | 0.096 (2) | |
H22A | 0.652519 | 0.330370 | 0.575101 | 0.144* | |
H22B | 0.598969 | 0.287350 | 0.540311 | 0.144* | |
H22C | 0.547179 | 0.360810 | 0.551891 | 0.144* | |
C8 | 0.7330 (4) | 0.7059 (4) | 0.66839 (17) | 0.099 (2) | |
H8A | 0.733069 | 0.720682 | 0.642270 | 0.119* | |
H8B | 0.662777 | 0.682610 | 0.671625 | 0.119* | |
C20 | 0.750000 | 0.5710 (3) | 0.500000 | 0.086 (3) | |
H20A | 0.675440 | 0.588307 | 0.500220 | 0.129* | 0.5 |
H20B | 0.781320 | 0.588307 | 0.477810 | 0.129* | 0.5 |
H20C | 0.793240 | 0.588307 | 0.521970 | 0.129* | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0282 (5) | 0.1032 (8) | 0.0381 (6) | 0.0154 (5) | 0.0081 (4) | 0.0213 (6) |
Ni2 | 0.0268 (5) | 0.1156 (8) | 0.0474 (7) | 0.0160 (5) | 0.0113 (4) | 0.0303 (7) |
S1 | 0.0272 (6) | 0.1131 (13) | 0.0562 (11) | 0.0168 (8) | 0.0155 (6) | 0.0301 (11) |
O3 | 0.047 (2) | 0.140 (3) | 0.049 (3) | 0.029 (2) | 0.0138 (17) | 0.044 (3) |
O2 | 0.0217 (16) | 0.117 (3) | 0.055 (3) | 0.0142 (16) | 0.0150 (15) | 0.018 (2) |
N3 | 0.030 (2) | 0.122 (4) | 0.066 (4) | 0.014 (2) | 0.010 (2) | 0.023 (4) |
O1 | 0.0313 (16) | 0.104 (3) | 0.055 (2) | 0.0224 (17) | 0.0082 (15) | 0.026 (2) |
O4 | 0.040 (2) | 0.105 (3) | 0.110 (4) | 0.005 (2) | 0.028 (2) | 0.009 (3) |
N1 | 0.032 (2) | 0.117 (4) | 0.046 (3) | 0.022 (2) | 0.010 (2) | −0.001 (3) |
N2 | 0.030 (2) | 0.132 (4) | 0.057 (4) | 0.025 (3) | 0.015 (2) | 0.042 (3) |
N4 | 0.037 (2) | 0.139 (5) | 0.051 (4) | 0.010 (3) | 0.014 (2) | 0.029 (3) |
C30 | 0.068 (4) | 0.033 (3) | 0.066 (5) | 0.004 (3) | 0.020 (3) | 0.004 (3) |
O6 | 0.065 (3) | 0.143 (4) | 0.108 (4) | 0.053 (2) | 0.011 (2) | −0.008 (3) |
C11 | 0.047 (4) | 0.084 (5) | 0.092 (6) | 0.012 (3) | 0.015 (4) | −0.009 (4) |
O8 | 0.051 (2) | 0.133 (3) | 0.116 (4) | −0.020 (2) | 0.025 (2) | −0.044 (3) |
C18 | 0.041 (3) | 0.044 (3) | 0.085 (5) | 0.009 (2) | 0.010 (3) | −0.007 (3) |
C15 | 0.045 (3) | 0.048 (3) | 0.082 (5) | −0.002 (3) | 0.011 (3) | 0.004 (4) |
O5 | 0.075 (3) | 0.167 (4) | 0.084 (4) | 0.057 (3) | 0.010 (3) | −0.005 (4) |
C35 | 0.056 (3) | 0.059 (4) | 0.079 (5) | −0.010 (3) | 0.015 (3) | 0.000 (4) |
O7 | 0.103 (3) | 0.163 (4) | 0.172 (5) | −0.076 (3) | 0.096 (3) | −0.115 (4) |
C24 | 0.069 (5) | 0.032 (5) | 0.086 (8) | 0.000 | 0.026 (5) | 0.000 |
C10 | 0.047 (4) | 0.144 (7) | 0.105 (7) | 0.021 (4) | 0.008 (4) | 0.048 (6) |
C12 | 0.042 (3) | 0.068 (4) | 0.081 (5) | 0.012 (3) | 0.009 (3) | 0.004 (4) |
C33 | 0.049 (3) | 0.052 (3) | 0.067 (5) | −0.001 (2) | 0.021 (3) | −0.003 (3) |
C32 | 0.043 (3) | 0.072 (4) | 0.087 (5) | −0.004 (3) | 0.018 (3) | −0.019 (4) |
C29 | 0.116 (6) | 0.044 (5) | 0.081 (7) | 0.000 | −0.010 (5) | 0.000 |
C25 | 0.072 (4) | 0.037 (4) | 0.082 (5) | 0.002 (3) | 0.012 (3) | 0.010 (3) |
C31 | 0.062 (4) | 0.073 (4) | 0.086 (5) | 0.003 (3) | 0.032 (3) | −0.015 (4) |
C21 | 0.055 (3) | 0.042 (3) | 0.086 (5) | −0.006 (3) | 0.024 (3) | 0.004 (3) |
C2 | 0.042 (4) | 0.105 (6) | 0.161 (9) | 0.005 (3) | 0.019 (4) | 0.025 (6) |
C14 | 0.052 (3) | 0.097 (4) | 0.079 (5) | 0.020 (3) | 0.003 (3) | −0.020 (4) |
C19 | 0.041 (4) | 0.041 (5) | 0.095 (7) | 0.000 | 0.013 (4) | 0.000 |
C7 | 0.071 (4) | 0.156 (6) | 0.077 (6) | −0.007 (4) | 0.027 (4) | −0.004 (5) |
C1 | 0.043 (3) | 0.121 (6) | 0.111 (7) | −0.003 (4) | 0.011 (4) | −0.022 (5) |
C34 | 0.054 (3) | 0.057 (4) | 0.082 (5) | −0.006 (3) | 0.030 (3) | 0.007 (3) |
C26 | 0.105 (5) | 0.053 (4) | 0.121 (6) | 0.009 (3) | 0.000 (4) | 0.005 (4) |
C28 | 0.083 (5) | 0.010 (4) | 0.068 (7) | 0.000 | 0.013 (4) | 0.000 |
C36 | 0.066 (4) | 0.077 (4) | 0.074 (5) | −0.014 (3) | 0.029 (4) | −0.022 (4) |
C6 | 0.040 (3) | 0.134 (6) | 0.107 (7) | 0.011 (3) | 0.018 (4) | 0.011 (6) |
C27 | 0.055 (3) | 0.045 (4) | 0.074 (5) | 0.000 (3) | 0.008 (3) | −0.001 (3) |
C23 | 0.050 (4) | 0.028 (5) | 0.099 (8) | 0.000 | 0.014 (4) | 0.000 |
C4 | 0.059 (4) | 0.168 (7) | 0.054 (5) | 0.046 (4) | 0.027 (3) | 0.041 (5) |
C13 | 0.049 (4) | 0.081 (4) | 0.100 (6) | 0.027 (3) | 0.008 (4) | 0.004 (4) |
C17 | 0.058 (3) | 0.121 (5) | 0.082 (5) | 0.040 (3) | 0.004 (3) | −0.005 (4) |
C16 | 0.055 (4) | 0.139 (6) | 0.103 (6) | 0.046 (4) | 0.016 (4) | −0.015 (5) |
C5 | 0.064 (4) | 0.159 (7) | 0.043 (4) | 0.039 (4) | 0.008 (3) | 0.002 (5) |
C3 | 0.050 (4) | 0.129 (6) | 0.123 (7) | 0.015 (4) | 0.032 (4) | 0.057 (5) |
C9 | 0.053 (4) | 0.178 (7) | 0.067 (5) | 0.018 (4) | 0.002 (3) | 0.064 (5) |
C22 | 0.103 (5) | 0.064 (4) | 0.129 (6) | −0.008 (3) | 0.051 (4) | 0.017 (4) |
C8 | 0.057 (4) | 0.181 (7) | 0.062 (5) | 0.000 (4) | 0.013 (3) | 0.021 (5) |
C20 | 0.111 (6) | 0.019 (4) | 0.135 (9) | 0.000 | 0.055 (5) | 0.000 |
Ni1—O1 | 2.191 (2) | C33—C36 | 1.491 (6) |
Ni1—O1i | 2.191 (2) | C32—H32 | 0.9300 |
Ni1—N1 | 2.061 (4) | C32—C31 | 1.365 (6) |
Ni1—N1i | 2.061 (4) | C29—H29A | 0.9600 |
Ni1—N2 | 2.065 (4) | C29—H29B | 0.9600 |
Ni1—N2i | 2.065 (4) | C29—H29C | 0.9602 |
Ni2—O2 | 2.107 (3) | C29—C28 | 1.524 (8) |
Ni2—O2ii | 2.107 (3) | C25—C26 | 1.526 (6) |
Ni2—N3ii | 2.073 (4) | C25—C27 | 1.403 (6) |
Ni2—N3 | 2.073 (4) | C31—H31 | 0.9300 |
Ni2—N4 | 2.062 (4) | C21—C23 | 1.388 (5) |
Ni2—N4ii | 2.062 (4) | C21—C22 | 1.526 (6) |
S1—O3 | 1.466 (3) | C2—H2A | 0.9700 |
S1—O2 | 1.476 (3) | C2—H2B | 0.9700 |
S1—O1 | 1.476 (3) | C2—C1 | 1.530 (7) |
S1—O4 | 1.491 (4) | C2—C3 | 1.496 (7) |
N3—H3 | 0.9800 | C14—H14 | 0.9300 |
N3—C10 | 1.481 (6) | C14—C13 | 1.378 (7) |
N3—C6 | 1.476 (6) | C19—C20 | 1.506 (8) |
N1—H1 | 0.9800 | C7—H7A | 0.9700 |
N1—C1 | 1.473 (6) | C7—H7B | 0.9700 |
N1—C5 | 1.462 (6) | C7—C6 | 1.510 (7) |
N2—H2 | 0.9800 | C7—C8 | 1.523 (7) |
N2—C4 | 1.490 (6) | C1—H1A | 0.9700 |
N2—C3 | 1.473 (6) | C1—H1B | 0.9700 |
N4—H4 | 0.9800 | C34—H34 | 0.9300 |
N4—C9 | 1.495 (6) | C26—H26A | 0.9599 |
N4—C8 | 1.472 (6) | C26—H26B | 0.9601 |
C30—C35 | 1.377 (6) | C26—H26C | 0.9600 |
C30—C31 | 1.395 (6) | C28—C27iii | 1.391 (5) |
C30—C27 | 1.494 (7) | C28—C27 | 1.391 (5) |
O6—C11 | 1.194 (5) | C6—H6A | 0.9700 |
C11—O5 | 1.305 (6) | C6—H6B | 0.9700 |
C11—C12 | 1.492 (7) | C4—H4A | 0.9700 |
O8—C36 | 1.198 (5) | C4—H4B | 0.9700 |
C18—C15 | 1.498 (6) | C4—C5i | 1.503 (7) |
C18—C21 | 1.419 (6) | C13—H13 | 0.9300 |
C18—C19 | 1.391 (5) | C17—H17 | 0.9300 |
C15—C14 | 1.377 (6) | C17—C16 | 1.380 (7) |
C15—C16 | 1.377 (7) | C16—H16 | 0.9300 |
O5—H5 | 0.8200 | C5—H5A | 0.9700 |
C35—H35 | 0.9300 | C5—H5B | 0.9700 |
C35—C34 | 1.376 (6) | C3—H3A | 0.9700 |
O7—H7 | 0.8200 | C3—H3B | 0.9700 |
O7—C36 | 1.302 (5) | C9—H9A | 0.9700 |
C24—C25iii | 1.389 (6) | C9—H9B | 0.9700 |
C24—C25 | 1.389 (6) | C22—H22A | 0.9602 |
C24—C23 | 1.510 (9) | C22—H22B | 0.9600 |
C10—H10A | 0.9700 | C22—H22C | 0.9601 |
C10—H10B | 0.9700 | C8—H8A | 0.9700 |
C10—C9ii | 1.519 (7) | C8—H8B | 0.9700 |
C12—C13 | 1.372 (7) | C20—H20A | 0.9600 |
C12—C17 | 1.376 (6) | C20—H20B | 0.9599 |
C33—C32 | 1.386 (6) | C20—H20C | 0.9600 |
C33—C34 | 1.381 (5) | ||
O1—Ni1—O1i | 180.0 | C32—C31—C30 | 121.3 (5) |
N1i—Ni1—O1 | 90.85 (13) | C32—C31—H31 | 119.4 |
N1—Ni1—O1i | 90.85 (13) | C18—C21—C22 | 119.8 (4) |
N1—Ni1—O1 | 89.15 (13) | C23—C21—C18 | 119.8 (5) |
