

research communications

Synthesis and crystal structures of 4,4′-methylenebis(2,6-diethylaniline) and 4,4′-methylenebis(3-chloro-2,6-diethylaniline)
aDepartment of Chemical Technology and New Materials, Faculty of Chemistry, Lomonosov Moscow State University, GSP-1, 1-3, Leninskiye Gory, Moscow, 119991, Russian Federation
*Correspondence e-mail: daniil.smirnov@chemistry.msu.ru
The title compounds 4,4′-methylenebis(2,6-diethylaniline) (C21H30N2, 1) and 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (C21H28Cl2N2, 2) are of significant interest as curing agents for a wide range of resins and as building blocks for sterically demanding compounds in the synthesis of ligands for catalysis. This paper describes their synthesis and the preparation of single crystals, with their structures determined through single-crystal X-ray analysis. The presence of the chlorine substituent slightly affects the twist angle between the two aromatic components. The molecules of compound 1 form a network structure through intermolecular N—H⋯N bonds and C—H⋯π interactions, while in the of compound 2, the molecules are assembled solely through N—H⋯π interactions. Consequently, despite their chemical similarity, it is the precise structural data that enables us to explain their differing reactivity and opens up the possibility of evaluating steric properties for the development of new materials and ligands.
Keywords: crystal structure; methylenedianiline; hydrogen bonding; synthesis; disorder.
1. Chemical context
Aromatic diamines are widely utilized as hardeners for polyurethanes (Ueda et al., 2017), epoxy resins (Yu et al., 2020
; Costa et al., 2005
), cyanate ester (Bauer & Bauer, 2001
) and phthalonitriles (Bulgakov et al., 2021
). The reactivity of is primarily determined by their nucleophilicity, which depends on the electronic structure and geometry of the molecules. In the production of castings and composite materials, the gelation time of the binder is a critical factor: the longer the gelation time at low temperatures, the more time is available for the impregnation of the reinforcing filler or the moulding of products. Hardeners with low activity at room temperature also facilitate the manufacture of prepregs with a long shelf life. To decrease the reaction rate, the nucleophilicity of the diamine can be diminished by introducing electron-withdrawing substituents. An example of such a modification is 4,4′-diaminodiphenylsulfone (DDS), which exhibits significantly lower activity than 4,4′-methylenedianiline (MDA) (Kong & Park, 2003
). Another strategy for reducing the activity of involves the introduction of sterically bulky groups in the ortho position, as seen in 4,4′-methylenebis(2,6-diethylaniline) (MDEA). An even more pronounced effect can be achieved by additionally incorporating chlorine into the 3-position of the aromatic ring, specifically in 4,4′-methylenebis(3-chloro-2,6-diethylaniline) (MCDEA). In terms of reactivity with epoxy monomers, these compounds follow the order: MDEA > DDS > MCDEA (Lahlali et al., 2005
, 2006
). Similarly, in reactions with isocyanates, the order of reactivity is MDA > MDEA > MCDEA (Voelker et al., 1988
). Notably, a molecule carrying a methyl group in the meta position instead of chlorine, exhibits approximately the same activity as MDEA. Consequently, this raises the question of which factor — steric or electronic – primarily influences the activity of hardeners. Therefore, studying the molecular structure is particularly intriguing for comparing the of the amine in MDEA and MCDEA.
Another potential application of ortho-substituted anilines is the synthesis of N-heterocyclic including polymeric structures (Peng et al., 2018). The properties of as ligands are typically assessed based on the electronic and steric characteristics of the substituents on the nitrogen atoms (Cavallo et al., 2005
). The is quantitatively described by the parameter Vbur%, which represents the volume of a sphere occupied by the ligand (Gomez-Suarez et al., 2017
). Molecular structure data obtained from X-ray crystallography can be utilized to calculate Vbur% and more accurately predict the catalytic properties of molecules through machine learning (Escayola et al., 2024
). Consequently, the parameters outlined in this paper will be valuable for various scientists seeking to understand the reactivity of curing agents and predict the properties of structures based on the compounds discussed.
2. Structural commentary
The molecular structures of the title compounds 1 and 2, which differ in the presence of an additional chlorine substituent at meta position to amine, are illustrated in Figs. 1 and 2
, respectively. In both cases, the organic molecules occupy general positions. Depending on the presence of chlorine substituents, the ring systems are twisted to a greater or lesser extent. In molecule 1, the dihedral angle between the two aromatic parts is as large as 64.13 (6)°, while the corresponding angle in molecule 2 is 39.59 (8)°. The dihedral angle between those parts approximately equal for both structures [80.24 (4) and 77.72 (6)° for the 1 and 2, respectively]. In molecule 2, the chlorine atom in the C12–C17 ring is disordered with an occupancy ratio of 0.920 (2):0.08 (2).
![]() | Figure 1 The molecular structure of 1, with displacement ellipsoids drawn at the 50% probability level. The minor occupancy components are omitted for clarity. |
![]() | Figure 2 The molecular structure of 2, with displacement ellipsoids drawn at the 50% probability level. The minor occupancy components are omitted for clarity. |
In the unsubstituted molecule 1 the ethyl groups (C9–C10 and C18–C19) are nearly co-planar with their phenyl rings and the ethyl group connected with the C2 atom is disordered. The major components (73.6%) for C7–C8 and ethyl group C20–C21 are directed almost orthogonal [88.6 (4)° and 80.9 (2)°, respectively] to the plane of the phenyl rings, while the minor components are slightly inclined with torsion angle C1—C2—C7′—C8′ = 153.5 (12)°.
The 2 causes the ethyl groups to rotate out of the plane of the phenyl ring. The ethyl groups connected with the C12–C17 phenyl ring are parallel to each other with the torsion angle C19—C18—C20—C21 being 0.60 (17)° while the torsion angle C8—C7—C9—C10 between other ethyl fragments is 116.7 (3)°.
exerted by the chlorine atom in molecule3. Supramolecular features
In the 1, the molecules form infinite chains extending along [010] via N2—H2A⋯N1 hydrogen bonds [N2⋯N1 = 3.472 (2) Å; Fig. 3, Table 1
]. Additionally, the molecules are grafted together in a herringbone-like manner by C—H⋯π interactions [3.8568 (17) Å] involving the phenyl H17 atom and the centroids of the C1–C6 phenyl rings of adjacent molecules.
|
![]() | Figure 3 Fragment of the crystal packing of 1. |
In contrast, these types of interaction are absent in the 2. The molecules form centrosymmetric dimers by N—H⋯π interactions [3.327 (2) Å] between N2—H2A and the C1–C6 ring centroid (Table 2, Fig. 4
). Cohesion of the packing is provided by C7—H7B⋯π [3.579 (2) Å] and C20—H20B⋯π [3.434 (2) Å] interactions in the [100] direction and weak van der Waals interactions between the dimers.
|
![]() | Figure 4 Fragment of the crystal packing of 2. |
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.45 updated to November 2023; Groom et al., 2016) for 1 and 2 revealed that these structures had not been published previously. However, a similar uncharged structure without substituents in the ring, 4,4′-methylenebis(aniline), had been described in two independent experiments [CSD refcodes CEHCOH (Bel'skii et al., 1983
) and CEHCOH01 (Gibson et al., 2010
)]. Despite the similarity in molecular structures and number of analogues interactions between these and the current study, such a herringbone-like packing motif does not occur in the previously published structures that can be explained by the rotational degree of freedom.
For the closest analogue with methyl substituents in the phenyl ring, 4,4′-methylenebis(2,6-dimethylaniline), a search resulted in 14 hits with CSD refcodes AWAYAZ–AWAYAZ13 (Bhattacharya & Saha, 2011). According to X-ray investigations, this structure was discovered in two polymorphic modifications in different space groups, C2/c and P
; additionally, it was established in the original work that both polymorphs crystallize simultaneously from the solution in the presence of additional reagents. In general, the weakness of intermolecular interactions is proved by the discovery of weak N—H⋯N interactions in one polymorphic form and the absence of such interactions in other structures.
The comparison of structures 1 and 2 and previously published analogues revealed that the twist angle between the two aromatic parts for the structure 1 [115.87 (6)°] lies within the characteristic range [44.21 (6)–134.35 (5)°], while the corresponding angle for the structure of 2 is smaller at 39.59 (8)°.
5. Synthesis and crystallization
The title compounds were prepared as follows:
4,4′-Methylenebis(2,6-diethylaniline) (1)
A mixture of 2,6-diethylaniline (14.92 g, 0.1 mol), paraformaldehyde (0.15 g, 0.05 mol) and 36% hydrochloric acid (8.6 mL, 0.1 mol) in water (100 mL) in a round-bottom flask was heated to 353 K for 3 h in an oil bath under argon. The reaction mixture was cooled to room temperature and sodium hydroxide (4.40 g, 0.11 mol) was added. The precipitate was filtered and dried at 343 K in an oven in air for 12 h. Yield 14.52 g (94%). Single crystals suitable for X-ray analysis were grown by slow cooling (363–;303 K, 5 K h−1) of a solution of the substance in a DMSO/water (80:20, v:v) mixture.
1H NMR (600 MHz, DMSO-d6) δ 6.64 (s, 4H), 4.29 (s, 4H), 3.56 (s, 2H), 2.42 (q, J = 7.5 Hz, 8H), 1.09 (t, J = 7.5 Hz, 12H).
4,4′-Methylenebis(3-chloro-2,6-diethylaniline) (2)
A mixture of 3-chloro-2,6-diethylaniline (18.38 g, 0.1 mol), paraformaldehyde (0.15 g, 0.05 mol) and 36% hydrochloric acid (8.6 mL, 0.1 mol) in water (130 mL) in round-bottom flask was heated to 353 K for 3 h in an oil bath under argon. The reaction mixture was cooled to room temperature and sodium hydroxide (4.40 g, 0.11 mol) was added. The precipitate was filtered and dried at 343 K in an oven in air for 12 h. Yield 17.55 g (93%). Single crystals suitable for X-ray analysis were grown by slow evaporation of the solvent from a solution of the substance in toluene.
1H NMR (600 MHz, DMSO-d6) δ 6.51 (s, 2H), 4.70 (s, 4H), 3.84 (s, 2H), 2.72 (q, J = 7.4 Hz, 4H), 2.37 (q, J = 7.5 Hz, 4H), 1.08–0.99 (m, 12H).
6. Refinement
Crystal data, data collection and structure . X-ray diffraction studies for (2) were carried out on the Belok'beamline (Svetogorov et al., 2020
) of the National Research Center "Kurchatov Institute" (Moscow, Russian Federation) using a Rayonix SX165 CCD detector. All hydrogen atoms in the structures of 1 and 2 were placed in calculated positions and refined using a riding model [Uiso(H) = 1.2–1.5Ueq(parent atom)]. In the structure of 2, one chlorine atom was found to be disordered over two positions with a refined occupancy ratio of 0.920 (2): 0.080 (2). The ethyl group connected to the C2 atom was found to be disordered with occupancy ratios of 0.736 (11)/0.264 (11) in the structure of 1. A SADI instruction was used to restrain the C7—C2 and C7′—C2 bonds in 1.
|
Supporting information
https://doi.org/10.1107/S2056989025000234/ny2009sup1.cif
contains datablocks 1, 2. DOI:Structure factors: contains datablock 1. DOI: https://doi.org/10.1107/S2056989025000234/ny20091sup2.hkl
Structure factors: contains datablock 2. DOI: https://doi.org/10.1107/S2056989025000234/ny20092sup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000234/ny20091sup4.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000234/ny20092sup5.mol
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000234/ny20091sup6.cml
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000234/ny20092sup7.cml
C21H30N2 | F(000) = 680 |
Mr = 310.47 | Dx = 1.121 Mg m−3 |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 8.9895 (3) Å | Cell parameters from 9874 reflections |
b = 11.8589 (3) Å | θ = 4.5–69.6° |
c = 17.6765 (5) Å | µ = 0.49 mm−1 |
β = 102.4188 (11)° | T = 150 K |
V = 1840.32 (9) Å3 | Prism, colourless |
Z = 4 | 0.32 × 0.21 × 0.13 mm |
Bruker D8 Venture diffractometer | 3212 reflections with I > 2σ(I) |
Radiation source: microfocus sealed X-ray tube | Rint = 0.035 |
φ and ω scans | θmax = 69.6°, θmin = 4.5° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −10→10 |
Tmin = 0.639, Tmax = 0.753 | k = −14→14 |
22931 measured reflections | l = −21→21 |
3455 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.135 | w = 1/[σ2(Fo2) + (0.0668P)2 + 0.8039P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
3455 reflections | Δρmax = 0.51 e Å−3 |
236 parameters | Δρmin = −0.33 e Å−3 |
1 restraint |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.50801 (18) | 0.22887 (12) | 0.44320 (9) | 0.0495 (4) | |
H1A | 0.444518 | 0.203843 | 0.401577 | 0.073 (7)* | |
H1B | 0.454778 | 0.243338 | 0.478419 | 0.042 (5)* | |
N2 | 0.76330 (16) | 1.02220 (12) | 0.52830 (8) | 0.0434 (3) | |
H2A | 0.702084 | 1.069094 | 0.497865 | 0.052* | |
H2B | 0.841893 | 1.056893 | 0.557216 | 0.052* | |
C1 | 0.59366 (18) | 0.32315 (12) | 0.42982 (9) | 0.0371 (3) | |
C2 | 0.6281 (2) | 0.34245 (13) | 0.35674 (9) | 0.0450 (4) | |
C3 | 0.7176 (2) | 0.43384 (13) | 0.34743 (8) | 0.0422 (4) | |
H3 | 0.738899 | 0.447362 | 0.297852 | 0.051* | |
C4 | 0.77715 (16) | 0.50617 (12) | 0.40722 (8) | 0.0322 (3) | |
C5 | 0.74348 (15) | 0.48530 (12) | 0.47942 (8) | 0.0288 (3) | |
H5 | 0.782842 | 0.534865 | 0.521151 | 0.035* | |
C6 | 0.65472 (15) | 0.39491 (11) | 0.49237 (8) | 0.0293 (3) | |
C7 | 0.5780 (5) | 0.2673 (2) | 0.28671 (14) | 0.0371 (8) | 0.736 (11) |
H7A | 0.572874 | 0.188130 | 0.303718 | 0.045* | 0.736 (11) |
H7B | 0.653349 | 0.271536 | 0.253388 | 0.045* | 0.736 (11) |
C7' | 0.493 (2) | 0.2769 (8) | 0.2921 (5) | 0.056 (4) | 0.264 (11) |
H7'A | 0.522766 | 0.196888 | 0.288739 | 0.068* | 0.264 (11) |
H7'B | 0.396857 | 0.278633 | 0.310534 | 0.068* | 0.264 (11) |
C8 | 0.4216 (5) | 0.3041 (3) | 0.2405 (3) | 0.0527 (11) | 0.736 (11) |
H8A | 0.391557 | 0.255842 | 0.194700 | 0.079* | 0.736 (11) |
H8B | 0.426673 | 0.382675 | 0.224074 | 0.079* | 0.736 (11) |
H8C | 0.346445 | 0.297264 | 0.272966 | 0.079* | 0.736 (11) |
C8' | 0.4671 (12) | 0.3274 (9) | 0.2140 (6) | 0.047 (2) | 0.264 (11) |
H8'A | 0.403094 | 0.276881 | 0.176766 | 0.070* | 0.264 (11) |
H8'B | 0.564933 | 0.338586 | 0.199170 | 0.070* | 0.264 (11) |
H8'C | 0.415683 | 0.400219 | 0.214345 | 0.070* | 0.264 (11) |
C9 | 0.62289 (17) | 0.36943 (13) | 0.57138 (8) | 0.0355 (3) | |
H9A | 0.659524 | 0.292198 | 0.586402 | 0.043* | |
H9B | 0.511194 | 0.369814 | 0.566853 | 0.043* | |
C10 | 0.6940 (2) | 0.44930 (16) | 0.63601 (9) | 0.0455 (4) | |
H10A | 0.659453 | 0.526391 | 0.622011 | 0.068* | |
H10B | 0.805186 | 0.445821 | 0.643944 | 0.068* | |
H10C | 0.663280 | 0.427331 | 0.683880 | 0.068* | |
C11 | 0.88289 (18) | 0.60062 (13) | 0.39550 (9) | 0.0391 (4) | |
H11A | 0.988886 | 0.577452 | 0.418229 | 0.047* | |
H11B | 0.874584 | 0.611130 | 0.339183 | 0.047* | |
C12 | 0.85318 (16) | 0.71251 (12) | 0.43033 (8) | 0.0339 (3) | |
C13 | 0.73112 (15) | 0.78002 (12) | 0.39480 (8) | 0.0314 (3) | |
H13 | 0.666330 | 0.754365 | 0.348255 | 0.038* | |
C14 | 0.70101 (16) | 0.88340 (12) | 0.42509 (8) | 0.0317 (3) | |
C15 | 0.79580 (17) | 0.92047 (13) | 0.49506 (8) | 0.0342 (3) | |
C16 | 0.91879 (17) | 0.85307 (14) | 0.53197 (8) | 0.0373 (3) | |
C17 | 0.94554 (16) | 0.75095 (14) | 0.49856 (9) | 0.0374 (3) | |
H17 | 1.029684 | 0.706187 | 0.523247 | 0.045* | |
C18 | 0.57200 (17) | 0.95838 (13) | 0.38505 (9) | 0.0385 (3) | |
H18A | 0.615497 | 1.031988 | 0.374583 | 0.046* | |
H18B | 0.504104 | 0.972245 | 0.421362 | 0.046* | |
C19 | 0.47564 (19) | 0.91440 (15) | 0.30954 (10) | 0.0464 (4) | |
H19A | 0.539667 | 0.904872 | 0.271582 | 0.070* | |
H19B | 0.394034 | 0.968336 | 0.289597 | 0.070* | |
H19C | 0.431041 | 0.841598 | 0.318726 | 0.070* | |
C20 | 1.0202 (2) | 0.88664 (17) | 0.60861 (9) | 0.0477 (4) | |
H20A | 1.119249 | 0.847402 | 0.614784 | 0.057* | |
H20B | 1.039622 | 0.968796 | 0.608464 | 0.057* | |
C21 | 0.9492 (3) | 0.8578 (2) | 0.67641 (11) | 0.0614 (5) | |
H21A | 0.852117 | 0.897807 | 0.671087 | 0.092* | |
H21B | 1.018192 | 0.880692 | 0.724765 | 0.092* | |
H21C | 0.931458 | 0.776368 | 0.677302 | 0.092* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0589 (9) | 0.0356 (7) | 0.0489 (8) | −0.0072 (6) | 0.0002 (7) | 0.0029 (6) |
N2 | 0.0480 (8) | 0.0408 (7) | 0.0411 (7) | −0.0051 (6) | 0.0087 (6) | −0.0037 (6) |
C1 | 0.0444 (8) | 0.0276 (7) | 0.0353 (8) | 0.0053 (6) | 0.0000 (6) | 0.0041 (6) |
C2 | 0.0686 (11) | 0.0323 (8) | 0.0296 (8) | 0.0050 (7) | 0.0005 (7) | −0.0005 (6) |
C3 | 0.0659 (10) | 0.0359 (8) | 0.0257 (7) | 0.0120 (7) | 0.0121 (7) | 0.0035 (6) |
C4 | 0.0348 (7) | 0.0317 (7) | 0.0309 (7) | 0.0117 (6) | 0.0088 (6) | 0.0056 (5) |
C5 | 0.0284 (6) | 0.0307 (7) | 0.0264 (6) | 0.0086 (5) | 0.0037 (5) | 0.0006 (5) |
C6 | 0.0293 (7) | 0.0300 (7) | 0.0277 (7) | 0.0101 (5) | 0.0044 (5) | 0.0036 (5) |
C7 | 0.0406 (18) | 0.0373 (12) | 0.0329 (12) | 0.0057 (11) | 0.0069 (10) | −0.0055 (8) |
C7' | 0.089 (10) | 0.039 (4) | 0.037 (4) | −0.018 (5) | 0.003 (5) | −0.003 (3) |
C8 | 0.056 (2) | 0.0475 (17) | 0.045 (2) | 0.0010 (14) | −0.0112 (16) | −0.0127 (15) |
C8' | 0.050 (5) | 0.049 (4) | 0.041 (5) | −0.003 (4) | 0.007 (3) | −0.007 (4) |
C9 | 0.0344 (7) | 0.0403 (8) | 0.0328 (7) | 0.0075 (6) | 0.0099 (6) | 0.0074 (6) |
C10 | 0.0533 (9) | 0.0575 (10) | 0.0291 (7) | 0.0086 (8) | 0.0163 (7) | −0.0005 (7) |
C11 | 0.0380 (8) | 0.0419 (8) | 0.0403 (8) | 0.0090 (6) | 0.0151 (6) | 0.0086 (6) |
C12 | 0.0308 (7) | 0.0361 (8) | 0.0367 (7) | 0.0000 (6) | 0.0114 (6) | 0.0091 (6) |
C13 | 0.0295 (7) | 0.0355 (7) | 0.0292 (7) | −0.0026 (5) | 0.0065 (5) | 0.0048 (5) |
C14 | 0.0302 (7) | 0.0339 (7) | 0.0316 (7) | −0.0024 (6) | 0.0081 (5) | 0.0067 (6) |
C15 | 0.0368 (7) | 0.0351 (7) | 0.0325 (7) | −0.0064 (6) | 0.0112 (6) | 0.0036 (6) |
C16 | 0.0334 (7) | 0.0455 (9) | 0.0322 (7) | −0.0071 (6) | 0.0053 (6) | 0.0088 (6) |
C17 | 0.0304 (7) | 0.0434 (8) | 0.0373 (8) | 0.0004 (6) | 0.0050 (6) | 0.0128 (6) |
C18 | 0.0373 (8) | 0.0365 (8) | 0.0411 (8) | 0.0042 (6) | 0.0073 (6) | 0.0052 (6) |
C19 | 0.0415 (8) | 0.0498 (9) | 0.0434 (9) | 0.0082 (7) | −0.0010 (7) | 0.0077 (7) |
C20 | 0.0445 (9) | 0.0587 (10) | 0.0363 (8) | −0.0091 (8) | 0.0009 (7) | 0.0062 (7) |
C21 | 0.0733 (13) | 0.0726 (13) | 0.0371 (9) | −0.0096 (11) | 0.0091 (9) | 0.0061 (9) |
N1—C1 | 1.406 (2) | C9—H9A | 0.9900 |
N1—H1A | 0.8801 | C9—H9B | 0.9900 |
N1—H1B | 0.8799 | C10—H10A | 0.9800 |
N2—C15 | 1.400 (2) | C10—H10B | 0.9800 |
N2—H2A | 0.8799 | C10—H10C | 0.9800 |
N2—H2B | 0.8799 | C11—C12 | 1.511 (2) |
C1—C6 | 1.410 (2) | C11—H11A | 0.9900 |
C1—C2 | 1.410 (2) | C11—H11B | 0.9900 |
C2—C3 | 1.380 (2) | C12—C17 | 1.386 (2) |
C2—C7 | 1.513 (3) | C12—C13 | 1.394 (2) |
C2—C7' | 1.668 (9) | C13—C14 | 1.388 (2) |
C3—C4 | 1.377 (2) | C13—H13 | 0.9500 |
C3—H3 | 0.9500 | C14—C15 | 1.413 (2) |
C4—C5 | 1.3957 (19) | C14—C18 | 1.511 (2) |
C4—C11 | 1.512 (2) | C15—C16 | 1.406 (2) |
C5—C6 | 1.384 (2) | C16—C17 | 1.391 (2) |
C5—H5 | 0.9500 | C16—C20 | 1.514 (2) |
C6—C9 | 1.5151 (19) | C17—H17 | 0.9500 |
C7—C8 | 1.530 (5) | C18—C19 | 1.519 (2) |
C7—H7A | 0.9900 | C18—H18A | 0.9900 |
C7—H7B | 0.9900 | C18—H18B | 0.9900 |
C7'—C8' | 1.476 (15) | C19—H19A | 0.9800 |
C7'—H7'A | 0.9900 | C19—H19B | 0.9800 |
C7'—H7'B | 0.9900 | C19—H19C | 0.9800 |
C8—H8A | 0.9800 | C20—C21 | 1.513 (2) |
C8—H8B | 0.9800 | C20—H20A | 0.9900 |
C8—H8C | 0.9800 | C20—H20B | 0.9900 |
C8'—H8'A | 0.9800 | C21—H21A | 0.9800 |
C8'—H8'B | 0.9800 | C21—H21B | 0.9800 |
C8'—H8'C | 0.9800 | C21—H21C | 0.9800 |
C9—C10 | 1.516 (2) | ||
C1—N1—H1A | 114.1 | H9A—C9—H9B | 107.4 |
C1—N1—H1B | 111.4 | C9—C10—H10A | 109.5 |
H1A—N1—H1B | 107.7 | C9—C10—H10B | 109.5 |
C15—N2—H2A | 116.6 | H10A—C10—H10B | 109.5 |
C15—N2—H2B | 115.6 | C9—C10—H10C | 109.5 |
H2A—N2—H2B | 112.2 | H10A—C10—H10C | 109.5 |
N1—C1—C6 | 118.89 (14) | H10B—C10—H10C | 109.5 |
N1—C1—C2 | 121.28 (14) | C12—C11—C4 | 115.05 (12) |
C6—C1—C2 | 119.68 (14) | C12—C11—H11A | 108.5 |
C3—C2—C1 | 119.02 (14) | C4—C11—H11A | 108.5 |
C3—C2—C7 | 116.33 (19) | C12—C11—H11B | 108.5 |
C1—C2—C7 | 124.6 (2) | C4—C11—H11B | 108.5 |
C3—C2—C7' | 129.8 (3) | H11A—C11—H11B | 107.5 |
C1—C2—C7' | 106.3 (5) | C17—C12—C13 | 117.99 (14) |
C4—C3—C2 | 122.54 (14) | C17—C12—C11 | 121.21 (13) |
C4—C3—H3 | 118.7 | C13—C12—C11 | 120.79 (13) |
C2—C3—H3 | 118.7 | C14—C13—C12 | 122.25 (13) |
C3—C4—C5 | 117.81 (14) | C14—C13—H13 | 118.9 |
C3—C4—C11 | 120.56 (13) | C12—C13—H13 | 118.9 |
C5—C4—C11 | 121.54 (13) | C13—C14—C15 | 118.80 (13) |
C6—C5—C4 | 122.31 (13) | C13—C14—C18 | 122.21 (13) |
C6—C5—H5 | 118.8 | C15—C14—C18 | 118.99 (13) |
C4—C5—H5 | 118.8 | N2—C15—C16 | 120.62 (14) |
C5—C6—C1 | 118.61 (13) | N2—C15—C14 | 119.65 (14) |
C5—C6—C9 | 122.46 (13) | C16—C15—C14 | 119.70 (14) |
C1—C6—C9 | 118.93 (13) | C17—C16—C15 | 119.23 (14) |
C2—C7—C8 | 110.3 (3) | C17—C16—C20 | 118.89 (15) |
C2—C7—H7A | 109.6 | C15—C16—C20 | 121.84 (15) |
C8—C7—H7A | 109.6 | C12—C17—C16 | 122.01 (14) |
C2—C7—H7B | 109.6 | C12—C17—H17 | 119.0 |
C8—C7—H7B | 109.6 | C16—C17—H17 | 119.0 |
H7A—C7—H7B | 108.1 | C14—C18—C19 | 116.41 (13) |
C8'—C7'—C2 | 113.4 (8) | C14—C18—H18A | 108.2 |
C8'—C7'—H7'A | 108.9 | C19—C18—H18A | 108.2 |
C2—C7'—H7'A | 108.9 | C14—C18—H18B | 108.2 |
C8'—C7'—H7'B | 108.9 | C19—C18—H18B | 108.2 |
C2—C7'—H7'B | 108.9 | H18A—C18—H18B | 107.3 |
H7'A—C7'—H7'B | 107.7 | C18—C19—H19A | 109.5 |
C7—C8—H8A | 109.5 | C18—C19—H19B | 109.5 |
C7—C8—H8B | 109.5 | H19A—C19—H19B | 109.5 |
H8A—C8—H8B | 109.5 | C18—C19—H19C | 109.5 |
C7—C8—H8C | 109.5 | H19A—C19—H19C | 109.5 |
H8A—C8—H8C | 109.5 | H19B—C19—H19C | 109.5 |
H8B—C8—H8C | 109.5 | C21—C20—C16 | 111.99 (15) |
C7'—C8'—H8'A | 109.5 | C21—C20—H20A | 109.2 |
C7'—C8'—H8'B | 109.5 | C16—C20—H20A | 109.2 |
H8'A—C8'—H8'B | 109.5 | C21—C20—H20B | 109.2 |
C7'—C8'—H8'C | 109.5 | C16—C20—H20B | 109.2 |
H8'A—C8'—H8'C | 109.5 | H20A—C20—H20B | 107.9 |
H8'B—C8'—H8'C | 109.5 | C20—C21—H21A | 109.5 |
C6—C9—C10 | 115.95 (13) | C20—C21—H21B | 109.5 |
C6—C9—H9A | 108.3 | H21A—C21—H21B | 109.5 |
C10—C9—H9A | 108.3 | C20—C21—H21C | 109.5 |
C6—C9—H9B | 108.3 | H21A—C21—H21C | 109.5 |
C10—C9—H9B | 108.3 | H21B—C21—H21C | 109.5 |
N1—C1—C2—C3 | −177.50 (15) | C3—C4—C11—C12 | 137.06 (15) |
C6—C1—C2—C3 | −2.0 (2) | C5—C4—C11—C12 | −46.59 (19) |
N1—C1—C2—C7 | 0.4 (3) | C4—C11—C12—C17 | 103.56 (16) |
C6—C1—C2—C7 | 175.9 (2) | C4—C11—C12—C13 | −76.11 (17) |
N1—C1—C2—C7' | 24.7 (6) | C17—C12—C13—C14 | 0.6 (2) |
C6—C1—C2—C7' | −159.8 (6) | C11—C12—C13—C14 | −179.74 (12) |
C1—C2—C3—C4 | 1.2 (3) | C12—C13—C14—C15 | −1.2 (2) |
C7—C2—C3—C4 | −176.90 (19) | C12—C13—C14—C18 | 177.80 (13) |
C7'—C2—C3—C4 | 153.0 (9) | C13—C14—C15—N2 | −177.22 (12) |
C2—C3—C4—C5 | −0.5 (2) | C18—C14—C15—N2 | 3.8 (2) |
C2—C3—C4—C11 | 175.98 (15) | C13—C14—C15—C16 | 0.7 (2) |
C3—C4—C5—C6 | 0.6 (2) | C18—C14—C15—C16 | −178.32 (13) |
C11—C4—C5—C6 | −175.81 (12) | N2—C15—C16—C17 | 178.22 (13) |
C4—C5—C6—C1 | −1.5 (2) | C14—C15—C16—C17 | 0.4 (2) |
C4—C5—C6—C9 | 177.61 (12) | N2—C15—C16—C20 | 0.3 (2) |
N1—C1—C6—C5 | 177.72 (13) | C14—C15—C16—C20 | −177.59 (13) |
C2—C1—C6—C5 | 2.1 (2) | C13—C12—C17—C16 | 0.5 (2) |
N1—C1—C6—C9 | −1.4 (2) | C11—C12—C17—C16 | −179.18 (13) |
C2—C1—C6—C9 | −176.97 (13) | C15—C16—C17—C12 | −1.0 (2) |
C3—C2—C7—C8 | −93.4 (5) | C20—C16—C17—C12 | 177.05 (14) |
C1—C2—C7—C8 | 88.6 (4) | C13—C14—C18—C19 | 0.3 (2) |
C3—C2—C7'—C8' | −1.0 (18) | C15—C14—C18—C19 | 179.22 (13) |
C1—C2—C7'—C8' | 153.5 (12) | C17—C16—C20—C21 | −97.07 (19) |
C5—C6—C9—C10 | 0.1 (2) | C15—C16—C20—C21 | 80.9 (2) |
C1—C6—C9—C10 | 179.21 (13) |
Cg1 is the centroid of the C1–C6 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1i | 0.88 | 2.62 | 3.472 (2) | 165 |
C17—H17···Cg1ii | 0.95 | 2.92 | 3.8568 (17) | 171 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1. |
C21H28Cl2N2 | Z = 2 |
Mr = 379.35 | F(000) = 404 |
Triclinic, P1 | Dx = 1.303 Mg m−3 |
a = 8.993 (3) Å | Synchrotron radiation, λ = 0.75268 Å |
b = 9.6540 (13) Å | Cell parameters from 5979 reflections |
c = 12.216 (4) Å | θ = 1.7–31.0° |
α = 69.352 (11)° | µ = 0.40 mm−1 |
β = 77.257 (12)° | T = 100 K |
γ = 87.670 (8)° | Plate, colourless |
V = 967.2 (5) Å3 | 0.19 × 0.12 × 0.05 mm |
Rayonix SX165 CCD diffractometer | 3879 reflections with I > 2σ(I) |
φ scans | Rint = 0.053 |
Absorption correction: empirical (using intensity measurements) [XDS (Kabsch, 2010)] | θmax = 30.5°, θmin = 2.4° |
Tmin = 0.001, Tmax = 1.000 | h = −12→12 |
17607 measured reflections | k = −13→13 |
4844 independent reflections | l = −16→16 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.051 | w = 1/[σ2(Fo2) + (0.0847P)2 + 0.2296P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.147 | (Δ/σ)max = 0.001 |
S = 1.05 | Δρmax = 0.64 e Å−3 |
4844 reflections | Δρmin = −0.56 e Å−3 |
243 parameters | Extinction correction: SHELXL-2019/2 (Sheldrick 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.090 (12) |
Primary atom site location: structure-invariant direct methods |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cl1 | 0.60707 (6) | 1.01312 (5) | 0.11839 (5) | 0.04260 (17) | |
Cl2 | 0.57096 (6) | 0.36463 (6) | 0.14187 (5) | 0.03812 (19) | 0.920 (2) |
Cl2' | 0.4357 (7) | 0.8207 (7) | 0.3210 (6) | 0.0426 (19) | 0.080 (2) |
N1 | 1.1478 (2) | 0.8869 (2) | 0.18791 (17) | 0.0425 (4) | |
H1A | 1.162855 | 0.983508 | 0.163730 | 0.051* | |
H1B | 1.220754 | 0.824611 | 0.182099 | 0.051* | |
N2 | 0.2511 (2) | 0.3094 (2) | 0.56093 (16) | 0.0444 (4) | |
H2A | 0.232317 | 0.332820 | 0.625941 | 0.053* | |
H2B | 0.268619 | 0.216227 | 0.569476 | 0.053* | |
C1 | 1.0157 (2) | 0.8455 (2) | 0.16291 (16) | 0.0348 (4) | |
C2 | 1.0027 (2) | 0.7044 (2) | 0.15586 (16) | 0.0335 (4) | |
C3 | 0.8665 (2) | 0.6623 (2) | 0.13837 (16) | 0.0319 (4) | |
H3 | 0.857145 | 0.566189 | 0.135205 | 0.038* | |
C4 | 0.7421 (2) | 0.7542 (2) | 0.12515 (15) | 0.0307 (3) | |
C5 | 0.7613 (2) | 0.8934 (2) | 0.13066 (16) | 0.0326 (4) | |
C6 | 0.8947 (2) | 0.9433 (2) | 0.14874 (16) | 0.0340 (4) | |
C7 | 1.1390 (2) | 0.6070 (2) | 0.16344 (18) | 0.0382 (4) | |
H7A | 1.229620 | 0.666353 | 0.106943 | 0.046* | |
H7B | 1.157666 | 0.578413 | 0.245303 | 0.046* | |
C8 | 1.1257 (3) | 0.4681 (3) | 0.1365 (2) | 0.0443 (5) | |
H8A | 1.105026 | 0.494073 | 0.056275 | 0.066* | |
H8B | 1.041972 | 0.403709 | 0.196063 | 0.066* | |
H8C | 1.221399 | 0.416063 | 0.139488 | 0.066* | |
C9 | 0.9082 (3) | 1.0940 (2) | 0.15711 (18) | 0.0405 (4) | |
H9A | 0.842955 | 1.162596 | 0.108485 | 0.049* | |
H9B | 1.015074 | 1.132801 | 0.123406 | 0.049* | |
C10 | 0.8605 (3) | 1.0892 (2) | 0.28658 (19) | 0.0459 (5) | |
H10A | 0.870197 | 1.189198 | 0.288216 | 0.069* | |
H10B | 0.926583 | 1.023404 | 0.334555 | 0.069* | |
H10C | 0.754312 | 1.052072 | 0.319926 | 0.069* | |
C11 | 0.5968 (2) | 0.6974 (2) | 0.10932 (16) | 0.0318 (4) | |
H11A | 0.622748 | 0.646743 | 0.050261 | 0.038* | |
H11B | 0.533729 | 0.782290 | 0.077199 | 0.038* | |
C12 | 0.5054 (2) | 0.5907 (2) | 0.22658 (16) | 0.0301 (3) | |
C13 | 0.4873 (2) | 0.4395 (2) | 0.25223 (16) | 0.0312 (4) | |
H13 | 0.531639 | 0.400676 | 0.191570 | 0.037* | 0.080 (2) |
C14 | 0.4072 (2) | 0.3412 (2) | 0.36264 (17) | 0.0343 (4) | |
C15 | 0.3368 (2) | 0.4002 (2) | 0.45127 (16) | 0.0345 (4) | |
C16 | 0.3530 (2) | 0.5527 (2) | 0.42903 (17) | 0.0338 (4) | |
C17 | 0.4371 (2) | 0.6427 (2) | 0.31877 (16) | 0.0316 (4) | |
H17 | 0.449079 | 0.745242 | 0.304869 | 0.038* | 0.920 (2) |
C18 | 0.3987 (3) | 0.1759 (2) | 0.3901 (2) | 0.0413 (4) | |
H18A | 0.403956 | 0.124330 | 0.474962 | 0.050* | |
H18B | 0.488723 | 0.148971 | 0.339552 | 0.050* | |
C19 | 0.2542 (3) | 0.1209 (3) | 0.3690 (2) | 0.0524 (6) | |
H19A | 0.250468 | 0.167582 | 0.284280 | 0.079* | |
H19B | 0.164323 | 0.146679 | 0.418874 | 0.079* | |
H19C | 0.255270 | 0.013057 | 0.390275 | 0.079* | |
C20 | 0.2797 (2) | 0.6213 (3) | 0.52112 (19) | 0.0410 (4) | |
H20A | 0.334078 | 0.716805 | 0.502372 | 0.049* | |
H20B | 0.291900 | 0.555093 | 0.601287 | 0.049* | |
C21 | 0.1098 (3) | 0.6484 (3) | 0.5257 (2) | 0.0481 (5) | |
H21A | 0.096024 | 0.709184 | 0.445546 | 0.072* | |
H21B | 0.071381 | 0.700143 | 0.581735 | 0.072* | |
H21C | 0.053358 | 0.553298 | 0.552671 | 0.072* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0462 (3) | 0.0385 (3) | 0.0499 (3) | 0.0102 (2) | −0.0180 (2) | −0.0203 (2) |
Cl2 | 0.0439 (3) | 0.0365 (3) | 0.0389 (3) | 0.0056 (2) | −0.0091 (2) | −0.0197 (2) |
Cl2' | 0.035 (3) | 0.045 (3) | 0.058 (4) | 0.005 (2) | −0.017 (3) | −0.027 (3) |
N1 | 0.0361 (9) | 0.0487 (10) | 0.0464 (9) | −0.0057 (7) | −0.0128 (7) | −0.0182 (8) |
N2 | 0.0486 (10) | 0.0485 (10) | 0.0345 (8) | −0.0073 (8) | −0.0085 (8) | −0.0122 (7) |
C1 | 0.0338 (9) | 0.0434 (10) | 0.0289 (8) | −0.0044 (7) | −0.0075 (7) | −0.0137 (7) |
C2 | 0.0320 (9) | 0.0408 (9) | 0.0305 (8) | 0.0035 (7) | −0.0093 (7) | −0.0149 (7) |
C3 | 0.0337 (9) | 0.0362 (8) | 0.0300 (8) | 0.0027 (7) | −0.0103 (7) | −0.0148 (7) |
C4 | 0.0298 (8) | 0.0356 (8) | 0.0274 (8) | 0.0002 (7) | −0.0070 (7) | −0.0116 (7) |
C5 | 0.0348 (9) | 0.0340 (8) | 0.0304 (8) | 0.0029 (7) | −0.0092 (7) | −0.0120 (7) |
C6 | 0.0381 (9) | 0.0350 (9) | 0.0293 (8) | −0.0039 (7) | −0.0073 (7) | −0.0114 (7) |
C7 | 0.0323 (9) | 0.0482 (10) | 0.0388 (10) | 0.0058 (8) | −0.0127 (8) | −0.0187 (8) |
C8 | 0.0408 (10) | 0.0486 (11) | 0.0487 (11) | 0.0104 (9) | −0.0149 (9) | −0.0216 (9) |
C9 | 0.0483 (11) | 0.0367 (9) | 0.0371 (10) | −0.0071 (8) | −0.0092 (9) | −0.0132 (8) |
C10 | 0.0581 (13) | 0.0417 (10) | 0.0409 (10) | −0.0098 (9) | −0.0078 (10) | −0.0187 (9) |
C11 | 0.0316 (8) | 0.0352 (8) | 0.0312 (8) | 0.0010 (7) | −0.0100 (7) | −0.0130 (7) |
C12 | 0.0274 (8) | 0.0348 (8) | 0.0323 (8) | 0.0031 (6) | −0.0115 (7) | −0.0142 (7) |
C13 | 0.0305 (8) | 0.0357 (8) | 0.0324 (8) | 0.0031 (7) | −0.0118 (7) | −0.0152 (7) |
C14 | 0.0333 (9) | 0.0349 (9) | 0.0385 (9) | 0.0022 (7) | −0.0145 (8) | −0.0137 (7) |
C15 | 0.0304 (8) | 0.0433 (10) | 0.0310 (8) | −0.0009 (7) | −0.0117 (7) | −0.0115 (7) |
C16 | 0.0297 (8) | 0.0444 (10) | 0.0340 (9) | 0.0043 (7) | −0.0126 (7) | −0.0188 (8) |
C17 | 0.0300 (8) | 0.0353 (8) | 0.0353 (9) | 0.0037 (7) | −0.0130 (7) | −0.0161 (7) |
C18 | 0.0446 (11) | 0.0336 (9) | 0.0457 (11) | 0.0016 (8) | −0.0141 (9) | −0.0116 (8) |
C19 | 0.0611 (14) | 0.0389 (10) | 0.0621 (14) | −0.0052 (10) | −0.0253 (12) | −0.0160 (10) |
C20 | 0.0382 (10) | 0.0556 (12) | 0.0385 (10) | 0.0054 (9) | −0.0122 (8) | −0.0258 (9) |
C21 | 0.0411 (11) | 0.0651 (14) | 0.0501 (12) | 0.0083 (10) | −0.0120 (9) | −0.0344 (11) |
Cl1—C5 | 1.7666 (19) | C10—H10A | 0.9800 |
Cl2—C13 | 1.7614 (19) | C10—H10B | 0.9800 |
Cl2'—C17 | 1.728 (6) | C10—H10C | 0.9800 |
N1—C1 | 1.395 (2) | C11—C12 | 1.516 (3) |
N1—H1A | 0.8801 | C11—H11A | 0.9900 |
N1—H1B | 0.8801 | C11—H11B | 0.9900 |
N2—C15 | 1.389 (3) | C12—C13 | 1.389 (2) |
N2—H2A | 0.8802 | C12—C17 | 1.402 (2) |
N2—H2B | 0.8799 | C13—C14 | 1.401 (3) |
C1—C2 | 1.406 (3) | C13—H13 | 0.9500 |
C1—C6 | 1.410 (3) | C14—C15 | 1.415 (3) |
C2—C3 | 1.389 (2) | C14—C18 | 1.511 (3) |
C2—C7 | 1.513 (3) | C15—C16 | 1.407 (3) |
C3—C4 | 1.401 (2) | C16—C17 | 1.386 (3) |
C3—H3 | 0.9500 | C16—C20 | 1.517 (3) |
C4—C5 | 1.388 (2) | C17—H17 | 0.9500 |
C4—C11 | 1.513 (2) | C18—C19 | 1.529 (3) |
C5—C6 | 1.400 (3) | C18—H18A | 0.9900 |
C6—C9 | 1.506 (3) | C18—H18B | 0.9900 |
C7—C8 | 1.504 (3) | C19—H19A | 0.9800 |
C7—H7A | 0.9900 | C19—H19B | 0.9800 |
C7—H7B | 0.9900 | C19—H19C | 0.9800 |
C8—H8A | 0.9800 | C20—C21 | 1.531 (3) |
C8—H8B | 0.9800 | C20—H20A | 0.9900 |
C8—H8C | 0.9800 | C20—H20B | 0.9900 |
C9—C10 | 1.529 (3) | C21—H21A | 0.9800 |
C9—H9A | 0.9900 | C21—H21B | 0.9800 |
C9—H9B | 0.9900 | C21—H21C | 0.9800 |
C1—N1—H1A | 113.1 | C12—C11—H11A | 109.3 |
C1—N1—H1B | 111.5 | C4—C11—H11B | 109.3 |
H1A—N1—H1B | 124.1 | C12—C11—H11B | 109.3 |
C15—N2—H2A | 123.3 | H11A—C11—H11B | 107.9 |
C15—N2—H2B | 109.2 | C13—C12—C17 | 116.00 (17) |
H2A—N2—H2B | 117.7 | C13—C12—C11 | 124.17 (16) |
N1—C1—C2 | 119.48 (18) | C17—C12—C11 | 119.80 (16) |
N1—C1—C6 | 119.95 (18) | C12—C13—C14 | 123.61 (17) |
C2—C1—C6 | 120.54 (17) | C12—C13—Cl2 | 118.97 (14) |
C3—C2—C1 | 118.41 (17) | C14—C13—Cl2 | 117.41 (14) |
C3—C2—C7 | 122.75 (17) | C12—C13—H13 | 118.2 |
C1—C2—C7 | 118.81 (17) | C14—C13—H13 | 118.2 |
C2—C3—C4 | 123.40 (17) | C13—C14—C15 | 118.00 (17) |
C2—C3—H3 | 118.3 | C13—C14—C18 | 122.08 (18) |
C4—C3—H3 | 118.3 | C15—C14—C18 | 119.89 (18) |
C5—C4—C3 | 116.10 (16) | N2—C15—C16 | 119.08 (18) |
C5—C4—C11 | 124.22 (16) | N2—C15—C14 | 120.80 (18) |
C3—C4—C11 | 119.66 (16) | C16—C15—C14 | 120.12 (18) |
C4—C5—C6 | 123.76 (17) | C17—C16—C15 | 118.63 (17) |
C4—C5—Cl1 | 118.40 (14) | C17—C16—C20 | 119.26 (18) |
C6—C5—Cl1 | 117.81 (14) | C15—C16—C20 | 122.10 (18) |
C5—C6—C1 | 117.77 (17) | C16—C17—C12 | 123.59 (17) |
C5—C6—C9 | 121.62 (18) | C16—C17—Cl2' | 107.0 (3) |
C1—C6—C9 | 120.57 (17) | C12—C17—Cl2' | 129.4 (3) |
C8—C7—C2 | 115.95 (16) | C16—C17—H17 | 118.2 |
C8—C7—H7A | 108.3 | C12—C17—H17 | 118.2 |
C2—C7—H7A | 108.3 | C14—C18—C19 | 113.90 (17) |
C8—C7—H7B | 108.3 | C14—C18—H18A | 108.8 |
C2—C7—H7B | 108.3 | C19—C18—H18A | 108.8 |
H7A—C7—H7B | 107.4 | C14—C18—H18B | 108.8 |
C7—C8—H8A | 109.5 | C19—C18—H18B | 108.8 |
C7—C8—H8B | 109.5 | H18A—C18—H18B | 107.7 |
H8A—C8—H8B | 109.5 | C18—C19—H19A | 109.5 |
C7—C8—H8C | 109.5 | C18—C19—H19B | 109.5 |
H8A—C8—H8C | 109.5 | H19A—C19—H19B | 109.5 |
H8B—C8—H8C | 109.5 | C18—C19—H19C | 109.5 |
C6—C9—C10 | 111.93 (17) | H19A—C19—H19C | 109.5 |
C6—C9—H9A | 109.2 | H19B—C19—H19C | 109.5 |
C10—C9—H9A | 109.2 | C16—C20—C21 | 113.45 (16) |
C6—C9—H9B | 109.2 | C16—C20—H20A | 108.9 |
C10—C9—H9B | 109.2 | C21—C20—H20A | 108.9 |
H9A—C9—H9B | 107.9 | C16—C20—H20B | 108.9 |
C9—C10—H10A | 109.5 | C21—C20—H20B | 108.9 |
C9—C10—H10B | 109.5 | H20A—C20—H20B | 107.7 |
H10A—C10—H10B | 109.5 | C20—C21—H21A | 109.5 |
C9—C10—H10C | 109.5 | C20—C21—H21B | 109.5 |
H10A—C10—H10C | 109.5 | H21A—C21—H21B | 109.5 |
H10B—C10—H10C | 109.5 | C20—C21—H21C | 109.5 |
C4—C11—C12 | 111.77 (14) | H21A—C21—H21C | 109.5 |
C4—C11—H11A | 109.3 | H21B—C21—H21C | 109.5 |
N1—C1—C2—C3 | 176.01 (17) | C17—C12—C13—C14 | −0.3 (2) |
C6—C1—C2—C3 | −1.9 (3) | C11—C12—C13—C14 | 177.54 (16) |
N1—C1—C2—C7 | −6.0 (3) | C17—C12—C13—Cl2 | −179.42 (12) |
C6—C1—C2—C7 | 176.03 (17) | C11—C12—C13—Cl2 | −1.5 (2) |
C1—C2—C3—C4 | 1.2 (3) | C12—C13—C14—C15 | 2.1 (3) |
C7—C2—C3—C4 | −176.68 (17) | Cl2—C13—C14—C15 | −178.78 (13) |
C2—C3—C4—C5 | −0.1 (3) | C12—C13—C14—C18 | −175.87 (16) |
C2—C3—C4—C11 | −178.58 (17) | Cl2—C13—C14—C18 | 3.2 (2) |
C3—C4—C5—C6 | −0.3 (3) | C13—C14—C15—N2 | 177.64 (16) |
C11—C4—C5—C6 | 178.12 (17) | C18—C14—C15—N2 | −4.3 (3) |
C3—C4—C5—Cl1 | −178.45 (13) | C13—C14—C15—C16 | −2.3 (3) |
C11—C4—C5—Cl1 | −0.1 (2) | C18—C14—C15—C16 | 175.74 (16) |
C4—C5—C6—C1 | −0.5 (3) | N2—C15—C16—C17 | −179.18 (16) |
Cl1—C5—C6—C1 | 177.74 (14) | C14—C15—C16—C17 | 0.8 (3) |
C4—C5—C6—C9 | −178.43 (18) | N2—C15—C16—C20 | 0.0 (3) |
Cl1—C5—C6—C9 | −0.2 (2) | C14—C15—C16—C20 | 179.95 (16) |
N1—C1—C6—C5 | −176.37 (17) | C15—C16—C17—C12 | 1.1 (3) |
C2—C1—C6—C5 | 1.6 (3) | C20—C16—C17—C12 | −178.07 (15) |
N1—C1—C6—C9 | 1.6 (3) | C15—C16—C17—Cl2' | −179.6 (2) |
C2—C1—C6—C9 | 179.58 (17) | C20—C16—C17—Cl2' | 1.2 (3) |
C3—C2—C7—C8 | 6.9 (3) | C13—C12—C17—C16 | −1.4 (2) |
C1—C2—C7—C8 | −170.95 (19) | C11—C12—C17—C16 | −179.33 (16) |
C5—C6—C9—C10 | 91.6 (2) | C13—C12—C17—Cl2' | 179.5 (3) |
C1—C6—C9—C10 | −86.4 (2) | C11—C12—C17—Cl2' | 1.6 (3) |
C5—C4—C11—C12 | −102.4 (2) | C13—C14—C18—C19 | −96.4 (2) |
C3—C4—C11—C12 | 76.0 (2) | C15—C14—C18—C19 | 85.6 (2) |
C4—C11—C12—C13 | −109.95 (18) | C17—C16—C20—C21 | 99.5 (2) |
C4—C11—C12—C17 | 67.9 (2) | C15—C16—C20—C21 | −79.7 (2) |
Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Cg1i | 0.88 | 2.63 | 3.327 (2) | 137 |
C7—H7B···Cg2ii | 0.99 | 2.83 | 3.579 (2) | 133 |
C20—H20B···Cg2i | 0.99 | 2.81 | 3.434 (2) | 132 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1, y, z. |
Acknowledgements
Anastasia Kondrateva is acknowledged for assistance with the NMR measurements. The research was carried out as a part of the Integrated Scientific and Technical Programme of the Full Innovation Cycle, approved by Order of the Government of the Russian Federation dated July 4, 2023 No. 1789-r. for the event "New composite materials: design and production technologies" with financial support from the Ministry of Education and Science of Russia under Agreement dated August 28, 2023 No. 075-15-2023-616 (internal number 14.1789.23.0014/KNTP).
Funding information
Funding for this research was provided by: Ministry of Education and Science of Russia (award No. 075-15-2023-616).
References
Bauer, J. & Bauer, M. (2001). Macromol. Chem. Phys. 202, 2213–2220. CrossRef CAS Google Scholar
Bel'skii, V. K., Rotaru, V. K. & Kruchinin, M. M. (1983). Kristallografiya, 28, 695–698. CAS Google Scholar
Bhattacharya, S. & Saha, B. K. (2011). Cryst. Growth Des. 11, 2194–2204. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bulgakov, B. A., Morozov, O. S., Timoshkin, I. A., Babkin, A. V. & Kepman, A. V. (2021). Polym. Sci. Ser. C. 63, 64–101. CrossRef CAS Google Scholar
Cavallo, L., Correa, A., Costabile, C. & Jacobsen, H. (2005). J. Organomet. Chem. 690, 5407–5413. Web of Science CrossRef CAS Google Scholar
Costa, M. L., Pardini, L. C. & Rezende, M. C. (2005). Mat. Res. 8, 65–70. CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Doyle, R. A. (2011). Marccd software manual. Rayonix LLC, Evanston, IL, USA. Google Scholar
Escayola, S., Bahri-Laleh, N. & Poater, A. (2024). Chem. Soc. Rev. 53, 853–882. CrossRef CAS PubMed Google Scholar
Gibson, E. K., Winfield, J. M., Muir, K. W., Carr, R. H., Eaglesham, A., Gavezzotti, A. & Lennon, D. (2010). Phys. Chem. Chem. Phys. 12, 3824–3833. CSD CrossRef CAS PubMed Google Scholar
Gómez-Suárez, A., Nelson, D. J. & Nolan, S. P. (2017). Chem. Commun. 53, 2650–2660. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kabsch, W. (2010). Acta Cryst. D66, 125–132. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kong, D. & Park, C. E. (2003). Chem. Mater. 15, 419–424. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lahlali, D., Naffakh, M. & Dumon, M. (2005). Polym. Eng. Sci. 45, 1581–1589. CrossRef CAS Google Scholar
Lahlali, N., Dupuy, J. & Dumon, M. (2006). e-Polymers, 6, 080. Google Scholar
Peng, L., Zhang, W., Deng, C., Wang, Z., Zhang, Y. & Qian, H. (2018). Macro Chem. & Phys. 219, 1800156. CrossRef Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Svetogorov, R. D., Dorovatovskii, P. V. & Lazarenko, V. A. (2020). Cryst. Res. Technol. 55, 1900184. Web of Science CrossRef Google Scholar
Ueda, T., Nishio, T. & Inoue, S. (2017). Open J. Org. Polym. Mater. 07, 47–60. CrossRef CAS Google Scholar
Voelker, T., Althaus, H. & Schmidt, A. (1988). J. Elastomers Plast. 20, 36–45. CrossRef CAS Google Scholar
Yu, S., Li, X., Zou, M., Guo, X., Ma, H. & Wang, S. (2020). ACS Omega, 5, 23268–23275. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
