research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses, crystal structures, Hirshfeld surface analyses and crystal voids of 1-(4-bromo­phen­yl)-2,2-di­chloro­ethan-1-one and 2,2-di­bromo-1-(p-tol­yl)ethan-1-one

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, AZ 1148 Baku, Azerbaijan, bCentro de Quimica Estrutural, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal, cKosygin State University of Russia, 117997 Moscow, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, eHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, fAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, gDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and hDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 6 January 2025; accepted 8 January 2025; online 14 January 2025)

The asymmetric units of the compounds, C8H5BrCl2O (I), and C9H8Br2O (II), contain two and one crystallographically independent mol­ecules, respectively. In compound (I), the planar rings are oriented at a dihedral angle of 13.23 (8)°. In crystals of both compounds, inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into infinite chains along the b-axis direction. In crystal of (I), there are ππ inter­actions between the centroids of the parallel rings with centroid-to-centroid distances of 3.5974 (14), 3.6178 (16) and 3.9387 (16) Å while neither ππ nor C—H⋯ π(ring) inter­actions are present in (II). The Hirshfeld surface analyses of the crystal structures indicate that the most important contributions for the crystal packings are from H⋯Cl/Cl⋯H (27.5%), H⋯O/O⋯H (15.0%), H⋯Br/Br⋯H (10.2%) and H⋯H (9.0%) for (I) and H⋯Br/Br⋯H (36.1%), H⋯H (22.2%), H⋯O/O⋯H (14.1%) and H⋯C/C⋯H (13.9%) for (II). Hydrogen bonding and van der Waals inter­actions are the dominant inter­actions in the crystal packings. The volumes of the crystal voids and the percentages of free spaces in the unit cells were calculated to 111.55 Å3 and 12.27% for (I) and 63.37 Å and 6.69% for (II), showing that no large cavities are present in either structure.

1. Chemical context

α-Haloketones are useful synthetic building blocks for the syntheses of pharmacologicals as well as complex organic mol­ecules (Erian et al., 2003[Erian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793-865.]). In fact, the existence of two adjacent electrophilic centres, namely the α-halocarbon and carbonyl group, transforms these reactive carbonyl compounds into highly valuable building blocks for the construction of more complex structures (Guseinov et al., 2006[Guseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943-947.], 2017[Guseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. (2017). Crystals, 7, 327.], 2020[Guseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674-675.]; Khalilov et al., 2024[Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.]). Over the past few decades, substantial advances have been made in the syntheses of these industrially relevant building blocks and synthetic precursors (Ma et al., 2021[Ma, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.]; Mahmoudi et al., 2017[Mahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763-4772.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305-2313.]). Efforts have focused on rendering the synthetic protocols greener, more effective and versatile. Not only electron-withdrawing properties, but the halogen-bond-donor ability of the halogen atom(s) of α-haloketones can dictate their reactivity and other functional properties (Gurbanov et al., 2022[Gurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019-1031.]). For instance, recently we showed that the reaction of α,α-dihalo-β-oxo­aldehydes with di­amino­furazan at room temperature in an aceto­nitrile solution yields 20-membered macrocycles and N-(4-amino-1,2,5- oxo­diazol-3-yl)formamide (Guseinov et al., 2024[Guseinov, F. N., Ovsyannikov, V. O., Shuvalova, E. V., Kustov, L. M., Kobrakov, K. I., Samigullina, A. I. & Mahmudov, K. T. (2024). New J. Chem. 48, 12869-12872.]). Herein, we found that when this reaction is carried out in a chloro­form solution and at 353 K, both α-haloketones namely 1-(4-bromo­phen­yl)-2,2-di­chloro­ethan-1-one (I)[link] and 2,2-di­bromo-1-(p-tol­yl)ethan-1-one (II)[link] and N-(4-amino-1,2,5-oxa­diazol-3-yl) formamide are formed. Herein, we have report on the syntheses and mol­ecular and crystal structures of compounds (I)[link] and (II)[link] together with analyses of the Hirshfeld surfaces and crystal voids.

[Scheme 1]

2. Structural commentary

The asymmetric units of compounds (I)[link] and (II)[link] contains two and one crystallographically independent mol­ecules, respectively (Fig. 1[link]). In compound (I)[link], the planar, A (C3A–C8A) and B (C3B–C8B) rings are oriented at a dihedral angle of 13.23 (8)°. Atoms Br6A, C2A, C1A, O2A and Br6B and C2B are 0.0116 (3), 0.023 (3), −0.004 (3), 0.045 (2) Å and −0.0083 (3), −0.032 (3) Å, respectively, away from the best least-squares planes of the A and B rings. In compound (II)[link], atoms Br1, C2 and C9 are 0.0426 (3), 0.058 (3) and 0.041 (3) Å, respectively, away from the best least-squares plane of ring A (C3–C8). All bond lengths and angles are normal in both compounds.

[Figure 1]
Figure 1
The asymmetric units of compounds (a) (I)[link] and (b) (II)[link] with atom-numbering schemes and 50% probability ellipsoids.