N1i—Ni1—O1i | 89.15 (13) | C23—C21—C22 | 120.3 (4) |
N1—Ni1—N1i | 180.0 | H2A—C2—H2B | 107.3 |
N1i—Ni1—N2i | 94.72 (19) | C1—C2—H2A | 108.1 |
N1i—Ni1—N2 | 85.28 (19) | C1—C2—H2B | 108.1 |
N1—Ni1—N2i | 85.28 (19) | C3—C2—H2A | 108.1 |
N1—Ni1—N2 | 94.72 (19) | C3—C2—H2B | 108.1 |
N2—Ni1—O1i | 86.26 (12) | C3—C2—C1 | 116.8 (6) |
N2—Ni1—O1 | 93.74 (12) | C15—C14—H14 | 119.9 |
N2i—Ni1—O1i | 93.74 (12) | C15—C14—C13 | 120.1 (6) |
N2i—Ni1—O1 | 86.26 (12) | C13—C14—H14 | 119.9 |
N2—Ni1—N2i | 180.0 | C18—C19—C18iii | 119.8 (6) |
O2ii—Ni2—O2 | 180.0 | C18iii—C19—C20 | 120.1 (3) |
N3ii—Ni2—O2ii | 89.28 (14) | C18—C19—C20 | 120.1 (3) |
N3—Ni2—O2 | 89.28 (14) | H7A—C7—H7B | 107.5 |
N3ii—Ni2—O2 | 90.72 (14) | C6—C7—H7A | 108.4 |
N3—Ni2—O2ii | 90.72 (14) | C6—C7—H7B | 108.4 |
N3ii—Ni2—N3 | 180.0 | C6—C7—C8 | 115.6 (5) |
N4—Ni2—O2ii | 91.61 (15) | C8—C7—H7A | 108.4 |
N4ii—Ni2—O2 | 91.61 (15) | C8—C7—H7B | 108.4 |
N4ii—Ni2—O2ii | 88.39 (15) | N1—C1—C2 | 112.6 (5) |
N4—Ni2—O2 | 88.39 (15) | N1—C1—H1A | 109.1 |
N4—Ni2—N3ii | 85.84 (19) | N1—C1—H1B | 109.1 |
N4ii—Ni2—N3ii | 94.16 (19) | C2—C1—H1A | 109.1 |
N4ii—Ni2—N3 | 85.84 (19) | C2—C1—H1B | 109.1 |
N4—Ni2—N3 | 94.16 (19) | H1A—C1—H1B | 107.8 |
N4ii—Ni2—N4 | 180.00 (4) | C35—C34—C33 | 119.5 (5) |
O3—S1—O2 | 110.02 (18) | C35—C34—H34 | 120.3 |
O3—S1—O1 | 108.6 (2) | C33—C34—H34 | 120.3 |
O3—S1—O4 | 109.5 (2) | C25—C26—H26A | 109.8 |
O2—S1—O4 | 108.8 (2) | C25—C26—H26B | 109.3 |
O1—S1—O2 | 109.74 (19) | C25—C26—H26C | 109.4 |
O1—S1—O4 | 110.2 (2) | H26A—C26—H26B | 109.5 |
S1—O2—Ni2 | 135.8 (2) | H26A—C26—H26C | 109.5 |
Ni2—N3—H3 | 107.2 | H26B—C26—H26C | 109.5 |
C10—N3—Ni2 | 105.2 (3) | C27iii—C28—C29 | 120.2 (3) |
C10—N3—H3 | 107.2 | C27—C28—C29 | 120.2 (3) |
C6—N3—Ni2 | 116.0 (3) | C27iii—C28—C27 | 119.7 (7) |
C6—N3—H3 | 107.2 | O8—C36—O7 | 123.0 (6) |
C6—N3—C10 | 113.6 (5) | O8—C36—C33 | 124.7 (5) |
S1—O1—Ni1 | 127.61 (19) | O7—C36—C33 | 112.3 (5) |
Ni1—N1—H1 | 106.8 | N3—C6—C7 | 111.9 (6) |
C1—N1—Ni1 | 115.6 (3) | N3—C6—H6A | 109.2 |
C1—N1—H1 | 106.8 | N3—C6—H6B | 109.2 |
C5—N1—Ni1 | 106.5 (4) | C7—C6—H6A | 109.2 |
C5—N1—H1 | 106.8 | C7—C6—H6B | 109.2 |
C5—N1—C1 | 113.8 (5) | H6A—C6—H6B | 107.9 |
Ni1—N2—H2 | 107.6 | C25—C27—C30 | 120.5 (5) |
C4—N2—Ni1 | 105.4 (4) | C28—C27—C30 | 118.9 (5) |
C4—N2—H2 | 107.6 | C28—C27—C25 | 120.5 (6) |
C3—N2—Ni1 | 115.7 (3) | C21—C23—C24 | 119.9 (3) |
C3—N2—H2 | 107.6 | C21iii—C23—C24 | 119.9 (3) |
C3—N2—C4 | 112.6 (4) | C21—C23—C21iii | 120.2 (6) |
Ni2—N4—H4 | 107.3 | N2—C4—H4A | 110.0 |
C9—N4—Ni2 | 105.7 (3) | N2—C4—H4B | 110.0 |
C9—N4—H4 | 107.3 | N2—C4—C5i | 108.6 (4) |
C8—N4—Ni2 | 115.8 (4) | H4A—C4—H4B | 108.3 |
C8—N4—H4 | 107.3 | C5i—C4—H4A | 110.0 |
C8—N4—C9 | 113.1 (5) | C5i—C4—H4B | 110.0 |
C35—C30—C31 | 116.6 (5) | C12—C13—C14 | 122.8 (5) |
C35—C30—C27 | 119.2 (5) | C12—C13—H13 | 118.6 |
C31—C30—C27 | 124.2 (5) | C14—C13—H13 | 118.6 |
O6—C11—O5 | 123.1 (6) | C12—C17—H17 | 119.6 |
O6—C11—C12 | 124.2 (6) | C12—C17—C16 | 120.7 (6) |
O5—C11—C12 | 112.8 (5) | C16—C17—H17 | 119.6 |
C21—C18—C15 | 117.5 (5) | C15—C16—C17 | 122.1 (5) |
C19—C18—C15 | 122.3 (4) | C15—C16—H16 | 119.0 |
C19—C18—C21 | 120.1 (5) | C17—C16—H16 | 119.0 |
C14—C15—C18 | 123.7 (6) | N1—C5—C4i | 109.2 (5) |
C16—C15—C18 | 119.0 (5) | N1—C5—H5A | 109.8 |
C16—C15—C14 | 117.3 (5) | N1—C5—H5B | 109.8 |
C11—O5—H5 | 109.5 | C4i—C5—H5A | 109.8 |
C30—C35—H35 | 118.5 | C4i—C5—H5B | 109.8 |
C30—C35—C34 | 123.0 (5) | H5A—C5—H5B | 108.3 |
C34—C35—H35 | 118.5 | N2—C3—C2 | 112.1 (5) |
C36—O7—H7 | 109.5 | N2—C3—H3A | 109.2 |
C25—C24—C25iii | 121.4 (7) | N2—C3—H3B | 109.2 |
C25iii—C24—C23 | 119.3 (4) | C2—C3—H3A | 109.2 |
C25—C24—C23 | 119.3 (4) | C2—C3—H3B | 109.2 |
N3—C10—H10A | 110.0 | H3A—C3—H3B | 107.9 |
N3—C10—H10B | 110.0 | N4—C9—C10ii | 108.2 (5) |
N3—C10—C9ii | 108.7 (5) | N4—C9—H9A | 110.1 |
H10A—C10—H10B | 108.3 | N4—C9—H9B | 110.1 |
C9ii—C10—H10A | 110.0 | C10ii—C9—H9A | 110.1 |
C9ii—C10—H10B | 110.0 | C10ii—C9—H9B | 110.1 |
C13—C12—C11 | 120.7 (5) | H9A—C9—H9B | 108.4 |
C13—C12—C17 | 116.8 (5) | C21—C22—H22A | 109.3 |
C17—C12—C11 | 122.5 (6) | C21—C22—H22B | 109.8 |
C32—C33—C36 | 120.2 (5) | C21—C22—H22C | 109.3 |
C34—C33—C32 | 118.5 (5) | H22A—C22—H22B | 109.5 |
C34—C33—C36 | 121.2 (5) | H22A—C22—H22C | 109.5 |
C33—C32—H32 | 119.4 | H22B—C22—H22C | 109.5 |
C31—C32—C33 | 121.1 (5) | N4—C8—C7 | 110.6 (5) |
C31—C32—H32 | 119.4 | N4—C8—H8A | 109.5 |
H29A—C29—H29B | 109.5 | N4—C8—H8B | 109.5 |
H29A—C29—H29C | 109.5 | C7—C8—H8A | 109.5 |
H29B—C29—H29C | 109.5 | C7—C8—H8B | 109.5 |
C28—C29—H29A | 109.5 | H8A—C8—H8B | 108.1 |
C28—C29—H29B | 109.5 | C19—C20—H20A | 109.5 |
C28—C29—H29C | 109.5 | C19—C20—H20B | 109.5 |
C24—C25—C26 | 121.3 (5) | C19—C20—H20C | 109.5 |
C24—C25—C27 | 118.9 (6) | H20A—C20—H20B | 109.5 |
C27—C25—C26 | 119.7 (5) | H20A—C20—H20C | 109.5 |
C30—C31—H31 | 119.4 | H20B—C20—H20C | 109.5 |
Ni1—N1—C1—C2 | −54.6 (6) | C25iii—C24—C23—C21iii | 102.8 (3) |
Ni1—N1—C5—C4i | 40.7 (4) | C25—C24—C23—C21 | 102.8 (3) |
Ni1—N2—C4—C5i | −41.7 (5) | C25—C24—C23—C21iii | −77.2 (3) |
Ni1—N2—C3—C2 | 56.4 (6) | C25iii—C24—C23—C21 | −77.2 (3) |
Ni2—N3—C10—C9ii | −42.8 (5) | C31—C30—C35—C34 | −2.0 (8) |
Ni2—N3—C6—C7 | 55.0 (5) | C31—C30—C27—C25 | −80.6 (7) |
Ni2—N4—C9—C10ii | 41.2 (5) | C31—C30—C27—C28 | 103.0 (5) |
Ni2—N4—C8—C7 | −58.2 (5) | C21—C18—C15—C14 | −107.6 (6) |
O3—S1—O2—Ni2 | −44.7 (3) | C21—C18—C15—C16 | 69.7 (7) |
O3—S1—O1—Ni1 | −75.3 (3) | C21—C18—C19—C18iii | −2.5 (3) |
O2—S1—O1—Ni1 | 164.4 (2) | C21—C18—C19—C20 | 177.5 (3) |
O1—S1—O2—Ni2 | 74.7 (3) | C14—C15—C16—C17 | 3.4 (9) |
O4—S1—O2—Ni2 | −164.6 (2) | C19—C18—C15—C14 | 76.6 (6) |
O4—S1—O1—Ni1 | 44.6 (3) | C19—C18—C15—C16 | −106.1 (6) |
C30—C35—C34—C33 | 2.3 (8) | C19—C18—C21—C23 | 5.0 (7) |
O6—C11—C12—C13 | −5.3 (9) | C19—C18—C21—C22 | −173.3 (4) |
O6—C11—C12—C17 | 174.5 (6) | C1—N1—C5—C4i | 169.2 (4) |
C11—C12—C13—C14 | −177.4 (5) | C1—C2—C3—N2 | −70.0 (6) |
C11—C12—C17—C16 | 178.1 (6) | C34—C33—C32—C31 | 0.2 (8) |
C18—C15—C14—C13 | 174.6 (5) | C34—C33—C36—O8 | 170.1 (5) |
C18—C15—C16—C17 | −174.1 (5) | C34—C33—C36—O7 | −9.0 (8) |
C18—C21—C23—C24 | 177.6 (3) | C26—C25—C27—C30 | 6.9 (8) |
C18—C21—C23—C21iii | −2.4 (3) | C26—C25—C27—C28 | −176.8 (4) |
C15—C18—C21—C23 | −171.0 (4) | C36—C33—C32—C31 | 176.7 (5) |
C15—C18—C21—C22 | 10.8 (7) | C36—C33—C34—C35 | −177.8 (5) |
C15—C18—C19—C18iii | 173.3 (5) | C6—N3—C10—C9ii | −170.7 (4) |
C15—C18—C19—C20 | −6.7 (5) | C6—C7—C8—N4 | 73.2 (7) |
C15—C14—C13—C12 | −0.3 (9) | C27—C30—C35—C34 | 176.6 (5) |
O5—C11—C12—C13 | 174.5 (6) | C27—C30—C31—C32 | −177.7 (5) |
O5—C11—C12—C17 | −5.7 (8) | C27iii—C28—C27—C30 | 175.1 (5) |
C35—C30—C31—C32 | 0.8 (8) | C27iii—C28—C27—C25 | −1.3 (3) |
C35—C30—C27—C25 | 101.0 (6) | C23—C24—C25—C26 | −2.0 (5) |
C35—C30—C27—C28 | −75.5 (6) | C23—C24—C25—C27 | 178.7 (3) |
C24—C25—C27—C30 | −173.8 (4) | C4—N2—C3—C2 | 177.7 (5) |
C24—C25—C27—C28 | 2.6 (7) | C13—C12—C17—C16 | −2.1 (9) |
C10—N3—C6—C7 | 177.0 (4) | C17—C12—C13—C14 | 2.8 (9) |
C12—C17—C16—C15 | −1.0 (10) | C16—C15—C14—C13 | −2.8 (8) |
C33—C32—C31—C30 | 0.1 (9) | C5—N1—C1—C2 | −178.3 (5) |
C32—C33—C34—C35 | −1.3 (7) | C3—N2—C4—C5i | −168.6 (4) |
C32—C33—C36—O8 | −6.3 (9) | C3—C2—C1—N1 | 69.3 (6) |
C32—C33—C36—O7 | 174.6 (5) | C9—N4—C8—C7 | 179.5 (4) |
C29—C28—C27—C30 | −4.9 (5) | C22—C21—C23—C24 | −4.2 (5) |
C29—C28—C27—C25 | 178.7 (3) | C22—C21—C23—C21iii | 175.7 (5) |
C25iii—C24—C25—C26 | 178.0 (5) | C8—N4—C9—C10ii | 169.0 (5) |
C25iii—C24—C25—C27 | −1.3 (3) | C8—C7—C6—N3 | −71.6 (7) |
Symmetry codes: (i) −x+1/2, −y+3/2, −z+3/2; (ii) −x+3/2, −y+3/2, −z+3/2; (iii) −x+3/2, y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.98 | 2.32 | 3.113 (5) | 138 |
N2—H2···O3 | 0.98 | 2.42 | 3.267 (4) | 144 |
N4—H4···O3ii | 0.98 | 2.10 | 3.012 (5) | 154 |
O5—H5···O4 | 0.82 | 1.79 | 2.597 (5) | 169 |
O7—H7···O3iv | 0.82 | 1.85 | 2.654 (5) | 166 |
Symmetry codes: (ii) −x+3/2, −y+3/2, −z+3/2; (iv) x, −y+1/2, z−1/2. |
I | II | |
Ni1—N1 | 2.064 (2) | 2.061 (4) |
Ni1—N2 | 2.072 (2) | 2.065 (4) |
Ni2—N3 | 2.063 (2) | 2.073 (4) |
Ni2—N4 | 2.072 (2) | 2.062 (4) |
Ni1—O1 | 2.1625 (16) | 2.191 (2) |
Ni2—O2 | 2.1696 (16) | 2.107 (3) |
N1—Ni1—N2i | 85.51 (9) | 85.28 (19) |
N1—Ni1—N2 | 94.49 (9) | 94.72 (19) |
N3—Ni2—N4ii | 85.41 (9) | 85.84 (19) |
N3—Ni2—N4 | 94.59 (9) | 94.16 (19) |
Symmetry codes: (i) -x, -y + 1, -z + 1 in (I) and -x + 1/2, -y + 3/2, -z + 3/2 in (II); (ii) -x + 1, -y + 1, -z + 2 in (I) and -x + 3/2, -y + 3/2, -z + 3/2 in (II). |
References
Bahrin, L. G., Bejan, D., Shova, S., Gdaniec, M., Fronc, M., Lozan, V. & Janiak, C. (2019). Polyhedron, 173, 114128. CrossRef Google Scholar
Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202. CSD CrossRef CAS Web of Science Google Scholar
Bosnich, B., Tobe, M. L. & Webb, G. A. (1965). Inorg. Chem. 4, 1109–1112. CrossRef CAS Web of Science Google Scholar
Churchard, A. J., Cyrański, M. K. & Grochala, W. (2010). Acta Cryst. C66, m263–m265. CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gu, J.-Z., Jiang, L., Feng, X.-L., Tan, M.-Y. & Lu, T.-B. (2008). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 38, 28–31. CrossRef CAS Google Scholar
Kim, C., Lough, A. J., Fettinger, J. C., Choi, K.-Y., Kim, D., Pyun, S.-Y. & Cho, J. (2000). Inorg. Chim. Acta, 303, 163–167. CrossRef CAS Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Li, X., Lin, Y., Yu, L., Zou, J. & Wang, H. (2022). Inorg. Chem. 61, 13229–13233. CrossRef CAS PubMed Google Scholar
Lv, X.-L., Feng, L., Xie, L.-H., He, T., Wu, W., Wang, K.-Y., Si, G., Wang, B., Li, J.-R. & Zhou, H.-C. (2021). J. Am. Chem. Soc. 143, 2784–2791. CrossRef CAS PubMed Google Scholar
Lv, X.-L., Yuan, S., Xie, L.-H., Darke, H. F., Chen, Y., He, T., Dong, C., Wang, B., Zhang, Y.-Z., Li, J.-R. & Zhou, H.-C. (2019). J. Am. Chem. Soc. 141, 10283–10293. CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moorthy, J. N., Natarajan, R. & Venugopalan, P. (2005). J. Org. Chem. 70, 8568–8571. Web of Science CSD CrossRef PubMed CAS Google Scholar
Morrison, T. L., Bhowmick, I. & Shores, M. P. (2023). Cryst. Growth Des. 23, 3186–3194. CrossRef CAS Google Scholar
Oshio, H., Okamoto, H., Kikuchi, T. & Ito, T. (1997). Inorg. Chem. 36, 3201–3203. CSD CrossRef PubMed CAS Web of Science Google Scholar
Ou, G.-C., Zou, L.-S. & Yuan, Z.-H. (2011). Z. Kristallogr. New Cryst. Struct. 226, 543–544. CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shin, J. W., Son, H. J., Kim, S. K. & Min, K. S. (2013). Polyhedron, 52, 1206–1212. CrossRef CAS Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron, 145, 154–165. Web of Science CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry, Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Tsymbal, L. V., Andriichuk, I. L., Shova, S., Trzybiński, D., Woźniak, K., Arion, V. B. & Lampeka, Ya. D. (2021). Cryst. Growth Des. 21, 2355–2370. Web of Science CSD CrossRef CAS Google Scholar
Tsymbal, L. V., Ardeleanu, R., Shova, S. & Lampeka, Y. D. (2022). Acta Cryst. E78, 750–754. CrossRef IUCr Journals Google Scholar
Wang, J.-X., Gu, X.-W., Lin, Y.-X., Li, B. & Qian, G. (2021). Mater. Lett. pp. 497–503. Google Scholar
Wang, X., Fan, W., Zhang, M., Shang, Y., Wang, Y., Liu, D., Guo, H., Dai, F. & Sun, D. (2019). Chin. Chem. Lett. 30, 801–805. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yan, Y., O'Connor, A. E., Kanthasamy, G., Atkinson, G., Allan, D. R., Blake, A. J. & Schröder, M. (2018). J. Am. Chem. Soc. 140, 3952–3958. CrossRef CAS PubMed Google Scholar
Zhang, X., Wang, X., Fan, W., Wang, Y., Wang, X., Zhang, K. & Sun, D. (2020). Mater. Chem. Front. 4, 1150–1157. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.