

research communications

Crystal structures of zinc(II) coordination complexes with isoquinoline N-oxide
aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu
The reaction of one equivalent of zinc(II) halide salts with two equivalents of isoquinoline N-oxide (iQNO; C9H7NO) in methanol yields compounds of the general formula [ZnX2(iQNO)2], with X = Cl− (I), Br− (II) and I− (III). However, starting with zinc(II) perchlorate or nitrate leads to the formation of complex ions with the compositions [Zn(iQNO)6](X)2 for X = ClO4− (IV), and [Zn(iQNO)(H2O)5](iQNO)2X2 for X = NO3− (V). Complexes (I), (II) and (III), namely dichloridobis(isoquinoline N-oxide-κO)zinc(II) [ZnCl2(C9H7NO)2], dibromidobis(isoquinoline N-oxide-κO)zinc(II) [ZnBr2(C9H7NO)2], and diiodidobis(isoquinoline N-oxide-κO)zinc(II) [ZnI2(C9H7NO)2], each exhibit a distorted tetrahedral coordination geometry around the zinc(II) ion coordinated by two iQNO ligands bound through the oxygen atom and two halide ions. The zinc ion lies on a crystallographic twofold axis in the bromo complex. The X—Zn—X bond angles are approximately 15–17° larger than the O—Zn—O bond angles resulting in the observed tetrahedral distortion. In complex (IV), hexakis(isoquinoline N-oxide-κO)zinc(II) bis(perchlorate), [Zn(C9H7NO)6](ClO4)2, the zinc(II) ion occupies a special position with 3 and is octahedrally coordinated by six iQNO ligands, albeit with slight distortions evidenced by a spread of cis bond angles from 85.82 (4) to 94.18 (4)°. The chlorine atom of the perchlorate anion lies on a crystallographic threefold axis. Finally, complex (V) crystallizes with a pseudo-octahedral geometry; pentaaqua(isoquinoline N-oxide-κO)zinc(II) dinitrate–isoquinoline N-oxide (1/2), [Zn(C9H7NO)(H2O)5](NO3)2·2(C9H7NO). The nitrate ions and non-coordinated iQNO molecules engage in π-stacking and hydrogen-bonding interactions with the coordinated water molecules. The iQNO—Zn—O equatorial bond angles range from 88.98 (9) to 94.90 (9)°, with the largest deviation from a perfect octahedral angle attributed to the influence of a weak C—H⋯O (from water) interaction (2.287 Å) involving the bound iQNO ligand.
1. Chemical context
There is a great deal of interest in the chemistry of N-oxides due to their ubiquity in nature, recent advances in pharmaceutical chemistry (see, for example, Kobus et al., 2024), and their important roles in synthesis and materials science (e.g., Ang et al., 2024
; Larin & Fershtat, 2022
). Functional features of importance include the highly polar N—O bond, which is capable of forming strong interactions with cations. Aromatic N-oxides are more stable and have a slightly higher bond order than their aliphatic counterparts, as they allow for back-donation of electron density into the π* orbital (Lukomska et al., 2015
; Greenberg et al., 2020
). Recently, the effect of isoquinolinequinone N-oxides as potent anticancer agents has also been reported (Kruschel et al., 2024
).
Transformations involving N-oxides and transition metals include both the synthesis and reactivity of these complexes (see, for example, Eppenson, 2003; Moustafa et al., 2014
). These transformations take advantage of the Lewis acid/base properties of metals and the polar N-oxide ligands. Owing to this, there is considerable interest in metal complexes that bind N-oxides and their structures. We have previously reported the structures of zinc(II) halide complexes with quinoline N-oxide (QNO) (Padgett et al., 2022
). In the present study, we extend our work on QNO zinc complexes to isoquinoline N-oxide (iQNO) complexes. Herein, we report five iQNO/zinc(II) complexes containing chloride, bromide, iodide, perchlorate, and nitrate anions.
The three zinc(II) halide complexes can be formulated as mononuclear Zn(X)2(iQNO)2 species in a distorted tetrahedral environment. The non-coordinating perchlorate and nitrate derivatives yield significantly different complexes. The perchlorate complex is hexacoordinated, with six iQNO molecules bound to the metal ion in a pseudo-octahedral environment, formulated as [Zn(iQNO)6](ClO4)2. The nitrate derivative is also six-coordinate but features five water molecules and one iQNO ligand in the coordination sphere, with two π-stacked iQNOs and two nitrate anions present in the structure.
2. Structural commentary
Compound (I) crystallizes in the triclinic P (Fig. 1
) and exhibits a distorted tetrahedral coordination environment around the Zn center. The Cl—Zn—Cl bond angle is 117.35 (6)° and the O—Zn—O angle is 101.78 (13)°. The Zn—O bond distances are 1.999 (3) Å (Zn1—O1) and 1.968 (3) Å (Zn1—O2), while the Zn—Cl bond distances are 2.2088 (14) Å (Zn1—Cl1) and 2.2147 (13) Å (Zn1—Cl2).
![]() | Figure 1 The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. |
The bromide analog, complex (II), crystallizes in the monoclinic C2/c, with the zinc ion lying on a crystallographic twofold axis. The Zn1—Br1 bond distance is 2.3476 (7) Å, whereas the Zn1—O1 bond distance is 1.995 (4) Å. The Br1—Zn1—Br1i [symmetry code: (i) 1 − x, y, − z) bond angle is more open at 119.21 (5)° compared to the O1—Zn1—O1i bond angle of 101.6 (3)° in the pseudo-tetrahedral environment (Fig. 2
).
![]() | Figure 2 The molecular structure of (II) with displacement ellipsoids drawn at the 50% probability level. |
For the iodide derivative, complex (III), which crystallizes in the triclinic P (Fig. 3
), the pseudo-tetrahedral coordination environment seen in (I) is preserved. The I1—Zn1—I2 bond angle is even more open at 122.378 (14)°, with Zn1—I1 and Zn1—I2 bond distances of 2.5591 (4) Å and 2.5504 (4) Å, respectively. The O1—Zn1—O2 bond angle is compressed at 103.62 (9)°, with Zn1—O1 and Zn1—O2 bond distances of 2.0130 (19) Å and 2.016 (2) Å, respectively.
![]() | Figure 3 The molecular structure of (III) with displacement ellipsoids drawn at the 50% probability level. |
Complex (IV), the perchlorate derivative, crystallizes in the trigonal R (Fig. 4
) and adopts a pseudo-octahedral arrangement around the ZnII center, coordinated by six iQNO molecules. Two perchlorate ions reside in the lattice. The O1—Zn1—O1′ bond angles range from 85.82 (4) to 94.18 (4)°, and the associated Zn1—O1 bond distances are 2.1008 (11) Å.
![]() | Figure 4 The molecular structure of (IV) with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms removed for clarity. |
Compound (V) crystallizes in the triclinic P and exhibits a pseudo-octahedral arrangement around the ZnII center (Fig. 5
). Of the five water molecules coordinated to the zinc ion, the equatorial Zn1—O bond distances range from 2.015 (2) Å to 2.130 (2) Å, while the axial Zn1—O7 bond distance is slightly longer at 2.174 (2) Å. The iQNO ligand is coordinated via O1 [Zn1—O1 = 2.1078 (19) Å], a distance comparable to the Zn—O bonds to water.
![]() | Figure 5 The molecular structure of (V) with displacement ellipsoids drawn at the 50% probability level. |
The coordinated iQNO ligands participate in π–π stacking interactions. The centroid-to-centroid distances between aromatic rings lie in the range of approximately 3.66–3.97 Å. Hydrogen bonding in compound (V) is also notable. The nitrate ion associated with N4 (bearing atoms O9, O10 and O11) accepts hydrogen bonds from water molecules O6 [O6⋯O9 = 2.723 (3) Å] and O8 [O8⋯O10 = 2.808 (3) Å]. Similarly, the nitrate ion associated with N5 (O12, O13, O14) accepts a hydrogen bond from O8 [O8⋯O12 = 2.710 (3) Å]. The iQNO ligands also participate in hydrogen bonding: O2 and O3 from the iQNO moieties accept hydrogen bonds from O6 and O4, respectively [O6⋯O2 = 2.651 (3) Å; O4⋯O3 = 2.634 (3) Å] (Table 1).
|
3. Supramolecular features
Figs. 6–10
show the crystal packing of compounds (I)–(V), respectively. In the packing of (I), (II), (III), and (IV) the packing is consolidated by van der Waals interactions and π–π stacking. In the case of (V), there is an additional network of intermolecular O—H⋯O hydrogen bonds.
![]() | Figure 6 A view along the a-axis direction of the crystal packing of (I). |
![]() | Figure 7 A view along the c-axis direction of the crystal packing of (II). |
![]() | Figure 8 A view along the a-axis direction of the crystal packing of (III). |
![]() | Figure 9 A view along the b-axis direction of the crystal packing of (IV). |
![]() | Figure 10 A view along the a-axis direction of the crystal packing of (V). |
In (I), several π–π contacts are observed between inversion-related rings, with centroid–centroid distances ranging from 3.835 (3) to 3.966 (3) Å (Table 2). These interactions stack the molecules into layered ribbons that extend along the b-axis direction. Compound (II) also exhibits aromatic stacking. Cg2⋯Cg2i contacts [3.634 (5) Å; symmetry code: (i)
− x,
− y, 1 − z] and Cg1⋯Cg1ii contacts [3.666 (4) Å; symmetry code: (ii) 1 − x, 2 − y, 1 − z] form columnar arrays running through the crystal. One set of columns runs along the [110] direction, and the other along the [1
0] direction. Similarly, in (III), several strong π–π interactions are observed: Cg2⋯Cg2i = 3.802 (3) Å [symmetry code: (i) 1 − x, −y, −z], Cg3⋯Cg3ii = 3.632 (2) Å [symmetry code: (ii) 1 − x, 1 − y, 1 − z], and Cg4⋯Cg4iii = 3.681 (2) Å [symmetry code: (iii) 1 − x, 2 − y, 1 − z]. These interactions result in columnar arrays running along the b-axis direction, with the columns connected by additional π–π interactions to form sheets in the bc plane.
|
In contrast, (IV) exhibits fewer and weaker contacts, with Cg2⋯Cg1i at 3.9288 (13) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z] being the only observed π–π stacking interaction. Compound (V) has multiple π–π contacts, with centroid–centroid distances ranging from 3.7374 (19) to 3.969 (2) Å (Table 3). In addition to aromatic stacking, (V) is also consolidated by hydrogen bonds involving coordinated water molecules and nitrate anions. Notable examples include O6—H6A⋯O9 [O⋯O = 2.723 (3) Å], O6—H6B⋯O2 [2.651 (3) Å], O5—H5A⋯O13ii [2.861 (3) Å], O5—H5B⋯O9iii [2.802 (3) Å], and O8—H8B⋯O12 [2.710 (3) Å]. These hydrogen bonds, with D—H⋯A angles often approaching linearity [e.g., 177 (3)° for O6—H6B⋯O2], tie the complexes together into a robust three-dimensional network [symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y, –z + 1].
|
4. Hirshfeld surface analysis
The intermolecular interactions were further investigated by quantitative analysis of the Hirshfeld surfaces using CrystalExplorer 21 (Spackman et al., 2021), and visualized via two-dimensional fingerprint plots (McKinnon et al., 2007
). Figs. 11
, 12
and 13
show the Hirshfeld surfaces of molecules (I)–(III), each mapped with the function dnorm, which is the sum of the distances from a surface point to the nearest interior (di) and exterior (de) atoms, normalized by the van der Waals (vdW) radii of the corresponding atoms (rvdW). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW in white.
![]() | Figure 11 Hirshfeld surface for (I) mapped over dnorm. |
![]() | Figure 12 Hirshfeld surface for (II) mapped over dnorm. |
![]() | Figure 13 Hirshfeld surface for (III) mapped over dnorm. |
For (I), (II), and (III), the most intense red spots correspond to C—H⋯X and C—H⋯O interactions. In (I), the short contact C10—H10⋯O2(2 − x, 1 − y, −z) has an H⋯O distance of 2.447 (3) Å. Additional short contacts include C11—H11⋯Cl2(2 − x, −y, −z) at 2.8305 (13) Å and C8—H8⋯Cl2(2 − x, 1 − y, 1 − z) at 2.8649 (13) Å. In (II), the most significant short contacts are C5—H5⋯Br1( + x,
− y, −
+ z) at 2.9832 (6) Å and C4—H4⋯O1(
+ x, −
+ y, z) at 2.670 (4) Å. In (III), the short contacts C4—H4⋯O1(x, 1 + y, z) at 2.669 (2) Å and C18—H18⋯O2(2 − x, 1 − y, 1 − z) at 2.566 (2) Å are also observed. All of these short contacts can be regarded as weak hydrogen bonds (Steiner, 1998
).
In (IV), (Fig. 14), the shortest contacts correspond to C—H⋯O interactions, primarily C4—H4⋯O3(
+ y − x,
− x,
+ z) at 2.4079 (18) Å. In (V), (Fig. 15
), the closest contacts are the hydrogen bonds between IQNO and the water molecules, and between the nitrate ions and water described above; there are also weak hydrogen bonds involving C1—H1⋯O2(−x, 1 − y, 1 − z) at 2.319 (2) Å and C19—H19⋯O1(−x, 1 − y, 1 − z) at 2.402 (2) Å.
![]() | Figure 14 Hirshfeld surface for (IV) mapped over dnorm. |
![]() | Figure 15 Hirshfeld surface for (V) mapped over dnorm. |
Analysis of the two-dimensional fingerprint plots (Table 4) indicates that H⋯H contacts are the most common in all five structures. In (I)–(III), the X⋯H contacts constitute the second-highest contribution, which increases in the order (I) < (II) < (III), contributing 29.0%, 30.9%, and 31.1%, respectively. In (IV) and (V), the Hirshfeld surface for the Zn complex was used in the analysis, and O⋯H contacts form the second-highest contribution, contributing 24.5%, 37.6%, and 31.1%, respectively. No short halogen⋯halogen contacts are observed in (I)–(III).
|
5. Database survey
A search of the Cambridge Structural Database (CSD, version 5.42, update September 2022; Groom et al., 2016) for isoquinoline N-oxide returned 14 unique entries. Of these 14, only 5 were bound directly to metal atoms. The most closely related to these complexes are cobalt(II) [CSD refcodes PINNUX (Munn et al., 2014
) and QIWWEB (Kawamura et al., 2019
)], niobium(III) (QARFAU; Sperlich & Kockerling, 2022
), zinc(II) (UWIPAS; Oberda et al., 2011
), and osmium(VIII) (XONBIP; Calabrese et al., 2024
).
When the seven hydrogen atoms are removed in the et al., 2020), a 1-(oxy)-3-isoquinoline-N-oxide-carboxamidato derivative with indium(III) (VOLNIU; Seitz et al., 2008
), a sodium derivative of iQNO with amino/crown ether attachment (ZEXCAG; Suwińska, 1995
), and a europium(II) iQNO derivative modified with a cyclic bipyridyl (ZODXIZ; Paul-Roth et al., 1995
).
6. Synthesis and crystallization
The title compounds were all synthesized in a similar manner. The zinc salt was dissolved in ∼10 ml of methanol, and then isoquinoline N-oxide (iQNO) was added in one portion. The solutions were stirred for 5 minutes, and the solvent was allowed to evaporate, resulting in crystalline solids over time.
Compound (I) was prepared by adding ZnCl2 (0.0463 g, 0.340 mmol, purchased from Strem Chemicals) to a small portion of methanol to dissolve, and adding 0.100 g of iQNO (0.689 mmol, purchased from Aldrich/Millipore) in a 1:2 zinc(II):iQNO mole ratio. The solution was stirred for approximately 10 minutes, at which time the solution was covered with parafilm, and the solvent was allowed to evaporate at 295 K. Yield: 0.123 g (84.1%).
Compound (II) was synthesized by placing 0.0818 g (0.340 mmol, purchased from Alfa Aesar) of ZnBr2·0.86H2O in a small beaker and dissolving it in minimal amounts of methanol. iQNO (0.100 g, 0.689 mmol, purchased from Aldrich/Millipore) was added in one portion. The mixture was stirred for 10 minutes, covered with parafilm, and allowed to evaporate at 295 K. Yield: 0.138 g (75.9%).
For compound (III), a similar technique was used. ZnI2 (0.109 g, 0.340 mmol, purchased from Aldrich/Millipore) was placed in a beaker, and methanol was added to dissolve it completely. iQNO (0.100 g, 0.689 mmol, purchased from Aldrich/Millipore) was added in one portion. The mixture was stirred for 10 minutes, covered with parafilm, and allowed to evaporate at 295 K. Yield: 0.146 g (69.8%).
Complex (IV) was prepared in a 1:4 zinc(II):iQNO ratio by dissolving 0.0633 g (0.0170 mmol, purchased from Aldrich/Millipore) of Zn(ClO4)2·6H2O in methanol and adding 0.100 g (0.689 mmol) of iQNO in one portion. The solution was stirred for 10 minutes, and the solvent was evaporated to a minimum amount of liquid. This liquid was redissolved in tetrahydrofuran, dried over MgSO4, and the solvent was evaporated. The resulting solid was dissolved in acetonitrile, which was allowed to evaporate at room temperature, yielding the product. Yield: 0.0423 g (32.4% based on iQNO).
Compound (V) was synthesized by dissolving 0.0994 g (0.340 mmol, purchased from Alfa Aesar) of Zn(NO3)2.6H2O in methanol and adding 0.100 g of iQNO (0.689 mmol) in a 1:2 ratio. The same procedure as outlined for (IV) was followed, with a final yield of 0.0642 g (39.1% based on iQNO).
7. Refinement
Crystal data, data collection and structure . All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C).
|
Supporting information
https://doi.org/10.1107/S2056989025000180/hb8119sup1.cif
contains datablocks I, II, III, IV, V. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025000180/hb8119Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989025000180/hb8119IIsup3.hkl
Structure factors: contains datablock III. DOI: https://doi.org/10.1107/S2056989025000180/hb8119IIIsup4.hkl
Structure factors: contains datablock IV. DOI: https://doi.org/10.1107/S2056989025000180/hb8119IVsup5.hkl
Structure factors: contains datablock V. DOI: https://doi.org/10.1107/S2056989025000180/hb8119Vsup6.hkl
[ZnCl2(C9H7NO)2] | Z = 2 |
Mr = 426.58 | F(000) = 432 |
Triclinic, P1 | Dx = 1.620 Mg m−3 |
a = 7.5164 (5) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 7.8002 (5) Å | Cell parameters from 520 reflections |
c = 15.1156 (10) Å | θ = 2.7–22.6° |
α = 96.172 (6)° | µ = 1.72 mm−1 |
β = 92.052 (5)° | T = 293 K |
γ = 96.284 (5)° | Irregular, clear colourless |
V = 874.77 (10) Å3 | 0.4 × 0.3 × 0.1 mm |
XtaLAB Synergy, HyPix3000 diffractometer | 3207 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source | 2357 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 25.4°, θmin = 2.6° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −9→9 |
Tmin = 0.929, Tmax = 1.000 | k = −9→8 |
4838 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H-atom parameters constrained |
wR(F2) = 0.124 | w = 1/[σ2(Fo2) + (0.0519P)2 + 0.0439P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
3207 reflections | Δρmax = 0.55 e Å−3 |
226 parameters | Δρmin = −0.30 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.94135 (7) | 0.67381 (7) | 0.23426 (3) | 0.0471 (2) | |
Cl2 | 1.10215 (18) | 0.47387 (17) | 0.27790 (8) | 0.0642 (4) | |
Cl1 | 1.0537 (2) | 0.94814 (17) | 0.26629 (9) | 0.0698 (4) | |
O2 | 0.8996 (4) | 0.6204 (4) | 0.10445 (19) | 0.0526 (8) | |
O1 | 0.6934 (4) | 0.6319 (5) | 0.27690 (19) | 0.0628 (9) | |
N2 | 0.7659 (5) | 0.6628 (4) | 0.0538 (2) | 0.0433 (9) | |
N1 | 0.6497 (5) | 0.6711 (5) | 0.3619 (2) | 0.0465 (9) | |
C1 | 0.4937 (6) | 0.7275 (6) | 0.3769 (3) | 0.0474 (11) | |
H1 | 0.417826 | 0.742590 | 0.329117 | 0.057* | |
C16 | 0.3419 (7) | 0.8481 (6) | 0.0684 (3) | 0.0558 (12) | |
H16 | 0.340539 | 0.880666 | 0.129381 | 0.067* | |
C10 | 0.7735 (6) | 0.6177 (6) | −0.0366 (3) | 0.0473 (11) | |
H10 | 0.870860 | 0.566543 | −0.059286 | 0.057* | |
C2 | 0.4403 (6) | 0.7651 (5) | 0.4644 (3) | 0.0444 (10) | |
C7 | 0.5573 (6) | 0.7419 (5) | 0.5355 (3) | 0.0450 (11) | |
C11 | 0.6378 (7) | 0.6485 (6) | −0.0920 (3) | 0.0543 (12) | |
H11 | 0.643301 | 0.618191 | −0.152943 | 0.065* | |
C18 | 0.6327 (6) | 0.7382 (6) | 0.0875 (3) | 0.0464 (11) | |
H18 | 0.633820 | 0.769454 | 0.148655 | 0.056* | |
C6 | 0.5010 (8) | 0.7816 (7) | 0.6236 (3) | 0.0622 (14) | |
H6 | 0.575863 | 0.767927 | 0.672033 | 0.075* | |
C8 | 0.7216 (6) | 0.6805 (6) | 0.5152 (3) | 0.0528 (12) | |
H8 | 0.801520 | 0.663881 | 0.561100 | 0.063* | |
C3 | 0.2723 (6) | 0.8255 (6) | 0.4807 (3) | 0.0541 (12) | |
H3 | 0.195615 | 0.841291 | 0.433315 | 0.065* | |
C17 | 0.4855 (6) | 0.7738 (5) | 0.0328 (3) | 0.0445 (11) | |
C9 | 0.7644 (6) | 0.6456 (6) | 0.4302 (3) | 0.0544 (12) | |
H9 | 0.873034 | 0.603814 | 0.417646 | 0.065* | |
C14 | 0.2034 (7) | 0.8278 (7) | −0.0791 (4) | 0.0684 (15) | |
H14 | 0.108847 | 0.849968 | −0.115940 | 0.082* | |
C12 | 0.4906 (6) | 0.7244 (5) | −0.0598 (3) | 0.0467 (11) | |
C15 | 0.2012 (7) | 0.8732 (7) | 0.0129 (4) | 0.0640 (14) | |
H15 | 0.102906 | 0.921058 | 0.036766 | 0.077* | |
C5 | 0.3395 (8) | 0.8389 (7) | 0.6375 (3) | 0.0678 (15) | |
H5 | 0.304849 | 0.864656 | 0.695408 | 0.081* | |
C4 | 0.2242 (7) | 0.8599 (7) | 0.5655 (3) | 0.0626 (14) | |
H4 | 0.113135 | 0.898061 | 0.576242 | 0.075* | |
C13 | 0.3403 (7) | 0.7526 (7) | −0.1148 (3) | 0.0615 (13) | |
H13 | 0.337385 | 0.718600 | −0.175771 | 0.074* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0432 (3) | 0.0575 (4) | 0.0421 (3) | 0.0109 (2) | 0.0037 (2) | 0.0062 (2) |
Cl2 | 0.0699 (9) | 0.0717 (8) | 0.0564 (7) | 0.0294 (7) | −0.0025 (6) | 0.0127 (6) |
Cl1 | 0.0879 (11) | 0.0572 (8) | 0.0628 (8) | 0.0093 (7) | 0.0064 (7) | −0.0027 (6) |
O2 | 0.045 (2) | 0.070 (2) | 0.0453 (17) | 0.0194 (16) | −0.0029 (15) | 0.0053 (15) |
O1 | 0.049 (2) | 0.101 (3) | 0.0377 (17) | 0.0051 (18) | 0.0113 (15) | 0.0018 (17) |
N2 | 0.040 (2) | 0.046 (2) | 0.044 (2) | 0.0067 (17) | 0.0032 (17) | 0.0074 (17) |
N1 | 0.037 (2) | 0.064 (2) | 0.039 (2) | 0.0006 (17) | 0.0053 (17) | 0.0110 (18) |
C1 | 0.039 (3) | 0.058 (3) | 0.045 (2) | 0.001 (2) | −0.002 (2) | 0.012 (2) |
C16 | 0.051 (3) | 0.058 (3) | 0.063 (3) | 0.011 (2) | 0.013 (3) | 0.016 (2) |
C10 | 0.051 (3) | 0.051 (3) | 0.040 (2) | 0.009 (2) | 0.004 (2) | 0.005 (2) |
C2 | 0.040 (3) | 0.047 (3) | 0.046 (2) | 0.003 (2) | 0.003 (2) | 0.007 (2) |
C7 | 0.046 (3) | 0.048 (3) | 0.042 (2) | 0.001 (2) | 0.002 (2) | 0.013 (2) |
C11 | 0.062 (3) | 0.060 (3) | 0.041 (2) | 0.008 (2) | 0.005 (2) | 0.002 (2) |
C18 | 0.051 (3) | 0.049 (3) | 0.041 (2) | 0.008 (2) | 0.002 (2) | 0.008 (2) |
C6 | 0.074 (4) | 0.075 (4) | 0.039 (3) | 0.011 (3) | 0.003 (3) | 0.013 (2) |
C8 | 0.043 (3) | 0.070 (3) | 0.048 (3) | 0.007 (2) | −0.004 (2) | 0.019 (2) |
C3 | 0.044 (3) | 0.065 (3) | 0.054 (3) | 0.008 (2) | 0.002 (2) | 0.006 (2) |
C17 | 0.043 (3) | 0.045 (3) | 0.047 (3) | 0.001 (2) | 0.008 (2) | 0.011 (2) |
C9 | 0.042 (3) | 0.073 (3) | 0.051 (3) | 0.012 (2) | 0.006 (2) | 0.014 (2) |
C14 | 0.052 (3) | 0.069 (4) | 0.088 (4) | 0.006 (3) | −0.011 (3) | 0.030 (3) |
C12 | 0.047 (3) | 0.037 (2) | 0.056 (3) | 0.0006 (19) | 0.003 (2) | 0.009 (2) |
C15 | 0.042 (3) | 0.066 (3) | 0.090 (4) | 0.012 (2) | 0.006 (3) | 0.031 (3) |
C5 | 0.080 (4) | 0.076 (4) | 0.050 (3) | 0.013 (3) | 0.022 (3) | 0.009 (3) |
C4 | 0.058 (3) | 0.068 (3) | 0.062 (3) | 0.013 (3) | 0.012 (3) | 0.002 (3) |
C13 | 0.064 (4) | 0.063 (3) | 0.056 (3) | 0.003 (3) | −0.011 (3) | 0.014 (2) |
Zn1—Cl2 | 2.2147 (13) | C11—H11 | 0.9300 |
Zn1—Cl1 | 2.2088 (14) | C11—C12 | 1.390 (6) |
Zn1—O2 | 1.968 (3) | C18—H18 | 0.9300 |
Zn1—O1 | 1.999 (3) | C18—C17 | 1.426 (6) |
O2—N2 | 1.332 (4) | C6—H6 | 0.9300 |
O1—N1 | 1.349 (4) | C6—C5 | 1.354 (7) |
N2—C10 | 1.378 (5) | C8—H8 | 0.9300 |
N2—C18 | 1.308 (5) | C8—C9 | 1.343 (6) |
N1—C1 | 1.316 (5) | C3—H3 | 0.9300 |
N1—C9 | 1.366 (6) | C3—C4 | 1.353 (6) |
C1—H1 | 0.9300 | C17—C12 | 1.414 (6) |
C1—C2 | 1.405 (6) | C9—H9 | 0.9300 |
C16—H16 | 0.9300 | C14—H14 | 0.9300 |
C16—C17 | 1.379 (6) | C14—C15 | 1.400 (7) |
C16—C15 | 1.370 (7) | C14—C13 | 1.340 (7) |
C10—H10 | 0.9300 | C12—C13 | 1.429 (7) |
C10—C11 | 1.355 (6) | C15—H15 | 0.9300 |
C2—C7 | 1.404 (6) | C5—H5 | 0.9300 |
C2—C3 | 1.416 (6) | C5—C4 | 1.401 (7) |
C7—C6 | 1.424 (6) | C4—H4 | 0.9300 |
C7—C8 | 1.405 (6) | C13—H13 | 0.9300 |
Cg1···Cg1i | 3.928 (4) | Cg3···Cg3ii | 3.845 (4) |
Cg1···Cg3i | 3.966 (3) | Cg4···Cg4iv | 3.681 (4) |
Cg1···Cg3ii | 3.835 (3) | Cg4···Cg2iii | 3.940 (3) |
Cg2···Cg2iii | 3.437 (3) | Cg4···Cg2iv | 3.906 (3) |
Cl1—Zn1—Cl2 | 117.35 (6) | C17—C18—H18 | 119.1 |
O2—Zn1—Cl2 | 106.39 (9) | C7—C6—H6 | 119.7 |
O2—Zn1—Cl1 | 109.57 (10) | C5—C6—C7 | 120.7 (5) |
O2—Zn1—O1 | 101.78 (13) | C5—C6—H6 | 119.7 |
O1—Zn1—Cl2 | 109.07 (12) | C7—C8—H8 | 119.7 |
O1—Zn1—Cl1 | 111.43 (11) | C9—C8—C7 | 120.6 (4) |
N2—O2—Zn1 | 127.6 (2) | C9—C8—H8 | 119.7 |
N1—O1—Zn1 | 124.0 (3) | C2—C3—H3 | 120.2 |
O2—N2—C10 | 115.9 (3) | C4—C3—C2 | 119.6 (5) |
C18—N2—O2 | 122.4 (4) | C4—C3—H3 | 120.2 |
C18—N2—C10 | 121.6 (4) | C16—C17—C18 | 121.8 (4) |
O1—N1—C9 | 119.7 (4) | C16—C17—C12 | 121.2 (4) |
C1—N1—O1 | 118.8 (4) | C12—C17—C18 | 116.9 (4) |
C1—N1—C9 | 121.5 (4) | N1—C9—H9 | 119.7 |
N1—C1—H1 | 119.6 | C8—C9—N1 | 120.5 (4) |
N1—C1—C2 | 120.8 (4) | C8—C9—H9 | 119.7 |
C2—C1—H1 | 119.6 | C15—C14—H14 | 119.6 |
C17—C16—H16 | 120.4 | C13—C14—H14 | 119.6 |
C15—C16—H16 | 120.4 | C13—C14—C15 | 120.8 (5) |
C15—C16—C17 | 119.3 (5) | C11—C12—C17 | 118.8 (4) |
N2—C10—H10 | 120.3 | C11—C12—C13 | 123.8 (4) |
C11—C10—N2 | 119.4 (4) | C17—C12—C13 | 117.4 (4) |
C11—C10—H10 | 120.3 | C16—C15—C14 | 120.8 (5) |
C1—C2—C3 | 120.8 (4) | C16—C15—H15 | 119.6 |
C7—C2—C1 | 118.6 (4) | C14—C15—H15 | 119.6 |
C7—C2—C3 | 120.5 (4) | C6—C5—H5 | 119.6 |
C2—C7—C6 | 117.7 (4) | C6—C5—C4 | 120.7 (5) |
C2—C7—C8 | 117.9 (4) | C4—C5—H5 | 119.6 |
C8—C7—C6 | 124.3 (4) | C3—C4—C5 | 120.8 (5) |
C10—C11—H11 | 119.2 | C3—C4—H4 | 119.6 |
C10—C11—C12 | 121.5 (4) | C5—C4—H4 | 119.6 |
C12—C11—H11 | 119.2 | C14—C13—C12 | 120.4 (5) |
N2—C18—H18 | 119.1 | C14—C13—H13 | 119.8 |
N2—C18—C17 | 121.7 (4) | C12—C13—H13 | 119.8 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z; (iv) −x+1, −y+2, −z. |
[ZnBr2(C9H7NO)2] | F(000) = 1008 |
Mr = 515.50 | Dx = 1.870 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 17.1095 (10) Å | Cell parameters from 2412 reflections |
b = 7.2020 (6) Å | θ = 2.5–33.1° |
c = 14.9534 (11) Å | µ = 5.72 mm−1 |
β = 96.472 (6)° | T = 170 K |
V = 1830.9 (2) Å3 | Block, clear colourless |
Z = 4 | 0.2 × 0.2 × 0.2 mm |
XtaLAB Mini diffractometer | 1671 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1402 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
ω scans | θmax = 25.4°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −16→20 |
Tmin = 0.358, Tmax = 1.000 | k = −8→8 |
2980 measured reflections | l = −18→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.0927P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
1671 reflections | Δρmax = 0.83 e Å−3 |
114 parameters | Δρmin = −0.96 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.60954 (3) | 0.37505 (9) | 0.21097 (4) | 0.0370 (3) | |
Zn1 | 0.500000 | 0.53998 (12) | 0.250000 | 0.0276 (3) | |
O1 | 0.5369 (2) | 0.7150 (6) | 0.3493 (3) | 0.0362 (9) | |
N1 | 0.4810 (2) | 0.7741 (6) | 0.3999 (3) | 0.0293 (10) | |
C2 | 0.3560 (3) | 0.9088 (7) | 0.4148 (4) | 0.0274 (12) | |
C7 | 0.3704 (3) | 0.8846 (7) | 0.5089 (4) | 0.0306 (13) | |
C1 | 0.4157 (3) | 0.8517 (7) | 0.3621 (4) | 0.0293 (12) | |
H1 | 0.408573 | 0.869682 | 0.298816 | 0.035* | |
C3 | 0.2848 (3) | 0.9829 (8) | 0.3750 (5) | 0.0357 (13) | |
H3 | 0.275439 | 0.998479 | 0.311593 | 0.043* | |
C9 | 0.4960 (3) | 0.7503 (8) | 0.4919 (4) | 0.0342 (13) | |
H9 | 0.544037 | 0.695474 | 0.517045 | 0.041* | |
C4 | 0.2289 (3) | 1.0325 (8) | 0.4292 (5) | 0.0393 (15) | |
H4 | 0.180142 | 1.081746 | 0.403055 | 0.047* | |
C8 | 0.4426 (3) | 0.8049 (7) | 0.5454 (4) | 0.0325 (12) | |
H8 | 0.453412 | 0.790004 | 0.608739 | 0.039* | |
C6 | 0.3108 (4) | 0.9413 (8) | 0.5627 (5) | 0.0383 (14) | |
H6 | 0.319011 | 0.929530 | 0.626322 | 0.046* | |
C5 | 0.2426 (4) | 1.0119 (8) | 0.5222 (5) | 0.0443 (17) | |
H5 | 0.202956 | 1.048433 | 0.558206 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0276 (4) | 0.0536 (4) | 0.0301 (4) | 0.0097 (2) | 0.0041 (2) | −0.0043 (3) |
Zn1 | 0.0200 (5) | 0.0393 (5) | 0.0237 (5) | 0.000 | 0.0032 (3) | 0.000 |
O1 | 0.0189 (18) | 0.053 (2) | 0.037 (2) | 0.0036 (17) | 0.0060 (15) | −0.013 (2) |
N1 | 0.021 (2) | 0.037 (2) | 0.030 (3) | −0.0015 (18) | 0.0032 (17) | −0.008 (2) |
C2 | 0.023 (3) | 0.031 (3) | 0.028 (3) | −0.002 (2) | 0.000 (2) | 0.003 (2) |
C7 | 0.026 (3) | 0.035 (3) | 0.031 (3) | −0.006 (2) | 0.004 (2) | −0.004 (2) |
C1 | 0.025 (3) | 0.038 (3) | 0.024 (3) | −0.004 (2) | −0.001 (2) | 0.000 (2) |
C3 | 0.026 (3) | 0.038 (3) | 0.042 (4) | −0.004 (2) | 0.003 (2) | 0.002 (3) |
C9 | 0.027 (3) | 0.042 (3) | 0.032 (3) | −0.003 (2) | −0.004 (2) | 0.003 (3) |
C4 | 0.023 (3) | 0.039 (3) | 0.056 (4) | 0.000 (2) | 0.003 (3) | 0.002 (3) |
C8 | 0.038 (3) | 0.033 (3) | 0.024 (3) | −0.001 (2) | −0.005 (2) | 0.004 (3) |
C6 | 0.042 (4) | 0.037 (3) | 0.039 (4) | −0.007 (3) | 0.015 (3) | −0.008 (3) |
C5 | 0.028 (3) | 0.043 (3) | 0.065 (5) | −0.002 (2) | 0.022 (3) | −0.011 (3) |
Zn1—Br1 | 2.3476 (7) | C1—H1 | 0.9500 |
Zn1—Br1i | 2.3476 (7) | C3—H3 | 0.9500 |
Zn1—O1 | 1.995 (4) | C3—C4 | 1.369 (8) |
Zn1—O1i | 1.995 (4) | C9—H9 | 0.9500 |
O1—N1 | 1.353 (5) | C9—C8 | 1.340 (8) |
N1—C1 | 1.317 (7) | C4—H4 | 0.9500 |
N1—C9 | 1.381 (8) | C4—C5 | 1.391 (10) |
C2—C7 | 1.411 (8) | C8—H8 | 0.9500 |
C2—C1 | 1.421 (8) | C6—H6 | 0.9500 |
C2—C3 | 1.400 (8) | C6—C5 | 1.351 (9) |
C7—C8 | 1.416 (8) | C5—H5 | 0.9500 |
C7—C6 | 1.428 (8) | ||
Br1—Zn1—Br1i | 119.21 (5) | C2—C3—H3 | 120.7 |
O1—Zn1—Br1 | 108.06 (10) | C4—C3—C2 | 118.6 (6) |
O1i—Zn1—Br1i | 108.06 (10) | C4—C3—H3 | 120.7 |
O1—Zn1—Br1i | 109.22 (11) | N1—C9—H9 | 120.1 |
O1i—Zn1—Br1 | 109.22 (11) | C8—C9—N1 | 119.7 (5) |
O1—Zn1—O1i | 101.6 (3) | C8—C9—H9 | 120.1 |
N1—O1—Zn1 | 115.5 (3) | C3—C4—H4 | 119.5 |
O1—N1—C9 | 117.0 (4) | C3—C4—C5 | 120.9 (6) |
C1—N1—O1 | 120.8 (5) | C5—C4—H4 | 119.5 |
C1—N1—C9 | 122.2 (5) | C7—C8—H8 | 119.6 |
C7—C2—C1 | 117.4 (5) | C9—C8—C7 | 120.8 (6) |
C3—C2—C7 | 121.2 (5) | C9—C8—H8 | 119.6 |
C3—C2—C1 | 121.4 (5) | C7—C6—H6 | 120.3 |
C2—C7—C8 | 118.8 (5) | C5—C6—C7 | 119.3 (6) |
C2—C7—C6 | 118.1 (5) | C5—C6—H6 | 120.3 |
C8—C7—C6 | 123.1 (6) | C4—C5—H5 | 119.1 |
N1—C1—C2 | 120.9 (5) | C6—C5—C4 | 121.8 (6) |
N1—C1—H1 | 119.5 | C6—C5—H5 | 119.1 |
C2—C1—H1 | 119.5 | ||
Zn1—O1—N1—C1 | −54.2 (6) | C1—N1—C9—C8 | 0.9 (8) |
Zn1—O1—N1—C9 | 126.2 (4) | C1—C2—C7—C8 | −0.2 (7) |
O1—N1—C1—C2 | 178.1 (4) | C1—C2—C7—C6 | −180.0 (5) |
O1—N1—C9—C8 | −179.5 (5) | C1—C2—C3—C4 | 178.9 (5) |
N1—C9—C8—C7 | 0.9 (8) | C3—C2—C7—C8 | 178.5 (5) |
C2—C7—C8—C9 | −1.2 (8) | C3—C2—C7—C6 | −1.2 (8) |
C2—C7—C6—C5 | 1.4 (8) | C3—C2—C1—N1 | −176.8 (5) |
C2—C3—C4—C5 | 0.7 (9) | C3—C4—C5—C6 | −0.5 (10) |
C7—C2—C1—N1 | 2.0 (8) | C9—N1—C1—C2 | −2.4 (8) |
C7—C2—C3—C4 | 0.2 (8) | C8—C7—C6—C5 | −178.4 (6) |
C7—C6—C5—C4 | −0.6 (9) | C6—C7—C8—C9 | 178.6 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
[ZnI2(C9H7NO)2] | Z = 2 |
Mr = 609.48 | F(000) = 576 |
Triclinic, P1 | Dx = 2.080 Mg m−3 |
a = 7.7325 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.9596 (4) Å | Cell parameters from 6528 reflections |
c = 14.8297 (9) Å | θ = 2.3–33.2° |
α = 93.205 (4)° | µ = 4.45 mm−1 |
β = 99.873 (4)° | T = 170 K |
γ = 104.852 (4)° | Irregular, clear colourless |
V = 972.98 (9) Å3 | 0.32 × 0.13 × 0.06 mm |
XtaLAB Mini diffractometer | 3563 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 3152 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.016 |
ω scans | θmax = 25.4°, θmin = 2.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −9→9 |
Tmin = 0.535, Tmax = 1.000 | k = −10→10 |
8495 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.020 | H-atom parameters constrained |
wR(F2) = 0.048 | w = 1/[σ2(Fo2) + (0.0249P)2 + 0.3875P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max = 0.001 |
3563 reflections | Δρmax = 0.59 e Å−3 |
226 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
I2 | 1.04627 (3) | 0.42553 (2) | 0.19043 (2) | 0.03413 (7) | |
I1 | 0.93556 (3) | 0.87866 (2) | 0.26504 (2) | 0.03405 (7) | |
Zn1 | 0.84695 (4) | 0.58158 (4) | 0.24874 (2) | 0.02607 (9) | |
O1 | 0.5914 (3) | 0.5206 (2) | 0.17439 (15) | 0.0331 (5) | |
O2 | 0.8155 (3) | 0.5066 (2) | 0.37215 (14) | 0.0324 (5) | |
N1 | 0.5043 (3) | 0.3742 (3) | 0.13534 (16) | 0.0242 (5) | |
N2 | 0.7414 (3) | 0.5881 (3) | 0.42719 (16) | 0.0261 (5) | |
C2 | 0.4420 (3) | 0.0990 (3) | 0.12990 (19) | 0.0242 (6) | |
C1 | 0.5366 (4) | 0.2500 (3) | 0.17229 (19) | 0.0252 (6) | |
H1 | 0.623861 | 0.262763 | 0.227653 | 0.030* | |
C7 | 0.3108 (4) | 0.0815 (3) | 0.04758 (19) | 0.0251 (6) | |
C9 | 0.3765 (4) | 0.3613 (3) | 0.05564 (19) | 0.0269 (6) | |
H9 | 0.354796 | 0.452253 | 0.031520 | 0.032* | |
C11 | 0.5072 (4) | 0.7042 (3) | 0.45488 (19) | 0.0240 (6) | |
C16 | 0.6055 (4) | 0.7592 (3) | 0.54600 (19) | 0.0251 (6) | |
C8 | 0.2815 (4) | 0.2191 (3) | 0.01155 (19) | 0.0280 (6) | |
H8 | 0.195178 | 0.211549 | −0.043598 | 0.034* | |
C18 | 0.8379 (4) | 0.6377 (3) | 0.5163 (2) | 0.0276 (6) | |
H18 | 0.949142 | 0.612186 | 0.536568 | 0.033* | |
C17 | 0.7732 (4) | 0.7228 (3) | 0.5744 (2) | 0.0280 (6) | |
H17 | 0.841205 | 0.758417 | 0.634815 | 0.034* | |
C15 | 0.5324 (4) | 0.8477 (3) | 0.6039 (2) | 0.0296 (6) | |
H15 | 0.597063 | 0.886817 | 0.664503 | 0.036* | |
C3 | 0.4758 (4) | −0.0347 (3) | 0.1682 (2) | 0.0303 (6) | |
H3 | 0.564660 | −0.023736 | 0.222759 | 0.036* | |
C12 | 0.3390 (4) | 0.7373 (3) | 0.4237 (2) | 0.0303 (7) | |
H12 | 0.273178 | 0.700892 | 0.362968 | 0.036* | |
C6 | 0.2151 (4) | −0.0703 (3) | 0.0054 (2) | 0.0325 (7) | |
H6 | 0.127647 | −0.084025 | −0.049963 | 0.039* | |
C10 | 0.5825 (4) | 0.6174 (3) | 0.3969 (2) | 0.0277 (6) | |
H10 | 0.518886 | 0.579961 | 0.335836 | 0.033* | |
C14 | 0.3678 (4) | 0.8771 (3) | 0.5723 (2) | 0.0327 (7) | |
H14 | 0.318301 | 0.935043 | 0.611757 | 0.039* | |
C5 | 0.2493 (4) | −0.1964 (4) | 0.0450 (2) | 0.0353 (7) | |
H5 | 0.183619 | −0.297723 | 0.017024 | 0.042* | |
C4 | 0.3804 (4) | −0.1793 (3) | 0.1265 (2) | 0.0345 (7) | |
H4 | 0.402405 | −0.268730 | 0.152616 | 0.041* | |
C13 | 0.2717 (4) | 0.8220 (3) | 0.4818 (2) | 0.0322 (7) | |
H13 | 0.158657 | 0.844158 | 0.460923 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
I2 | 0.03348 (11) | 0.03541 (12) | 0.03325 (12) | 0.00911 (9) | 0.00922 (9) | −0.00629 (8) |
I1 | 0.03325 (11) | 0.02439 (11) | 0.03826 (12) | 0.00528 (8) | −0.00469 (9) | −0.00142 (8) |
Zn1 | 0.02493 (17) | 0.02467 (17) | 0.02604 (18) | 0.00437 (13) | 0.00288 (14) | −0.00172 (13) |
O1 | 0.0277 (10) | 0.0225 (10) | 0.0411 (13) | 0.0019 (8) | −0.0047 (9) | −0.0058 (9) |
O2 | 0.0413 (12) | 0.0327 (11) | 0.0313 (11) | 0.0188 (9) | 0.0145 (10) | 0.0053 (9) |
N1 | 0.0209 (11) | 0.0216 (12) | 0.0275 (13) | 0.0023 (9) | 0.0039 (10) | −0.0003 (10) |
N2 | 0.0294 (13) | 0.0226 (12) | 0.0280 (13) | 0.0066 (10) | 0.0096 (11) | 0.0057 (10) |
C2 | 0.0200 (13) | 0.0278 (15) | 0.0253 (15) | 0.0062 (11) | 0.0068 (11) | 0.0003 (12) |
C1 | 0.0215 (13) | 0.0285 (15) | 0.0231 (14) | 0.0045 (11) | 0.0013 (12) | 0.0026 (12) |
C7 | 0.0227 (13) | 0.0289 (15) | 0.0223 (14) | 0.0047 (11) | 0.0050 (12) | −0.0023 (11) |
C9 | 0.0246 (14) | 0.0315 (16) | 0.0254 (15) | 0.0085 (12) | 0.0045 (12) | 0.0067 (12) |
C11 | 0.0243 (14) | 0.0213 (14) | 0.0244 (15) | 0.0024 (11) | 0.0044 (12) | 0.0038 (11) |
C16 | 0.0230 (14) | 0.0213 (14) | 0.0287 (15) | 0.0006 (11) | 0.0063 (12) | 0.0046 (11) |
C8 | 0.0240 (14) | 0.0362 (17) | 0.0208 (14) | 0.0053 (12) | 0.0010 (12) | 0.0020 (12) |
C18 | 0.0243 (14) | 0.0282 (15) | 0.0296 (16) | 0.0056 (12) | 0.0040 (12) | 0.0068 (12) |
C17 | 0.0257 (14) | 0.0281 (16) | 0.0241 (15) | 0.0007 (12) | −0.0020 (12) | 0.0018 (12) |
C15 | 0.0324 (16) | 0.0294 (16) | 0.0242 (15) | 0.0018 (12) | 0.0084 (13) | 0.0016 (12) |
C3 | 0.0298 (15) | 0.0335 (17) | 0.0282 (16) | 0.0098 (13) | 0.0045 (13) | 0.0041 (13) |
C12 | 0.0261 (15) | 0.0293 (16) | 0.0303 (16) | 0.0023 (12) | −0.0006 (13) | 0.0028 (12) |
C6 | 0.0303 (16) | 0.0330 (17) | 0.0294 (16) | 0.0031 (13) | 0.0035 (13) | −0.0050 (13) |
C10 | 0.0279 (15) | 0.0270 (15) | 0.0262 (15) | 0.0050 (12) | 0.0030 (12) | 0.0040 (12) |
C14 | 0.0330 (16) | 0.0327 (17) | 0.0355 (17) | 0.0084 (13) | 0.0155 (14) | 0.0033 (13) |
C5 | 0.0357 (17) | 0.0278 (16) | 0.0368 (18) | 0.0015 (13) | 0.0055 (14) | −0.0061 (13) |
C4 | 0.0390 (17) | 0.0294 (17) | 0.0379 (18) | 0.0112 (13) | 0.0114 (15) | 0.0055 (13) |
C13 | 0.0241 (15) | 0.0352 (17) | 0.0383 (18) | 0.0075 (13) | 0.0081 (13) | 0.0087 (13) |
I2—Zn1 | 2.5504 (4) | C16—C17 | 1.418 (4) |
I1—Zn1 | 2.5591 (4) | C16—C15 | 1.416 (4) |
Zn1—O1 | 2.0130 (19) | C8—H8 | 0.9500 |
Zn1—O2 | 2.016 (2) | C18—H18 | 0.9500 |
O1—N1 | 1.356 (3) | C18—C17 | 1.358 (4) |
O2—N2 | 1.355 (3) | C17—H17 | 0.9500 |
N1—C1 | 1.328 (3) | C15—H15 | 0.9500 |
N1—C9 | 1.383 (4) | C15—C14 | 1.374 (4) |
N2—C18 | 1.388 (4) | C3—H3 | 0.9500 |
N2—C10 | 1.331 (4) | C3—C4 | 1.367 (4) |
C2—C1 | 1.415 (4) | C12—H12 | 0.9500 |
C2—C7 | 1.420 (4) | C12—C13 | 1.368 (4) |
C2—C3 | 1.418 (4) | C6—H6 | 0.9500 |
C1—H1 | 0.9500 | C6—C5 | 1.366 (4) |
C7—C8 | 1.426 (4) | C10—H10 | 0.9500 |
C7—C6 | 1.421 (4) | C14—H14 | 0.9500 |
C9—H9 | 0.9500 | C14—C13 | 1.412 (4) |
C9—C8 | 1.361 (4) | C5—H5 | 0.9500 |
C11—C16 | 1.424 (4) | C5—C4 | 1.412 (4) |
C11—C12 | 1.414 (4) | C4—H4 | 0.9500 |
C11—C10 | 1.418 (4) | C13—H13 | 0.9500 |
I2—Zn1—I1 | 122.378 (14) | C9—C8—H8 | 119.8 |
O1—Zn1—I2 | 112.15 (6) | N2—C18—H18 | 120.0 |
O1—Zn1—I1 | 104.01 (6) | C17—C18—N2 | 119.9 (3) |
O1—Zn1—O2 | 103.62 (9) | C17—C18—H18 | 120.0 |
O2—Zn1—I2 | 104.06 (6) | C16—C17—H17 | 119.6 |
O2—Zn1—I1 | 109.19 (6) | C18—C17—C16 | 120.9 (3) |
N1—O1—Zn1 | 123.46 (16) | C18—C17—H17 | 119.6 |
N2—O2—Zn1 | 117.46 (15) | C16—C15—H15 | 120.0 |
O1—N1—C9 | 116.1 (2) | C14—C15—C16 | 120.0 (3) |
C1—N1—O1 | 122.2 (2) | C14—C15—H15 | 120.0 |
C1—N1—C9 | 121.7 (2) | C2—C3—H3 | 120.0 |
O2—N2—C18 | 117.0 (2) | C4—C3—C2 | 120.0 (3) |
C10—N2—O2 | 121.1 (2) | C4—C3—H3 | 120.0 |
C10—N2—C18 | 121.9 (2) | C11—C12—H12 | 120.2 |
C1—C2—C7 | 119.2 (3) | C13—C12—C11 | 119.5 (3) |
C1—C2—C3 | 121.2 (3) | C13—C12—H12 | 120.2 |
C3—C2—C7 | 119.6 (3) | C7—C6—H6 | 120.2 |
N1—C1—C2 | 120.5 (3) | C5—C6—C7 | 119.7 (3) |
N1—C1—H1 | 119.7 | C5—C6—H6 | 120.2 |
C2—C1—H1 | 119.7 | N2—C10—C11 | 120.6 (3) |
C2—C7—C8 | 117.7 (2) | N2—C10—H10 | 119.7 |
C2—C7—C6 | 119.1 (3) | C11—C10—H10 | 119.7 |
C6—C7—C8 | 123.2 (3) | C15—C14—H14 | 119.7 |
N1—C9—H9 | 119.8 | C15—C14—C13 | 120.6 (3) |
C8—C9—N1 | 120.5 (3) | C13—C14—H14 | 119.7 |
C8—C9—H9 | 119.8 | C6—C5—H5 | 119.3 |
C12—C11—C16 | 120.0 (3) | C6—C5—C4 | 121.3 (3) |
C12—C11—C10 | 121.4 (3) | C4—C5—H5 | 119.3 |
C10—C11—C16 | 118.6 (3) | C3—C4—C5 | 120.3 (3) |
C17—C16—C11 | 118.1 (3) | C3—C4—H4 | 119.8 |
C15—C16—C11 | 118.9 (3) | C5—C4—H4 | 119.8 |
C15—C16—C17 | 123.1 (3) | C12—C13—C14 | 121.0 (3) |
C7—C8—H8 | 119.8 | C12—C13—H13 | 119.5 |
C9—C8—C7 | 120.4 (3) | C14—C13—H13 | 119.5 |
Zn1—O1—N1—C1 | 30.8 (3) | C11—C16—C15—C14 | 1.0 (4) |
Zn1—O1—N1—C9 | −150.61 (19) | C11—C12—C13—C14 | 0.1 (4) |
Zn1—O2—N2—C18 | −127.1 (2) | C16—C11—C12—C13 | −0.1 (4) |
Zn1—O2—N2—C10 | 53.5 (3) | C16—C11—C10—N2 | 0.1 (4) |
O1—N1—C1—C2 | 179.5 (2) | C16—C15—C14—C13 | −1.1 (4) |
O1—N1—C9—C8 | −179.8 (2) | C8—C7—C6—C5 | −179.1 (3) |
O2—N2—C18—C17 | 178.6 (2) | C18—N2—C10—C11 | 1.2 (4) |
O2—N2—C10—C11 | −179.4 (2) | C17—C16—C15—C14 | −179.2 (3) |
N1—C9—C8—C7 | 0.8 (4) | C15—C16—C17—C18 | −179.9 (3) |
N2—C18—C17—C16 | 1.4 (4) | C15—C14—C13—C12 | 0.5 (4) |
C2—C7—C8—C9 | −0.3 (4) | C3—C2—C1—N1 | 179.6 (2) |
C2—C7—C6—C5 | 0.6 (4) | C3—C2—C7—C8 | −179.9 (2) |
C2—C3—C4—C5 | 0.6 (4) | C3—C2—C7—C6 | 0.3 (4) |
C1—N1—C9—C8 | −1.2 (4) | C12—C11—C16—C17 | 179.8 (2) |
C1—C2—C7—C8 | 0.2 (4) | C12—C11—C16—C15 | −0.4 (4) |
C1—C2—C7—C6 | −179.6 (2) | C12—C11—C10—N2 | 179.7 (2) |
C1—C2—C3—C4 | 179.0 (3) | C6—C7—C8—C9 | 179.4 (3) |
C7—C2—C1—N1 | −0.5 (4) | C6—C5—C4—C3 | 0.4 (5) |
C7—C2—C3—C4 | −0.9 (4) | C10—N2—C18—C17 | −2.0 (4) |
C7—C6—C5—C4 | −0.9 (5) | C10—C11—C16—C17 | −0.7 (4) |
C9—N1—C1—C2 | 1.0 (4) | C10—C11—C16—C15 | 179.1 (2) |
C11—C16—C17—C18 | −0.1 (4) | C10—C11—C12—C13 | −179.7 (3) |
[Zn(C9H7NO)6](ClO4)2 | Dx = 1.495 Mg m−3 |
Mr = 1135.20 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 13112 reflections |
a = 12.8217 (4) Å | θ = 2.4–33.0° |
c = 26.5684 (9) Å | µ = 0.67 mm−1 |
V = 3782.6 (3) Å3 | T = 170 K |
Z = 3 | Prism, clear colourless |
F(000) = 1752 | 0.2 × 0.2 × 0.15 mm |
XtaLAB Mini diffractometer | 1545 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 1450 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25.3°, θmin = 2.0° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −15→15 |
Tmin = 0.914, Tmax = 1.000 | k = −15→15 |
11238 measured reflections | l = −31→31 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.077 | w = 1/[σ2(Fo2) + (0.0393P)2 + 4.8988P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
1545 reflections | Δρmax = 0.30 e Å−3 |
117 parameters | Δρmin = −0.25 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.57812 (14) | 0.42465 (14) | 0.46049 (6) | 0.0306 (3) | |
H1 | 0.516846 | 0.343592 | 0.466025 | 0.037* | |
N1 | 0.61267 (12) | 0.46273 (12) | 0.41383 (5) | 0.0307 (3) | |
O1 | 0.56235 (10) | 0.38624 (11) | 0.37552 (4) | 0.0362 (3) | |
Zn1 | 0.666667 | 0.333333 | 0.333333 | 0.03070 (15) | |
C2 | 0.63025 (14) | 0.50170 (15) | 0.50200 (6) | 0.0319 (4) | |
C3 | 0.59763 (17) | 0.45964 (18) | 0.55216 (6) | 0.0405 (4) | |
H3 | 0.538797 | 0.378022 | 0.558427 | 0.049* | |
C4 | 0.6517 (2) | 0.5376 (2) | 0.59144 (7) | 0.0517 (5) | |
H4 | 0.630487 | 0.509631 | 0.625046 | 0.062* | |
C5 | 0.7383 (2) | 0.6590 (2) | 0.58245 (8) | 0.0561 (6) | |
H5 | 0.774576 | 0.711886 | 0.610150 | 0.067* | |
C6 | 0.77093 (18) | 0.70187 (19) | 0.53467 (8) | 0.0489 (5) | |
H6 | 0.829315 | 0.784090 | 0.529361 | 0.059* | |
C7 | 0.71806 (15) | 0.62420 (15) | 0.49288 (7) | 0.0363 (4) | |
C8 | 0.74836 (16) | 0.66040 (15) | 0.44206 (7) | 0.0393 (4) | |
H8 | 0.805433 | 0.741987 | 0.434702 | 0.047* | |
C9 | 0.69756 (16) | 0.58101 (15) | 0.40386 (7) | 0.0367 (4) | |
H9 | 0.720339 | 0.606689 | 0.370095 | 0.044* | |
Cl1 | 1.000000 | 1.000000 | 0.38486 (3) | 0.03933 (19) | |
O2 | 1.000000 | 1.000000 | 0.43897 (9) | 0.0641 (7) | |
O3 | 0.9353 (2) | 0.88066 (16) | 0.36730 (7) | 0.1013 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0301 (8) | 0.0300 (8) | 0.0354 (8) | 0.0177 (7) | 0.0042 (6) | 0.0021 (6) |
N1 | 0.0319 (7) | 0.0323 (7) | 0.0308 (7) | 0.0183 (6) | 0.0013 (5) | −0.0015 (5) |
O1 | 0.0361 (6) | 0.0409 (7) | 0.0315 (6) | 0.0191 (5) | −0.0016 (5) | −0.0074 (5) |
Zn1 | 0.03368 (18) | 0.03368 (18) | 0.0248 (2) | 0.01684 (9) | 0.000 | 0.000 |
C2 | 0.0352 (8) | 0.0367 (9) | 0.0333 (8) | 0.0251 (7) | 0.0012 (6) | −0.0008 (7) |
C3 | 0.0509 (10) | 0.0499 (10) | 0.0355 (9) | 0.0364 (9) | 0.0041 (8) | 0.0028 (8) |
C4 | 0.0705 (14) | 0.0764 (15) | 0.0340 (9) | 0.0560 (13) | −0.0039 (9) | −0.0049 (9) |
C5 | 0.0670 (14) | 0.0700 (14) | 0.0467 (11) | 0.0457 (12) | −0.0180 (10) | −0.0249 (10) |
C6 | 0.0466 (11) | 0.0447 (11) | 0.0599 (13) | 0.0263 (9) | −0.0103 (9) | −0.0183 (9) |
C7 | 0.0356 (9) | 0.0357 (9) | 0.0439 (10) | 0.0226 (7) | −0.0020 (7) | −0.0059 (7) |
C8 | 0.0379 (9) | 0.0289 (8) | 0.0506 (10) | 0.0163 (7) | 0.0052 (8) | 0.0022 (7) |
C9 | 0.0395 (9) | 0.0342 (9) | 0.0383 (9) | 0.0198 (8) | 0.0081 (7) | 0.0072 (7) |
Cl1 | 0.0419 (3) | 0.0419 (3) | 0.0343 (4) | 0.02093 (13) | 0.000 | 0.000 |
O2 | 0.0798 (12) | 0.0798 (12) | 0.0326 (13) | 0.0399 (6) | 0.000 | 0.000 |
O3 | 0.148 (2) | 0.0507 (10) | 0.0655 (11) | 0.0199 (11) | −0.0338 (12) | −0.0110 (8) |
C1—H1 | 0.9500 | C5—H5 | 0.9500 |
C1—N1 | 1.325 (2) | C5—C6 | 1.363 (3) |
C1—C2 | 1.407 (2) | C6—H6 | 0.9500 |
N1—O1 | 1.3346 (17) | C6—C7 | 1.417 (3) |
N1—C9 | 1.380 (2) | C7—C8 | 1.418 (3) |
O1—Zn1 | 2.1008 (11) | C8—H8 | 0.9500 |
C2—C3 | 1.420 (2) | C8—C9 | 1.352 (3) |
C2—C7 | 1.423 (2) | C9—H9 | 0.9500 |
C3—H3 | 0.9500 | Cl1—O2 | 1.438 (2) |
C3—C4 | 1.370 (3) | Cl1—O3i | 1.4063 (18) |
C4—H4 | 0.9500 | Cl1—O3ii | 1.4062 (18) |
C4—C5 | 1.408 (3) | Cl1—O3 | 1.4063 (18) |
N1—C1—H1 | 119.3 | C4—C3—C2 | 119.50 (19) |
N1—C1—C2 | 121.39 (15) | C4—C3—H3 | 120.3 |
C2—C1—H1 | 119.3 | C3—C4—H4 | 119.7 |
C1—N1—O1 | 119.54 (13) | C3—C4—C5 | 120.60 (19) |
C1—N1—C9 | 121.29 (14) | C5—C4—H4 | 119.7 |
O1—N1—C9 | 119.15 (13) | C4—C5—H5 | 119.4 |
N1—O1—Zn1 | 119.49 (9) | C6—C5—C4 | 121.12 (18) |
O1iii—Zn1—O1iv | 85.82 (4) | C6—C5—H5 | 119.4 |
O1v—Zn1—O1vi | 85.82 (4) | C5—C6—H6 | 119.9 |
O1v—Zn1—O1iv | 180.0 | C5—C6—C7 | 120.2 (2) |
O1vii—Zn1—O1 | 180.00 (6) | C7—C6—H6 | 119.9 |
O1vii—Zn1—O1iv | 85.82 (4) | C6—C7—C2 | 118.61 (17) |
O1iii—Zn1—O1 | 85.82 (4) | C6—C7—C8 | 124.03 (17) |
O1iv—Zn1—O1 | 94.18 (4) | C8—C7—C2 | 117.36 (15) |
O1vi—Zn1—O1iv | 94.18 (4) | C7—C8—H8 | 119.4 |
O1vii—Zn1—O1v | 94.18 (4) | C9—C8—C7 | 121.24 (16) |
O1v—Zn1—O1 | 85.82 (4) | C9—C8—H8 | 119.4 |
O1vii—Zn1—O1iii | 94.18 (4) | N1—C9—H9 | 119.9 |
O1vi—Zn1—O1 | 94.18 (4) | C8—C9—N1 | 120.12 (16) |
O1v—Zn1—O1iii | 94.18 (4) | C8—C9—H9 | 119.9 |
O1vii—Zn1—O1vi | 85.82 (4) | O3ii—Cl1—O2 | 109.37 (8) |
O1iii—Zn1—O1vi | 180.0 | O3i—Cl1—O2 | 109.37 (8) |
C1—C2—C3 | 121.52 (16) | O3—Cl1—O2 | 109.37 (8) |
C1—C2—C7 | 118.53 (15) | O3—Cl1—O3i | 109.58 (8) |
C3—C2—C7 | 119.95 (16) | O3ii—Cl1—O3 | 109.58 (8) |
C2—C3—H3 | 120.3 | O3ii—Cl1—O3i | 109.57 (8) |
C1—N1—O1—Zn1 | −112.28 (13) | C2—C7—C8—C9 | −1.3 (2) |
C1—N1—C9—C8 | 0.8 (2) | C3—C2—C7—C6 | −0.2 (2) |
C1—C2—C3—C4 | 179.35 (15) | C3—C2—C7—C8 | 178.97 (15) |
C1—C2—C7—C6 | −179.82 (15) | C3—C4—C5—C6 | −0.2 (3) |
C1—C2—C7—C8 | −0.7 (2) | C4—C5—C6—C7 | −0.2 (3) |
N1—C1—C2—C3 | −176.87 (15) | C5—C6—C7—C2 | 0.4 (3) |
N1—C1—C2—C7 | 2.8 (2) | C5—C6—C7—C8 | −178.66 (18) |
O1—N1—C9—C8 | 179.02 (15) | C6—C7—C8—C9 | 177.79 (17) |
C2—C1—N1—O1 | 178.91 (13) | C7—C2—C3—C4 | −0.3 (2) |
C2—C1—N1—C9 | −2.9 (2) | C7—C8—C9—N1 | 1.3 (3) |
C2—C3—C4—C5 | 0.5 (3) | C9—N1—O1—Zn1 | 69.45 (16) |
Symmetry codes: (i) −x+y+1, −x+2, z; (ii) −y+2, x−y+1, z; (iii) y+1/3, −x+y+2/3, −z+2/3; (iv) −x+y+1, −x+1, z; (v) x−y+1/3, x−1/3, −z+2/3; (vi) −y+1, x−y, z; (vii) −x+4/3, −y+2/3, −z+2/3. |
[Zn(C9H7NO)(H2O)5](NO3)2·2C9H7NO | Z = 2 |
Mr = 714.94 | F(000) = 740 |
Triclinic, P1 | Dx = 1.553 Mg m−3 |
a = 9.7360 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.5910 (9) Å | Cell parameters from 5791 reflections |
c = 14.6381 (10) Å | θ = 1.9–31.6° |
α = 74.352 (6)° | µ = 0.88 mm−1 |
β = 74.620 (7)° | T = 170 K |
γ = 81.633 (7)° | Plank, clear whiteish colourless |
V = 1528.8 (2) Å3 | 0.7 × 0.2 × 0.04 mm |
XtaLAB Mini diffractometer | 5599 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source | 4252 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.047 |
ω scans | θmax = 25.4°, θmin = 2.1° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2019) | h = −11→11 |
Tmin = 0.752, Tmax = 1.000 | k = −13→13 |
13628 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.106 | w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
5599 reflections | Δρmax = 0.51 e Å−3 |
464 parameters | Δρmin = −0.48 e Å−3 |
10 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.38957 (4) | 0.27598 (3) | 0.47321 (2) | 0.02573 (12) | |
O5 | 0.2972 (3) | 0.1986 (2) | 0.62110 (16) | 0.0336 (5) | |
O2 | 0.2233 (2) | −0.03662 (19) | 0.45547 (14) | 0.0317 (5) | |
O8 | 0.5068 (3) | 0.3482 (2) | 0.32840 (17) | 0.0335 (5) | |
O6 | 0.4139 (3) | 0.1109 (2) | 0.44532 (17) | 0.0320 (5) | |
O1 | 0.1881 (2) | 0.3151 (2) | 0.43902 (14) | 0.0329 (5) | |
O3 | 0.2216 (2) | 0.63601 (19) | 0.43681 (15) | 0.0315 (5) | |
O7 | 0.5973 (3) | 0.2419 (2) | 0.5086 (2) | 0.0403 (6) | |
O4 | 0.3663 (3) | 0.4362 (2) | 0.50705 (18) | 0.0371 (6) | |
O9 | 0.6657 (2) | 0.0528 (2) | 0.32553 (16) | 0.0426 (6) | |
N2 | 0.1959 (3) | −0.0507 (2) | 0.37417 (17) | 0.0254 (6) | |
O10 | 0.6236 (3) | 0.1957 (2) | 0.20239 (17) | 0.0494 (7) | |
N1 | 0.1475 (3) | 0.2886 (2) | 0.36717 (17) | 0.0259 (6) | |
N3 | 0.1843 (3) | 0.6184 (2) | 0.35969 (17) | 0.0242 (6) | |
O14 | 0.6846 (3) | 0.5678 (2) | 0.15635 (16) | 0.0506 (7) | |
N5 | 0.6688 (3) | 0.6144 (3) | 0.22466 (18) | 0.0319 (6) | |
O12 | 0.6239 (3) | 0.5538 (2) | 0.31066 (16) | 0.0550 (8) | |
N4 | 0.6547 (3) | 0.0879 (3) | 0.23757 (19) | 0.0348 (7) | |
O13 | 0.6984 (3) | 0.7187 (2) | 0.21242 (18) | 0.0561 (7) | |
C21 | 0.0981 (3) | 0.5780 (3) | 0.2055 (2) | 0.0266 (7) | |
C8 | 0.1928 (3) | 0.2520 (3) | 0.2088 (2) | 0.0274 (7) | |
C27 | 0.2819 (3) | 0.6092 (3) | 0.2792 (2) | 0.0286 (7) | |
H27 | 0.379243 | 0.616684 | 0.275509 | 0.034* | |
C18 | 0.3008 (3) | −0.0639 (3) | 0.2975 (2) | 0.0296 (7) | |
H18 | 0.396900 | −0.061642 | 0.299782 | 0.036* | |
C10 | 0.0545 (3) | −0.0545 (3) | 0.3745 (2) | 0.0302 (7) | |
H10 | −0.019054 | −0.045432 | 0.430116 | 0.036* | |
O11 | 0.6767 (4) | 0.0133 (3) | 0.1888 (2) | 0.0847 (11) | |
C26 | 0.2442 (3) | 0.5885 (3) | 0.1985 (2) | 0.0263 (7) | |
C12 | 0.1282 (3) | −0.0853 (3) | 0.2112 (2) | 0.0297 (7) | |
C17 | 0.2723 (3) | −0.0813 (3) | 0.2125 (2) | 0.0286 (7) | |
C19 | 0.0419 (3) | 0.6089 (3) | 0.3690 (2) | 0.0287 (7) | |
H19 | −0.026227 | 0.616785 | 0.427344 | 0.034* | |
C1 | 0.0028 (3) | 0.2796 (3) | 0.3813 (2) | 0.0307 (7) | |
H1 | −0.061138 | 0.287856 | 0.441167 | 0.037* | |
C3 | 0.0448 (3) | 0.2453 (3) | 0.2200 (2) | 0.0299 (7) | |
C9 | 0.2384 (3) | 0.2747 (3) | 0.2853 (2) | 0.0290 (7) | |
H9 | 0.337290 | 0.280238 | 0.277881 | 0.035* | |
C11 | 0.0214 (3) | −0.0713 (3) | 0.2949 (2) | 0.0326 (8) | |
H11 | −0.075967 | −0.073691 | 0.295508 | 0.039* | |
C20 | −0.0004 (3) | 0.5883 (3) | 0.2944 (2) | 0.0297 (7) | |
H20 | −0.098808 | 0.580508 | 0.301656 | 0.036* | |
C2 | −0.0479 (4) | 0.2589 (3) | 0.3095 (2) | 0.0340 (8) | |
H2 | −0.147556 | 0.253496 | 0.319718 | 0.041* | |
C4 | −0.0010 (4) | 0.2278 (3) | 0.1409 (2) | 0.0374 (8) | |
H4 | −0.099689 | 0.223752 | 0.146368 | 0.045* | |
C22 | 0.0597 (3) | 0.5589 (3) | 0.1248 (2) | 0.0323 (7) | |
H22 | −0.037509 | 0.551670 | 0.128068 | 0.039* | |
C23 | 0.1620 (4) | 0.5507 (3) | 0.0416 (2) | 0.0373 (8) | |
H23 | 0.135062 | 0.536953 | −0.012121 | 0.045* | |
C25 | 0.3475 (3) | 0.5804 (3) | 0.1117 (2) | 0.0362 (8) | |
H25 | 0.445364 | 0.587591 | 0.106691 | 0.043* | |
C6 | 0.2425 (4) | 0.2205 (3) | 0.0467 (2) | 0.0375 (8) | |
H6 | 0.308229 | 0.210789 | −0.012074 | 0.045* | |
C16 | 0.3825 (4) | −0.0944 (3) | 0.1304 (2) | 0.0382 (8) | |
H16 | 0.479439 | −0.092808 | 0.131277 | 0.046* | |
C13 | 0.0982 (4) | −0.1022 (3) | 0.1265 (2) | 0.0385 (8) | |
H13 | 0.002163 | −0.105780 | 0.124593 | 0.046* | |
C5 | 0.0964 (4) | 0.2167 (3) | 0.0569 (2) | 0.0391 (9) | |
H5 | 0.064065 | 0.206086 | 0.004116 | 0.047* | |
C7 | 0.2916 (4) | 0.2382 (3) | 0.1211 (2) | 0.0334 (8) | |
H7 | 0.390965 | 0.241266 | 0.113941 | 0.040* | |
C24 | 0.3058 (4) | 0.5622 (3) | 0.0347 (2) | 0.0397 (8) | |
H24 | 0.375070 | 0.557385 | −0.023941 | 0.048* | |
C14 | 0.2070 (4) | −0.1135 (3) | 0.0474 (2) | 0.0422 (9) | |
H14 | 0.185987 | −0.124268 | −0.009398 | 0.051* | |
C15 | 0.3490 (4) | −0.1093 (3) | 0.0494 (2) | 0.0433 (9) | |
H15 | 0.423278 | −0.116850 | −0.006267 | 0.052* | |
H6A | 0.487 (3) | 0.088 (3) | 0.410 (2) | 0.057 (13)* | |
H5A | 0.295 (4) | 0.233 (3) | 0.665 (2) | 0.046 (11)* | |
H8A | 0.556 (3) | 0.307 (3) | 0.291 (2) | 0.055 (13)* | |
H5B | 0.313 (4) | 0.1248 (18) | 0.641 (3) | 0.056 (13)* | |
H6B | 0.356 (3) | 0.066 (3) | 0.446 (2) | 0.039 (10)* | |
H7A | 0.628 (4) | 0.286 (3) | 0.533 (2) | 0.041 (11)* | |
H8B | 0.543 (4) | 0.411 (2) | 0.323 (3) | 0.062 (13)* | |
H7B | 0.649 (4) | 0.179 (2) | 0.515 (3) | 0.073 (15)* | |
H4A | 0.318 (4) | 0.497 (3) | 0.486 (3) | 0.079 (16)* | |
H4B | 0.380 (4) | 0.436 (4) | 0.5592 (18) | 0.062 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.0289 (2) | 0.0246 (2) | 0.0272 (2) | −0.00353 (15) | −0.00874 (15) | −0.00943 (15) |
O5 | 0.0441 (14) | 0.0312 (14) | 0.0257 (12) | −0.0052 (11) | −0.0049 (11) | −0.0094 (11) |
O2 | 0.0361 (13) | 0.0362 (13) | 0.0286 (12) | −0.0091 (10) | −0.0067 (10) | −0.0154 (10) |
O8 | 0.0376 (14) | 0.0332 (14) | 0.0310 (13) | −0.0127 (12) | −0.0019 (11) | −0.0109 (12) |
O6 | 0.0265 (13) | 0.0299 (13) | 0.0437 (14) | −0.0074 (11) | −0.0004 (11) | −0.0207 (11) |
O1 | 0.0291 (12) | 0.0521 (14) | 0.0277 (12) | 0.0048 (10) | −0.0136 (10) | −0.0240 (11) |
O3 | 0.0353 (12) | 0.0362 (13) | 0.0333 (12) | 0.0011 (10) | −0.0177 (10) | −0.0184 (10) |
O7 | 0.0365 (14) | 0.0334 (15) | 0.0669 (18) | 0.0000 (12) | −0.0282 (13) | −0.0248 (14) |
O4 | 0.0617 (17) | 0.0267 (13) | 0.0347 (14) | 0.0051 (12) | −0.0296 (13) | −0.0138 (11) |
O9 | 0.0489 (15) | 0.0452 (15) | 0.0289 (13) | 0.0084 (12) | −0.0068 (11) | −0.0096 (11) |
N2 | 0.0308 (14) | 0.0208 (13) | 0.0268 (14) | −0.0059 (11) | −0.0067 (11) | −0.0077 (11) |
O10 | 0.0631 (18) | 0.0388 (15) | 0.0385 (14) | 0.0056 (13) | −0.0096 (12) | −0.0038 (12) |
N1 | 0.0270 (14) | 0.0292 (14) | 0.0253 (14) | 0.0007 (11) | −0.0102 (11) | −0.0104 (11) |
N3 | 0.0291 (14) | 0.0204 (13) | 0.0276 (14) | 0.0007 (11) | −0.0121 (11) | −0.0096 (11) |
O14 | 0.0637 (17) | 0.0682 (18) | 0.0293 (13) | −0.0233 (14) | −0.0041 (12) | −0.0247 (13) |
N5 | 0.0268 (15) | 0.0460 (18) | 0.0272 (15) | −0.0063 (13) | −0.0118 (12) | −0.0089 (14) |
O12 | 0.083 (2) | 0.0668 (18) | 0.0223 (13) | −0.0474 (16) | −0.0046 (13) | −0.0080 (12) |
N4 | 0.0354 (16) | 0.0355 (17) | 0.0294 (16) | −0.0090 (13) | 0.0006 (12) | −0.0058 (14) |
O13 | 0.097 (2) | 0.0361 (15) | 0.0424 (15) | −0.0149 (14) | −0.0265 (15) | −0.0065 (12) |
C21 | 0.0288 (17) | 0.0226 (16) | 0.0313 (17) | 0.0012 (13) | −0.0132 (14) | −0.0070 (14) |
C8 | 0.0389 (19) | 0.0210 (16) | 0.0245 (16) | −0.0027 (14) | −0.0121 (14) | −0.0046 (13) |
C27 | 0.0242 (16) | 0.0278 (17) | 0.0367 (18) | 0.0002 (13) | −0.0101 (14) | −0.0110 (15) |
C18 | 0.0246 (17) | 0.0276 (17) | 0.0344 (18) | −0.0055 (13) | −0.0015 (14) | −0.0075 (14) |
C10 | 0.0247 (17) | 0.0311 (17) | 0.0336 (18) | −0.0062 (14) | −0.0042 (14) | −0.0067 (15) |
O11 | 0.168 (4) | 0.0488 (18) | 0.0441 (17) | −0.010 (2) | −0.028 (2) | −0.0203 (15) |
C26 | 0.0245 (16) | 0.0235 (16) | 0.0329 (17) | 0.0024 (13) | −0.0089 (13) | −0.0104 (14) |
C12 | 0.0318 (18) | 0.0245 (16) | 0.0323 (18) | −0.0048 (14) | −0.0075 (14) | −0.0047 (14) |
C17 | 0.0306 (17) | 0.0220 (16) | 0.0315 (17) | −0.0034 (14) | −0.0037 (14) | −0.0069 (14) |
C19 | 0.0253 (17) | 0.0304 (17) | 0.0313 (17) | −0.0019 (14) | −0.0069 (14) | −0.0092 (14) |
C1 | 0.0293 (17) | 0.0373 (19) | 0.0275 (17) | −0.0056 (15) | −0.0066 (14) | −0.0098 (15) |
C3 | 0.0359 (18) | 0.0279 (17) | 0.0292 (17) | −0.0090 (14) | −0.0134 (15) | −0.0035 (14) |
C9 | 0.0251 (16) | 0.0349 (18) | 0.0295 (17) | 0.0009 (14) | −0.0094 (14) | −0.0111 (15) |
C11 | 0.0219 (16) | 0.0377 (19) | 0.0390 (19) | −0.0019 (14) | −0.0085 (14) | −0.0096 (16) |
C20 | 0.0246 (16) | 0.0345 (18) | 0.0337 (18) | −0.0035 (14) | −0.0094 (14) | −0.0115 (15) |
C2 | 0.0335 (18) | 0.0388 (19) | 0.0330 (18) | −0.0101 (15) | −0.0115 (15) | −0.0068 (15) |
C4 | 0.045 (2) | 0.041 (2) | 0.0338 (19) | −0.0122 (17) | −0.0184 (16) | −0.0090 (16) |
C22 | 0.0318 (18) | 0.0378 (19) | 0.0324 (18) | 0.0015 (15) | −0.0126 (15) | −0.0145 (15) |
C23 | 0.047 (2) | 0.039 (2) | 0.0336 (19) | 0.0067 (16) | −0.0180 (16) | −0.0176 (16) |
C25 | 0.0308 (18) | 0.0361 (19) | 0.043 (2) | 0.0015 (15) | −0.0074 (15) | −0.0161 (16) |
C6 | 0.058 (2) | 0.0306 (18) | 0.0248 (17) | 0.0026 (17) | −0.0122 (16) | −0.0096 (15) |
C16 | 0.0348 (19) | 0.039 (2) | 0.0378 (19) | −0.0065 (16) | 0.0015 (15) | −0.0118 (16) |
C13 | 0.045 (2) | 0.039 (2) | 0.0347 (19) | −0.0059 (17) | −0.0138 (16) | −0.0092 (16) |
C5 | 0.060 (2) | 0.0361 (19) | 0.0305 (18) | −0.0088 (18) | −0.0225 (18) | −0.0098 (16) |
C7 | 0.0382 (19) | 0.0356 (19) | 0.0260 (17) | 0.0022 (15) | −0.0086 (14) | −0.0082 (15) |
C24 | 0.042 (2) | 0.042 (2) | 0.0340 (19) | 0.0036 (17) | −0.0017 (16) | −0.0191 (17) |
C14 | 0.061 (3) | 0.040 (2) | 0.0288 (19) | −0.0065 (18) | −0.0103 (17) | −0.0139 (16) |
C15 | 0.056 (2) | 0.042 (2) | 0.0298 (19) | −0.0083 (18) | 0.0004 (17) | −0.0133 (16) |
Zn1—O5 | 2.110 (2) | C18—C17 | 1.414 (4) |
Zn1—O8 | 2.130 (2) | C10—H10 | 0.9500 |
Zn1—O6 | 2.030 (2) | C10—C11 | 1.355 (4) |
Zn1—O1 | 2.1078 (19) | C26—C25 | 1.413 (4) |
Zn1—O7 | 2.174 (2) | C12—C17 | 1.415 (4) |
Zn1—O4 | 2.015 (2) | C12—C11 | 1.411 (4) |
O5—H5A | 0.833 (18) | C12—C13 | 1.415 (4) |
O5—H5B | 0.833 (18) | C17—C16 | 1.409 (4) |
O2—N2 | 1.341 (3) | C19—H19 | 0.9500 |
O8—H8A | 0.827 (18) | C19—C20 | 1.352 (4) |
O8—H8B | 0.832 (19) | C1—H1 | 0.9500 |
O6—H6A | 0.820 (18) | C1—C2 | 1.361 (4) |
O6—H6B | 0.816 (18) | C3—C2 | 1.414 (4) |
O1—N1 | 1.337 (3) | C3—C4 | 1.417 (4) |
O3—N3 | 1.346 (3) | C9—H9 | 0.9500 |
O7—H7A | 0.815 (18) | C11—H11 | 0.9500 |
O7—H7B | 0.819 (19) | C20—H20 | 0.9500 |
O4—H4A | 0.821 (19) | C2—H2 | 0.9500 |
O4—H4B | 0.807 (18) | C4—H4 | 0.9500 |
O9—N4 | 1.270 (3) | C4—C5 | 1.363 (5) |
N2—C18 | 1.328 (4) | C22—H22 | 0.9500 |
N2—C10 | 1.383 (4) | C22—C23 | 1.369 (4) |
O10—N4 | 1.242 (3) | C23—H23 | 0.9500 |
N1—C1 | 1.384 (4) | C23—C24 | 1.400 (5) |
N1—C9 | 1.321 (4) | C25—H25 | 0.9500 |
N3—C27 | 1.322 (4) | C25—C24 | 1.369 (4) |
N3—C19 | 1.375 (4) | C6—H6 | 0.9500 |
O14—N5 | 1.225 (3) | C6—C5 | 1.396 (5) |
N5—O12 | 1.261 (3) | C6—C7 | 1.372 (4) |
N5—O13 | 1.239 (3) | C16—H16 | 0.9500 |
N4—O11 | 1.226 (3) | C16—C15 | 1.369 (5) |
C21—C26 | 1.420 (4) | C13—H13 | 0.9500 |
C21—C20 | 1.420 (4) | C13—C14 | 1.368 (4) |
C21—C22 | 1.408 (4) | C5—H5 | 0.9500 |
C8—C3 | 1.418 (4) | C7—H7 | 0.9500 |
C8—C9 | 1.406 (4) | C24—H24 | 0.9500 |
C8—C7 | 1.417 (4) | C14—H14 | 0.9500 |
C27—H27 | 0.9500 | C14—C15 | 1.398 (5) |
C27—C26 | 1.412 (4) | C15—H15 | 0.9500 |
C18—H18 | 0.9500 | ||
Cg1···Cg4 | 3.839 (2) | Cg2···Cg8 | 3.969 (2) |
Cg1···Cg7 | 3.893 (2) | Cg4···Cg7i | 3.943 (2) |
Cg1···Cg8 | 3.8500 (19) | Cg5···Cg7i | 3.7374 (19) |
Cg2···Cg4 | 3.6617 (19) | Cg5···Cg8i | 3.968 (2) |
Cg2···Cg5 | 3.823 (2) | ||
O5—Zn1—O8 | 173.16 (9) | C11—C12—C17 | 117.9 (3) |
O5—Zn1—O7 | 88.42 (10) | C11—C12—C13 | 123.3 (3) |
O8—Zn1—O7 | 84.75 (10) | C13—C12—C17 | 118.8 (3) |
O6—Zn1—O5 | 89.30 (10) | C18—C17—C12 | 118.2 (3) |
O6—Zn1—O8 | 90.14 (10) | C16—C17—C18 | 121.9 (3) |
O6—Zn1—O1 | 92.38 (9) | C16—C17—C12 | 119.9 (3) |
O6—Zn1—O7 | 89.52 (9) | N3—C19—H19 | 120.2 |
O1—Zn1—O5 | 91.94 (9) | C20—C19—N3 | 119.5 (3) |
O1—Zn1—O8 | 94.90 (9) | C20—C19—H19 | 120.2 |
O1—Zn1—O7 | 178.06 (9) | N1—C1—H1 | 120.0 |
O4—Zn1—O5 | 88.47 (10) | C2—C1—N1 | 120.0 (3) |
O4—Zn1—O8 | 91.93 (10) | C2—C1—H1 | 120.0 |
O4—Zn1—O6 | 177.42 (10) | C2—C3—C8 | 117.4 (3) |
O4—Zn1—O1 | 88.98 (9) | C2—C3—C4 | 124.3 (3) |
O4—Zn1—O7 | 89.13 (10) | C4—C3—C8 | 118.3 (3) |
Zn1—O5—H5A | 121 (2) | N1—C9—C8 | 121.9 (3) |
Zn1—O5—H5B | 117 (3) | N1—C9—H9 | 119.0 |
H5A—O5—H5B | 110 (4) | C8—C9—H9 | 119.1 |
Zn1—O8—H8A | 125 (3) | C10—C11—C12 | 121.5 (3) |
Zn1—O8—H8B | 113 (3) | C10—C11—H11 | 119.2 |
H8A—O8—H8B | 113 (4) | C12—C11—H11 | 119.2 |
Zn1—O6—H6A | 121 (3) | C21—C20—H20 | 119.1 |
Zn1—O6—H6B | 132 (2) | C19—C20—C21 | 121.8 (3) |
H6A—O6—H6B | 103 (4) | C19—C20—H20 | 119.1 |
N1—O1—Zn1 | 128.04 (16) | C1—C2—C3 | 121.2 (3) |
Zn1—O7—H7A | 123 (2) | C1—C2—H2 | 119.4 |
Zn1—O7—H7B | 129 (3) | C3—C2—H2 | 119.4 |
H7A—O7—H7B | 106 (4) | C3—C4—H4 | 119.9 |
Zn1—O4—H4A | 127 (3) | C5—C4—C3 | 120.1 (3) |
Zn1—O4—H4B | 116 (3) | C5—C4—H4 | 119.9 |
H4A—O4—H4B | 112 (4) | C21—C22—H22 | 119.9 |
O2—N2—C10 | 117.3 (2) | C23—C22—C21 | 120.3 (3) |
C18—N2—O2 | 121.3 (2) | C23—C22—H22 | 119.9 |
C18—N2—C10 | 121.3 (3) | C22—C23—H23 | 119.5 |
O1—N1—C1 | 116.4 (2) | C22—C23—C24 | 120.9 (3) |
C9—N1—O1 | 122.7 (2) | C24—C23—H23 | 119.5 |
C9—N1—C1 | 120.8 (3) | C26—C25—H25 | 120.2 |
O3—N3—C19 | 117.3 (2) | C24—C25—C26 | 119.6 (3) |
C27—N3—O3 | 120.8 (2) | C24—C25—H25 | 120.2 |
C27—N3—C19 | 121.9 (3) | C5—C6—H6 | 119.8 |
O14—N5—O12 | 119.3 (3) | C7—C6—H6 | 119.8 |
O14—N5—O13 | 122.2 (3) | C7—C6—C5 | 120.4 (3) |
O13—N5—O12 | 118.5 (3) | C17—C16—H16 | 120.2 |
O10—N4—O9 | 120.2 (3) | C15—C16—C17 | 119.6 (3) |
O11—N4—O9 | 118.4 (3) | C15—C16—H16 | 120.2 |
O11—N4—O10 | 121.4 (3) | C12—C13—H13 | 119.9 |
C20—C21—C26 | 117.1 (3) | C14—C13—C12 | 120.2 (3) |
C22—C21—C26 | 118.6 (3) | C14—C13—H13 | 119.9 |
C22—C21—C20 | 124.3 (3) | C4—C5—C6 | 121.5 (3) |
C9—C8—C3 | 118.7 (3) | C4—C5—H5 | 119.2 |
C9—C8—C7 | 121.1 (3) | C6—C5—H5 | 119.2 |
C7—C8—C3 | 120.2 (3) | C8—C7—H7 | 120.3 |
N3—C27—H27 | 119.4 | C6—C7—C8 | 119.4 (3) |
N3—C27—C26 | 121.2 (3) | C6—C7—H7 | 120.3 |
C26—C27—H27 | 119.4 | C23—C24—H24 | 119.7 |
N2—C18—H18 | 119.3 | C25—C24—C23 | 120.6 (3) |
N2—C18—C17 | 121.4 (3) | C25—C24—H24 | 119.7 |
C17—C18—H18 | 119.3 | C13—C14—H14 | 119.7 |
N2—C10—H10 | 120.2 | C13—C14—C15 | 120.6 (3) |
C11—C10—N2 | 119.6 (3) | C15—C14—H14 | 119.7 |
C11—C10—H10 | 120.2 | C16—C15—C14 | 121.0 (3) |
C27—C26—C21 | 118.5 (3) | C16—C15—H15 | 119.5 |
C27—C26—C25 | 121.6 (3) | C14—C15—H15 | 119.5 |
C25—C26—C21 | 119.9 (3) | ||
Zn1—O1—N1—C1 | 155.2 (2) | C17—C16—C15—C14 | −0.9 (5) |
Zn1—O1—N1—C9 | −26.6 (4) | C19—N3—C27—C26 | −0.3 (4) |
O2—N2—C18—C17 | 178.6 (3) | C1—N1—C9—C8 | 0.9 (5) |
O2—N2—C10—C11 | −178.5 (3) | C3—C8—C9—N1 | 0.7 (5) |
O1—N1—C1—C2 | 176.7 (3) | C3—C8—C7—C6 | 1.1 (5) |
O1—N1—C9—C8 | −177.2 (3) | C3—C4—C5—C6 | 0.9 (5) |
O3—N3—C27—C26 | 178.8 (2) | C9—N1—C1—C2 | −1.5 (5) |
O3—N3—C19—C20 | −178.4 (3) | C9—C8—C3—C2 | −1.6 (4) |
N2—C18—C17—C12 | −0.5 (4) | C9—C8—C3—C4 | 177.2 (3) |
N2—C18—C17—C16 | 179.4 (3) | C9—C8—C7—C6 | −177.6 (3) |
N2—C10—C11—C12 | 0.1 (5) | C11—C12—C17—C18 | 0.1 (4) |
N1—C1—C2—C3 | 0.5 (5) | C11—C12—C17—C16 | −179.7 (3) |
N3—C27—C26—C21 | 0.2 (4) | C11—C12—C13—C14 | 179.1 (3) |
N3—C27—C26—C25 | 179.0 (3) | C20—C21—C26—C27 | −0.4 (4) |
N3—C19—C20—C21 | −1.0 (5) | C20—C21—C26—C25 | −179.3 (3) |
C21—C26—C25—C24 | −0.1 (5) | C20—C21—C22—C23 | 179.7 (3) |
C21—C22—C23—C24 | −0.7 (5) | C2—C3—C4—C5 | 179.4 (3) |
C8—C3—C2—C1 | 1.0 (5) | C4—C3—C2—C1 | −177.7 (3) |
C8—C3—C4—C5 | 0.6 (5) | C22—C21—C26—C27 | 179.2 (3) |
C27—N3—C19—C20 | 0.7 (4) | C22—C21—C26—C25 | 0.3 (4) |
C27—C26—C25—C24 | −179.0 (3) | C22—C21—C20—C19 | −178.7 (3) |
C18—N2—C10—C11 | −0.5 (4) | C22—C23—C24—C25 | 0.9 (5) |
C18—C17—C16—C15 | −179.0 (3) | C13—C12—C17—C18 | 179.8 (3) |
C10—N2—C18—C17 | 0.6 (4) | C13—C12—C17—C16 | −0.1 (5) |
C26—C21—C20—C19 | 0.9 (4) | C13—C12—C11—C10 | −179.6 (3) |
C26—C21—C22—C23 | 0.1 (5) | C13—C14—C15—C16 | 0.3 (5) |
C26—C25—C24—C23 | −0.5 (5) | C5—C6—C7—C8 | 0.3 (5) |
C12—C17—C16—C15 | 0.8 (5) | C7—C8—C3—C2 | 179.6 (3) |
C12—C13—C14—C15 | 0.5 (5) | C7—C8—C3—C4 | −1.6 (4) |
C17—C12—C11—C10 | 0.0 (5) | C7—C8—C9—N1 | 179.5 (3) |
C17—C12—C13—C14 | −0.6 (5) | C7—C6—C5—C4 | −1.4 (5) |
Symmetry code: (i) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O6—H6A···O9 | 0.82 (2) | 1.91 (2) | 2.723 (3) | 173 (4) |
O5—H5A···O13ii | 0.83 (2) | 2.04 (2) | 2.861 (3) | 168 (3) |
O8—H8A···O10 | 0.83 (2) | 2.00 (2) | 2.808 (3) | 164 (4) |
O5—H5B···O9iii | 0.83 (2) | 1.98 (2) | 2.802 (3) | 171 (4) |
O6—H6B···O2 | 0.82 (2) | 1.84 (2) | 2.651 (3) | 177 (3) |
O7—H7A···O3ii | 0.82 (2) | 2.03 (2) | 2.798 (3) | 156 (3) |
O8—H8B···O12 | 0.83 (2) | 1.88 (2) | 2.710 (3) | 179 (4) |
O7—H7B···O2iii | 0.82 (2) | 1.94 (2) | 2.755 (3) | 173 (4) |
O4—H4A···O3 | 0.82 (2) | 1.81 (2) | 2.634 (3) | 176 (5) |
O4—H4B···O12ii | 0.81 (2) | 1.93 (2) | 2.729 (3) | 169 (4) |
Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y, −z+1. |
Compound | (I) | (II) | (III) | (IV) | (V) |
H···H | 30.9 | 27.8 | 28.0 | 41.8 | 40.6 |
H···X/X···H | 29.0 | 30.9 | 31.1 | – | – |
C···H/H···C | 13.3 | 20.1 | 17.2 | 22.0 | 8.6 |
C···C | 11.3 | 6.6 | 7.0 | 6.0 | 8.5 |
O···H/H···O | 8.8 | 8.3 | 7.9 | 24.5 | 37.6 |
Acknowledgements
The authors thank the Department of Biochemistry, Chemistry, and Physics at Georgia Southern University for the financial support of this work.
References
Ang, H. T., Miao, Y., Ravelli, D. & Wu, J. (2024). Nat. Synth. 3, 568–575. Web of Science CrossRef Google Scholar
Calabrese, M., Pizzi, A., Daolio, A., Beccaria, R., Lo Iacono, C., Scheiner, S. & Resnati, G. (2024). Chem. A Eur. J. 30, e202304240. Web of Science CSD CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202. Google Scholar
Greenberg, A., Green, A. R. & Liebman, J. F. (2020). Molecules, 25, 3703. Web of Science CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kawamura, A., Filatov, A. S., Anderson, J. S. & Jeon, I. R. (2019). Inorg. Chem. 58, 3764–3773. Web of Science CSD CrossRef PubMed Google Scholar
Kladnik, J., Ristovski, S., Kljun, J., Defant, A., Mancini, I., Sepčić, K. & Turel, I. (2020). Int. J. Mol. Sci. 21, 5628–5645. Web of Science CSD CrossRef PubMed Google Scholar
Kobus, M., Friedrich, T., Zorn, E., Burmeister, N. & Maison, W. (2024). J. Med. Chem. 67, 5168–5184. Web of Science CrossRef PubMed Google Scholar
Kruschel, R. D., Barbosa, M. A. G., Almeida, J. J., Xavier, C. P. R., Vasconcelos, M. H. & McCarthy, F. O. (2024). J. Med. Chem. 67, 13909–13924. Web of Science CrossRef PubMed Google Scholar
Larin, A. A. & Fershtat, L. L. (2022). Mendeleev Commun. 32, 703–713. Web of Science CrossRef Google Scholar
Łukomska, M., Rybarczyk-Pirek, A. J., Jabłoński, M. & Palusiak, M. (2015). Phys. Chem. Chem. Phys. 17, 16375–16387. Web of Science PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413. Web of Science CSD CrossRef CAS Google Scholar
Munn, A. S., Clarkson, G. J. & Walton, R. I. (2014). Acta Cryst. B70, 11–18. Web of Science CSD CrossRef IUCr Journals Google Scholar
Oberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391–2399. Web of Science CSD CrossRef CAS Google Scholar
Padgett, C. W., Lynch, W. E., Groneck, E. N., Raymundo, M. & Adams, D. (2022). Acta Cryst. E78, 716–721. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paul-Roth, C. O., Lehn, J.-M., Guilhem, J. & Pascard, C. (1995). Helv. Chim. Acta, 78, 1895–1903. Google Scholar
Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Seitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665–8673. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sperlich, E. & Köckerling, M. (2022). Inorg. Chem. 61, 2409–2420. Web of Science CSD CrossRef PubMed Google Scholar
Steiner, T. (1998). Acta Cryst. B54, 456–463. Web of Science CrossRef CAS IUCr Journals Google Scholar
Suwínska, K. (1995). Acta Cryst. C51, 2232–2235. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