3. Supra­molecular features

In the crystals of both compounds, inter­molecular C—H⋯O hydrogen bonds (Tables 1[link] and 2[link]) link the mol­ecules into infinite chains along the b-axis direction (Fig. 2[link]). In crystal of (I)[link], there are ππ inter­actions between the centroids of parallel A (C3A–C8A) rings and parallel B (C3B–C8B) rings with centroid-to-centroid distances of 3.5974 (14) Å for the A rings and 3.6178 (16) and 3.9387 (16) Å for the B rings. No such inter­actions occur in (II)[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1A—H1A⋯O2Bviii 1.00 2.18 3.100 (3) 152
C1B—H1B⋯O2Avi 1.00 2.18 3.166 (3) 169
C8A—H8A⋯O2Bviii 0.95 2.47 3.374 (3) 160
Symmetry codes: (vi) [x+1, y, z]; (viii) [x, y-1, z].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2ii 1.00 2.20 3.173 (4) 165
C8—H8⋯O2ii 0.95 2.51 3.403 (3) 157
Symmetry code: (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
Partial packing diagrams for compounds (a) (I)[link] and (b) (II)[link]. Inter­molecular C—H⋯O hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the title compounds, Hirshfeld surface (HS) analyses (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) were carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 3[link]a and b), the white surfaces indicate contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaca, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/.]), as shown in Fig. 4[link] for compound (II)[link]. The ππ stacking inter­actions were further visualized by plotting the shape-index surface, which can be used to identify characteristic packing modes, in particular, planar stacking arrangements and the presence of aromatic stacking inter­actions such as C—H⋯π and ππ inter­actions. C—H⋯π inter­actions would be seen as red p-holes, which are related to the electron ring inter­actions between the CH groups with the centroids of the aromatic rings of neighbouring mol­ecules. Fig. 5[link] clearly suggests that there are no C—H⋯π inter­actions in either compound. On the other hand, the shape-index of the HS is also a tool for visualizing ππ stacking by the presence of adjacent red and blue triangles; if there are no adjacent red and/or blue triangles, then there are no ππ inter­actions. Fig. 5[link] clearly suggests that there are ππ inter­actions in compound (I)[link] only.

[Figure 3]
Figure 3
Views of the three-dimensional Hirshfeld surfaces of compounds (a) (I)[link] and (b) (II)[link] plotted over dnorm.
[Figure 4]
Figure 4
View of the three-dimensional Hirshfeld surface of compound (II)[link] plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as the blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 5]
Figure 5
Hirshfeld surfaces of compounds (a) (I)[link] and (b) (II)[link] plotted over shape-index.

The overall two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) [Fig. 6[link]a for (I)[link] and Fig. 7[link]a for (II)], and those delineated into H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯H, H⋯C/C⋯H, Cl⋯Br/Br⋯Cl, C⋯C, C⋯Br/Br⋯C, Cl⋯Cl, Br⋯Br, O⋯Br/Br⋯O, C⋯Cl/Cl⋯C and O⋯Cl/Cl⋯O inter­actions for (I)[link] and H⋯Br/Br⋯H, H⋯H, H⋯O/O⋯H, H⋯C/C⋯H, C⋯Br/Br⋯C, Br⋯Br, C⋯O/O⋯C and C⋯C inter­actions for (II)[link] are illustrated in Fig. 6[link]b–n and Fig. 7[link]b–i, respectively, together with their relative contributions to the Hirshfeld surfaces. The most important inter­actions(Tables 3[link] and 4[link]) are H⋯Cl/Cl ⋯ H for (I)[link] and H⋯Br/Br⋯H for (II)[link] contributing 27.5% and 36.1%, respectively, to the overall crystal packings, which are shown in Fig. 6[link]b and Fig. 7[link]b with the tips at de + di = 2.95 and 2.94 Å, respectively. The H⋯O/O⋯H contacts (Fig. 6[link]c and Fig. 7[link]d) contribute 15.0% and 14.1%, and they are viewed as the pairs of spikes with the tips at de + di = 2.08 and 2.10 Å, respectively. The H⋯Br/Br⋯H contacts in (I)[link] (Fig. 6[link]d) contribute 10.2% to the HS, and they are viewed as a pair of wings at de + di = 2.94 Å. The H⋯H contacts (Fig. 6[link]e and Fig. 7[link]c) have wide spreads of points, and are viewed at de = di = 1.40Å and 1.28 Å, respectively. In the absence of C—H⋯π inter­actions, the characteristic wings of the H⋯C/C⋯H contacts, contributing 8.1% and 13.9% to the overall crystal packings are seen in Fig. 6[link]f and Fig. 7[link]e with the tips at de + di = 3.24 and 2.78 Å, respectively. The tiny spikes of Cl⋯Br/Br⋯Cl for (I)[link] (Fig. 6[link]g), which contribute 7.2% to the HS are seen at de + di = 3.68 Å. The C⋯C contacts (Fig. 6[link]h and Fig. 7[link]i), contributing 6.5% and 0.3%, have arrow-shaped distributions of points at de = di = 1.66 Å for (I)[link]. The symmetrical pairs of C⋯Br/Br⋯C contacts (Fig. 6[link]i and Fig. 7[link]f) contribute 5.6% and 7.8% with the tips at de + di = 3.48 and 3.40 Å, respectively. The Cl⋯Cl contacts in (I)[link] (Fig. 6[link]j) have a bullet-shaped distribution of points with a 4.8% contribution to the HS, and the tip at de = di = 1.86 Å. The Br⋯Br contacts (Fig. 6[link]k and Fig. 7[link]g) contribute 2.7% and 4.2% and have a needle-shaped distributions of points, de = di = 1.74 and 1.88 Å, respectively. The O⋯Br/Br⋯O inter­actions in (I)[link] (Fig. 6[link]l) contribute 2.5% to the HS and have the tips at de + di =3.60 Å. Finally, the C⋯Cl/Cl⋯C (Fig. 6[link]m), O⋯Cl/Cl⋯O (Fig. 6[link]n) and C⋯O/O⋯C (Fig. 7[link]h) contacts with contributions of 0.4%, 0.2% and 0.7%, respectively, have very low densities.

Table 3
Selected interatomic distances (Å) for (I)[link]

Br6A⋯Br6Bi 3.4966 (4) H5B⋯O2Avii 2.63
Br6A⋯C1Aii 3.554 (3) O2A⋯H4A 2.50
C2A⋯Br6Aii 3.515 (3) O2B⋯H1Av 2.18
Br6B⋯C2Biii 3.504 (2) O2B⋯H4B 2.52
Br6A⋯H1Aii 3.03 O2B⋯H8Av 2.47
Cl1A⋯O2A 2.894 (2) C6A⋯C8Aii 3.361 (3)
Cl1B⋯O2B 2.901 (2) C1A⋯H8A 2.61
Cl2B⋯C8B 3.453 (3) C1B⋯H8B 2.62
Cl2B⋯C4A 3.251 (3) C8A⋯H1A 2.63
Cl2B⋯H8B 2.88 C8B⋯H1B 2.67
O2A⋯C1Biv 3.166 (3) H1A⋯H8A 2.06
O2B⋯C1Av 3.100 (3) H1B⋯H8B 2.20
H1B⋯O2Avi 2.18    
Symmetry codes: (i) [x, y, z-1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+2, -z+2]; (iv) [x-1, y, z]; (v) [x, y+1, z]; (vi) [x+1, y, z]; (vii) [-x+1, -y+2, -z+2].

Table 4
Selected interatomic distances (Å) for (II)[link]

Br1⋯O2 3.011 (2) H8⋯O2ii 2.51
C4⋯Br2i 3.452 (3) C1⋯H8 2.67
C5⋯Br2i 3.534 (3) C8⋯H1 2.62
C1⋯O2ii 3.173 (4) H1⋯H8 2.03
O2⋯H4 2.53 H5⋯H9C 2.40
H1⋯O2ii 2.20    
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 6]
Figure 6
The full two-dimensional fingerprint plots for compound (I)[link], showing (a) all inter­actions, and delineated into (b) H⋯Cl/Cl⋯H, (c) H⋯O/O⋯H, (d) H⋯Br/Br⋯H, (e) H⋯H, (f) H⋯C/C⋯H, (g) Cl⋯Br/Br⋯Cl, (h) C⋯C, (i) C⋯Br/Br⋯C, (j) Cl⋯Cl, (k) Br⋯Br, (l) O⋯Br/Br⋯O, (m) C⋯Cl/Cl⋯C and (n) O⋯Cl/Cl⋯O inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.
[Figure 7]
Figure 7
The full two-dimensional fingerprint plots for compound (II)[link], showing (a) all inter­actions, and delineated into (b) H⋯Br/Br⋯H, (c) H⋯H, (d) H⋯O/O⋯H, (e) H⋯C/C⋯H, (f) C⋯Br/Br⋯C, (g) Br⋯Br, (h) C⋯O/O⋯C and (i) C⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations of contact patches plotted onto the surfaces are shown for the H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯H and H⋯C/C⋯H inter­actions in Fig. 8[link]a–d and Fig. 9[link]a–d for both compounds (I)[link] and (II)[link], respectively.

[Figure 8]
Figure 8
The Hirshfeld surface representations of contact patches for compound (I)[link] plotted onto the surface for (a) H⋯Cl/Cl⋯H, (b) H⋯O/O⋯H, (c) H⋯Br/Br⋯H and (d) H⋯H inter­actions.
[Figure 9]
Figure 9
The Hirshfeld surface representations of contact patches for compound (II)[link] plotted onto the surface for (a) H⋯Br/Br⋯H, (b) H⋯H, (c) H⋯O/O⋯H and (d) H⋯C/C⋯H inter­actions.

The Hirshfeld surface analyses confirms the importance of H-atom contacts in establishing the packings. The large number of H⋯Cl/Cl⋯H, H⋯O/O⋯H, H⋯Br/Br⋯H, H⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volumes of the crystal voids (Figs. 10[link] and 11[link]) and the percentages of free space in the unit cells were calculated to be 111.55 Å3 and 12.27%, respectively, for (I)[link] and 63.37 Å3 and 6.69% for (I)[link]. Thus, the crystal packings appear compact and the mechanical stability should be substantial.

[Figure 10]
Figure 10
Graphical views of voids in the crystal packing of compound (I)[link] along the (a) a-axis and (b) b-axis directions.
[Figure 11]
Figure 11
Graphical views of voids in the crystal packing of compound (II)[link] along the (a) a-axis and (b) b-axis directions.

6. Synthesis and crystallization

To a solution of 3-(4-bromo­phen­yl)-2,2-di­chloro-3-oxopropanal or 2,2-di­bromo-3-oxo-3-(p-tol­yl)propanal (1.00 mmol) in 20 ml of chloro­form was added di­amino­furazan (1.00 mmol) and the mixture was refluxed at 353 K for 1 h. Then, the chloro­form was evacuated under vacuum; the remaining reaction mass was added to 20 ml of diethyl ether. The precipitated N-(4-amino-1,2,5-oxa­diazol-3-yl)formamide (yield: 82 or 77%) was filtered off. The 1-(4-bromo­phen­yl)-2,2- di­chloro­ethan-1-one (I)[link] or 2,2-di­bromo-1-(p-tol­yl)ethan-1-one (II)[link] was isolated (yield: 79 or 75%) from the filtrate. (I)[link]: 1H NMR (300 MHz, DMSO-d6): δ = 8.20 (d, 2H), 7.89 (s, 1H), 7.44 (d, 2H). 13C NMR (151 MHz, CDCl3) δ = 185.60, 145.87, 129.87, 129.65, 128.75, 67.84. (II)[link]: 1H NMR (300 MHz, DMSO-d6): δ = 8.21 (d, 2H), 7.75 (s, 1H), 7.30 (d, 2H), 2.35 (s, 3H). 13C NMR (151 MHz, CDCl3) δ = 184.95, 141.25, 131.25, 129.49, 129.30, 51.79, 21.85. N-(4-Amino-1,2,5- oxa­diazol-3-yl)formamide: 1H NMR (300 MHz, DMSO-d6): δ = 10.40 (bd, 1H, NH), 8.75 (bd, 1H, CHO), 6.11 (bs, 2H, NH2).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The C-bond hydrogen-atom positions were calculated geometrically at distances of 1.00 Å (for methine CH), 0.95 Å (for aromatic CH) and 0.98 Å (for CH3) and refined using a riding model by applying the constraint of Uiso(H) = k × Ueq (C), where k = 1.5 for methyl H atoms and k = 1.2 for the other H atoms.

Table 5
Experimental details

  (I) (II)
Crystal data
Chemical formula C8H5BrCl2O C9H8Br2O
Mr 267.93 291.97
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 7.0317 (1), 9.78938 (18), 14.4440 (3) 6.6243 (1), 9.9574 (1), 14.3804 (2)
α, β, γ (°) 87.5944 (15), 84.7254 (13), 72.0372 (14) 90, 92.520 (1), 90
V3) 941.70 (3) 947.63 (2)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 10.75 10.43
Crystal size (mm) 0.35 × 0.21 × 0.16 0.22 × 0.16 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Gaussian (CrysAlisPr; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.169, 1.000 0.198, 0.680
No. of measured, independent and observed [I > 2σ(I)] reflections 24768, 4027, 3992 12954, 2075, 2046
Rint 0.041 0.031
(sin θ/λ)max−1) 0.638 0.640
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.10 0.027, 0.071, 1.08
No. of reflections 4027 2075
No. of parameters 218 111
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.63, −0.71 0.61, −0.51
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1-(4-Bromophenyl)-2,2-dichloroethan-1-one (I) top
Crystal data top
C8H5BrCl2OZ = 4
Mr = 267.93F(000) = 520
Triclinic, P1Dx = 1.890 Mg m3
a = 7.0317 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 9.78938 (18) ÅCell parameters from 19038 reflections
c = 14.4440 (3) Åθ = 4.7–79.0°
α = 87.5944 (15)°µ = 10.75 mm1
β = 84.7254 (13)°T = 100 K
γ = 72.0372 (14)°Prism, colorless
V = 941.70 (3) Å30.35 × 0.21 × 0.16 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
4027 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3992 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.0000 pixels mm-1θmax = 79.7°, θmin = 3.1°
ω scansh = 88
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2024)
k = 1212
Tmin = 0.169, Tmax = 1.000l = 1818
24768 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.048P)2 + 1.1375P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.003
4027 reflectionsΔρmax = 0.63 e Å3
218 parametersΔρmin = 0.70 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0022 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br6A0.81615 (4)0.56770 (3)0.32820 (2)0.02069 (10)
Cl1A0.33348 (10)0.55329 (7)0.89875 (4)0.02549 (15)
Cl2A0.74935 (10)0.53706 (8)0.84399 (4)0.02822 (15)
O2A0.3354 (3)0.7709 (2)0.75703 (14)0.0284 (4)
C1A0.5180 (4)0.5343 (3)0.80452 (16)0.0175 (4)
H1A0.5387210.4408130.7734490.021*
C2A0.4551 (4)0.6576 (3)0.73301 (17)0.0175 (4)
C3A0.5482 (3)0.6324 (2)0.63618 (16)0.0149 (4)
C4A0.4938 (4)0.7454 (3)0.57111 (18)0.0191 (5)
H4A0.4021280.8351430.5902810.023*
C5A0.5718 (4)0.7276 (3)0.47965 (18)0.0194 (5)
H5A0.5338760.8039280.4355990.023*
C6A0.7077 (3)0.5952 (3)0.45312 (16)0.0161 (4)
C7A0.7639 (3)0.4816 (2)0.51561 (16)0.0156 (4)
H7A0.8561550.3923440.4959280.019*
C8A0.6835 (3)0.4999 (2)0.60758 (16)0.0141 (4)
H8A0.7201830.4226040.6510440.017*
Br6B0.76334 (4)0.85069 (3)1.16685 (2)0.02310 (10)
Cl1B1.01787 (9)1.10238 (6)0.60398 (4)0.02204 (14)
Cl2B0.80524 (11)0.89180 (7)0.64724 (5)0.03046 (16)
O2B0.7017 (3)1.21469 (19)0.74989 (12)0.0218 (4)
C1B0.9394 (4)0.9975 (2)0.69302 (16)0.0170 (4)
H1B1.0597400.9326870.7215400.020*
C2B0.7983 (3)1.0930 (2)0.76903 (16)0.0152 (4)
C3B0.7895 (3)1.0296 (2)0.86393 (16)0.0147 (4)
C4B0.7014 (4)1.1233 (3)0.93713 (17)0.0180 (5)
H4B0.6463121.2231440.9246050.022*
C5B0.6938 (4)1.0718 (3)1.02798 (17)0.0204 (5)
H5B0.6363091.1353951.0780170.024*
C6B0.7723 (4)0.9248 (3)1.04401 (16)0.0177 (4)
C7B0.8588 (4)0.8292 (3)0.97239 (18)0.0207 (5)
H7B0.9102420.7291560.9850110.025*
C8B0.8688 (4)0.8826 (3)0.88192 (17)0.0192 (5)
H8B0.9296550.8189230.8322740.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br6A0.02097 (15)0.03124 (16)0.01216 (14)0.01176 (11)0.00107 (9)0.00224 (10)
Cl1A0.0275 (3)0.0262 (3)0.0176 (3)0.0025 (2)0.0063 (2)0.0035 (2)
Cl2A0.0248 (3)0.0411 (4)0.0190 (3)0.0092 (3)0.0068 (2)0.0002 (2)
O2A0.0356 (10)0.0181 (9)0.0214 (9)0.0064 (8)0.0004 (8)0.0053 (7)
C1A0.0193 (11)0.0176 (11)0.0118 (10)0.0005 (8)0.0017 (8)0.0028 (8)
C2A0.0202 (11)0.0148 (10)0.0164 (11)0.0026 (8)0.0035 (9)0.0028 (8)
C3A0.0160 (10)0.0132 (10)0.0159 (10)0.0046 (8)0.0028 (8)0.0025 (8)
C4A0.0211 (11)0.0152 (10)0.0208 (12)0.0046 (9)0.0036 (9)0.0002 (9)
C5A0.0214 (11)0.0163 (11)0.0207 (12)0.0053 (9)0.0054 (9)0.0035 (9)
C6A0.0163 (10)0.0218 (11)0.0127 (10)0.0098 (9)0.0008 (8)0.0007 (9)
C7A0.0150 (10)0.0170 (10)0.0148 (11)0.0044 (8)0.0019 (8)0.0010 (8)
C8A0.0138 (10)0.0144 (10)0.0141 (10)0.0039 (8)0.0027 (8)0.0000 (8)
Br6B0.02356 (16)0.03377 (17)0.01465 (15)0.01308 (11)0.00342 (10)0.00666 (10)
Cl1B0.0306 (3)0.0205 (3)0.0144 (3)0.0082 (2)0.0030 (2)0.0001 (2)
Cl2B0.0472 (4)0.0293 (3)0.0233 (3)0.0233 (3)0.0023 (3)0.0082 (2)
O2B0.0258 (9)0.0166 (8)0.0184 (8)0.0011 (7)0.0011 (7)0.0020 (7)
C1B0.0239 (11)0.0152 (10)0.0119 (10)0.0061 (9)0.0008 (9)0.0012 (8)
C2B0.0165 (10)0.0146 (10)0.0147 (10)0.0046 (8)0.0020 (8)0.0020 (8)
C3B0.0140 (10)0.0165 (10)0.0143 (10)0.0053 (8)0.0024 (8)0.0001 (8)
C4B0.0219 (11)0.0152 (10)0.0181 (11)0.0071 (9)0.0018 (9)0.0015 (9)
C5B0.0240 (12)0.0225 (12)0.0162 (11)0.0095 (9)0.0004 (9)0.0042 (9)
C6B0.0187 (11)0.0250 (12)0.0119 (10)0.0101 (9)0.0038 (8)0.0034 (9)
C7B0.0226 (12)0.0182 (11)0.0190 (12)0.0041 (9)0.0000 (9)0.0044 (9)
C8B0.0199 (11)0.0169 (11)0.0172 (11)0.0011 (9)0.0016 (9)0.0020 (9)
Geometric parameters (Å, º) top
Br6A—C6A1.890 (2)Br6B—C6B1.892 (2)
Cl1A—C1A1.766 (2)Cl1B—C1B1.766 (2)
Cl2A—C1A1.781 (3)Cl2B—C1B1.781 (2)
O2A—C2A1.209 (3)O2B—C2B1.210 (3)
C1A—H1A1.0000C1B—H1B1.0000
C1A—C2A1.540 (3)C1B—C2B1.542 (3)
C2A—C3A1.486 (3)C2B—C3B1.485 (3)
C3A—C4A1.404 (3)C3B—C4B1.398 (3)
C3A—C8A1.403 (3)C3B—C8B1.396 (3)
C4A—H4A0.9500C4B—H4B0.9500
C4A—C5A1.380 (4)C4B—C5B1.388 (4)
C5A—H5A0.9500C5B—H5B0.9500
C5A—C6A1.397 (3)C5B—C6B1.390 (4)
C6A—C7A1.385 (3)C6B—C7B1.389 (3)
C7A—H7A0.9500C7B—H7B0.9500
C7A—C8A1.391 (3)C7B—C8B1.391 (3)
C8A—H8A0.9500C8B—H8B0.9500
Br6A···Br6Bi3.4966 (4)H5B···O2Avii2.63
Br6A···C1Aii3.554 (3)O2A···H4A2.50
C2A···Br6Aii3.515 (3)O2B···H1Av2.18
Br6B···C2Biii3.504 (2)O2B···H4B2.52
Br6A···H1Aii3.03O2B···H8Av2.47
Cl1A···O2A2.894 (2)C6A···C8Aii3.361 (3)
Cl1B···O2B2.901 (2)C1A···H8A2.61
Cl2B···C8B3.453 (3)C1B···H8B2.62
Cl2B···C4A3.251 (3)C8A···H1A2.63
Cl2B···H8B2.88C8B···H1B2.67
O2A···C1Biv3.166 (3)H1A···H8A2.06
O2B···C1Av3.100 (3)H1B···H8B2.20
H1B···O2Avi2.18
Cl1A—C1A—Cl2A110.59 (13)Cl1B—C1B—Cl2B110.50 (13)
Cl1A—C1A—H1A109.1Cl1B—C1B—H1B109.2
Cl2A—C1A—H1A109.1Cl2B—C1B—H1B109.2
C2A—C1A—Cl1A111.28 (16)C2B—C1B—Cl1B111.22 (16)
C2A—C1A—Cl2A107.49 (17)C2B—C1B—Cl2B107.41 (16)
C2A—C1A—H1A109.1C2B—C1B—H1B109.2
O2A—C2A—C1A119.8 (2)O2B—C2B—C1B119.7 (2)
O2A—C2A—C3A122.4 (2)O2B—C2B—C3B122.9 (2)
C3A—C2A—C1A117.9 (2)C3B—C2B—C1B117.4 (2)
C4A—C3A—C2A118.0 (2)C4B—C3B—C2B117.6 (2)
C8A—C3A—C2A122.5 (2)C8B—C3B—C2B122.5 (2)
C8A—C3A—C4A119.5 (2)C8B—C3B—C4B119.9 (2)
C3A—C4A—H4A119.6C3B—C4B—H4B119.7
C5A—C4A—C3A120.8 (2)C5B—C4B—C3B120.6 (2)
C5A—C4A—H4A119.6C5B—C4B—H4B119.7
C4A—C5A—H5A120.7C4B—C5B—H5B120.8
C4A—C5A—C6A118.7 (2)C4B—C5B—C6B118.4 (2)
C6A—C5A—H5A120.7C6B—C5B—H5B120.8
C5A—C6A—Br6A119.57 (18)C5B—C6B—Br6B119.59 (18)
C7A—C6A—Br6A118.54 (18)C7B—C6B—Br6B118.29 (18)
C7A—C6A—C5A121.9 (2)C7B—C6B—C5B122.1 (2)
C6A—C7A—H7A120.4C6B—C7B—H7B120.6
C6A—C7A—C8A119.1 (2)C6B—C7B—C8B118.9 (2)
C8A—C7A—H7A120.4C8B—C7B—H7B120.6
C3A—C8A—H8A120.0C3B—C8B—H8B119.9
C7A—C8A—C3A120.0 (2)C7B—C8B—C3B120.1 (2)
C7A—C8A—H8A120.0C7B—C8B—H8B119.9
Br6A—C6A—C7A—C8A179.28 (17)Br6B—C6B—C7B—C8B179.14 (19)
Cl1A—C1A—C2A—O2A23.6 (3)Cl1B—C1B—C2B—O2B25.4 (3)
Cl1A—C1A—C2A—C3A157.33 (17)Cl1B—C1B—C2B—C3B154.12 (17)
Cl2A—C1A—C2A—O2A97.6 (2)Cl2B—C1B—C2B—O2B95.6 (2)
Cl2A—C1A—C2A—C3A81.4 (2)Cl2B—C1B—C2B—C3B84.8 (2)
O2A—C2A—C3A—C4A0.1 (4)O2B—C2B—C3B—C4B14.4 (3)
O2A—C2A—C3A—C8A178.4 (2)O2B—C2B—C3B—C8B167.0 (2)
C1A—C2A—C3A—C4A178.9 (2)C1B—C2B—C3B—C4B165.1 (2)
C1A—C2A—C3A—C8A2.6 (3)C1B—C2B—C3B—C8B13.5 (3)
C2A—C3A—C4A—C5A178.6 (2)C2B—C3B—C4B—C5B178.0 (2)
C2A—C3A—C8A—C7A179.0 (2)C2B—C3B—C8B—C7B179.1 (2)
C3A—C4A—C5A—C6A0.6 (4)C3B—C4B—C5B—C6B1.2 (4)
C4A—C3A—C8A—C7A0.6 (3)C4B—C3B—C8B—C7B0.5 (4)
C4A—C5A—C6A—Br6A179.75 (18)C4B—C5B—C6B—Br6B179.69 (18)
C4A—C5A—C6A—C7A0.8 (4)C4B—C5B—C6B—C7B0.5 (4)
C5A—C6A—C7A—C8A0.3 (3)C5B—C6B—C7B—C8B0.6 (4)
C6A—C7A—C8A—C3A0.4 (3)C6B—C7B—C8B—C3B1.2 (4)
C8A—C3A—C4A—C5A0.1 (4)C8B—C3B—C4B—C5B0.7 (4)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+2, y+2, z+2; (iv) x1, y, z; (v) x, y+1, z; (vi) x+1, y, z; (vii) x+1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1A—H1A···O2Bviii1.002.183.100 (3)152
C1B—H1B···O2Avi1.002.183.166 (3)169
C8A—H8A···O2Bviii0.952.473.374 (3)160
Symmetry codes: (vi) x+1, y, z; (viii) x, y1, z.
2,2-Dibromo-1-(4-methylphenyl)ethan-1-one (II) top
Crystal data top
C9H8Br2OF(000) = 560
Mr = 291.97Dx = 2.047 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 6.6243 (1) ÅCell parameters from 8712 reflections
b = 9.9574 (1) Åθ = 4.4–80.2°
c = 14.3804 (2) ŵ = 10.43 mm1
β = 92.520 (1)°T = 100 K
V = 947.63 (2) Å3Prism, colorless
Z = 40.22 × 0.16 × 0.12 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
2075 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source2046 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.031
Detector resolution: 10.0000 pixels mm-1θmax = 80.6°, θmin = 5.4°
ω scansh = 86
Absorption correction: gaussian
(CrysAlisPr; Rigaku OD, 2024)
k = 1212
Tmin = 0.198, Tmax = 0.680l = 1818
12954 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.8407P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2075 reflectionsΔρmax = 0.61 e Å3
111 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL2018/3 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.00143 (13)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.23695 (4)0.66709 (3)0.63489 (2)0.01960 (11)
Br20.77764 (4)0.64644 (3)0.55958 (2)0.02528 (12)
O20.9676 (3)0.8317 (2)0.75385 (16)0.0251 (4)
C10.9651 (4)0.6269 (3)0.66762 (18)0.0169 (5)
H10.9591540.5325810.6911750.020*
C20.8893 (4)0.7229 (3)0.74202 (18)0.0163 (5)
C30.7113 (4)0.6791 (3)0.79372 (19)0.0181 (5)
C40.5987 (4)0.7784 (3)0.83659 (18)0.0186 (5)
H40.6395020.8696840.8337130.022*
C50.4273 (4)0.7438 (3)0.88335 (18)0.0195 (5)
H50.3501180.8120550.9112110.023*
C60.3669 (4)0.6097 (3)0.88997 (18)0.0185 (5)
C70.4849 (4)0.5111 (3)0.84988 (19)0.0195 (5)
H70.4490980.4192620.8561960.023*
C80.6538 (4)0.5447 (3)0.80095 (18)0.0186 (5)
H80.7300700.4764720.7724650.022*
C90.1787 (4)0.5707 (3)0.9386 (2)0.0236 (6)
H9A0.2164160.5312960.9993690.035*
H9B0.1020490.5048430.9007250.035*
H9C0.0952510.6505860.9473910.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01651 (16)0.02134 (17)0.02127 (17)0.00045 (9)0.00428 (10)0.00094 (10)
Br20.02045 (17)0.03458 (19)0.02068 (17)0.00176 (11)0.00073 (11)0.00414 (11)
O20.0244 (10)0.0201 (10)0.0314 (11)0.0065 (8)0.0095 (8)0.0060 (8)
C10.0136 (11)0.0193 (12)0.0179 (12)0.0003 (9)0.0025 (9)0.0003 (10)
C20.0161 (11)0.0152 (12)0.0176 (11)0.0002 (9)0.0015 (9)0.0014 (9)
C30.0164 (12)0.0177 (12)0.0203 (12)0.0002 (10)0.0010 (10)0.0007 (10)
C40.0190 (12)0.0169 (12)0.0198 (12)0.0005 (9)0.0001 (9)0.0001 (10)
C50.0201 (12)0.0218 (13)0.0167 (11)0.0045 (10)0.0022 (9)0.0031 (10)
C60.0176 (12)0.0248 (13)0.0132 (11)0.0005 (10)0.0013 (9)0.0001 (10)
C70.0182 (12)0.0193 (12)0.0210 (12)0.0011 (10)0.0007 (10)0.0008 (10)
C80.0187 (12)0.0177 (13)0.0196 (12)0.0005 (9)0.0030 (9)0.0008 (10)
C90.0199 (12)0.0287 (15)0.0228 (13)0.0025 (11)0.0053 (10)0.0001 (11)
Geometric parameters (Å, º) top
Br1—C11.923 (3)C5—H50.9500
Br2—C11.955 (3)C5—C61.398 (4)
O2—C21.210 (3)C6—C71.396 (4)
C1—H11.0000C6—C91.507 (4)
C1—C21.535 (4)C7—H70.9500
C2—C31.487 (4)C7—C81.389 (4)
C3—C41.398 (4)C8—H80.9500
C3—C81.396 (4)C9—H9A0.9800
C4—H40.9500C9—H9B0.9800
C4—C51.388 (4)C9—H9C0.9800
Br1···O23.011 (2)H8···O2ii2.51
C4···Br2i3.452 (3)C1···H82.67
C5···Br2i3.534 (3)C8···H12.62
C1···O2ii3.173 (4)H1···H82.03
O2···H42.53H5···H9C2.40
H1···O2ii2.20
Br1—C1—Br2110.71 (13)C6—C5—H5119.6
Br1—C1—H1109.2C5—C6—C9121.5 (2)
Br2—C1—H1109.2C7—C6—C5118.4 (2)
C2—C1—Br1112.31 (18)C7—C6—C9120.0 (3)
C2—C1—Br2106.03 (17)C6—C7—H7119.4
C2—C1—H1109.2C8—C7—C6121.2 (3)
O2—C2—C1120.3 (2)C8—C7—H7119.4
O2—C2—C3122.5 (2)C3—C8—H8120.1
C3—C2—C1117.2 (2)C7—C8—C3119.8 (3)
C4—C3—C2117.6 (2)C7—C8—H8120.1
C8—C3—C2122.9 (2)C6—C9—H9A109.5
C8—C3—C4119.5 (2)C6—C9—H9B109.5
C3—C4—H4119.9C6—C9—H9C109.5
C5—C4—C3120.1 (3)H9A—C9—H9B109.5
C5—C4—H4119.9H9A—C9—H9C109.5
C4—C5—H5119.6H9B—C9—H9C109.5
C4—C5—C6120.9 (2)
Br1—C1—C2—O221.6 (3)C2—C3—C8—C7179.6 (2)
Br1—C1—C2—C3161.77 (18)C3—C4—C5—C61.3 (4)
Br2—C1—C2—O299.5 (3)C4—C3—C8—C70.5 (4)
Br2—C1—C2—C377.2 (2)C4—C5—C6—C71.1 (4)
O2—C2—C3—C418.2 (4)C4—C5—C6—C9178.6 (2)
O2—C2—C3—C8161.7 (3)C5—C6—C7—C82.8 (4)
C1—C2—C3—C4158.4 (2)C6—C7—C8—C32.0 (4)
C1—C2—C3—C821.7 (4)C8—C3—C4—C52.1 (4)
C2—C3—C4—C5178.0 (2)C9—C6—C7—C8177.0 (2)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O2ii1.002.203.173 (4)165
C8—H8···O2ii0.952.513.403 (3)157
Symmetry code: (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

Crystal structure determination was performed in the Department of Structural Studies of Zelinsky Institute of Organic Chemistry, Moscow. This work has been supported by the Baku State University, Azerbaijan Medical University and Khazar University in Azerbaijan. The author's contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and FIG; X-ray analysis, AIS; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, KIH and TAJ; supervision, AVG, TH and ANB.

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationErian, A. W., Sherif, S. M. & Gaber, H. M. (2003). Molecules, 8, 793–865.  Web of Science CrossRef CAS Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Karmakar, A., Aliyeva, V. A., Mahmudov, K. T. & Pombeiro, A. J. L. (2022). Dalton Trans. 51, 1019–1031.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Malinnikov, V. M., Lavrova, O. M., Movsumzade, E. M. & Kustov, L. M. (2020). Mendeleev Commun. 30, 674–675.  Web of Science CSD CrossRef CAS Google Scholar
First citationGuseinov, F. I., Pistsov, M. F., Movsumzade, E. M., Kustov, L. M., Tafeenko, V. A., Chernyshev, V. V., Gurbanov, A. V., Mahmudov, K. T. & Pombeiro, A. (2017). Crystals, 7, 327.  Web of Science CSD CrossRef Google Scholar
First citationGuseinov, F. N., Burangulova, R. N., Mukhamedzyanova, E. F., Strunin, B. P., Sinyashin, O. G., Litvinov, I. A. & Gubaidullin, A. T. (2006). Chem. Heterocycl. Compd. 42, 943–947.  CrossRef CAS Google Scholar
First citationGuseinov, F. N., Ovsyannikov, V. O., Shuvalova, E. V., Kustov, L. M., Kobrakov, K. I., Samigullina, A. I. & Mahmudov, K. T. (2024). New J. Chem. 48, 12869–12872.  Web of Science CSD CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/Google Scholar
First citationKhalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.  Web of Science CSD CrossRef Google Scholar
First citationMa, Z., Mahmudov, K. T., Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2021). Coord. Chem. Rev. 437, 213859.  Web of Science CrossRef Google Scholar
First citationMahmoudi, G., Zaręba, J. K., Gurbanov, A. V., Bauzá, A., Zubkov, F. I., Kubicki, M., Stilinović, V., Kinzhybalo, V. & Frontera, A. (2017). Eur. J. Inorg. Chem. pp. 4763–4772.  Web of Science CSD CrossRef Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. 2012, 2305–2313.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaca, D. (2008). CrystEngComm, 10, 377–388.  Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds