research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of zinc(II) coordination complexes with iso­quinoline N-oxide

crossmark logo

aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street, Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 31 December 2024; accepted 8 January 2025; online 14 January 2025)

The reaction of one equivalent of zinc(II) halide salts with two equivalents of iso­quinoline N-oxide (iQNO; C9H7NO) in methanol yields compounds of the general formula [ZnX2(iQNO)2], with X = Cl (I), Br (II) and I (III). However, starting with zinc(II) perchlorate or nitrate leads to the formation of complex ions with the compositions [Zn(iQNO)6](X)2 for X = ClO4 (IV), and [Zn(iQNO)(H2O)5](iQNO)2X2 for X = NO3 (V). Complexes (I), (II) and (III), namely di­chlorido­bis­(iso­quinoline N-oxide-κO)zinc(II) [ZnCl2(C9H7NO)2], di­bromido­bis­(iso­quinoline N-oxide-κO)zinc(II) [ZnBr2(C9H7NO)2], and di­iodido­bis­(iso­quinoline N-oxide-κO)zinc(II) [ZnI2(C9H7NO)2], each exhibit a distorted tetra­hedral coordination geometry around the zinc(II) ion coordinated by two iQNO ligands bound through the oxygen atom and two halide ions. The zinc ion lies on a crystallographic twofold axis in the bromo complex. The X—Zn—X bond angles are approximately 15–17° larger than the O—Zn—O bond angles resulting in the observed tetra­hedral distortion. In complex (IV), hexa­kis­(iso­quinoline N-oxide-κO)zinc(II) bis­(perchlorate), [Zn(C9H7NO)6](ClO4)2, the zinc(II) ion occupies a special position with 3 site symmetry and is octa­hedrally coordinated by six iQNO ligands, albeit with slight distortions evidenced by a spread of cis bond angles from 85.82 (4) to 94.18 (4)°. The chlorine atom of the perchlorate anion lies on a crystallographic threefold axis. Finally, complex (V) crystallizes with a pseudo-octa­hedral geometry; penta­aqua­(iso­quinoline N-oxide-κO)zinc(II) dinitrate–iso­quinoline N-oxide (1/2), [Zn(C9H7NO)(H2O)5](NO3)2·2(C9H7NO). The nitrate ions and non-coordin­ated iQNO mol­ecules engage in π-stacking and hydrogen-bonding inter­actions with the coordinated water mol­ecules. The iQNO—Zn—O equatorial bond angles range from 88.98 (9) to 94.90 (9)°, with the largest deviation from a perfect octa­hedral angle attributed to the influence of a weak C—H⋯O (from water) inter­action (2.287 Å) involving the bound iQNO ligand.

1. Chemical context

There is a great deal of inter­est in the chemistry of N-oxides due to their ubiquity in nature, recent advances in pharmaceutical chemistry (see, for example, Kobus et al., 2024[Kobus, M., Friedrich, T., Zorn, E., Burmeister, N. & Maison, W. (2024). J. Med. Chem. 67, 5168-5184.]), and their important roles in synthesis and materials science (e.g., Ang et al., 2024[Ang, H. T., Miao, Y., Ravelli, D. & Wu, J. (2024). Nat. Synth. 3, 568-575.]; Larin & Fershtat, 2022[Larin, A. A. & Fershtat, L. L. (2022). Mendeleev Commun. 32, 703-713.]). Functional features of importance include the highly polar N—O bond, which is capable of forming strong inter­actions with cations. Aromatic N-oxides are more stable and have a slightly higher bond order than their aliphatic counterparts, as they allow for back-donation of electron density into the π* orbital (Lukomska et al., 2015[Łukomska, M., Rybarczyk-Pirek, A. J., Jabłoński, M. & Palusiak, M. (2015). Phys. Chem. Chem. Phys. 17, 16375-16387.]; Greenberg et al., 2020[Greenberg, A., Green, A. R. & Liebman, J. F. (2020). Molecules, 25, 3703.]). Recently, the effect of iso­quinoline­quinone N-oxides as potent anti­cancer agents has also been reported (Kruschel et al., 2024[Kruschel, R. D., Barbosa, M. A. G., Almeida, J. J., Xavier, C. P. R., Vasconcelos, M. H. & McCarthy, F. O. (2024). J. Med. Chem. 67, 13909-13924.]).

Transformations involving N-oxides and transition metals include both the synthesis and reactivity of these complexes (see, for example, Eppenson, 2003[Eppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157-202.]; Moustafa et al., 2014[Moustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402-5413.]). These transformations take advantage of the Lewis acid/base properties of metals and the polar N-oxide ligands. Owing to this, there is considerable inter­est in metal complexes that bind N-oxides and their structures. We have previously reported the structures of zinc(II) halide complexes with quinoline N-oxide (QNO) (Padgett et al., 2022[Padgett, C. W., Lynch, W. E., Groneck, E. N., Raymundo, M. & Adams, D. (2022). Acta Cryst. E78, 716-721.]). In the present study, we extend our work on QNO zinc complexes to iso­quinoline N-oxide (iQNO) complexes. Herein, we report five iQNO/zinc(II) complexes containing chloride, bromide, iodide, perchlorate, and nitrate anions.

[Scheme 1]
[Scheme 2]
[Scheme 3]

The three zinc(II) halide complexes can be formulated as mononuclear Zn(X)2(iQNO)2 species in a distorted tetra­hedral environment. The non-coordinating perchlorate and nitrate derivatives yield significantly different complexes. The perchlorate complex is hexa­coordinated, with six iQNO mol­ecules bound to the metal ion in a pseudo-octa­hedral environment, formulated as [Zn(iQNO)6](ClO4)2. The nitrate derivative is also six-coordinate but features five water mol­ecules and one iQNO ligand in the coordination sphere, with two π-stacked iQNOs and two nitrate anions present in the structure.

2. Structural commentary

Compound (I) crystallizes in the triclinic space group P[\overline{1}] (Fig. 1[link]) and exhibits a distorted tetra­hedral coordination environment around the Zn center. The Cl—Zn—Cl bond angle is 117.35 (6)° and the O—Zn—O angle is 101.78 (13)°. The Zn—O bond distances are 1.999 (3) Å (Zn1—O1) and 1.968 (3) Å (Zn1—O2), while the Zn—Cl bond distances are 2.2088 (14) Å (Zn1—Cl1) and 2.2147 (13) Å (Zn1—Cl2).

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

The bromide analog, complex (II), crystallizes in the monoclinic space group C2/c, with the zinc ion lying on a crystallographic twofold axis. The Zn1—Br1 bond distance is 2.3476 (7) Å, whereas the Zn1—O1 bond distance is 1.995 (4) Å. The Br1—Zn1—Br1i [symmetry code: (i) 1 − x, y, [{1\over 2}] − z) bond angle is more open at 119.21 (5)° compared to the O1—Zn1—O1i bond angle of 101.6 (3)° in the pseudo-tetra­hedral environment (Fig. 2[link]).

[Figure 2]
Figure 2
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level.

For the iodide derivative, complex (III), which crystallizes in the triclinic space group P[\overline{1}] (Fig. 3[link]), the pseudo-tetra­hedral coordination environment seen in (I) is preserved. The I1—Zn1—I2 bond angle is even more open at 122.378 (14)°, with Zn1—I1 and Zn1—I2 bond distances of 2.5591 (4) Å and 2.5504 (4) Å, respectively. The O1—Zn1—O2 bond angle is compressed at 103.62 (9)°, with Zn1—O1 and Zn1—O2 bond distances of 2.0130 (19) Å and 2.016 (2) Å, respectively.

[Figure 3]
Figure 3
The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level.

Complex (IV), the perchlorate derivative, crystallizes in the trigonal space group R[\overline{3}] (Fig. 4[link]) and adopts a pseudo-octa­hedral arrangement around the ZnII center, coordinated by six iQNO mol­ecules. Two perchlorate ions reside in the lattice. The O1—Zn1—O1′ bond angles range from 85.82 (4) to 94.18 (4)°, and the associated Zn1—O1 bond distances are 2.1008 (11) Å.

[Figure 4]
Figure 4
The mol­ecular structure of (IV) with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms removed for clarity.

Compound (V) crystallizes in the triclinic space group P[\overline{1}] and exhibits a pseudo-octa­hedral arrangement around the ZnII center (Fig. 5[link]). Of the five water mol­ecules coordinated to the zinc ion, the equatorial Zn1—O bond distances range from 2.015 (2) Å to 2.130 (2) Å, while the axial Zn1—O7 bond distance is slightly longer at 2.174 (2) Å. The iQNO ligand is coordinated via O1 [Zn1—O1 = 2.1078 (19) Å], a distance comparable to the Zn—O bonds to water.

[Figure 5]
Figure 5
The mol­ecular structure of (V) with displacement ellipsoids drawn at the 50% probability level.

The coordinated iQNO ligands participate in ππ stacking inter­actions. The centroid-to-centroid distances between aromatic rings lie in the range of approximately 3.66–3.97 Å. Hydrogen bonding in compound (V) is also notable. The nitrate ion associated with N4 (bearing atoms O9, O10 and O11) accepts hydrogen bonds from water mol­ecules O6 [O6⋯O9 = 2.723 (3) Å] and O8 [O8⋯O10 = 2.808 (3) Å]. Similarly, the nitrate ion associated with N5 (O12, O13, O14) accepts a hydrogen bond from O8 [O8⋯O12 = 2.710 (3) Å]. The iQNO ligands also participate in hydrogen bonding: O2 and O3 from the iQNO moieties accept hydrogen bonds from O6 and O4, respectively [O6⋯O2 = 2.651 (3) Å; O4⋯O3 = 2.634 (3) Å] (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (V)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O9 0.82 (2) 1.91 (2) 2.723 (3) 173 (4)
O5—H5A⋯O13ii 0.83 (2) 2.04 (2) 2.861 (3) 168 (3)
O8—H8A⋯O10 0.83 (2) 2.00 (2) 2.808 (3) 164 (4)
O5—H5B⋯O9iii 0.83 (2) 1.98 (2) 2.802 (3) 171 (4)
O6—H6B⋯O2 0.82 (2) 1.84 (2) 2.651 (3) 177 (3)
O7—H7A⋯O3ii 0.82 (2) 2.03 (2) 2.798 (3) 156 (3)
O8—H8B⋯O12 0.83 (2) 1.88 (2) 2.710 (3) 179 (4)
O7—H7B⋯O2iii 0.82 (2) 1.94 (2) 2.755 (3) 173 (4)
O4—H4A⋯O3 0.82 (2) 1.81 (2) 2.634 (3) 176 (5)
O4—H4B⋯O12ii 0.81 (2) 1.93 (2) 2.729 (3) 169 (4)
Symmetry codes: (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y, -z+1].

3. Supra­molecular features

Figs. 6[link]–10[link][link][link][link] show the crystal packing of compounds (I)–(V), respectively. In the packing of (I), (II), (III), and (IV) the packing is consolidated by van der Waals inter­actions and ππ stacking. In the case of (V), there is an additional network of inter­molecular O—H⋯O hydrogen bonds.

[Figure 6]
Figure 6
A view along the a-axis direction of the crystal packing of (I).
[Figure 7]
Figure 7
A view along the c-axis direction of the crystal packing of (II).
[Figure 8]
Figure 8
A view along the a-axis direction of the crystal packing of (III).
[Figure 9]
Figure 9
A view along the b-axis direction of the crystal packing of (IV).
[Figure 10]
Figure 10
A view along the a-axis direction of the crystal packing of (V).

In (I), several ππ contacts are observed between inversion-related rings, with centroid–centroid distances ranging from 3.835 (3) to 3.966 (3) Å (Table 2[link]). These inter­actions stack the mol­ecules into layered ribbons that extend along the b-axis direction. Compound (II) also exhibits aromatic stacking. Cg2⋯Cg2i contacts [3.634 (5) Å; symmetry code: (i) [{1\over 2}] − x, [{3\over 2}] − y, 1 − z] and Cg1⋯Cg1ii contacts [3.666 (4) Å; symmetry code: (ii) 1 − x, 2 − y, 1 − z] form columnar arrays running through the crystal. One set of columns runs along the [110] direction, and the other along the [1[\overline{1}]0] direction. Similarly, in (III), several strong ππ inter­actions are observed: Cg2⋯Cg2i = 3.802 (3) Å [symmetry code: (i) 1 − x, −y, −z], Cg3⋯Cg3ii = 3.632 (2) Å [symmetry code: (ii) 1 − x, 1 − y, 1 − z], and Cg4⋯Cg4iii = 3.681 (2) Å [symmetry code: (iii) 1 − x, 2 − y, 1 − z]. These inter­actions result in columnar arrays running along the b-axis direction, with the columns connected by additional ππ inter­actions to form sheets in the bc plane.

Table 2
Centroid distances (Å) for (I)[link]

CgCg4 are the centroids of the N1/C1/C2/C7–C9, N2/C10–C12/C17/C18, C2–C7 and C12–C17 rings, respectively.

Cg1⋯Cg1i 3.928 (4) Cg3⋯Cg3ii 3.845 (4)
Cg1⋯Cg3i 3.966 (3) Cg4⋯Cg4iv 3.681 (4)
Cg1⋯Cg3ii 3.835 (3) Cg4⋯Cg2iii 3.940 (3)
Cg2⋯Cg2iii 3.437 (3) Cg4⋯Cg2iv 3.906 (3)
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1, -z]; (iv) [-x+1, -y+2, -z].

In contrast, (IV) exhibits fewer and weaker contacts, with Cg2⋯Cg1i at 3.9288 (13) Å [symmetry code: (i) 1 − x, 1 − y, 1 − z] being the only observed ππ stacking inter­action. Compound (V) has multiple ππ contacts, with centroid–centroid distances ranging from 3.7374 (19) to 3.969 (2) Å (Table 3[link]). In addition to aromatic stacking, (V) is also consolidated by hydrogen bonds involving coordinated water mol­ecules and nitrate anions. Notable examples include O6—H6A⋯O9 [O⋯O = 2.723 (3) Å], O6—H6B⋯O2 [2.651 (3) Å], O5—H5A⋯O13ii [2.861 (3) Å], O5—H5B⋯O9iii [2.802 (3) Å], and O8—H8B⋯O12 [2.710 (3) Å]. These hydrogen bonds, with D—H⋯A angles often approaching linearity [e.g., 177 (3)° for O6—H6B⋯O2], tie the complexes together into a robust three-dimensional network [symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y, –z + 1].

Table 3
Centroid distances (Å) for (V)[link]

Cg1, Cg2, Cg4, Cg5, Cg7 and Cg8 are the centroids of the N1/C1–C3/C8/C9, C3–C8, N2/C10–C12/C17/C18, C12–C17, N3/C19–C21/C26/C27 and C21–C26 rings, respectively.

Cg1⋯Cg4 3.839 (2) Cg2⋯Cg8 3.969 (2)
Cg1⋯Cg7 3.893 (2) Cg4⋯Cg7i 3.943 (2)
Cg1⋯Cg8 3.8500 (19) Cg5⋯Cg7i 3.7374 (19)
Cg2⋯Cg4 3.6617 (19) Cg5⋯Cg8i 3.968 (2)
Cg2⋯Cg5 3.823 (2)    
Symmetry code: (i) [x, y-1, z].

4. Hirshfeld surface analysis

The inter­molecular inter­actions were further investigated by qu­anti­tative analysis of the Hirshfeld surfaces using CrystalExplorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), and visualized via two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]). Figs. 11[link], 12[link] and 13[link] show the Hirshfeld surfaces of mol­ecules (I)–(III), each mapped with the function dnorm, which is the sum of the distances from a surface point to the nearest inter­ior (di) and exterior (de) atoms, normalized by the van der Waals (vdW) radii of the corresponding atoms (rvdW). Contacts shorter than the sums of vdW radii are shown in red, those longer in blue, and those approximately equal to vdW in white.

[Figure 11]
Figure 11
Hirshfeld surface for (I) mapped over dnorm.
[Figure 12]
Figure 12
Hirshfeld surface for (II) mapped over dnorm.
[Figure 13]
Figure 13
Hirshfeld surface for (III) mapped over dnorm.

For (I), (II), and (III), the most intense red spots correspond to C—H⋯X and C—H⋯O inter­actions. In (I), the short contact C10—H10⋯O2(2 − x, 1 − y, −z) has an H⋯O distance of 2.447 (3) Å. Additional short contacts include C11—H11⋯Cl2(2 − x, −y, −z) at 2.8305 (13) Å and C8—H8⋯Cl2(2 − x, 1 − y, 1 − z) at 2.8649 (13) Å. In (II), the most significant short contacts are C5—H5⋯Br1([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) at 2.9832 (6) Å and C4—H4⋯O1([{1\over 2}] + x, −[{1\over 2}] + y, z) at 2.670 (4) Å. In (III), the short contacts C4—H4⋯O1(x, 1 + y, z) at 2.669 (2) Å and C18—H18⋯O2(2 − x, 1 − y, 1 − z) at 2.566 (2) Å are also observed. All of these short contacts can be regarded as weak hydrogen bonds (Steiner, 1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]).

In (IV), (Fig. 14[link]), the shortest contacts correspond to C—H⋯O inter­actions, primarily C4—H4⋯O3([{2\over 3}] + y − x, [{4\over 3}] − x, [{1\over 3}] + z) at 2.4079 (18) Å. In (V), (Fig. 15[link]), the closest contacts are the hydrogen bonds between IQNO and the water mol­ecules, and between the nitrate ions and water described above; there are also weak hydrogen bonds involving C1—H1⋯O2(−x, 1 − y, 1 − z) at 2.319 (2) Å and C19—H19⋯O1(−x, 1 − y, 1 − z) at 2.402 (2) Å.

[Figure 14]
Figure 14
Hirshfeld surface for (IV) mapped over dnorm.
[Figure 15]
Figure 15
Hirshfeld surface for (V) mapped over dnorm.

Analysis of the two-dimensional fingerprint plots (Table 4[link]) indicates that H⋯H contacts are the most common in all five structures. In (I)–(III), the X⋯H contacts constitute the second-highest contribution, which increases in the order (I) < (II) < (III), contributing 29.0%, 30.9%, and 31.1%, respectively. In (IV) and (V), the Hirshfeld surface for the Zn complex was used in the analysis, and O⋯H contacts form the second-highest contribution, contributing 24.5%, 37.6%, and 31.1%, respectively. No short halogen⋯halogen contacts are observed in (I)–(III).

Table 4
Contributions of selected inter­molecular contacts (%) to the Hirshfeld surfaces of (I)–(V)

Compound (I) (II) (III) (IV) (V)
H⋯H 30.9 27.8 28.0 41.8 40.6
H⋯X/X⋯H 29.0 30.9 31.1
C⋯H/H⋯C 13.3 20.1 17.2 22.0 8.6
C⋯C 11.3 6.6 7.0 6.0 8.5
O⋯H/H⋯O 8.8 8.3 7.9 24.5 37.6

5. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for iso­quinoline N-oxide returned 14 unique entries. Of these 14, only 5 were bound directly to metal atoms. The most closely related to these complexes are cobalt(II) [CSD refcodes PINNUX (Munn et al., 2014[Munn, A. S., Clarkson, G. J. & Walton, R. I. (2014). Acta Cryst. B70, 11-18.]) and QIWWEB (Kawamura et al., 2019[Kawamura, A., Filatov, A. S., Anderson, J. S. & Jeon, I. R. (2019). Inorg. Chem. 58, 3764-3773.])], niobium(III) (QARFAU; Sperlich & Kockerling, 2022[Sperlich, E. & Köckerling, M. (2022). Inorg. Chem. 61, 2409-2420.]), zinc(II) (UWIPAS; Oberda et al., 2011[Oberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391-2399.]), and osmium(VIII) (XONBIP; Calabrese et al., 2024[Calabrese, M., Pizzi, A., Daolio, A., Beccaria, R., Lo Iacono, C., Scheiner, S. & Resnati, G. (2024). Chem. A Eur. J. 30, e202304240.]).

When the seven hydrogen atoms are removed in the substructure search, the number of unique entries increases to 72, with four additional metal-bound examples not mentioned above. These include a 1-sulfanyl-iso­quinoline ruthenium(II) complex (MUTSAY; Kladnik et al., 2020[Kladnik, J., Ristovski, S., Kljun, J., Defant, A., Mancini, I., Sepčić, K. & Turel, I. (2020). Int. J. Mol. Sci. 21, 5628-5645.]), a 1-(­oxy)-3-iso­quinoline-N-oxide-carboxamidato derivative with indium(III) (VOLNIU; Seitz et al., 2008[Seitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665-8673.]), a sodium derivative of iQNO with amino/crown ether attachment (ZEXCAG; Suwińska, 1995[Suwínska, K. (1995). Acta Cryst. C51, 2232-2235.]), and a europium(II) iQNO derivative modified with a cyclic bipyridyl (ZODXIZ; Paul-Roth et al., 1995[Paul-Roth, C. O., Lehn, J.-M., Guilhem, J. & Pascard, C. (1995). Helv. Chim. Acta, 78, 1895-1903.]).

6. Synthesis and crystallization

The title compounds were all synthesized in a similar manner. The zinc salt was dissolved in ∼10 ml of methanol, and then iso­quinoline N-oxide (iQNO) was added in one portion. The solutions were stirred for 5 minutes, and the solvent was allowed to evaporate, resulting in crystalline solids over time.

Compound (I) was prepared by adding ZnCl2 (0.0463 g, 0.340 mmol, purchased from Strem Chemicals) to a small portion of methanol to dissolve, and adding 0.100 g of iQNO (0.689 mmol, purchased from Aldrich/Millipore) in a 1:2 zinc(II):iQNO mole ratio. The solution was stirred for approximately 10 minutes, at which time the solution was covered with parafilm, and the solvent was allowed to evaporate at 295 K. Yield: 0.123 g (84.1%).

Compound (II) was synthesized by placing 0.0818 g (0.340 mmol, purchased from Alfa Aesar) of ZnBr2·0.86H2O in a small beaker and dissolving it in minimal amounts of methanol. iQNO (0.100 g, 0.689 mmol, purchased from Aldrich/Millipore) was added in one portion. The mixture was stirred for 10 minutes, covered with parafilm, and allowed to evaporate at 295 K. Yield: 0.138 g (75.9%).

For compound (III), a similar technique was used. ZnI2 (0.109 g, 0.340 mmol, purchased from Aldrich/Millipore) was placed in a beaker, and methanol was added to dissolve it completely. iQNO (0.100 g, 0.689 mmol, purchased from Aldrich/Millipore) was added in one portion. The mixture was stirred for 10 minutes, covered with parafilm, and allowed to evaporate at 295 K. Yield: 0.146 g (69.8%).

Complex (IV) was prepared in a 1:4 zinc(II):iQNO ratio by dissolving 0.0633 g (0.0170 mmol, purchased from Aldrich/Millipore) of Zn(ClO4)2·6H2O in methanol and adding 0.100 g (0.689 mmol) of iQNO in one portion. The solution was stirred for 10 minutes, and the solvent was evaporated to a minimum amount of liquid. This liquid was redissolved in tetra­hydro­furan, dried over MgSO4, and the solvent was evaporated. The resulting solid was dissolved in aceto­nitrile, which was allowed to evaporate at room temperature, yielding the product. Yield: 0.0423 g (32.4% based on iQNO).

Compound (V) was synthesized by dissolving 0.0994 g (0.340 mmol, purchased from Alfa Aesar) of Zn(NO3)2.6H2O in methanol and adding 0.100 g of iQNO (0.689 mmol) in a 1:2 ratio. The same procedure as outlined for (IV) was followed, with a final yield of 0.0642 g (39.1% based on iQNO).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All carbon-bound H atoms were positioned geometrically and refined as riding: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C).

Table 5
Experimental details

  (I) (II) (III) (IV) (V)
Crystal data
Chemical formula [ZnCl2(C9H7NO)2] [ZnBr2(C9H7NO)2] [ZnI2(C9H7NO)2] [Zn(C9H7NO)6](ClO4)2 [Zn(C9H7NO)(H2O)5](NO3)2·2C9H7NO
Mr 426.58 515.50 609.48 1135.20 714.94
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, C2/c Triclinic, P[\overline{1}] Trigonal, R[\overline{3}] Triclinic, P[\overline{1}]
Temperature (K) 293 170 170 170 170
a, b, c (Å) 7.5164 (5), 7.8002 (5), 15.1156 (10) 17.1095 (10), 7.2020 (6), 14.9534 (11) 7.7325 (3), 8.9596 (4), 14.8297 (9) 12.8217 (4), 12.8217 (4), 26.5684 (9) 9.7360 (9), 11.5910 (9), 14.6381 (10)
α, β, γ (°) 96.172 (6), 92.052 (5), 96.284 (5) 90, 96.472 (6), 90 93.205 (4), 99.873 (4), 104.852 (4) 90, 90, 120 74.352 (6), 74.620 (7), 81.633 (7)
V3) 874.77 (10) 1830.9 (2) 972.98 (9) 3782.6 (3) 1528.8 (2)
Z 2 4 2 3 2
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.72 5.72 4.45 0.67 0.88
Crystal size (mm) 0.4 × 0.3 × 0.1 0.2 × 0.2 × 0.2 0.32 × 0.13 × 0.06 0.2 × 0.2 × 0.15 0.7 × 0.2 × 0.04
 
Data collection
Diffractometer XtaLAB Synergy, HyPix3000 XtaLAB Mini XtaLAB Mini XtaLAB Mini XtaLAB Mini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.929, 1.000 0.358, 1.000 0.535, 1.000 0.914, 1.000 0.752, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 4838, 3207, 2357 2980, 1671, 1402 8495, 3563, 3152 11238, 1545, 1450 13628, 5599, 4252
Rint 0.029 0.044 0.016 0.017 0.047
(sin θ/λ)max−1) 0.602 0.602 0.602 0.602 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.124, 1.06 0.052, 0.141, 1.03 0.020, 0.048, 1.03 0.028, 0.077, 1.06 0.044, 0.106, 1.04
No. of reflections 3207 1671 3563 1545 5599
No. of parameters 226 114 226 117 464
No. of restraints 0 0 0 0 10
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.55, −0.30 0.83, −0.96 0.59, −0.39 0.30, −0.25 0.51, −0.48
Computer programs: CrysAlis PRO (Rigaku OD, 2019[Rigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Dichloridobis(isoquinoline N-oxide-κO)zinc(II) (I) top
Crystal data top
[ZnCl2(C9H7NO)2]Z = 2
Mr = 426.58F(000) = 432
Triclinic, P1Dx = 1.620 Mg m3
a = 7.5164 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.8002 (5) ÅCell parameters from 520 reflections
c = 15.1156 (10) Åθ = 2.7–22.6°
α = 96.172 (6)°µ = 1.72 mm1
β = 92.052 (5)°T = 293 K
γ = 96.284 (5)°Irregular, clear colourless
V = 874.77 (10) Å30.4 × 0.3 × 0.1 mm
Data collection top
XtaLAB Synergy, HyPix3000
diffractometer
3207 independent reflections
Radiation source: fine-focus sealed X-ray tube, Rigaku (Mo) X-ray Source2357 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.4°, θmin = 2.6°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 99
Tmin = 0.929, Tmax = 1.000k = 98
4838 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0519P)2 + 0.0439P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3207 reflectionsΔρmax = 0.55 e Å3
226 parametersΔρmin = 0.30 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.94135 (7)0.67381 (7)0.23426 (3)0.0471 (2)
Cl21.10215 (18)0.47387 (17)0.27790 (8)0.0642 (4)
Cl11.0537 (2)0.94814 (17)0.26629 (9)0.0698 (4)
O20.8996 (4)0.6204 (4)0.10445 (19)0.0526 (8)
O10.6934 (4)0.6319 (5)0.27690 (19)0.0628 (9)
N20.7659 (5)0.6628 (4)0.0538 (2)0.0433 (9)
N10.6497 (5)0.6711 (5)0.3619 (2)0.0465 (9)
C10.4937 (6)0.7275 (6)0.3769 (3)0.0474 (11)
H10.4178260.7425900.3291170.057*
C160.3419 (7)0.8481 (6)0.0684 (3)0.0558 (12)
H160.3405390.8806660.1293810.067*
C100.7735 (6)0.6177 (6)0.0366 (3)0.0473 (11)
H100.8708600.5665430.0592860.057*
C20.4403 (6)0.7651 (5)0.4644 (3)0.0444 (10)
C70.5573 (6)0.7419 (5)0.5355 (3)0.0450 (11)
C110.6378 (7)0.6485 (6)0.0920 (3)0.0543 (12)
H110.6433010.6181910.1529430.065*
C180.6327 (6)0.7382 (6)0.0875 (3)0.0464 (11)
H180.6338200.7694540.1486550.056*
C60.5010 (8)0.7816 (7)0.6236 (3)0.0622 (14)
H60.5758630.7679270.6720330.075*
C80.7216 (6)0.6805 (6)0.5152 (3)0.0528 (12)
H80.8015200.6638810.5611000.063*
C30.2723 (6)0.8255 (6)0.4807 (3)0.0541 (12)
H30.1956150.8412910.4333150.065*
C170.4855 (6)0.7738 (5)0.0328 (3)0.0445 (11)
C90.7644 (6)0.6456 (6)0.4302 (3)0.0544 (12)
H90.8730340.6038140.4176460.065*
C140.2034 (7)0.8278 (7)0.0791 (4)0.0684 (15)
H140.1088470.8499680.1159400.082*
C120.4906 (6)0.7244 (5)0.0598 (3)0.0467 (11)
C150.2012 (7)0.8732 (7)0.0129 (4)0.0640 (14)
H150.1029060.9210580.0367660.077*
C50.3395 (8)0.8389 (7)0.6375 (3)0.0678 (15)
H50.3048490.8646560.6954080.081*
C40.2242 (7)0.8599 (7)0.5655 (3)0.0626 (14)
H40.1131350.8980610.5762420.075*
C130.3403 (7)0.7526 (7)0.1148 (3)0.0615 (13)
H130.3373850.7186000.1757710.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0432 (3)0.0575 (4)0.0421 (3)0.0109 (2)0.0037 (2)0.0062 (2)
Cl20.0699 (9)0.0717 (8)0.0564 (7)0.0294 (7)0.0025 (6)0.0127 (6)
Cl10.0879 (11)0.0572 (8)0.0628 (8)0.0093 (7)0.0064 (7)0.0027 (6)
O20.045 (2)0.070 (2)0.0453 (17)0.0194 (16)0.0029 (15)0.0053 (15)
O10.049 (2)0.101 (3)0.0377 (17)0.0051 (18)0.0113 (15)0.0018 (17)
N20.040 (2)0.046 (2)0.044 (2)0.0067 (17)0.0032 (17)0.0074 (17)
N10.037 (2)0.064 (2)0.039 (2)0.0006 (17)0.0053 (17)0.0110 (18)
C10.039 (3)0.058 (3)0.045 (2)0.001 (2)0.002 (2)0.012 (2)
C160.051 (3)0.058 (3)0.063 (3)0.011 (2)0.013 (3)0.016 (2)
C100.051 (3)0.051 (3)0.040 (2)0.009 (2)0.004 (2)0.005 (2)
C20.040 (3)0.047 (3)0.046 (2)0.003 (2)0.003 (2)0.007 (2)
C70.046 (3)0.048 (3)0.042 (2)0.001 (2)0.002 (2)0.013 (2)
C110.062 (3)0.060 (3)0.041 (2)0.008 (2)0.005 (2)0.002 (2)
C180.051 (3)0.049 (3)0.041 (2)0.008 (2)0.002 (2)0.008 (2)
C60.074 (4)0.075 (4)0.039 (3)0.011 (3)0.003 (3)0.013 (2)
C80.043 (3)0.070 (3)0.048 (3)0.007 (2)0.004 (2)0.019 (2)
C30.044 (3)0.065 (3)0.054 (3)0.008 (2)0.002 (2)0.006 (2)
C170.043 (3)0.045 (3)0.047 (3)0.001 (2)0.008 (2)0.011 (2)
C90.042 (3)0.073 (3)0.051 (3)0.012 (2)0.006 (2)0.014 (2)
C140.052 (3)0.069 (4)0.088 (4)0.006 (3)0.011 (3)0.030 (3)
C120.047 (3)0.037 (2)0.056 (3)0.0006 (19)0.003 (2)0.009 (2)
C150.042 (3)0.066 (3)0.090 (4)0.012 (2)0.006 (3)0.031 (3)
C50.080 (4)0.076 (4)0.050 (3)0.013 (3)0.022 (3)0.009 (3)
C40.058 (3)0.068 (3)0.062 (3)0.013 (3)0.012 (3)0.002 (3)
C130.064 (4)0.063 (3)0.056 (3)0.003 (3)0.011 (3)0.014 (2)
Geometric parameters (Å, º) top
Zn1—Cl22.2147 (13)C11—H110.9300
Zn1—Cl12.2088 (14)C11—C121.390 (6)
Zn1—O21.968 (3)C18—H180.9300
Zn1—O11.999 (3)C18—C171.426 (6)
O2—N21.332 (4)C6—H60.9300
O1—N11.349 (4)C6—C51.354 (7)
N2—C101.378 (5)C8—H80.9300
N2—C181.308 (5)C8—C91.343 (6)
N1—C11.316 (5)C3—H30.9300
N1—C91.366 (6)C3—C41.353 (6)
C1—H10.9300C17—C121.414 (6)
C1—C21.405 (6)C9—H90.9300
C16—H160.9300C14—H140.9300
C16—C171.379 (6)C14—C151.400 (7)
C16—C151.370 (7)C14—C131.340 (7)
C10—H100.9300C12—C131.429 (7)
C10—C111.355 (6)C15—H150.9300
C2—C71.404 (6)C5—H50.9300
C2—C31.416 (6)C5—C41.401 (7)
C7—C61.424 (6)C4—H40.9300
C7—C81.405 (6)C13—H130.9300
Cg1···Cg1i3.928 (4)Cg3···Cg3ii3.845 (4)
Cg1···Cg3i3.966 (3)Cg4···Cg4iv3.681 (4)
Cg1···Cg3ii3.835 (3)Cg4···Cg2iii3.940 (3)
Cg2···Cg2iii3.437 (3)Cg4···Cg2iv3.906 (3)
Cl1—Zn1—Cl2117.35 (6)C17—C18—H18119.1
O2—Zn1—Cl2106.39 (9)C7—C6—H6119.7
O2—Zn1—Cl1109.57 (10)C5—C6—C7120.7 (5)
O2—Zn1—O1101.78 (13)C5—C6—H6119.7
O1—Zn1—Cl2109.07 (12)C7—C8—H8119.7
O1—Zn1—Cl1111.43 (11)C9—C8—C7120.6 (4)
N2—O2—Zn1127.6 (2)C9—C8—H8119.7
N1—O1—Zn1124.0 (3)C2—C3—H3120.2
O2—N2—C10115.9 (3)C4—C3—C2119.6 (5)
C18—N2—O2122.4 (4)C4—C3—H3120.2
C18—N2—C10121.6 (4)C16—C17—C18121.8 (4)
O1—N1—C9119.7 (4)C16—C17—C12121.2 (4)
C1—N1—O1118.8 (4)C12—C17—C18116.9 (4)
C1—N1—C9121.5 (4)N1—C9—H9119.7
N1—C1—H1119.6C8—C9—N1120.5 (4)
N1—C1—C2120.8 (4)C8—C9—H9119.7
C2—C1—H1119.6C15—C14—H14119.6
C17—C16—H16120.4C13—C14—H14119.6
C15—C16—H16120.4C13—C14—C15120.8 (5)
C15—C16—C17119.3 (5)C11—C12—C17118.8 (4)
N2—C10—H10120.3C11—C12—C13123.8 (4)
C11—C10—N2119.4 (4)C17—C12—C13117.4 (4)
C11—C10—H10120.3C16—C15—C14120.8 (5)
C1—C2—C3120.8 (4)C16—C15—H15119.6
C7—C2—C1118.6 (4)C14—C15—H15119.6
C7—C2—C3120.5 (4)C6—C5—H5119.6
C2—C7—C6117.7 (4)C6—C5—C4120.7 (5)
C2—C7—C8117.9 (4)C4—C5—H5119.6
C8—C7—C6124.3 (4)C3—C4—C5120.8 (5)
C10—C11—H11119.2C3—C4—H4119.6
C10—C11—C12121.5 (4)C5—C4—H4119.6
C12—C11—H11119.2C14—C13—C12120.4 (5)
N2—C18—H18119.1C14—C13—H13119.8
N2—C18—C17121.7 (4)C12—C13—H13119.8
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z; (iv) x+1, y+2, z.
Dibromidobis(isoquinoline N-oxide-κO)zinc(II) (II) top
Crystal data top
[ZnBr2(C9H7NO)2]F(000) = 1008
Mr = 515.50Dx = 1.870 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.1095 (10) ÅCell parameters from 2412 reflections
b = 7.2020 (6) Åθ = 2.5–33.1°
c = 14.9534 (11) ŵ = 5.72 mm1
β = 96.472 (6)°T = 170 K
V = 1830.9 (2) Å3Block, clear colourless
Z = 40.2 × 0.2 × 0.2 mm
Data collection top
XtaLAB Mini
diffractometer
1671 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1402 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1620
Tmin = 0.358, Tmax = 1.000k = 88
2980 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0927P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1671 reflectionsΔρmax = 0.83 e Å3
114 parametersΔρmin = 0.96 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.60954 (3)0.37505 (9)0.21097 (4)0.0370 (3)
Zn10.5000000.53998 (12)0.2500000.0276 (3)
O10.5369 (2)0.7150 (6)0.3493 (3)0.0362 (9)
N10.4810 (2)0.7741 (6)0.3999 (3)0.0293 (10)
C20.3560 (3)0.9088 (7)0.4148 (4)0.0274 (12)
C70.3704 (3)0.8846 (7)0.5089 (4)0.0306 (13)
C10.4157 (3)0.8517 (7)0.3621 (4)0.0293 (12)
H10.4085730.8696820.2988160.035*
C30.2848 (3)0.9829 (8)0.3750 (5)0.0357 (13)
H30.2754390.9984790.3115930.043*
C90.4960 (3)0.7503 (8)0.4919 (4)0.0342 (13)
H90.5440370.6954740.5170450.041*
C40.2289 (3)1.0325 (8)0.4292 (5)0.0393 (15)
H40.1801421.0817460.4030550.047*
C80.4426 (3)0.8049 (7)0.5454 (4)0.0325 (12)
H80.4534120.7900040.6087390.039*
C60.3108 (4)0.9413 (8)0.5627 (5)0.0383 (14)
H60.3190110.9295300.6263220.046*
C50.2426 (4)1.0119 (8)0.5222 (5)0.0443 (17)
H50.2029561.0484330.5582060.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0276 (4)0.0536 (4)0.0301 (4)0.0097 (2)0.0041 (2)0.0043 (3)
Zn10.0200 (5)0.0393 (5)0.0237 (5)0.0000.0032 (3)0.000
O10.0189 (18)0.053 (2)0.037 (2)0.0036 (17)0.0060 (15)0.013 (2)
N10.021 (2)0.037 (2)0.030 (3)0.0015 (18)0.0032 (17)0.008 (2)
C20.023 (3)0.031 (3)0.028 (3)0.002 (2)0.000 (2)0.003 (2)
C70.026 (3)0.035 (3)0.031 (3)0.006 (2)0.004 (2)0.004 (2)
C10.025 (3)0.038 (3)0.024 (3)0.004 (2)0.001 (2)0.000 (2)
C30.026 (3)0.038 (3)0.042 (4)0.004 (2)0.003 (2)0.002 (3)
C90.027 (3)0.042 (3)0.032 (3)0.003 (2)0.004 (2)0.003 (3)
C40.023 (3)0.039 (3)0.056 (4)0.000 (2)0.003 (3)0.002 (3)
C80.038 (3)0.033 (3)0.024 (3)0.001 (2)0.005 (2)0.004 (3)
C60.042 (4)0.037 (3)0.039 (4)0.007 (3)0.015 (3)0.008 (3)
C50.028 (3)0.043 (3)0.065 (5)0.002 (2)0.022 (3)0.011 (3)
Geometric parameters (Å, º) top
Zn1—Br12.3476 (7)C1—H10.9500
Zn1—Br1i2.3476 (7)C3—H30.9500
Zn1—O11.995 (4)C3—C41.369 (8)
Zn1—O1i1.995 (4)C9—H90.9500
O1—N11.353 (5)C9—C81.340 (8)
N1—C11.317 (7)C4—H40.9500
N1—C91.381 (8)C4—C51.391 (10)
C2—C71.411 (8)C8—H80.9500
C2—C11.421 (8)C6—H60.9500
C2—C31.400 (8)C6—C51.351 (9)
C7—C81.416 (8)C5—H50.9500
C7—C61.428 (8)
Br1—Zn1—Br1i119.21 (5)C2—C3—H3120.7
O1—Zn1—Br1108.06 (10)C4—C3—C2118.6 (6)
O1i—Zn1—Br1i108.06 (10)C4—C3—H3120.7
O1—Zn1—Br1i109.22 (11)N1—C9—H9120.1
O1i—Zn1—Br1109.22 (11)C8—C9—N1119.7 (5)
O1—Zn1—O1i101.6 (3)C8—C9—H9120.1
N1—O1—Zn1115.5 (3)C3—C4—H4119.5
O1—N1—C9117.0 (4)C3—C4—C5120.9 (6)
C1—N1—O1120.8 (5)C5—C4—H4119.5
C1—N1—C9122.2 (5)C7—C8—H8119.6
C7—C2—C1117.4 (5)C9—C8—C7120.8 (6)
C3—C2—C7121.2 (5)C9—C8—H8119.6
C3—C2—C1121.4 (5)C7—C6—H6120.3
C2—C7—C8118.8 (5)C5—C6—C7119.3 (6)
C2—C7—C6118.1 (5)C5—C6—H6120.3
C8—C7—C6123.1 (6)C4—C5—H5119.1
N1—C1—C2120.9 (5)C6—C5—C4121.8 (6)
N1—C1—H1119.5C6—C5—H5119.1
C2—C1—H1119.5
Zn1—O1—N1—C154.2 (6)C1—N1—C9—C80.9 (8)
Zn1—O1—N1—C9126.2 (4)C1—C2—C7—C80.2 (7)
O1—N1—C1—C2178.1 (4)C1—C2—C7—C6180.0 (5)
O1—N1—C9—C8179.5 (5)C1—C2—C3—C4178.9 (5)
N1—C9—C8—C70.9 (8)C3—C2—C7—C8178.5 (5)
C2—C7—C8—C91.2 (8)C3—C2—C7—C61.2 (8)
C2—C7—C6—C51.4 (8)C3—C2—C1—N1176.8 (5)
C2—C3—C4—C50.7 (9)C3—C4—C5—C60.5 (10)
C7—C2—C1—N12.0 (8)C9—N1—C1—C22.4 (8)
C7—C2—C3—C40.2 (8)C8—C7—C6—C5178.4 (6)
C7—C6—C5—C40.6 (9)C6—C7—C8—C9178.6 (5)
Symmetry code: (i) x+1, y, z+1/2.
Diiodidobis(isoquinoline N-oxide-κO)zinc(II) (III) top
Crystal data top
[ZnI2(C9H7NO)2]Z = 2
Mr = 609.48F(000) = 576
Triclinic, P1Dx = 2.080 Mg m3
a = 7.7325 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9596 (4) ÅCell parameters from 6528 reflections
c = 14.8297 (9) Åθ = 2.3–33.2°
α = 93.205 (4)°µ = 4.45 mm1
β = 99.873 (4)°T = 170 K
γ = 104.852 (4)°Irregular, clear colourless
V = 972.98 (9) Å30.32 × 0.13 × 0.06 mm
Data collection top
XtaLAB Mini
diffractometer
3563 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source3152 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 99
Tmin = 0.535, Tmax = 1.000k = 1010
8495 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0249P)2 + 0.3875P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3563 reflectionsΔρmax = 0.59 e Å3
226 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I21.04627 (3)0.42553 (2)0.19043 (2)0.03413 (7)
I10.93556 (3)0.87866 (2)0.26504 (2)0.03405 (7)
Zn10.84695 (4)0.58158 (4)0.24874 (2)0.02607 (9)
O10.5914 (3)0.5206 (2)0.17439 (15)0.0331 (5)
O20.8155 (3)0.5066 (2)0.37215 (14)0.0324 (5)
N10.5043 (3)0.3742 (3)0.13534 (16)0.0242 (5)
N20.7414 (3)0.5881 (3)0.42719 (16)0.0261 (5)
C20.4420 (3)0.0990 (3)0.12990 (19)0.0242 (6)
C10.5366 (4)0.2500 (3)0.17229 (19)0.0252 (6)
H10.6238610.2627630.2276530.030*
C70.3108 (4)0.0815 (3)0.04758 (19)0.0251 (6)
C90.3765 (4)0.3613 (3)0.05564 (19)0.0269 (6)
H90.3547960.4522530.0315200.032*
C110.5072 (4)0.7042 (3)0.45488 (19)0.0240 (6)
C160.6055 (4)0.7592 (3)0.54600 (19)0.0251 (6)
C80.2815 (4)0.2191 (3)0.01155 (19)0.0280 (6)
H80.1951780.2115490.0435980.034*
C180.8379 (4)0.6377 (3)0.5163 (2)0.0276 (6)
H180.9491420.6121860.5365680.033*
C170.7732 (4)0.7228 (3)0.5744 (2)0.0280 (6)
H170.8412050.7584170.6348150.034*
C150.5324 (4)0.8477 (3)0.6039 (2)0.0296 (6)
H150.5970630.8868170.6645030.036*
C30.4758 (4)0.0347 (3)0.1682 (2)0.0303 (6)
H30.5646600.0237360.2227590.036*
C120.3390 (4)0.7373 (3)0.4237 (2)0.0303 (7)
H120.2731780.7008920.3629680.036*
C60.2151 (4)0.0703 (3)0.0054 (2)0.0325 (7)
H60.1276470.0840250.0499630.039*
C100.5825 (4)0.6174 (3)0.3969 (2)0.0277 (6)
H100.5188860.5799610.3358360.033*
C140.3678 (4)0.8771 (3)0.5723 (2)0.0327 (7)
H140.3183010.9350430.6117570.039*
C50.2493 (4)0.1964 (4)0.0450 (2)0.0353 (7)
H50.1836190.2977230.0170240.042*
C40.3804 (4)0.1793 (3)0.1265 (2)0.0345 (7)
H40.4024050.2687300.1526160.041*
C130.2717 (4)0.8220 (3)0.4818 (2)0.0322 (7)
H130.1586570.8441580.4609230.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.03348 (11)0.03541 (12)0.03325 (12)0.00911 (9)0.00922 (9)0.00629 (8)
I10.03325 (11)0.02439 (11)0.03826 (12)0.00528 (8)0.00469 (9)0.00142 (8)
Zn10.02493 (17)0.02467 (17)0.02604 (18)0.00437 (13)0.00288 (14)0.00172 (13)
O10.0277 (10)0.0225 (10)0.0411 (13)0.0019 (8)0.0047 (9)0.0058 (9)
O20.0413 (12)0.0327 (11)0.0313 (11)0.0188 (9)0.0145 (10)0.0053 (9)
N10.0209 (11)0.0216 (12)0.0275 (13)0.0023 (9)0.0039 (10)0.0003 (10)
N20.0294 (13)0.0226 (12)0.0280 (13)0.0066 (10)0.0096 (11)0.0057 (10)
C20.0200 (13)0.0278 (15)0.0253 (15)0.0062 (11)0.0068 (11)0.0003 (12)
C10.0215 (13)0.0285 (15)0.0231 (14)0.0045 (11)0.0013 (12)0.0026 (12)
C70.0227 (13)0.0289 (15)0.0223 (14)0.0047 (11)0.0050 (12)0.0023 (11)
C90.0246 (14)0.0315 (16)0.0254 (15)0.0085 (12)0.0045 (12)0.0067 (12)
C110.0243 (14)0.0213 (14)0.0244 (15)0.0024 (11)0.0044 (12)0.0038 (11)
C160.0230 (14)0.0213 (14)0.0287 (15)0.0006 (11)0.0063 (12)0.0046 (11)
C80.0240 (14)0.0362 (17)0.0208 (14)0.0053 (12)0.0010 (12)0.0020 (12)
C180.0243 (14)0.0282 (15)0.0296 (16)0.0056 (12)0.0040 (12)0.0068 (12)
C170.0257 (14)0.0281 (16)0.0241 (15)0.0007 (12)0.0020 (12)0.0018 (12)
C150.0324 (16)0.0294 (16)0.0242 (15)0.0018 (12)0.0084 (13)0.0016 (12)
C30.0298 (15)0.0335 (17)0.0282 (16)0.0098 (13)0.0045 (13)0.0041 (13)
C120.0261 (15)0.0293 (16)0.0303 (16)0.0023 (12)0.0006 (13)0.0028 (12)
C60.0303 (16)0.0330 (17)0.0294 (16)0.0031 (13)0.0035 (13)0.0050 (13)
C100.0279 (15)0.0270 (15)0.0262 (15)0.0050 (12)0.0030 (12)0.0040 (12)
C140.0330 (16)0.0327 (17)0.0355 (17)0.0084 (13)0.0155 (14)0.0033 (13)
C50.0357 (17)0.0278 (16)0.0368 (18)0.0015 (13)0.0055 (14)0.0061 (13)
C40.0390 (17)0.0294 (17)0.0379 (18)0.0112 (13)0.0114 (15)0.0055 (13)
C130.0241 (15)0.0352 (17)0.0383 (18)0.0075 (13)0.0081 (13)0.0087 (13)
Geometric parameters (Å, º) top
I2—Zn12.5504 (4)C16—C171.418 (4)
I1—Zn12.5591 (4)C16—C151.416 (4)
Zn1—O12.0130 (19)C8—H80.9500
Zn1—O22.016 (2)C18—H180.9500
O1—N11.356 (3)C18—C171.358 (4)
O2—N21.355 (3)C17—H170.9500
N1—C11.328 (3)C15—H150.9500
N1—C91.383 (4)C15—C141.374 (4)
N2—C181.388 (4)C3—H30.9500
N2—C101.331 (4)C3—C41.367 (4)
C2—C11.415 (4)C12—H120.9500
C2—C71.420 (4)C12—C131.368 (4)
C2—C31.418 (4)C6—H60.9500
C1—H10.9500C6—C51.366 (4)
C7—C81.426 (4)C10—H100.9500
C7—C61.421 (4)C14—H140.9500
C9—H90.9500C14—C131.412 (4)
C9—C81.361 (4)C5—H50.9500
C11—C161.424 (4)C5—C41.412 (4)
C11—C121.414 (4)C4—H40.9500
C11—C101.418 (4)C13—H130.9500
I2—Zn1—I1122.378 (14)C9—C8—H8119.8
O1—Zn1—I2112.15 (6)N2—C18—H18120.0
O1—Zn1—I1104.01 (6)C17—C18—N2119.9 (3)
O1—Zn1—O2103.62 (9)C17—C18—H18120.0
O2—Zn1—I2104.06 (6)C16—C17—H17119.6
O2—Zn1—I1109.19 (6)C18—C17—C16120.9 (3)
N1—O1—Zn1123.46 (16)C18—C17—H17119.6
N2—O2—Zn1117.46 (15)C16—C15—H15120.0
O1—N1—C9116.1 (2)C14—C15—C16120.0 (3)
C1—N1—O1122.2 (2)C14—C15—H15120.0
C1—N1—C9121.7 (2)C2—C3—H3120.0
O2—N2—C18117.0 (2)C4—C3—C2120.0 (3)
C10—N2—O2121.1 (2)C4—C3—H3120.0
C10—N2—C18121.9 (2)C11—C12—H12120.2
C1—C2—C7119.2 (3)C13—C12—C11119.5 (3)
C1—C2—C3121.2 (3)C13—C12—H12120.2
C3—C2—C7119.6 (3)C7—C6—H6120.2
N1—C1—C2120.5 (3)C5—C6—C7119.7 (3)
N1—C1—H1119.7C5—C6—H6120.2
C2—C1—H1119.7N2—C10—C11120.6 (3)
C2—C7—C8117.7 (2)N2—C10—H10119.7
C2—C7—C6119.1 (3)C11—C10—H10119.7
C6—C7—C8123.2 (3)C15—C14—H14119.7
N1—C9—H9119.8C15—C14—C13120.6 (3)
C8—C9—N1120.5 (3)C13—C14—H14119.7
C8—C9—H9119.8C6—C5—H5119.3
C12—C11—C16120.0 (3)C6—C5—C4121.3 (3)
C12—C11—C10121.4 (3)C4—C5—H5119.3
C10—C11—C16118.6 (3)C3—C4—C5120.3 (3)
C17—C16—C11118.1 (3)C3—C4—H4119.8
C15—C16—C11118.9 (3)C5—C4—H4119.8
C15—C16—C17123.1 (3)C12—C13—C14121.0 (3)
C7—C8—H8119.8C12—C13—H13119.5
C9—C8—C7120.4 (3)C14—C13—H13119.5
Zn1—O1—N1—C130.8 (3)C11—C16—C15—C141.0 (4)
Zn1—O1—N1—C9150.61 (19)C11—C12—C13—C140.1 (4)
Zn1—O2—N2—C18127.1 (2)C16—C11—C12—C130.1 (4)
Zn1—O2—N2—C1053.5 (3)C16—C11—C10—N20.1 (4)
O1—N1—C1—C2179.5 (2)C16—C15—C14—C131.1 (4)
O1—N1—C9—C8179.8 (2)C8—C7—C6—C5179.1 (3)
O2—N2—C18—C17178.6 (2)C18—N2—C10—C111.2 (4)
O2—N2—C10—C11179.4 (2)C17—C16—C15—C14179.2 (3)
N1—C9—C8—C70.8 (4)C15—C16—C17—C18179.9 (3)
N2—C18—C17—C161.4 (4)C15—C14—C13—C120.5 (4)
C2—C7—C8—C90.3 (4)C3—C2—C1—N1179.6 (2)
C2—C7—C6—C50.6 (4)C3—C2—C7—C8179.9 (2)
C2—C3—C4—C50.6 (4)C3—C2—C7—C60.3 (4)
C1—N1—C9—C81.2 (4)C12—C11—C16—C17179.8 (2)
C1—C2—C7—C80.2 (4)C12—C11—C16—C150.4 (4)
C1—C2—C7—C6179.6 (2)C12—C11—C10—N2179.7 (2)
C1—C2—C3—C4179.0 (3)C6—C7—C8—C9179.4 (3)
C7—C2—C1—N10.5 (4)C6—C5—C4—C30.4 (5)
C7—C2—C3—C40.9 (4)C10—N2—C18—C172.0 (4)
C7—C6—C5—C40.9 (5)C10—C11—C16—C170.7 (4)
C9—N1—C1—C21.0 (4)C10—C11—C16—C15179.1 (2)
C11—C16—C17—C180.1 (4)C10—C11—C12—C13179.7 (3)
Hexakis(isoquinoline N-oxide-κO)zinc(II) bis(perchlorate) (IV) top
Crystal data top
[Zn(C9H7NO)6](ClO4)2Dx = 1.495 Mg m3
Mr = 1135.20Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 13112 reflections
a = 12.8217 (4) Åθ = 2.4–33.0°
c = 26.5684 (9) ŵ = 0.67 mm1
V = 3782.6 (3) Å3T = 170 K
Z = 3Prism, clear colourless
F(000) = 17520.2 × 0.2 × 0.15 mm
Data collection top
XtaLAB Mini
diffractometer
1545 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source1450 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.3°, θmin = 2.0°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1515
Tmin = 0.914, Tmax = 1.000k = 1515
11238 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0393P)2 + 4.8988P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
1545 reflectionsΔρmax = 0.30 e Å3
117 parametersΔρmin = 0.25 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57812 (14)0.42465 (14)0.46049 (6)0.0306 (3)
H10.5168460.3435920.4660250.037*
N10.61267 (12)0.46273 (12)0.41383 (5)0.0307 (3)
O10.56235 (10)0.38624 (11)0.37552 (4)0.0362 (3)
Zn10.6666670.3333330.3333330.03070 (15)
C20.63025 (14)0.50170 (15)0.50200 (6)0.0319 (4)
C30.59763 (17)0.45964 (18)0.55216 (6)0.0405 (4)
H30.5387970.3780220.5584270.049*
C40.6517 (2)0.5376 (2)0.59144 (7)0.0517 (5)
H40.6304870.5096310.6250460.062*
C50.7383 (2)0.6590 (2)0.58245 (8)0.0561 (6)
H50.7745760.7118860.6101500.067*
C60.77093 (18)0.70187 (19)0.53467 (8)0.0489 (5)
H60.8293150.7840900.5293610.059*
C70.71806 (15)0.62420 (15)0.49288 (7)0.0363 (4)
C80.74836 (16)0.66040 (15)0.44206 (7)0.0393 (4)
H80.8054330.7419870.4347020.047*
C90.69756 (16)0.58101 (15)0.40386 (7)0.0367 (4)
H90.7203390.6066890.3700950.044*
Cl11.0000001.0000000.38486 (3)0.03933 (19)
O21.0000001.0000000.43897 (9)0.0641 (7)
O30.9353 (2)0.88066 (16)0.36730 (7)0.1013 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (8)0.0300 (8)0.0354 (8)0.0177 (7)0.0042 (6)0.0021 (6)
N10.0319 (7)0.0323 (7)0.0308 (7)0.0183 (6)0.0013 (5)0.0015 (5)
O10.0361 (6)0.0409 (7)0.0315 (6)0.0191 (5)0.0016 (5)0.0074 (5)
Zn10.03368 (18)0.03368 (18)0.0248 (2)0.01684 (9)0.0000.000
C20.0352 (8)0.0367 (9)0.0333 (8)0.0251 (7)0.0012 (6)0.0008 (7)
C30.0509 (10)0.0499 (10)0.0355 (9)0.0364 (9)0.0041 (8)0.0028 (8)
C40.0705 (14)0.0764 (15)0.0340 (9)0.0560 (13)0.0039 (9)0.0049 (9)
C50.0670 (14)0.0700 (14)0.0467 (11)0.0457 (12)0.0180 (10)0.0249 (10)
C60.0466 (11)0.0447 (11)0.0599 (13)0.0263 (9)0.0103 (9)0.0183 (9)
C70.0356 (9)0.0357 (9)0.0439 (10)0.0226 (7)0.0020 (7)0.0059 (7)
C80.0379 (9)0.0289 (8)0.0506 (10)0.0163 (7)0.0052 (8)0.0022 (7)
C90.0395 (9)0.0342 (9)0.0383 (9)0.0198 (8)0.0081 (7)0.0072 (7)
Cl10.0419 (3)0.0419 (3)0.0343 (4)0.02093 (13)0.0000.000
O20.0798 (12)0.0798 (12)0.0326 (13)0.0399 (6)0.0000.000
O30.148 (2)0.0507 (10)0.0655 (11)0.0199 (11)0.0338 (12)0.0110 (8)
Geometric parameters (Å, º) top
C1—H10.9500C5—H50.9500
C1—N11.325 (2)C5—C61.363 (3)
C1—C21.407 (2)C6—H60.9500
N1—O11.3346 (17)C6—C71.417 (3)
N1—C91.380 (2)C7—C81.418 (3)
O1—Zn12.1008 (11)C8—H80.9500
C2—C31.420 (2)C8—C91.352 (3)
C2—C71.423 (2)C9—H90.9500
C3—H30.9500Cl1—O21.438 (2)
C3—C41.370 (3)Cl1—O3i1.4063 (18)
C4—H40.9500Cl1—O3ii1.4062 (18)
C4—C51.408 (3)Cl1—O31.4063 (18)
N1—C1—H1119.3C4—C3—C2119.50 (19)
N1—C1—C2121.39 (15)C4—C3—H3120.3
C2—C1—H1119.3C3—C4—H4119.7
C1—N1—O1119.54 (13)C3—C4—C5120.60 (19)
C1—N1—C9121.29 (14)C5—C4—H4119.7
O1—N1—C9119.15 (13)C4—C5—H5119.4
N1—O1—Zn1119.49 (9)C6—C5—C4121.12 (18)
O1iii—Zn1—O1iv85.82 (4)C6—C5—H5119.4
O1v—Zn1—O1vi85.82 (4)C5—C6—H6119.9
O1v—Zn1—O1iv180.0C5—C6—C7120.2 (2)
O1vii—Zn1—O1180.00 (6)C7—C6—H6119.9
O1vii—Zn1—O1iv85.82 (4)C6—C7—C2118.61 (17)
O1iii—Zn1—O185.82 (4)C6—C7—C8124.03 (17)
O1iv—Zn1—O194.18 (4)C8—C7—C2117.36 (15)
O1vi—Zn1—O1iv94.18 (4)C7—C8—H8119.4
O1vii—Zn1—O1v94.18 (4)C9—C8—C7121.24 (16)
O1v—Zn1—O185.82 (4)C9—C8—H8119.4
O1vii—Zn1—O1iii94.18 (4)N1—C9—H9119.9
O1vi—Zn1—O194.18 (4)C8—C9—N1120.12 (16)
O1v—Zn1—O1iii94.18 (4)C8—C9—H9119.9
O1vii—Zn1—O1vi85.82 (4)O3ii—Cl1—O2109.37 (8)
O1iii—Zn1—O1vi180.0O3i—Cl1—O2109.37 (8)
C1—C2—C3121.52 (16)O3—Cl1—O2109.37 (8)
C1—C2—C7118.53 (15)O3—Cl1—O3i109.58 (8)
C3—C2—C7119.95 (16)O3ii—Cl1—O3109.58 (8)
C2—C3—H3120.3O3ii—Cl1—O3i109.57 (8)
C1—N1—O1—Zn1112.28 (13)C2—C7—C8—C91.3 (2)
C1—N1—C9—C80.8 (2)C3—C2—C7—C60.2 (2)
C1—C2—C3—C4179.35 (15)C3—C2—C7—C8178.97 (15)
C1—C2—C7—C6179.82 (15)C3—C4—C5—C60.2 (3)
C1—C2—C7—C80.7 (2)C4—C5—C6—C70.2 (3)
N1—C1—C2—C3176.87 (15)C5—C6—C7—C20.4 (3)
N1—C1—C2—C72.8 (2)C5—C6—C7—C8178.66 (18)
O1—N1—C9—C8179.02 (15)C6—C7—C8—C9177.79 (17)
C2—C1—N1—O1178.91 (13)C7—C2—C3—C40.3 (2)
C2—C1—N1—C92.9 (2)C7—C8—C9—N11.3 (3)
C2—C3—C4—C50.5 (3)C9—N1—O1—Zn169.45 (16)
Symmetry codes: (i) x+y+1, x+2, z; (ii) y+2, xy+1, z; (iii) y+1/3, x+y+2/3, z+2/3; (iv) x+y+1, x+1, z; (v) xy+1/3, x1/3, z+2/3; (vi) y+1, xy, z; (vii) x+4/3, y+2/3, z+2/3.
Pentaaqua(isoquinoline N-oxide-κO)zinc(II) dinitrate–isoquinoline N-oxide (1/2) (V) top
Crystal data top
[Zn(C9H7NO)(H2O)5](NO3)2·2C9H7NOZ = 2
Mr = 714.94F(000) = 740
Triclinic, P1Dx = 1.553 Mg m3
a = 9.7360 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5910 (9) ÅCell parameters from 5791 reflections
c = 14.6381 (10) Åθ = 1.9–31.6°
α = 74.352 (6)°µ = 0.88 mm1
β = 74.620 (7)°T = 170 K
γ = 81.633 (7)°Plank, clear whiteish colourless
V = 1528.8 (2) Å30.7 × 0.2 × 0.04 mm
Data collection top
XtaLAB Mini
diffractometer
5599 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Mo) X-ray Source4252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2019)
h = 1111
Tmin = 0.752, Tmax = 1.000k = 1313
13628 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0476P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5599 reflectionsΔρmax = 0.51 e Å3
464 parametersΔρmin = 0.48 e Å3
10 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.38957 (4)0.27598 (3)0.47321 (2)0.02573 (12)
O50.2972 (3)0.1986 (2)0.62110 (16)0.0336 (5)
O20.2233 (2)0.03662 (19)0.45547 (14)0.0317 (5)
O80.5068 (3)0.3482 (2)0.32840 (17)0.0335 (5)
O60.4139 (3)0.1109 (2)0.44532 (17)0.0320 (5)
O10.1881 (2)0.3151 (2)0.43902 (14)0.0329 (5)
O30.2216 (2)0.63601 (19)0.43681 (15)0.0315 (5)
O70.5973 (3)0.2419 (2)0.5086 (2)0.0403 (6)
O40.3663 (3)0.4362 (2)0.50705 (18)0.0371 (6)
O90.6657 (2)0.0528 (2)0.32553 (16)0.0426 (6)
N20.1959 (3)0.0507 (2)0.37417 (17)0.0254 (6)
O100.6236 (3)0.1957 (2)0.20239 (17)0.0494 (7)
N10.1475 (3)0.2886 (2)0.36717 (17)0.0259 (6)
N30.1843 (3)0.6184 (2)0.35969 (17)0.0242 (6)
O140.6846 (3)0.5678 (2)0.15635 (16)0.0506 (7)
N50.6688 (3)0.6144 (3)0.22466 (18)0.0319 (6)
O120.6239 (3)0.5538 (2)0.31066 (16)0.0550 (8)
N40.6547 (3)0.0879 (3)0.23757 (19)0.0348 (7)
O130.6984 (3)0.7187 (2)0.21242 (18)0.0561 (7)
C210.0981 (3)0.5780 (3)0.2055 (2)0.0266 (7)
C80.1928 (3)0.2520 (3)0.2088 (2)0.0274 (7)
C270.2819 (3)0.6092 (3)0.2792 (2)0.0286 (7)
H270.3792430.6166840.2755090.034*
C180.3008 (3)0.0639 (3)0.2975 (2)0.0296 (7)
H180.3969000.0616420.2997820.036*
C100.0545 (3)0.0545 (3)0.3745 (2)0.0302 (7)
H100.0190540.0454320.4301160.036*
O110.6767 (4)0.0133 (3)0.1888 (2)0.0847 (11)
C260.2442 (3)0.5885 (3)0.1985 (2)0.0263 (7)
C120.1282 (3)0.0853 (3)0.2112 (2)0.0297 (7)
C170.2723 (3)0.0813 (3)0.2125 (2)0.0286 (7)
C190.0419 (3)0.6089 (3)0.3690 (2)0.0287 (7)
H190.0262270.6167850.4273440.034*
C10.0028 (3)0.2796 (3)0.3813 (2)0.0307 (7)
H10.0611380.2878560.4411670.037*
C30.0448 (3)0.2453 (3)0.2200 (2)0.0299 (7)
C90.2384 (3)0.2747 (3)0.2853 (2)0.0290 (7)
H90.3372900.2802380.2778810.035*
C110.0214 (3)0.0713 (3)0.2949 (2)0.0326 (8)
H110.0759670.0736910.2955080.039*
C200.0004 (3)0.5883 (3)0.2944 (2)0.0297 (7)
H200.0988080.5805080.3016560.036*
C20.0479 (4)0.2589 (3)0.3095 (2)0.0340 (8)
H20.1475560.2534960.3197180.041*
C40.0010 (4)0.2278 (3)0.1409 (2)0.0374 (8)
H40.0996890.2237520.1463680.045*
C220.0597 (3)0.5589 (3)0.1248 (2)0.0323 (7)
H220.0375090.5516700.1280680.039*
C230.1620 (4)0.5507 (3)0.0416 (2)0.0373 (8)
H230.1350620.5369530.0121210.045*
C250.3475 (3)0.5804 (3)0.1117 (2)0.0362 (8)
H250.4453640.5875910.1066910.043*
C60.2425 (4)0.2205 (3)0.0467 (2)0.0375 (8)
H60.3082290.2107890.0120740.045*
C160.3825 (4)0.0944 (3)0.1304 (2)0.0382 (8)
H160.4794390.0928080.1312770.046*
C130.0982 (4)0.1022 (3)0.1265 (2)0.0385 (8)
H130.0021630.1057800.1245930.046*
C50.0964 (4)0.2167 (3)0.0569 (2)0.0391 (9)
H50.0640650.2060860.0041160.047*
C70.2916 (4)0.2382 (3)0.1211 (2)0.0334 (8)
H70.3909650.2412660.1139410.040*
C240.3058 (4)0.5622 (3)0.0347 (2)0.0397 (8)
H240.3750700.5573850.0239410.048*
C140.2070 (4)0.1135 (3)0.0474 (2)0.0422 (9)
H140.1859870.1242680.0093980.051*
C150.3490 (4)0.1093 (3)0.0494 (2)0.0433 (9)
H150.4232780.1168500.0062670.052*
H6A0.487 (3)0.088 (3)0.410 (2)0.057 (13)*
H5A0.295 (4)0.233 (3)0.665 (2)0.046 (11)*
H8A0.556 (3)0.307 (3)0.291 (2)0.055 (13)*
H5B0.313 (4)0.1248 (18)0.641 (3)0.056 (13)*
H6B0.356 (3)0.066 (3)0.446 (2)0.039 (10)*
H7A0.628 (4)0.286 (3)0.533 (2)0.041 (11)*
H8B0.543 (4)0.411 (2)0.323 (3)0.062 (13)*
H7B0.649 (4)0.179 (2)0.515 (3)0.073 (15)*
H4A0.318 (4)0.497 (3)0.486 (3)0.079 (16)*
H4B0.380 (4)0.436 (4)0.5592 (18)0.062 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0289 (2)0.0246 (2)0.0272 (2)0.00353 (15)0.00874 (15)0.00943 (15)
O50.0441 (14)0.0312 (14)0.0257 (12)0.0052 (11)0.0049 (11)0.0094 (11)
O20.0361 (13)0.0362 (13)0.0286 (12)0.0091 (10)0.0067 (10)0.0154 (10)
O80.0376 (14)0.0332 (14)0.0310 (13)0.0127 (12)0.0019 (11)0.0109 (12)
O60.0265 (13)0.0299 (13)0.0437 (14)0.0074 (11)0.0004 (11)0.0207 (11)
O10.0291 (12)0.0521 (14)0.0277 (12)0.0048 (10)0.0136 (10)0.0240 (11)
O30.0353 (12)0.0362 (13)0.0333 (12)0.0011 (10)0.0177 (10)0.0184 (10)
O70.0365 (14)0.0334 (15)0.0669 (18)0.0000 (12)0.0282 (13)0.0248 (14)
O40.0617 (17)0.0267 (13)0.0347 (14)0.0051 (12)0.0296 (13)0.0138 (11)
O90.0489 (15)0.0452 (15)0.0289 (13)0.0084 (12)0.0068 (11)0.0096 (11)
N20.0308 (14)0.0208 (13)0.0268 (14)0.0059 (11)0.0067 (11)0.0077 (11)
O100.0631 (18)0.0388 (15)0.0385 (14)0.0056 (13)0.0096 (12)0.0038 (12)
N10.0270 (14)0.0292 (14)0.0253 (14)0.0007 (11)0.0102 (11)0.0104 (11)
N30.0291 (14)0.0204 (13)0.0276 (14)0.0007 (11)0.0121 (11)0.0096 (11)
O140.0637 (17)0.0682 (18)0.0293 (13)0.0233 (14)0.0041 (12)0.0247 (13)
N50.0268 (15)0.0460 (18)0.0272 (15)0.0063 (13)0.0118 (12)0.0089 (14)
O120.083 (2)0.0668 (18)0.0223 (13)0.0474 (16)0.0046 (13)0.0080 (12)
N40.0354 (16)0.0355 (17)0.0294 (16)0.0090 (13)0.0006 (12)0.0058 (14)
O130.097 (2)0.0361 (15)0.0424 (15)0.0149 (14)0.0265 (15)0.0065 (12)
C210.0288 (17)0.0226 (16)0.0313 (17)0.0012 (13)0.0132 (14)0.0070 (14)
C80.0389 (19)0.0210 (16)0.0245 (16)0.0027 (14)0.0121 (14)0.0046 (13)
C270.0242 (16)0.0278 (17)0.0367 (18)0.0002 (13)0.0101 (14)0.0110 (15)
C180.0246 (17)0.0276 (17)0.0344 (18)0.0055 (13)0.0015 (14)0.0075 (14)
C100.0247 (17)0.0311 (17)0.0336 (18)0.0062 (14)0.0042 (14)0.0067 (15)
O110.168 (4)0.0488 (18)0.0441 (17)0.010 (2)0.028 (2)0.0203 (15)
C260.0245 (16)0.0235 (16)0.0329 (17)0.0024 (13)0.0089 (13)0.0104 (14)
C120.0318 (18)0.0245 (16)0.0323 (18)0.0048 (14)0.0075 (14)0.0047 (14)
C170.0306 (17)0.0220 (16)0.0315 (17)0.0034 (14)0.0037 (14)0.0069 (14)
C190.0253 (17)0.0304 (17)0.0313 (17)0.0019 (14)0.0069 (14)0.0092 (14)
C10.0293 (17)0.0373 (19)0.0275 (17)0.0056 (15)0.0066 (14)0.0098 (15)
C30.0359 (18)0.0279 (17)0.0292 (17)0.0090 (14)0.0134 (15)0.0035 (14)
C90.0251 (16)0.0349 (18)0.0295 (17)0.0009 (14)0.0094 (14)0.0111 (15)
C110.0219 (16)0.0377 (19)0.0390 (19)0.0019 (14)0.0085 (14)0.0096 (16)
C200.0246 (16)0.0345 (18)0.0337 (18)0.0035 (14)0.0094 (14)0.0115 (15)
C20.0335 (18)0.0388 (19)0.0330 (18)0.0101 (15)0.0115 (15)0.0068 (15)
C40.045 (2)0.041 (2)0.0338 (19)0.0122 (17)0.0184 (16)0.0090 (16)
C220.0318 (18)0.0378 (19)0.0324 (18)0.0015 (15)0.0126 (15)0.0145 (15)
C230.047 (2)0.039 (2)0.0336 (19)0.0067 (16)0.0180 (16)0.0176 (16)
C250.0308 (18)0.0361 (19)0.043 (2)0.0015 (15)0.0074 (15)0.0161 (16)
C60.058 (2)0.0306 (18)0.0248 (17)0.0026 (17)0.0122 (16)0.0096 (15)
C160.0348 (19)0.039 (2)0.0378 (19)0.0065 (16)0.0015 (15)0.0118 (16)
C130.045 (2)0.039 (2)0.0347 (19)0.0059 (17)0.0138 (16)0.0092 (16)
C50.060 (2)0.0361 (19)0.0305 (18)0.0088 (18)0.0225 (18)0.0098 (16)
C70.0382 (19)0.0356 (19)0.0260 (17)0.0022 (15)0.0086 (14)0.0082 (15)
C240.042 (2)0.042 (2)0.0340 (19)0.0036 (17)0.0017 (16)0.0191 (17)
C140.061 (3)0.040 (2)0.0288 (19)0.0065 (18)0.0103 (17)0.0139 (16)
C150.056 (2)0.042 (2)0.0298 (19)0.0083 (18)0.0004 (17)0.0133 (16)
Geometric parameters (Å, º) top
Zn1—O52.110 (2)C18—C171.414 (4)
Zn1—O82.130 (2)C10—H100.9500
Zn1—O62.030 (2)C10—C111.355 (4)
Zn1—O12.1078 (19)C26—C251.413 (4)
Zn1—O72.174 (2)C12—C171.415 (4)
Zn1—O42.015 (2)C12—C111.411 (4)
O5—H5A0.833 (18)C12—C131.415 (4)
O5—H5B0.833 (18)C17—C161.409 (4)
O2—N21.341 (3)C19—H190.9500
O8—H8A0.827 (18)C19—C201.352 (4)
O8—H8B0.832 (19)C1—H10.9500
O6—H6A0.820 (18)C1—C21.361 (4)
O6—H6B0.816 (18)C3—C21.414 (4)
O1—N11.337 (3)C3—C41.417 (4)
O3—N31.346 (3)C9—H90.9500
O7—H7A0.815 (18)C11—H110.9500
O7—H7B0.819 (19)C20—H200.9500
O4—H4A0.821 (19)C2—H20.9500
O4—H4B0.807 (18)C4—H40.9500
O9—N41.270 (3)C4—C51.363 (5)
N2—C181.328 (4)C22—H220.9500
N2—C101.383 (4)C22—C231.369 (4)
O10—N41.242 (3)C23—H230.9500
N1—C11.384 (4)C23—C241.400 (5)
N1—C91.321 (4)C25—H250.9500
N3—C271.322 (4)C25—C241.369 (4)
N3—C191.375 (4)C6—H60.9500
O14—N51.225 (3)C6—C51.396 (5)
N5—O121.261 (3)C6—C71.372 (4)
N5—O131.239 (3)C16—H160.9500
N4—O111.226 (3)C16—C151.369 (5)
C21—C261.420 (4)C13—H130.9500
C21—C201.420 (4)C13—C141.368 (4)
C21—C221.408 (4)C5—H50.9500
C8—C31.418 (4)C7—H70.9500
C8—C91.406 (4)C24—H240.9500
C8—C71.417 (4)C14—H140.9500
C27—H270.9500C14—C151.398 (5)
C27—C261.412 (4)C15—H150.9500
C18—H180.9500
Cg1···Cg43.839 (2)Cg2···Cg83.969 (2)
Cg1···Cg73.893 (2)Cg4···Cg7i3.943 (2)
Cg1···Cg83.8500 (19)Cg5···Cg7i3.7374 (19)
Cg2···Cg43.6617 (19)Cg5···Cg8i3.968 (2)
Cg2···Cg53.823 (2)
O5—Zn1—O8173.16 (9)C11—C12—C17117.9 (3)
O5—Zn1—O788.42 (10)C11—C12—C13123.3 (3)
O8—Zn1—O784.75 (10)C13—C12—C17118.8 (3)
O6—Zn1—O589.30 (10)C18—C17—C12118.2 (3)
O6—Zn1—O890.14 (10)C16—C17—C18121.9 (3)
O6—Zn1—O192.38 (9)C16—C17—C12119.9 (3)
O6—Zn1—O789.52 (9)N3—C19—H19120.2
O1—Zn1—O591.94 (9)C20—C19—N3119.5 (3)
O1—Zn1—O894.90 (9)C20—C19—H19120.2
O1—Zn1—O7178.06 (9)N1—C1—H1120.0
O4—Zn1—O588.47 (10)C2—C1—N1120.0 (3)
O4—Zn1—O891.93 (10)C2—C1—H1120.0
O4—Zn1—O6177.42 (10)C2—C3—C8117.4 (3)
O4—Zn1—O188.98 (9)C2—C3—C4124.3 (3)
O4—Zn1—O789.13 (10)C4—C3—C8118.3 (3)
Zn1—O5—H5A121 (2)N1—C9—C8121.9 (3)
Zn1—O5—H5B117 (3)N1—C9—H9119.0
H5A—O5—H5B110 (4)C8—C9—H9119.1
Zn1—O8—H8A125 (3)C10—C11—C12121.5 (3)
Zn1—O8—H8B113 (3)C10—C11—H11119.2
H8A—O8—H8B113 (4)C12—C11—H11119.2
Zn1—O6—H6A121 (3)C21—C20—H20119.1
Zn1—O6—H6B132 (2)C19—C20—C21121.8 (3)
H6A—O6—H6B103 (4)C19—C20—H20119.1
N1—O1—Zn1128.04 (16)C1—C2—C3121.2 (3)
Zn1—O7—H7A123 (2)C1—C2—H2119.4
Zn1—O7—H7B129 (3)C3—C2—H2119.4
H7A—O7—H7B106 (4)C3—C4—H4119.9
Zn1—O4—H4A127 (3)C5—C4—C3120.1 (3)
Zn1—O4—H4B116 (3)C5—C4—H4119.9
H4A—O4—H4B112 (4)C21—C22—H22119.9
O2—N2—C10117.3 (2)C23—C22—C21120.3 (3)
C18—N2—O2121.3 (2)C23—C22—H22119.9
C18—N2—C10121.3 (3)C22—C23—H23119.5
O1—N1—C1116.4 (2)C22—C23—C24120.9 (3)
C9—N1—O1122.7 (2)C24—C23—H23119.5
C9—N1—C1120.8 (3)C26—C25—H25120.2
O3—N3—C19117.3 (2)C24—C25—C26119.6 (3)
C27—N3—O3120.8 (2)C24—C25—H25120.2
C27—N3—C19121.9 (3)C5—C6—H6119.8
O14—N5—O12119.3 (3)C7—C6—H6119.8
O14—N5—O13122.2 (3)C7—C6—C5120.4 (3)
O13—N5—O12118.5 (3)C17—C16—H16120.2
O10—N4—O9120.2 (3)C15—C16—C17119.6 (3)
O11—N4—O9118.4 (3)C15—C16—H16120.2
O11—N4—O10121.4 (3)C12—C13—H13119.9
C20—C21—C26117.1 (3)C14—C13—C12120.2 (3)
C22—C21—C26118.6 (3)C14—C13—H13119.9
C22—C21—C20124.3 (3)C4—C5—C6121.5 (3)
C9—C8—C3118.7 (3)C4—C5—H5119.2
C9—C8—C7121.1 (3)C6—C5—H5119.2
C7—C8—C3120.2 (3)C8—C7—H7120.3
N3—C27—H27119.4C6—C7—C8119.4 (3)
N3—C27—C26121.2 (3)C6—C7—H7120.3
C26—C27—H27119.4C23—C24—H24119.7
N2—C18—H18119.3C25—C24—C23120.6 (3)
N2—C18—C17121.4 (3)C25—C24—H24119.7
C17—C18—H18119.3C13—C14—H14119.7
N2—C10—H10120.2C13—C14—C15120.6 (3)
C11—C10—N2119.6 (3)C15—C14—H14119.7
C11—C10—H10120.2C16—C15—C14121.0 (3)
C27—C26—C21118.5 (3)C16—C15—H15119.5
C27—C26—C25121.6 (3)C14—C15—H15119.5
C25—C26—C21119.9 (3)
Zn1—O1—N1—C1155.2 (2)C17—C16—C15—C140.9 (5)
Zn1—O1—N1—C926.6 (4)C19—N3—C27—C260.3 (4)
O2—N2—C18—C17178.6 (3)C1—N1—C9—C80.9 (5)
O2—N2—C10—C11178.5 (3)C3—C8—C9—N10.7 (5)
O1—N1—C1—C2176.7 (3)C3—C8—C7—C61.1 (5)
O1—N1—C9—C8177.2 (3)C3—C4—C5—C60.9 (5)
O3—N3—C27—C26178.8 (2)C9—N1—C1—C21.5 (5)
O3—N3—C19—C20178.4 (3)C9—C8—C3—C21.6 (4)
N2—C18—C17—C120.5 (4)C9—C8—C3—C4177.2 (3)
N2—C18—C17—C16179.4 (3)C9—C8—C7—C6177.6 (3)
N2—C10—C11—C120.1 (5)C11—C12—C17—C180.1 (4)
N1—C1—C2—C30.5 (5)C11—C12—C17—C16179.7 (3)
N3—C27—C26—C210.2 (4)C11—C12—C13—C14179.1 (3)
N3—C27—C26—C25179.0 (3)C20—C21—C26—C270.4 (4)
N3—C19—C20—C211.0 (5)C20—C21—C26—C25179.3 (3)
C21—C26—C25—C240.1 (5)C20—C21—C22—C23179.7 (3)
C21—C22—C23—C240.7 (5)C2—C3—C4—C5179.4 (3)
C8—C3—C2—C11.0 (5)C4—C3—C2—C1177.7 (3)
C8—C3—C4—C50.6 (5)C22—C21—C26—C27179.2 (3)
C27—N3—C19—C200.7 (4)C22—C21—C26—C250.3 (4)
C27—C26—C25—C24179.0 (3)C22—C21—C20—C19178.7 (3)
C18—N2—C10—C110.5 (4)C22—C23—C24—C250.9 (5)
C18—C17—C16—C15179.0 (3)C13—C12—C17—C18179.8 (3)
C10—N2—C18—C170.6 (4)C13—C12—C17—C160.1 (5)
C26—C21—C20—C190.9 (4)C13—C12—C11—C10179.6 (3)
C26—C21—C22—C230.1 (5)C13—C14—C15—C160.3 (5)
C26—C25—C24—C230.5 (5)C5—C6—C7—C80.3 (5)
C12—C17—C16—C150.8 (5)C7—C8—C3—C2179.6 (3)
C12—C13—C14—C150.5 (5)C7—C8—C3—C41.6 (4)
C17—C12—C11—C100.0 (5)C7—C8—C9—N1179.5 (3)
C17—C12—C13—C140.6 (5)C7—C6—C5—C41.4 (5)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O90.82 (2)1.91 (2)2.723 (3)173 (4)
O5—H5A···O13ii0.83 (2)2.04 (2)2.861 (3)168 (3)
O8—H8A···O100.83 (2)2.00 (2)2.808 (3)164 (4)
O5—H5B···O9iii0.83 (2)1.98 (2)2.802 (3)171 (4)
O6—H6B···O20.82 (2)1.84 (2)2.651 (3)177 (3)
O7—H7A···O3ii0.82 (2)2.03 (2)2.798 (3)156 (3)
O8—H8B···O120.83 (2)1.88 (2)2.710 (3)179 (4)
O7—H7B···O2iii0.82 (2)1.94 (2)2.755 (3)173 (4)
O4—H4A···O30.82 (2)1.81 (2)2.634 (3)176 (5)
O4—H4B···O12ii0.81 (2)1.93 (2)2.729 (3)169 (4)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x+1, y, z+1.
Contributions of selected intermolecular contacts (%) to the Hirshfeld surfaces of (I)–(V) top
Compound(I)(II)(III)(IV)(V)
H···H30.927.828.041.840.6
H···X/X···H29.030.931.1
C···H/H···C13.320.117.222.08.6
C···C11.36.67.06.08.5
O···H/H···O8.88.37.924.537.6
 

Acknowledgements

The authors thank the Department of Biochemistry, Chemistry, and Physics at Georgia Southern University for the financial support of this work.

References

First citationAng, H. T., Miao, Y., Ravelli, D. & Wu, J. (2024). Nat. Synth. 3, 568–575.  Web of Science CrossRef Google Scholar
First citationCalabrese, M., Pizzi, A., Daolio, A., Beccaria, R., Lo Iacono, C., Scheiner, S. & Resnati, G. (2024). Chem. A Eur. J. 30, e202304240.  Web of Science CSD CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEppenson, J. H. (2003). Adv. Inorg. Chem. 54, 157–202.  Google Scholar
First citationGreenberg, A., Green, A. R. & Liebman, J. F. (2020). Molecules, 25, 3703.  Web of Science CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKawamura, A., Filatov, A. S., Anderson, J. S. & Jeon, I. R. (2019). Inorg. Chem. 58, 3764–3773.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKladnik, J., Ristovski, S., Kljun, J., Defant, A., Mancini, I., Sepčić, K. & Turel, I. (2020). Int. J. Mol. Sci. 21, 5628–5645.  Web of Science CSD CrossRef PubMed Google Scholar
First citationKobus, M., Friedrich, T., Zorn, E., Burmeister, N. & Maison, W. (2024). J. Med. Chem. 67, 5168–5184.  Web of Science CrossRef PubMed Google Scholar
First citationKruschel, R. D., Barbosa, M. A. G., Almeida, J. J., Xavier, C. P. R., Vasconcelos, M. H. & McCarthy, F. O. (2024). J. Med. Chem. 67, 13909–13924.  Web of Science CrossRef PubMed Google Scholar
First citationLarin, A. A. & Fershtat, L. L. (2022). Mendeleev Commun. 32, 703–713.  Web of Science CrossRef Google Scholar
First citationŁukomska, M., Rybarczyk-Pirek, A. J., Jabłoński, M. & Palusiak, M. (2015). Phys. Chem. Chem. Phys. 17, 16375–16387.  Web of Science PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMoustafa, M. E., Boyle, P. D. & Puddephatt, R. J. (2014). Organometallics, 33, 5402–5413.  Web of Science CSD CrossRef CAS Google Scholar
First citationMunn, A. S., Clarkson, G. J. & Walton, R. I. (2014). Acta Cryst. B70, 11–18.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOberda, K., Deperasińska, I., Nizhnik, Y., Jerzykiewicz, L. & Szemik-Hojniak, A. (2011). Polyhedron, 30, 2391–2399.  Web of Science CSD CrossRef CAS Google Scholar
First citationPadgett, C. W., Lynch, W. E., Groneck, E. N., Raymundo, M. & Adams, D. (2022). Acta Cryst. E78, 716–721.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaul-Roth, C. O., Lehn, J.-M., Guilhem, J. & Pascard, C. (1995). Helv. Chim. Acta, 78, 1895–1903.  Google Scholar
First citationRigaku OD (2019). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSeitz, M., Moore, E. G. & Raymond, K. N. (2008). Inorg. Chem. 47, 8665–8673.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSperlich, E. & Köckerling, M. (2022). Inorg. Chem. 61, 2409–2420.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuwínska, K. (1995). Acta Cryst. C51, 2232–2235.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds