research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structures of 4,4′-methyl­enebis(2,6-di­ethyl­aniline) and 4,4′-methyl­enebis(3-chloro-2,6-di­ethyl­aniline)

crossmark logo

aDepartment of Chemical Technology and New Materials, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3, Leninskiye Gory, Moscow, 119991, Russian Federation
*Correspondence e-mail: daniil.smirnov@chemistry.msu.ru

Edited by N. Alvarez Failache, Universidad de la Repüblica, Uruguay (Received 26 October 2024; accepted 10 January 2025; online 17 January 2025)

The title compounds 4,4′-methyl­enebis(2,6-di­ethyl­aniline) (C21H30N2, 1) and 4,4′-methyl­enebis(3-chloro-2,6-di­ethyl­aniline) (C21H28Cl2N2, 2) are of significant inter­est as curing agents for a wide range of resins and as building blocks for sterically demanding compounds in the synthesis of ligands for catalysis. This paper describes their synthesis and the preparation of single crystals, with their structures determined through single-crystal X-ray analysis. The presence of the chlorine substituent slightly affects the twist angle between the two aromatic components. The mol­ecules of compound 1 form a network structure through inter­molecular N—H⋯N bonds and C—H⋯π inter­actions, while in the crystal structure of compound 2, the mol­ecules are assembled solely through N—H⋯π inter­actions. Consequently, despite their chemical similarity, it is the precise structural data that enables us to explain their differing reactivity and opens up the possibility of evaluating steric properties for the development of new materials and ligands.

1. Chemical context

Aromatic di­amines are widely utilized as hardeners for polyurethanes (Ueda et al., 2017[Ueda, T., Nishio, T. & Inoue, S. (2017). Open J. Org. Polym. Mater. 07, 47-60.]), ep­oxy resins (Yu et al., 2020[Yu, S., Li, X., Zou, M., Guo, X., Ma, H. & Wang, S. (2020). ACS Omega, 5, 23268-23275.]; Costa et al., 2005[Costa, M. L., Pardini, L. C. & Rezende, M. C. (2005). Mat. Res. 8, 65-70.]), cyanate ester (Bauer & Bauer, 2001[Bauer, J. & Bauer, M. (2001). Macromol. Chem. Phys. 202, 2213-2220.]) and phthalo­nitriles (Bulgakov et al., 2021[Bulgakov, B. A., Morozov, O. S., Timoshkin, I. A., Babkin, A. V. & Kepman, A. V. (2021). Polym. Sci. Ser. C. 63, 64-101.]). The reactivity of amines is primarily determined by their nucleophilicity, which depends on the electronic structure and geometry of the mol­ecules. In the production of castings and composite materials, the gelation time of the binder is a critical factor: the longer the gelation time at low temperatures, the more time is available for the impregnation of the reinforcing filler or the moulding of products. Hardeners with low activity at room temperature also facilitate the manufacture of prepregs with a long shelf life. To decrease the reaction rate, the nucleophilicity of the di­amine can be diminished by introducing electron-withdrawing substituents. An example of such a modification is 4,4′-di­amino­diphenyl­sulfone (DDS), which exhibits significantly lower activity than 4,4′-methyl­enedianiline (MDA) (Kong & Park, 2003[Kong, D. & Park, C. E. (2003). Chem. Mater. 15, 419-424.]). Another strategy for reducing the activity of amines involves the introduction of sterically bulky groups in the ortho position, as seen in 4,4′-methyl­enebis(2,6-di­ethyl­aniline) (MDEA). An even more pronounced effect can be achieved by additionally incorporating chlorine into the 3-position of the aromatic ring, specifically in 4,4′-meth­yl­enebis(3-chloro-2,6-di­ethyl­aniline) (MCDEA). In terms of reactivity with ep­oxy monomers, these compounds follow the order: MDEA > DDS > MCDEA (Lahlali et al., 2005[Lahlali, D., Naffakh, M. & Dumon, M. (2005). Polym. Eng. Sci. 45, 1581-1589.], 2006[Lahlali, N., Dupuy, J. & Dumon, M. (2006). e-Polymers, 6, 080.]). Similarly, in reactions with iso­cyanates, the order of reactivity is MDA > MDEA > MCDEA (Voelker et al., 1988[Voelker, T., Althaus, H. & Schmidt, A. (1988). J. Elastomers Plast. 20, 36-45.]). Notably, a mol­ecule carrying a methyl group in the meta position instead of chlorine, exhibits approximately the same activity as MDEA. Consequently, this raises the question of which factor — steric or electronic – primarily influences the activity of hardeners. Therefore, studying the mol­ecular structure is particularly intriguing for comparing the steric hindrance of the amine in MDEA and MCDEA.

[Scheme 1]

Another potential application of ortho-substituted anilines is the synthesis of N-heterocyclic carbenes, including polymeric structures (Peng et al., 2018[Peng, L., Zhang, W., Deng, C., Wang, Z., Zhang, Y. & Qian, H. (2018). Macro Chem. & Phys. 219, 1800156.]). The properties of carbenes as ligands are typically assessed based on the electronic and steric characteristics of the substituents on the nitro­gen atoms (Cavallo et al., 2005[Cavallo, L., Correa, A., Costabile, C. & Jacobsen, H. (2005). J. Organomet. Chem. 690, 5407-5413.]). The steric hindrance is qu­anti­tatively described by the parameter Vbur%, which represents the volume of a sphere occupied by the ligand (Gomez-Suarez et al., 2017[Gómez-Suárez, A., Nelson, D. J. & Nolan, S. P. (2017). Chem. Commun. 53, 2650-2660.]). Mol­ecular structure data obtained from X-ray crystallography can be utilized to calculate Vbur% and more accurately predict the catalytic properties of mol­ecules through machine learning (Escayola et al., 2024[Escayola, S., Bahri-Laleh, N. & Poater, A. (2024). Chem. Soc. Rev. 53, 853-882.]). Consequently, the parameters outlined in this paper will be valuable for various scientists seeking to understand the reactivity of curing agents and predict the properties of structures based on the compounds discussed.

2. Structural commentary

The mol­ecular structures of the title compounds 1 and 2, which differ in the presence of an additional chlorine substituent at meta position to amine, are illustrated in Figs. 1[link] and 2[link], respectively. In both cases, the organic mol­ecules occupy general positions. Depending on the presence of chlorine substituents, the ring systems are twisted to a greater or lesser extent. In mol­ecule 1, the dihedral angle between the two aromatic parts is as large as 64.13 (6)°, while the corresponding angle in mol­ecule 2 is 39.59 (8)°. The dihedral angle between those parts approximately equal for both structures [80.24 (4) and 77.72 (6)° for the 1 and 2, respectively]. In mol­ecule 2, the chlorine atom in the C12–C17 ring is disordered with an occupancy ratio of 0.920 (2):0.08 (2).

[Figure 1]
Figure 1
The mol­ecular structure of 1, with displacement ellipsoids drawn at the 50% probability level. The minor occupancy components are omitted for clarity.
[Figure 2]
Figure 2
The mol­ecular structure of 2, with displacement ellipsoids drawn at the 50% probability level. The minor occupancy components are omitted for clarity.

In the unsubstituted mol­ecule 1 the ethyl groups (C9–C10 and C18–C19) are nearly co-planar with their phenyl rings and the ethyl group connected with the C2 atom is disordered. The major components (73.6%) for C7–C8 and ethyl group C20–C21 are directed almost orthogonal [88.6 (4)° and 80.9 (2)°, respectively] to the plane of the phenyl rings, while the minor components are slightly inclined with torsion angle C1—C2—C7′—C8′ = 153.5 (12)°.

The steric hindrance exerted by the chlorine atom in mol­ecule 2 causes the ethyl groups to rotate out of the plane of the phenyl ring. The ethyl groups connected with the C12–C17 phenyl ring are parallel to each other with the torsion angle C19—C18—C20—C21 being 0.60 (17)° while the torsion angle C8—C7—C9—C10 between other ethyl fragments is 116.7 (3)°.

3. Supra­molecular features

In the crystal structure of 1, the mol­ecules form infinite chains extending along [010] via N2—H2A⋯N1 hydrogen bonds [N2⋯N1 = 3.472 (2) Å; Fig. 3[link], Table 1[link]]. Additionally, the mol­ecules are grafted together in a herringbone-like manner by C—H⋯π inter­actions [3.8568 (17) Å] involving the phenyl H17 atom and the centroids of the C1–C6 phenyl rings of adjacent mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °) for 1[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1i 0.88 2.62 3.472 (2) 165
C17—H17⋯Cg1ii 0.95 2.92 3.8568 (17) 171
Symmetry codes: (i) [x, y+1, z]; (ii) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
Fragment of the crystal packing of 1.

In contrast, these types of inter­action are absent in the crystal structure of 2. The mol­ecules form centrosymmetric dimers by N—H⋯π inter­actions [3.327 (2) Å] between N2—H2A and the C1–C6 ring centroid (Table 2[link], Fig. 4[link]). Cohesion of the packing is provided by C7—H7Bπ [3.579 (2) Å] and C20—H20Bπ [3.434 (2) Å] inter­actions in the [100] direction and weak van der Waals inter­actions between the dimers.

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2ACg1i 0.88 2.63 3.327 (2) 137
C7—H7BCg2ii 0.99 2.83 3.579 (2) 133
C20—H20BCg2i 0.99 2.81 3.434 (2) 132
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+1, y, z].
[Figure 4]
Figure 4
Fragment of the crystal packing of 2.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.45 updated to November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 1 and 2 revealed that these structures had not been published previously. However, a similar uncharged structure without substituents in the ring, 4,4′-methyl­enebis(aniline), had been described in two independent experiments [CSD refcodes CEHCOH (Bel'skii et al., 1983[Bel'skii, V. K., Rotaru, V. K. & Kruchinin, M. M. (1983). Kristallografiya, 28, 695-698.]) and CEHCOH01 (Gibson et al., 2010[Gibson, E. K., Winfield, J. M., Muir, K. W., Carr, R. H., Eaglesham, A., Gavezzotti, A. & Lennon, D. (2010). Phys. Chem. Chem. Phys. 12, 3824-3833.])]. Despite the similarity in mol­ecular structures and number of analogues inter­actions between these and the current study, such a herringbone-like packing motif does not occur in the previously published structures that can be explained by the rotational degree of freedom.

For the closest analogue with methyl substituents in the phenyl ring, 4,4′-methyl­enebis(2,6-di­methyl­aniline), a search resulted in 14 hits with CSD refcodes AWAYAZ–AWAYAZ13 (Bhattacharya & Saha, 2011[Bhattacharya, S. & Saha, B. K. (2011). Cryst. Growth Des. 11, 2194-2204.]). According to X-ray investigations, this structure was discovered in two polymorphic modifications in different space groups, C2/c and P[\overline{1}]; additionally, it was established in the original work that both polymorphs crystallize simultaneously from the solution in the presence of additional reagents. In general, the weakness of inter­molecular inter­actions is proved by the discovery of weak N—H⋯N inter­actions in one polymorphic form and the absence of such inter­actions in other structures.

The comparison of structures 1 and 2 and previously published analogues revealed that the twist angle between the two aromatic parts for the structure 1 [115.87 (6)°] lies within the characteristic range [44.21 (6)–134.35 (5)°], while the corresponding angle for the structure of 2 is smaller at 39.59 (8)°.

5. Synthesis and crystallization

The title compounds were prepared as follows:

4,4′-Methyl­enebis(2,6-di­ethyl­aniline) (1)

A mixture of 2,6-di­ethyl­aniline (14.92 g, 0.1 mol), paraformaldehyde (0.15 g, 0.05 mol) and 36% hydro­chloric acid (8.6 mL, 0.1 mol) in water (100 mL) in a round-bottom flask was heated to 353 K for 3 h in an oil bath under argon. The reaction mixture was cooled to room temperature and sodium hydroxide (4.40 g, 0.11 mol) was added. The precipitate was filtered and dried at 343 K in an oven in air for 12 h. Yield 14.52 g (94%). Single crystals suitable for X-ray analysis were grown by slow cooling (363–;303 K, 5 K h−1) of a solution of the substance in a DMSO/water (80:20, v:v) mixture.

1H NMR (600 MHz, DMSO-d6) δ 6.64 (s, 4H), 4.29 (s, 4H), 3.56 (s, 2H), 2.42 (q, J = 7.5 Hz, 8H), 1.09 (t, J = 7.5 Hz, 12H).

4,4′-Methyl­enebis(3-chloro-2,6-di­ethyl­aniline) (2)

A mixture of 3-chloro-2,6-di­ethyl­aniline (18.38 g, 0.1 mol), paraformaldehyde (0.15 g, 0.05 mol) and 36% hydro­chloric acid (8.6 mL, 0.1 mol) in water (130 mL) in round-bottom flask was heated to 353 K for 3 h in an oil bath under argon. The reaction mixture was cooled to room temperature and sodium hydroxide (4.40 g, 0.11 mol) was added. The precipitate was filtered and dried at 343 K in an oven in air for 12 h. Yield 17.55 g (93%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in toluene.

1H NMR (600 MHz, DMSO-d6) δ 6.51 (s, 2H), 4.70 (s, 4H), 3.84 (s, 2H), 2.72 (q, J = 7.4 Hz, 4H), 2.37 (q, J = 7.5 Hz, 4H), 1.08–0.99 (m, 12H).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. X-ray diffraction studies for (2) were carried out on the Belok'beamline (Svetogorov et al., 2020[Svetogorov, R. D., Dorovatovskii, P. V. & Lazarenko, V. A. (2020). Cryst. Res. Technol. 55, 1900184.]) of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. All hydrogen atoms in the structures of 1 and 2 were placed in calculated positions and refined using a riding model [Uiso(H) = 1.2–1.5Ueq(parent atom)]. In the structure of 2, one chlorine atom was found to be disordered over two positions with a refined occupancy ratio of 0.920 (2): 0.080 (2). The ethyl group connected to the C2 atom was found to be disordered with occupancy ratios of 0.736 (11)/0.264 (11) in the structure of 1. A SADI instruction was used to restrain the C7—C2 and C7′—C2 bonds in 1.

Table 3
Experimental details

  1 2
Crystal data
Chemical formula C21H30N2 C21H28Cl2N2
Mr 310.47 379.35
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}]
Temperature (K) 150 100
a, b, c (Å) 8.9895 (3), 11.8589 (3), 17.6765 (5) 8.993 (3), 9.6540 (13), 12.216 (4)
α, β, γ (°) 90, 102.4188 (11), 90 69.352 (11), 77.257 (12), 87.670 (8)
V3) 1840.32 (9) 967.2 (5)
Z 4 2
Radiation type Cu Kα Synchrotron, λ = 0.75268 Å
μ (mm−1) 0.49 0.40
Crystal size (mm) 0.32 × 0.21 × 0.13 0.19 × 0.12 × 0.05
 
Data collection
Diffractometer Bruker D8 Venture Rayonix SX165 CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Empirical (using intensity measurements) [XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.])]
Tmin, Tmax 0.639, 0.753 0.001, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22931, 3455, 3212 17607, 4844, 3879
Rint 0.035 0.053
(sin θ/λ)max−1) 0.608 0.675
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.135, 1.03 0.051, 0.147, 1.05
No. of reflections 3455 4844
No. of parameters 236 243
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.33 0.64, −0.56
Computer programs: APEX3 v.2017.3_0 (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), Marccd (Doyle, 2011[Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL, USA.]), XDS (Kabsch, 2010[Kabsch, W. (2010). Acta Cryst. D66, 125-132.]), SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 1.3 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4,4'-(Methanediyl)bis(2,6-diethylaniline) (1) top
Crystal data top
C21H30N2F(000) = 680
Mr = 310.47Dx = 1.121 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 8.9895 (3) ÅCell parameters from 9874 reflections
b = 11.8589 (3) Åθ = 4.5–69.6°
c = 17.6765 (5) ŵ = 0.49 mm1
β = 102.4188 (11)°T = 150 K
V = 1840.32 (9) Å3Prism, colourless
Z = 40.32 × 0.21 × 0.13 mm
Data collection top
Bruker D8 Venture
diffractometer
3212 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tubeRint = 0.035
φ and ω scansθmax = 69.6°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.639, Tmax = 0.753k = 1414
22931 measured reflectionsl = 2121
3455 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0668P)2 + 0.8039P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3455 reflectionsΔρmax = 0.51 e Å3
236 parametersΔρmin = 0.33 e Å3
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.50801 (18)0.22887 (12)0.44320 (9)0.0495 (4)
H1A0.4445180.2038430.4015770.073 (7)*
H1B0.4547780.2433380.4784190.042 (5)*
N20.76330 (16)1.02220 (12)0.52830 (8)0.0434 (3)
H2A0.7020841.0690940.4978650.052*
H2B0.8418931.0568930.5572160.052*
C10.59366 (18)0.32315 (12)0.42982 (9)0.0371 (3)
C20.6281 (2)0.34245 (13)0.35674 (9)0.0450 (4)
C30.7176 (2)0.43384 (13)0.34743 (8)0.0422 (4)
H30.7388990.4473620.2978520.051*
C40.77715 (16)0.50617 (12)0.40722 (8)0.0322 (3)
C50.74348 (15)0.48530 (12)0.47942 (8)0.0288 (3)
H50.7828420.5348650.5211510.035*
C60.65472 (15)0.39491 (11)0.49237 (8)0.0293 (3)
C70.5780 (5)0.2673 (2)0.28671 (14)0.0371 (8)0.736 (11)
H7A0.5728740.1881300.3037180.045*0.736 (11)
H7B0.6533490.2715360.2533880.045*0.736 (11)
C7'0.493 (2)0.2769 (8)0.2921 (5)0.056 (4)0.264 (11)
H7'A0.5227660.1968880.2887390.068*0.264 (11)
H7'B0.3968570.2786330.3105340.068*0.264 (11)
C80.4216 (5)0.3041 (3)0.2405 (3)0.0527 (11)0.736 (11)
H8A0.3915570.2558420.1947000.079*0.736 (11)
H8B0.4266730.3826750.2240740.079*0.736 (11)
H8C0.3464450.2972640.2729660.079*0.736 (11)
C8'0.4671 (12)0.3274 (9)0.2140 (6)0.047 (2)0.264 (11)
H8'A0.4030940.2768810.1767660.070*0.264 (11)
H8'B0.5649330.3385860.1991700.070*0.264 (11)
H8'C0.4156830.4002190.2143450.070*0.264 (11)
C90.62289 (17)0.36943 (13)0.57138 (8)0.0355 (3)
H9A0.6595240.2921980.5864020.043*
H9B0.5111940.3698140.5668530.043*
C100.6940 (2)0.44930 (16)0.63601 (9)0.0455 (4)
H10A0.6594530.5263910.6220110.068*
H10B0.8051860.4458210.6439440.068*
H10C0.6632800.4273310.6838800.068*
C110.88289 (18)0.60062 (13)0.39550 (9)0.0391 (4)
H11A0.9888860.5774520.4182290.047*
H11B0.8745840.6111300.3391830.047*
C120.85318 (16)0.71251 (12)0.43033 (8)0.0339 (3)
C130.73112 (15)0.78002 (12)0.39480 (8)0.0314 (3)
H130.6663300.7543650.3482550.038*
C140.70101 (16)0.88340 (12)0.42509 (8)0.0317 (3)
C150.79580 (17)0.92047 (13)0.49506 (8)0.0342 (3)
C160.91879 (17)0.85307 (14)0.53197 (8)0.0373 (3)
C170.94554 (16)0.75095 (14)0.49856 (9)0.0374 (3)
H171.0296840.7061870.5232470.045*
C180.57200 (17)0.95838 (13)0.38505 (9)0.0385 (3)
H18A0.6154971.0319880.3745830.046*
H18B0.5041040.9722450.4213620.046*
C190.47564 (19)0.91440 (15)0.30954 (10)0.0464 (4)
H19A0.5396670.9048720.2715820.070*
H19B0.3940340.9683360.2895970.070*
H19C0.4310410.8415980.3187260.070*
C201.0202 (2)0.88664 (17)0.60861 (9)0.0477 (4)
H20A1.1192490.8474020.6147840.057*
H20B1.0396220.9687960.6084640.057*
C210.9492 (3)0.8578 (2)0.67641 (11)0.0614 (5)
H21A0.8521170.8978070.6710870.092*
H21B1.0181920.8806920.7247650.092*
H21C0.9314580.7763680.6773020.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0589 (9)0.0356 (7)0.0489 (8)0.0072 (6)0.0002 (7)0.0029 (6)
N20.0480 (8)0.0408 (7)0.0411 (7)0.0051 (6)0.0087 (6)0.0037 (6)
C10.0444 (8)0.0276 (7)0.0353 (8)0.0053 (6)0.0000 (6)0.0041 (6)
C20.0686 (11)0.0323 (8)0.0296 (8)0.0050 (7)0.0005 (7)0.0005 (6)
C30.0659 (10)0.0359 (8)0.0257 (7)0.0120 (7)0.0121 (7)0.0035 (6)
C40.0348 (7)0.0317 (7)0.0309 (7)0.0117 (6)0.0088 (6)0.0056 (5)
C50.0284 (6)0.0307 (7)0.0264 (6)0.0086 (5)0.0037 (5)0.0006 (5)
C60.0293 (7)0.0300 (7)0.0277 (7)0.0101 (5)0.0044 (5)0.0036 (5)
C70.0406 (18)0.0373 (12)0.0329 (12)0.0057 (11)0.0069 (10)0.0055 (8)
C7'0.089 (10)0.039 (4)0.037 (4)0.018 (5)0.003 (5)0.003 (3)
C80.056 (2)0.0475 (17)0.045 (2)0.0010 (14)0.0112 (16)0.0127 (15)
C8'0.050 (5)0.049 (4)0.041 (5)0.003 (4)0.007 (3)0.007 (4)
C90.0344 (7)0.0403 (8)0.0328 (7)0.0075 (6)0.0099 (6)0.0074 (6)
C100.0533 (9)0.0575 (10)0.0291 (7)0.0086 (8)0.0163 (7)0.0005 (7)
C110.0380 (8)0.0419 (8)0.0403 (8)0.0090 (6)0.0151 (6)0.0086 (6)
C120.0308 (7)0.0361 (8)0.0367 (7)0.0000 (6)0.0114 (6)0.0091 (6)
C130.0295 (7)0.0355 (7)0.0292 (7)0.0026 (5)0.0065 (5)0.0048 (5)
C140.0302 (7)0.0339 (7)0.0316 (7)0.0024 (6)0.0081 (5)0.0067 (6)
C150.0368 (7)0.0351 (7)0.0325 (7)0.0064 (6)0.0112 (6)0.0036 (6)
C160.0334 (7)0.0455 (9)0.0322 (7)0.0071 (6)0.0053 (6)0.0088 (6)
C170.0304 (7)0.0434 (8)0.0373 (8)0.0004 (6)0.0050 (6)0.0128 (6)
C180.0373 (8)0.0365 (8)0.0411 (8)0.0042 (6)0.0073 (6)0.0052 (6)
C190.0415 (8)0.0498 (9)0.0434 (9)0.0082 (7)0.0010 (7)0.0077 (7)
C200.0445 (9)0.0587 (10)0.0363 (8)0.0091 (8)0.0009 (7)0.0062 (7)
C210.0733 (13)0.0726 (13)0.0371 (9)0.0096 (11)0.0091 (9)0.0061 (9)
Geometric parameters (Å, º) top
N1—C11.406 (2)C9—H9A0.9900
N1—H1A0.8801C9—H9B0.9900
N1—H1B0.8799C10—H10A0.9800
N2—C151.400 (2)C10—H10B0.9800
N2—H2A0.8799C10—H10C0.9800
N2—H2B0.8799C11—C121.511 (2)
C1—C61.410 (2)C11—H11A0.9900
C1—C21.410 (2)C11—H11B0.9900
C2—C31.380 (2)C12—C171.386 (2)
C2—C71.513 (3)C12—C131.394 (2)
C2—C7'1.668 (9)C13—C141.388 (2)
C3—C41.377 (2)C13—H130.9500
C3—H30.9500C14—C151.413 (2)
C4—C51.3957 (19)C14—C181.511 (2)
C4—C111.512 (2)C15—C161.406 (2)
C5—C61.384 (2)C16—C171.391 (2)
C5—H50.9500C16—C201.514 (2)
C6—C91.5151 (19)C17—H170.9500
C7—C81.530 (5)C18—C191.519 (2)
C7—H7A0.9900C18—H18A0.9900
C7—H7B0.9900C18—H18B0.9900
C7'—C8'1.476 (15)C19—H19A0.9800
C7'—H7'A0.9900C19—H19B0.9800
C7'—H7'B0.9900C19—H19C0.9800
C8—H8A0.9800C20—C211.513 (2)
C8—H8B0.9800C20—H20A0.9900
C8—H8C0.9800C20—H20B0.9900
C8'—H8'A0.9800C21—H21A0.9800
C8'—H8'B0.9800C21—H21B0.9800
C8'—H8'C0.9800C21—H21C0.9800
C9—C101.516 (2)
C1—N1—H1A114.1H9A—C9—H9B107.4
C1—N1—H1B111.4C9—C10—H10A109.5
H1A—N1—H1B107.7C9—C10—H10B109.5
C15—N2—H2A116.6H10A—C10—H10B109.5
C15—N2—H2B115.6C9—C10—H10C109.5
H2A—N2—H2B112.2H10A—C10—H10C109.5
N1—C1—C6118.89 (14)H10B—C10—H10C109.5
N1—C1—C2121.28 (14)C12—C11—C4115.05 (12)
C6—C1—C2119.68 (14)C12—C11—H11A108.5
C3—C2—C1119.02 (14)C4—C11—H11A108.5
C3—C2—C7116.33 (19)C12—C11—H11B108.5
C1—C2—C7124.6 (2)C4—C11—H11B108.5
C3—C2—C7'129.8 (3)H11A—C11—H11B107.5
C1—C2—C7'106.3 (5)C17—C12—C13117.99 (14)
C4—C3—C2122.54 (14)C17—C12—C11121.21 (13)
C4—C3—H3118.7C13—C12—C11120.79 (13)
C2—C3—H3118.7C14—C13—C12122.25 (13)
C3—C4—C5117.81 (14)C14—C13—H13118.9
C3—C4—C11120.56 (13)C12—C13—H13118.9
C5—C4—C11121.54 (13)C13—C14—C15118.80 (13)
C6—C5—C4122.31 (13)C13—C14—C18122.21 (13)
C6—C5—H5118.8C15—C14—C18118.99 (13)
C4—C5—H5118.8N2—C15—C16120.62 (14)
C5—C6—C1118.61 (13)N2—C15—C14119.65 (14)
C5—C6—C9122.46 (13)C16—C15—C14119.70 (14)
C1—C6—C9118.93 (13)C17—C16—C15119.23 (14)
C2—C7—C8110.3 (3)C17—C16—C20118.89 (15)
C2—C7—H7A109.6C15—C16—C20121.84 (15)
C8—C7—H7A109.6C12—C17—C16122.01 (14)
C2—C7—H7B109.6C12—C17—H17119.0
C8—C7—H7B109.6C16—C17—H17119.0
H7A—C7—H7B108.1C14—C18—C19116.41 (13)
C8'—C7'—C2113.4 (8)C14—C18—H18A108.2
C8'—C7'—H7'A108.9C19—C18—H18A108.2
C2—C7'—H7'A108.9C14—C18—H18B108.2
C8'—C7'—H7'B108.9C19—C18—H18B108.2
C2—C7'—H7'B108.9H18A—C18—H18B107.3
H7'A—C7'—H7'B107.7C18—C19—H19A109.5
C7—C8—H8A109.5C18—C19—H19B109.5
C7—C8—H8B109.5H19A—C19—H19B109.5
H8A—C8—H8B109.5C18—C19—H19C109.5
C7—C8—H8C109.5H19A—C19—H19C109.5
H8A—C8—H8C109.5H19B—C19—H19C109.5
H8B—C8—H8C109.5C21—C20—C16111.99 (15)
C7'—C8'—H8'A109.5C21—C20—H20A109.2
C7'—C8'—H8'B109.5C16—C20—H20A109.2
H8'A—C8'—H8'B109.5C21—C20—H20B109.2
C7'—C8'—H8'C109.5C16—C20—H20B109.2
H8'A—C8'—H8'C109.5H20A—C20—H20B107.9
H8'B—C8'—H8'C109.5C20—C21—H21A109.5
C6—C9—C10115.95 (13)C20—C21—H21B109.5
C6—C9—H9A108.3H21A—C21—H21B109.5
C10—C9—H9A108.3C20—C21—H21C109.5
C6—C9—H9B108.3H21A—C21—H21C109.5
C10—C9—H9B108.3H21B—C21—H21C109.5
N1—C1—C2—C3177.50 (15)C3—C4—C11—C12137.06 (15)
C6—C1—C2—C32.0 (2)C5—C4—C11—C1246.59 (19)
N1—C1—C2—C70.4 (3)C4—C11—C12—C17103.56 (16)
C6—C1—C2—C7175.9 (2)C4—C11—C12—C1376.11 (17)
N1—C1—C2—C7'24.7 (6)C17—C12—C13—C140.6 (2)
C6—C1—C2—C7'159.8 (6)C11—C12—C13—C14179.74 (12)
C1—C2—C3—C41.2 (3)C12—C13—C14—C151.2 (2)
C7—C2—C3—C4176.90 (19)C12—C13—C14—C18177.80 (13)
C7'—C2—C3—C4153.0 (9)C13—C14—C15—N2177.22 (12)
C2—C3—C4—C50.5 (2)C18—C14—C15—N23.8 (2)
C2—C3—C4—C11175.98 (15)C13—C14—C15—C160.7 (2)
C3—C4—C5—C60.6 (2)C18—C14—C15—C16178.32 (13)
C11—C4—C5—C6175.81 (12)N2—C15—C16—C17178.22 (13)
C4—C5—C6—C11.5 (2)C14—C15—C16—C170.4 (2)
C4—C5—C6—C9177.61 (12)N2—C15—C16—C200.3 (2)
N1—C1—C6—C5177.72 (13)C14—C15—C16—C20177.59 (13)
C2—C1—C6—C52.1 (2)C13—C12—C17—C160.5 (2)
N1—C1—C6—C91.4 (2)C11—C12—C17—C16179.18 (13)
C2—C1—C6—C9176.97 (13)C15—C16—C17—C121.0 (2)
C3—C2—C7—C893.4 (5)C20—C16—C17—C12177.05 (14)
C1—C2—C7—C888.6 (4)C13—C14—C18—C190.3 (2)
C3—C2—C7'—C8'1.0 (18)C15—C14—C18—C19179.22 (13)
C1—C2—C7'—C8'153.5 (12)C17—C16—C20—C2197.07 (19)
C5—C6—C9—C100.1 (2)C15—C16—C20—C2180.9 (2)
C1—C6—C9—C10179.21 (13)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···N1i0.882.623.472 (2)165
C17—H17···Cg1ii0.952.923.8568 (17)171
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1, z+1.
4,4'-(MethAnediyl)bis(3-chloro-2,6-diethylaniline) (2) top
Crystal data top
C21H28Cl2N2Z = 2
Mr = 379.35F(000) = 404
Triclinic, P1Dx = 1.303 Mg m3
a = 8.993 (3) ÅSynchrotron radiation, λ = 0.75268 Å
b = 9.6540 (13) ÅCell parameters from 5979 reflections
c = 12.216 (4) Åθ = 1.7–31.0°
α = 69.352 (11)°µ = 0.40 mm1
β = 77.257 (12)°T = 100 K
γ = 87.670 (8)°Plate, colourless
V = 967.2 (5) Å30.19 × 0.12 × 0.05 mm
Data collection top
Rayonix SX165 CCD
diffractometer
3879 reflections with I > 2σ(I)
φ scansRint = 0.053
Absorption correction: empirical (using intensity measurements)
[XDS (Kabsch, 2010)]
θmax = 30.5°, θmin = 2.4°
Tmin = 0.001, Tmax = 1.000h = 1212
17607 measured reflectionsk = 1313
4844 independent reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0847P)2 + 0.2296P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.147(Δ/σ)max = 0.001
S = 1.05Δρmax = 0.64 e Å3
4844 reflectionsΔρmin = 0.56 e Å3
243 parametersExtinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.090 (12)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.60707 (6)1.01312 (5)0.11839 (5)0.04260 (17)
Cl20.57096 (6)0.36463 (6)0.14187 (5)0.03812 (19)0.920 (2)
Cl2'0.4357 (7)0.8207 (7)0.3210 (6)0.0426 (19)0.080 (2)
N11.1478 (2)0.8869 (2)0.18791 (17)0.0425 (4)
H1A1.1628550.9835080.1637300.051*
H1B1.2207540.8246110.1820990.051*
N20.2511 (2)0.3094 (2)0.56093 (16)0.0444 (4)
H2A0.2323170.3328200.6259410.053*
H2B0.2686190.2162270.5694760.053*
C11.0157 (2)0.8455 (2)0.16291 (16)0.0348 (4)
C21.0027 (2)0.7044 (2)0.15586 (16)0.0335 (4)
C30.8665 (2)0.6623 (2)0.13837 (16)0.0319 (4)
H30.8571450.5661890.1352050.038*
C40.7421 (2)0.7542 (2)0.12515 (15)0.0307 (3)
C50.7613 (2)0.8934 (2)0.13066 (16)0.0326 (4)
C60.8947 (2)0.9433 (2)0.14874 (16)0.0340 (4)
C71.1390 (2)0.6070 (2)0.16344 (18)0.0382 (4)
H7A1.2296200.6663530.1069430.046*
H7B1.1576660.5784130.2453030.046*
C81.1257 (3)0.4681 (3)0.1365 (2)0.0443 (5)
H8A1.1050260.4940730.0562750.066*
H8B1.0419720.4037090.1960630.066*
H8C1.2213990.4160630.1394880.066*
C90.9082 (3)1.0940 (2)0.15711 (18)0.0405 (4)
H9A0.8429551.1625960.1084850.049*
H9B1.0150741.1328010.1234060.049*
C100.8605 (3)1.0892 (2)0.28658 (19)0.0459 (5)
H10A0.8701971.1891980.2882160.069*
H10B0.9265831.0234040.3345550.069*
H10C0.7543121.0520720.3199260.069*
C110.5968 (2)0.6974 (2)0.10932 (16)0.0318 (4)
H11A0.6227480.6467430.0502610.038*
H11B0.5337290.7822900.0771990.038*
C120.5054 (2)0.5907 (2)0.22658 (16)0.0301 (3)
C130.4873 (2)0.4395 (2)0.25223 (16)0.0312 (4)
H130.5316390.4006760.1915700.037*0.080 (2)
C140.4072 (2)0.3412 (2)0.36264 (17)0.0343 (4)
C150.3368 (2)0.4002 (2)0.45127 (16)0.0345 (4)
C160.3530 (2)0.5527 (2)0.42903 (17)0.0338 (4)
C170.4371 (2)0.6427 (2)0.31877 (16)0.0316 (4)
H170.4490790.7452420.3048690.038*0.920 (2)
C180.3987 (3)0.1759 (2)0.3901 (2)0.0413 (4)
H18A0.4039560.1243300.4749620.050*
H18B0.4887230.1489710.3395520.050*
C190.2542 (3)0.1209 (3)0.3690 (2)0.0524 (6)
H19A0.2504680.1675820.2842800.079*
H19B0.1643230.1466790.4188740.079*
H19C0.2552700.0130570.3902750.079*
C200.2797 (2)0.6213 (3)0.52112 (19)0.0410 (4)
H20A0.3340780.7168050.5023720.049*
H20B0.2919000.5550930.6012870.049*
C210.1098 (3)0.6484 (3)0.5257 (2)0.0481 (5)
H21A0.0960240.7091840.4455460.072*
H21B0.0713810.7001430.5817350.072*
H21C0.0533580.5532980.5526710.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0462 (3)0.0385 (3)0.0499 (3)0.0102 (2)0.0180 (2)0.0203 (2)
Cl20.0439 (3)0.0365 (3)0.0389 (3)0.0056 (2)0.0091 (2)0.0197 (2)
Cl2'0.035 (3)0.045 (3)0.058 (4)0.005 (2)0.017 (3)0.027 (3)
N10.0361 (9)0.0487 (10)0.0464 (9)0.0057 (7)0.0128 (7)0.0182 (8)
N20.0486 (10)0.0485 (10)0.0345 (8)0.0073 (8)0.0085 (8)0.0122 (7)
C10.0338 (9)0.0434 (10)0.0289 (8)0.0044 (7)0.0075 (7)0.0137 (7)
C20.0320 (9)0.0408 (9)0.0305 (8)0.0035 (7)0.0093 (7)0.0149 (7)
C30.0337 (9)0.0362 (8)0.0300 (8)0.0027 (7)0.0103 (7)0.0148 (7)
C40.0298 (8)0.0356 (8)0.0274 (8)0.0002 (7)0.0070 (7)0.0116 (7)
C50.0348 (9)0.0340 (8)0.0304 (8)0.0029 (7)0.0092 (7)0.0120 (7)
C60.0381 (9)0.0350 (9)0.0293 (8)0.0039 (7)0.0073 (7)0.0114 (7)
C70.0323 (9)0.0482 (10)0.0388 (10)0.0058 (8)0.0127 (8)0.0187 (8)
C80.0408 (10)0.0486 (11)0.0487 (11)0.0104 (9)0.0149 (9)0.0216 (9)
C90.0483 (11)0.0367 (9)0.0371 (10)0.0071 (8)0.0092 (9)0.0132 (8)
C100.0581 (13)0.0417 (10)0.0409 (10)0.0098 (9)0.0078 (10)0.0187 (9)
C110.0316 (8)0.0352 (8)0.0312 (8)0.0010 (7)0.0100 (7)0.0130 (7)
C120.0274 (8)0.0348 (8)0.0323 (8)0.0031 (6)0.0115 (7)0.0142 (7)
C130.0305 (8)0.0357 (8)0.0324 (8)0.0031 (7)0.0118 (7)0.0152 (7)
C140.0333 (9)0.0349 (9)0.0385 (9)0.0022 (7)0.0145 (8)0.0137 (7)
C150.0304 (8)0.0433 (10)0.0310 (8)0.0009 (7)0.0117 (7)0.0115 (7)
C160.0297 (8)0.0444 (10)0.0340 (9)0.0043 (7)0.0126 (7)0.0188 (8)
C170.0300 (8)0.0353 (8)0.0353 (9)0.0037 (7)0.0130 (7)0.0161 (7)
C180.0446 (11)0.0336 (9)0.0457 (11)0.0016 (8)0.0141 (9)0.0116 (8)
C190.0611 (14)0.0389 (10)0.0621 (14)0.0052 (10)0.0253 (12)0.0160 (10)
C200.0382 (10)0.0556 (12)0.0385 (10)0.0054 (9)0.0122 (8)0.0258 (9)
C210.0411 (11)0.0651 (14)0.0501 (12)0.0083 (10)0.0120 (9)0.0344 (11)
Geometric parameters (Å, º) top
Cl1—C51.7666 (19)C10—H10A0.9800
Cl2—C131.7614 (19)C10—H10B0.9800
Cl2'—C171.728 (6)C10—H10C0.9800
N1—C11.395 (2)C11—C121.516 (3)
N1—H1A0.8801C11—H11A0.9900
N1—H1B0.8801C11—H11B0.9900
N2—C151.389 (3)C12—C131.389 (2)
N2—H2A0.8802C12—C171.402 (2)
N2—H2B0.8799C13—C141.401 (3)
C1—C21.406 (3)C13—H130.9500
C1—C61.410 (3)C14—C151.415 (3)
C2—C31.389 (2)C14—C181.511 (3)
C2—C71.513 (3)C15—C161.407 (3)
C3—C41.401 (2)C16—C171.386 (3)
C3—H30.9500C16—C201.517 (3)
C4—C51.388 (2)C17—H170.9500
C4—C111.513 (2)C18—C191.529 (3)
C5—C61.400 (3)C18—H18A0.9900
C6—C91.506 (3)C18—H18B0.9900
C7—C81.504 (3)C19—H19A0.9800
C7—H7A0.9900C19—H19B0.9800
C7—H7B0.9900C19—H19C0.9800
C8—H8A0.9800C20—C211.531 (3)
C8—H8B0.9800C20—H20A0.9900
C8—H8C0.9800C20—H20B0.9900
C9—C101.529 (3)C21—H21A0.9800
C9—H9A0.9900C21—H21B0.9800
C9—H9B0.9900C21—H21C0.9800
C1—N1—H1A113.1C12—C11—H11A109.3
C1—N1—H1B111.5C4—C11—H11B109.3
H1A—N1—H1B124.1C12—C11—H11B109.3
C15—N2—H2A123.3H11A—C11—H11B107.9
C15—N2—H2B109.2C13—C12—C17116.00 (17)
H2A—N2—H2B117.7C13—C12—C11124.17 (16)
N1—C1—C2119.48 (18)C17—C12—C11119.80 (16)
N1—C1—C6119.95 (18)C12—C13—C14123.61 (17)
C2—C1—C6120.54 (17)C12—C13—Cl2118.97 (14)
C3—C2—C1118.41 (17)C14—C13—Cl2117.41 (14)
C3—C2—C7122.75 (17)C12—C13—H13118.2
C1—C2—C7118.81 (17)C14—C13—H13118.2
C2—C3—C4123.40 (17)C13—C14—C15118.00 (17)
C2—C3—H3118.3C13—C14—C18122.08 (18)
C4—C3—H3118.3C15—C14—C18119.89 (18)
C5—C4—C3116.10 (16)N2—C15—C16119.08 (18)
C5—C4—C11124.22 (16)N2—C15—C14120.80 (18)
C3—C4—C11119.66 (16)C16—C15—C14120.12 (18)
C4—C5—C6123.76 (17)C17—C16—C15118.63 (17)
C4—C5—Cl1118.40 (14)C17—C16—C20119.26 (18)
C6—C5—Cl1117.81 (14)C15—C16—C20122.10 (18)
C5—C6—C1117.77 (17)C16—C17—C12123.59 (17)
C5—C6—C9121.62 (18)C16—C17—Cl2'107.0 (3)
C1—C6—C9120.57 (17)C12—C17—Cl2'129.4 (3)
C8—C7—C2115.95 (16)C16—C17—H17118.2
C8—C7—H7A108.3C12—C17—H17118.2
C2—C7—H7A108.3C14—C18—C19113.90 (17)
C8—C7—H7B108.3C14—C18—H18A108.8
C2—C7—H7B108.3C19—C18—H18A108.8
H7A—C7—H7B107.4C14—C18—H18B108.8
C7—C8—H8A109.5C19—C18—H18B108.8
C7—C8—H8B109.5H18A—C18—H18B107.7
H8A—C8—H8B109.5C18—C19—H19A109.5
C7—C8—H8C109.5C18—C19—H19B109.5
H8A—C8—H8C109.5H19A—C19—H19B109.5
H8B—C8—H8C109.5C18—C19—H19C109.5
C6—C9—C10111.93 (17)H19A—C19—H19C109.5
C6—C9—H9A109.2H19B—C19—H19C109.5
C10—C9—H9A109.2C16—C20—C21113.45 (16)
C6—C9—H9B109.2C16—C20—H20A108.9
C10—C9—H9B109.2C21—C20—H20A108.9
H9A—C9—H9B107.9C16—C20—H20B108.9
C9—C10—H10A109.5C21—C20—H20B108.9
C9—C10—H10B109.5H20A—C20—H20B107.7
H10A—C10—H10B109.5C20—C21—H21A109.5
C9—C10—H10C109.5C20—C21—H21B109.5
H10A—C10—H10C109.5H21A—C21—H21B109.5
H10B—C10—H10C109.5C20—C21—H21C109.5
C4—C11—C12111.77 (14)H21A—C21—H21C109.5
C4—C11—H11A109.3H21B—C21—H21C109.5
N1—C1—C2—C3176.01 (17)C17—C12—C13—C140.3 (2)
C6—C1—C2—C31.9 (3)C11—C12—C13—C14177.54 (16)
N1—C1—C2—C76.0 (3)C17—C12—C13—Cl2179.42 (12)
C6—C1—C2—C7176.03 (17)C11—C12—C13—Cl21.5 (2)
C1—C2—C3—C41.2 (3)C12—C13—C14—C152.1 (3)
C7—C2—C3—C4176.68 (17)Cl2—C13—C14—C15178.78 (13)
C2—C3—C4—C50.1 (3)C12—C13—C14—C18175.87 (16)
C2—C3—C4—C11178.58 (17)Cl2—C13—C14—C183.2 (2)
C3—C4—C5—C60.3 (3)C13—C14—C15—N2177.64 (16)
C11—C4—C5—C6178.12 (17)C18—C14—C15—N24.3 (3)
C3—C4—C5—Cl1178.45 (13)C13—C14—C15—C162.3 (3)
C11—C4—C5—Cl10.1 (2)C18—C14—C15—C16175.74 (16)
C4—C5—C6—C10.5 (3)N2—C15—C16—C17179.18 (16)
Cl1—C5—C6—C1177.74 (14)C14—C15—C16—C170.8 (3)
C4—C5—C6—C9178.43 (18)N2—C15—C16—C200.0 (3)
Cl1—C5—C6—C90.2 (2)C14—C15—C16—C20179.95 (16)
N1—C1—C6—C5176.37 (17)C15—C16—C17—C121.1 (3)
C2—C1—C6—C51.6 (3)C20—C16—C17—C12178.07 (15)
N1—C1—C6—C91.6 (3)C15—C16—C17—Cl2'179.6 (2)
C2—C1—C6—C9179.58 (17)C20—C16—C17—Cl2'1.2 (3)
C3—C2—C7—C86.9 (3)C13—C12—C17—C161.4 (2)
C1—C2—C7—C8170.95 (19)C11—C12—C17—C16179.33 (16)
C5—C6—C9—C1091.6 (2)C13—C12—C17—Cl2'179.5 (3)
C1—C6—C9—C1086.4 (2)C11—C12—C17—Cl2'1.6 (3)
C5—C4—C11—C12102.4 (2)C13—C14—C18—C1996.4 (2)
C3—C4—C11—C1276.0 (2)C15—C14—C18—C1985.6 (2)
C4—C11—C12—C13109.95 (18)C17—C16—C20—C2199.5 (2)
C4—C11—C12—C1767.9 (2)C15—C16—C20—C2179.7 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cg1i0.882.633.327 (2)137
C7—H7B···Cg2ii0.992.833.579 (2)133
C20—H20B···Cg2i0.992.813.434 (2)132
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.
 

Acknowledgements

Anastasia Kondrateva is acknowledged for assistance with the NMR measurements. The research was carried out as a part of the Integrated Scientific and Technical Programme of the Full Innovation Cycle, approved by Order of the Government of the Russian Federation dated July 4, 2023 No. 1789-r. for the event "New composite materials: design and production technologies" with financial support from the Ministry of Education and Science of Russia under Agreement dated August 28, 2023 No. 075-15-2023-616 (inter­nal number 14.1789.23.0014/KNTP).

Funding information

Funding for this research was provided by: Ministry of Education and Science of Russia (award No. 075-15-2023-616).

References

First citationBauer, J. & Bauer, M. (2001). Macromol. Chem. Phys. 202, 2213–2220.  CrossRef CAS Google Scholar
First citationBel'skii, V. K., Rotaru, V. K. & Kruchinin, M. M. (1983). Kristallografiya, 28, 695–698.  CAS Google Scholar
First citationBhattacharya, S. & Saha, B. K. (2011). Cryst. Growth Des. 11, 2194–2204.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBulgakov, B. A., Morozov, O. S., Timoshkin, I. A., Babkin, A. V. & Kepman, A. V. (2021). Polym. Sci. Ser. C. 63, 64–101.  CrossRef CAS Google Scholar
First citationCavallo, L., Correa, A., Costabile, C. & Jacobsen, H. (2005). J. Organomet. Chem. 690, 5407–5413.  Web of Science CrossRef CAS Google Scholar
First citationCosta, M. L., Pardini, L. C. & Rezende, M. C. (2005). Mat. Res. 8, 65–70.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDoyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL, USA.  Google Scholar
First citationEscayola, S., Bahri-Laleh, N. & Poater, A. (2024). Chem. Soc. Rev. 53, 853–882.  CrossRef CAS PubMed Google Scholar
First citationGibson, E. K., Winfield, J. M., Muir, K. W., Carr, R. H., Eaglesham, A., Gavezzotti, A. & Lennon, D. (2010). Phys. Chem. Chem. Phys. 12, 3824–3833.  CSD CrossRef CAS PubMed Google Scholar
First citationGómez-Suárez, A., Nelson, D. J. & Nolan, S. P. (2017). Chem. Commun. 53, 2650–2660.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKabsch, W. (2010). Acta Cryst. D66, 125–132.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKong, D. & Park, C. E. (2003). Chem. Mater. 15, 419–424.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLahlali, D., Naffakh, M. & Dumon, M. (2005). Polym. Eng. Sci. 45, 1581–1589.  CrossRef CAS Google Scholar
First citationLahlali, N., Dupuy, J. & Dumon, M. (2006). e-Polymers, 6, 080.  Google Scholar
First citationPeng, L., Zhang, W., Deng, C., Wang, Z., Zhang, Y. & Qian, H. (2018). Macro Chem. & Phys. 219, 1800156.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSvetogorov, R. D., Dorovatovskii, P. V. & Lazarenko, V. A. (2020). Cryst. Res. Technol. 55, 1900184.  Web of Science CrossRef Google Scholar
First citationUeda, T., Nishio, T. & Inoue, S. (2017). Open J. Org. Polym. Mater. 07, 47–60.  CrossRef CAS Google Scholar
First citationVoelker, T., Althaus, H. & Schmidt, A. (1988). J. Elastomers Plast. 20, 36–45.  CrossRef CAS Google Scholar
First citationYu, S., Li, X., Zou, M., Guo, X., Ma, H. & Wang, S. (2020). ACS Omega, 5, 23268–23275.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds