research communications
Synthesis and 3)2]n
of [Sr(urea)(NOaKarakalpak State University, 1 Ch. Abdirov St Nukus, 230112, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan, cPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, and dNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
The μ2-nitrato-μ2-urea-strontium(II)], [Sr(NO3)2(CH4N2O)]n, was determined using single-crystal X-ray diffraction. Crystallizing in the orthorhombic Aba2, the consists of an SrII cation, two nitrate anions, and two half urea molecules. The SrII cation adopts a distorted decahedral geometry coordinated by ten oxygen atoms, with Sr—O bond lengths ranging from 2.573 (3) to 2.847 (5) Å. The nitrate anions act as bidentate ligands, displaying both terminal and bridging coordination modes. The structure features a robust coordination network supported by hydrogen bonding. These results provide insight into the coordination behaviour of SrII with nitrate and urea ligands, contributing to the understanding of supramolecular architectures in metal–organic frameworks (MOFs).
of poly[di-Keywords: crystal structure; strontium; caramid; urea; Hirshfeld surface analysis.
CCDC reference: 2297418
1. Chemical context
The study of coordination polymers (CPs) and the crystal engineering of MOFs has garnered significant interest due to their diverse structural architectures and potential applications in catalysis, gas storage, and sensing (Allendorf & Stavila, 2015). Metal ions such as SrII have proven versatile in forming coordination complexes owing to their ability to adopt various coordination geometries (Kainat et al., 2024). Ligands like urea and nitrate, capable of acting as terminal and bridging ligands, offer unique opportunities for the construction of supramolecular networks (Reek et al., 2022). In this study, the polymeric complex [Sr(urea)(NO3)2]n was synthesized and characterized.
2. Structural commentary
The 3)2]n was determined in the orthorhombic Aba2. The consists of an SrII cation, two nitrate anions, and one urea molecule. The SrII cation is coordinated by ten oxygen atoms, eight of which originate from nitrate anions and two from urea molecules, adopting a decahedral geometry (Fig. 1). The SrII cation forms a distorted decahedral coordination environment through interactions with oxygen atoms from the urea and nitrate ligands. The nitrate anions exhibit dual binding modes, participating in bidentate bridging interactions, which stabilize the structure through hydrogen bonds and intermolecular forces. Such versatility in coordination and binding contributes to the robust di-periodic layered network observed in the These findings provide insights into the design of SrII-based CPs and MOFs, highlighting the significance of urea and nitrate ligands in generating diverse structural motifs and functional materials (Preethi et al., 2024).
of the title compound [Sr(urea)(NO3. Supramolecular features
In the crystal, closely associated molecules form a di-periodic sheet structure along the a- and b-axis directions. Along the c axis, molecules are connected by hydrogen bonds (N4—H4A⋯O3ii, N4—H4B⋯O5vi, N4—H4B⋯O6vi, N2—H2A⋯O6i, N2—H2B⋯O1vii, N2—H2B⋯O3vii; Table 1). The Sr—O (Sr-nitrate) bond lengths range from 2.622 (3) Å to 2.847 (5) Å, while the Sr–O (Sr-urea) bond lengths fall between 2.573 (3) Å and 2.604 (3) Å, reflecting variations due to ligand-field effects and steric factors (Fig. 1). The nitrate anions act as bidentate ligand, contributing to the coordination geometry in two distinct modes. First, two oxygen atoms from each nitrate molecule coordinate to the same SrII ion. Second, the oxygen atoms O7 and O8 are bidentate bridging ligands, connecting two SrII cations and forming a distorted parallelogram. The bond angles of the bridging oxygen atoms are 108.0 (2)° for (Sr—O7—Sr) and 106.13 (19)° for (Sr—O8—Sr). In the the urea molecules are located on a special position with a twofold rotation axis at (−x, −y, z), oriented along the [001] direction. This structural arrangement results in a stable coordination network supported by interactions between the SrII cations, nitrate anions, and urea (Fig. 2).
4. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016) revealed around 320 metal complexes where urea is directly bonded to a metal via oxygen, whereas only one structure where Sr is directly bonded to the oxygen atom of the urea molecule has been reported (MOXJUG; Schwarz & Streb, 2015). Moreover, no similar to that of [Sr(urea)(NO3)2]n has been reported.
5. Synthesis and crystallization
Strontium nitrate (Sr(NO3)2, 0.212 g, 1 mmol) and carbamide (urea, 0.12 g, 2 mmol) were each individually dissolved in 5 mL of a 1:1 volumetric mixture of water and ethanol, ensuring complete dissolution of both compounds. The solutions were mixed together and kept for 10 min in an ultrasonic bath. The obtained colourless solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 days.
6. Refinement
Crystal data, data collection and structure . All hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.
details are summarized in Table 2Supporting information
CCDC reference: 2297418
[Sr(NO3)2(CH4N2O)] | Dx = 2.270 Mg m−3 |
Mr = 271.70 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Aba2 | Cell parameters from 5341 reflections |
a = 9.3527 (1) Å | θ = 4.7–71.3° |
b = 9.9701 (1) Å | µ = 9.77 mm−1 |
c = 17.0496 (2) Å | T = 293 K |
V = 1589.83 (3) Å3 | Block, colourless |
Z = 8 | 0.12 × 0.08 × 0.06 mm |
F(000) = 1056 |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 1517 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 1487 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.029 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 71.2°, θmin = 5.2° |
ω scans | h = −11→10 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2022) | k = −11→12 |
Tmin = 0.300, Tmax = 1.000 | l = −20→20 |
6435 measured reflections |
Refinement on F2 | H-atom parameters constrained |
Least-squares matrix: full | w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1494P] where P = (Fo2 + 2Fc2)/3 |
R[F2 > 2σ(F2)] = 0.021 | (Δ/σ)max = 0.001 |
wR(F2) = 0.055 | Δρmax = 0.74 e Å−3 |
S = 1.07 | Δρmin = −0.27 e Å−3 |
1517 reflections | Extinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
121 parameters | Extinction coefficient: 0.00038 (6) |
1 restraint | Absolute structure: Flack x)' determined using 678 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Hydrogen site location: inferred from neighbouring sites | Absolute structure parameter: −0.020 (15) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 0.66197 (3) | 0.35686 (3) | 0.50071 (5) | 0.02435 (15) | |
O5 | 0.5691 (4) | 0.2029 (4) | 0.6237 (2) | 0.0380 (8) | |
O7 | 0.500000 | 0.500000 | 0.5894 (3) | 0.0317 (12) | |
O4 | 0.4300 (3) | 0.2135 (4) | 0.52232 (18) | 0.0361 (8) | |
O8 | 0.500000 | 0.500000 | 0.4089 (3) | 0.0328 (12) | |
O1 | 0.8252 (4) | 0.4683 (4) | 0.3800 (2) | 0.0396 (9) | |
O2 | 0.7896 (4) | 0.5891 (3) | 0.48352 (18) | 0.0367 (8) | |
O6 | 0.3592 (4) | 0.1112 (5) | 0.6265 (3) | 0.0508 (10) | |
O3 | 0.8632 (4) | 0.6835 (4) | 0.3775 (2) | 0.0463 (9) | |
C1 | 0.500000 | 0.500000 | 0.6641 (5) | 0.042 (2) | |
N3 | 0.4530 (4) | 0.1754 (4) | 0.5924 (2) | 0.0314 (8) | |
N4 | 0.4670 (6) | 0.3903 (6) | 0.2952 (3) | 0.0610 (14) | |
H4A | 0.445171 | 0.317865 | 0.319881 | 0.073* | |
H4B | 0.467264 | 0.391253 | 0.244752 | 0.073* | |
N2 | 0.6152 (6) | 0.5375 (8) | 0.7034 (3) | 0.0719 (18) | |
H2A | 0.690719 | 0.562025 | 0.678455 | 0.086* | |
H2B | 0.614571 | 0.537260 | 0.753809 | 0.086* | |
N1 | 0.8270 (4) | 0.5799 (4) | 0.4124 (3) | 0.0312 (9) | |
C2 | 0.500000 | 0.500000 | 0.3348 (5) | 0.038 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.0243 (2) | 0.0232 (2) | 0.0255 (2) | 0.00128 (10) | 0.0001 (2) | 0.00073 (18) |
O5 | 0.0368 (19) | 0.0425 (19) | 0.0346 (18) | −0.0014 (15) | −0.0072 (14) | 0.0028 (15) |
O7 | 0.037 (3) | 0.036 (3) | 0.022 (3) | 0.006 (2) | 0.000 | 0.000 |
O4 | 0.0326 (15) | 0.0439 (18) | 0.032 (2) | −0.0061 (14) | −0.0059 (11) | 0.0078 (13) |
O8 | 0.037 (3) | 0.043 (3) | 0.019 (3) | 0.011 (2) | 0.000 | 0.000 |
O1 | 0.049 (2) | 0.031 (2) | 0.038 (2) | −0.0005 (14) | 0.0039 (14) | −0.0070 (15) |
O2 | 0.0462 (16) | 0.0334 (16) | 0.030 (2) | −0.0066 (13) | 0.0083 (14) | −0.0046 (12) |
O6 | 0.051 (2) | 0.059 (2) | 0.043 (2) | −0.0199 (18) | 0.0080 (18) | 0.010 (2) |
O3 | 0.065 (2) | 0.037 (2) | 0.036 (2) | −0.0119 (19) | 0.0026 (19) | 0.0080 (17) |
C1 | 0.054 (5) | 0.042 (5) | 0.029 (5) | 0.028 (4) | 0.000 | 0.000 |
N3 | 0.029 (2) | 0.0276 (18) | 0.037 (2) | 0.0002 (15) | 0.0008 (16) | −0.0026 (16) |
N4 | 0.084 (4) | 0.072 (3) | 0.028 (2) | 0.021 (3) | −0.013 (3) | −0.016 (2) |
N2 | 0.070 (4) | 0.110 (5) | 0.036 (3) | 0.030 (4) | −0.021 (3) | −0.024 (3) |
N1 | 0.0311 (19) | 0.029 (2) | 0.034 (2) | 0.0006 (14) | −0.0019 (14) | −0.0016 (17) |
C2 | 0.034 (4) | 0.056 (6) | 0.025 (5) | 0.015 (4) | 0.000 | 0.000 |
Sr1—O5 | 2.740 (4) | O4—N3 | 1.272 (5) |
Sr1—O7 | 2.573 (3) | O8—C2 | 1.264 (10) |
Sr1—O4 | 2.624 (3) | O1—N1 | 1.243 (6) |
Sr1—O4i | 2.629 (3) | O2—N1 | 1.265 (5) |
Sr1—O8 | 2.604 (3) | O6—N3 | 1.232 (5) |
Sr1—O1 | 2.793 (4) | O3—N1 | 1.239 (6) |
Sr1—O2ii | 2.723 (3) | C1—N2 | 1.322 (7) |
Sr1—O2 | 2.622 (3) | C1—N2iii | 1.322 (7) |
Sr1—O6i | 2.847 (5) | N4—H4A | 0.8600 |
Sr1—O3ii | 2.731 (4) | N4—H4B | 0.8600 |
Sr1—N3 | 3.088 (4) | N4—C2 | 1.322 (7) |
Sr1—N1 | 3.097 (4) | N2—H2A | 0.8600 |
O5—N3 | 1.241 (5) | N2—H2B | 0.8600 |
O7—C1 | 1.274 (11) | ||
O5—Sr1—O1 | 163.75 (10) | O2ii—Sr1—N1 | 124.65 (11) |
O5—Sr1—O6i | 72.03 (13) | O6i—Sr1—N3 | 95.41 (13) |
O5—Sr1—N3 | 23.62 (10) | O6i—Sr1—N1 | 87.87 (13) |
O5—Sr1—N1 | 158.76 (11) | O3ii—Sr1—O5 | 101.94 (11) |
O7—Sr1—O5 | 71.00 (11) | O3ii—Sr1—O1 | 74.45 (12) |
O7—Sr1—O4i | 128.84 (10) | O3ii—Sr1—O6i | 134.94 (11) |
O7—Sr1—O4 | 74.49 (8) | O3ii—Sr1—N3 | 87.94 (12) |
O7—Sr1—O8 | 72.94 (8) | O3ii—Sr1—N1 | 97.10 (12) |
O7—Sr1—O1 | 122.30 (10) | N3—Sr1—N1 | 169.13 (10) |
O7—Sr1—O2 | 81.01 (8) | N3—O5—Sr1 | 94.1 (3) |
O7—Sr1—O2ii | 134.83 (9) | Sr1—O7—Sr1iii | 108.0 (2) |
O7—Sr1—O6i | 82.92 (12) | C1—O7—Sr1 | 126.00 (10) |
O7—Sr1—O3ii | 138.81 (11) | C1—O7—Sr1iii | 126.00 (10) |
O7—Sr1—N3 | 69.81 (9) | Sr1—O4—Sr1iv | 156.08 (14) |
O7—Sr1—N1 | 100.42 (9) | N3—O4—Sr1 | 98.9 (2) |
O4—Sr1—O5 | 47.58 (9) | N3—O4—Sr1iv | 102.3 (2) |
O4i—Sr1—O5 | 92.60 (10) | Sr1—O8—Sr1iii | 106.13 (19) |
O4—Sr1—O4i | 128.56 (4) | C2—O8—Sr1 | 126.94 (9) |
O4—Sr1—O1 | 140.54 (10) | C2—O8—Sr1iii | 126.94 (9) |
O4i—Sr1—O1 | 71.84 (10) | N1—O1—Sr1 | 92.1 (3) |
O4—Sr1—O2ii | 67.60 (11) | Sr1—O2—Sr1v | 158.35 (14) |
O4i—Sr1—O2ii | 66.10 (11) | N1—O2—Sr1 | 99.7 (2) |
O4i—Sr1—O6i | 46.09 (10) | N1—O2—Sr1v | 97.4 (2) |
O4—Sr1—O6i | 119.40 (13) | N3—O6—Sr1iv | 92.7 (3) |
O4i—Sr1—O3ii | 91.21 (11) | N1—O3—Sr1v | 97.7 (3) |
O4—Sr1—O3ii | 72.06 (12) | O7—C1—N2 | 120.4 (4) |
O4—Sr1—N3 | 24.02 (9) | O7—C1—N2iii | 120.4 (4) |
O4i—Sr1—N3 | 112.09 (11) | N2iii—C1—N2 | 119.2 (8) |
O4—Sr1—N1 | 150.61 (10) | Sr1—N3—Sr1iv | 110.78 (12) |
O4i—Sr1—N1 | 77.56 (10) | O5—N3—Sr1iv | 172.2 (3) |
O8—Sr1—O5 | 125.63 (9) | O5—N3—Sr1 | 62.2 (2) |
O8—Sr1—O4 | 84.36 (7) | O5—N3—O4 | 119.1 (4) |
O8—Sr1—O4i | 141.75 (10) | O4—N3—Sr1iv | 54.49 (19) |
O8—Sr1—O1 | 69.95 (10) | O4—N3—Sr1 | 57.1 (2) |
O8—Sr1—O2 | 73.36 (8) | O6—N3—Sr1 | 173.7 (4) |
O8—Sr1—O2ii | 124.70 (9) | O6—N3—Sr1iv | 64.3 (3) |
O8—Sr1—O6i | 140.21 (11) | O6—N3—O5 | 122.4 (4) |
O8—Sr1—O3ii | 80.46 (12) | O6—N3—O4 | 118.5 (4) |
O8—Sr1—N3 | 104.90 (9) | H4A—N4—H4B | 120.0 |
O8—Sr1—N1 | 66.70 (8) | C2—N4—H4A | 120.0 |
O1—Sr1—O6i | 99.01 (12) | C2—N4—H4B | 120.0 |
O1—Sr1—N3 | 162.17 (11) | C1—N2—H2A | 120.0 |
O1—Sr1—N1 | 23.64 (11) | C1—N2—H2B | 120.0 |
O2ii—Sr1—O5 | 65.54 (10) | H2A—N2—H2B | 120.0 |
O2—Sr1—O5 | 136.45 (11) | Sr1—N1—Sr1v | 114.45 (13) |
O2—Sr1—O4i | 79.48 (11) | O1—N1—Sr1v | 177.6 (3) |
O2—Sr1—O4 | 150.83 (11) | O1—N1—Sr1 | 64.3 (2) |
O2—Sr1—O1 | 46.95 (10) | O1—N1—O2 | 119.2 (4) |
O2ii—Sr1—O1 | 102.69 (11) | O2—N1—Sr1v | 59.1 (2) |
O2—Sr1—O2ii | 141.08 (5) | O2—N1—Sr1 | 56.5 (2) |
O2ii—Sr1—O6i | 94.76 (12) | O3—N1—Sr1 | 165.5 (3) |
O2—Sr1—O6i | 71.96 (14) | O3—N1—Sr1v | 59.3 (3) |
O2—Sr1—O3ii | 120.82 (11) | O3—N1—O1 | 122.4 (5) |
O2ii—Sr1—O3ii | 46.46 (10) | O3—N1—O2 | 118.4 (4) |
O2ii—Sr1—N3 | 65.51 (11) | O8—C2—N4iii | 120.7 (4) |
O2—Sr1—N3 | 149.57 (10) | O8—C2—N4 | 120.7 (4) |
O2—Sr1—N1 | 23.74 (10) | N4—C2—N4iii | 118.6 (8) |
Sr1—O5—N3—O4 | 5.5 (4) | Sr1—O8—C2—N4iii | −117.5 (3) |
Sr1—O5—N3—O6 | −175.1 (4) | Sr1—O1—N1—O2 | 14.2 (4) |
Sr1iii—O7—C1—N2 | −117.6 (4) | Sr1—O1—N1—O3 | −165.2 (4) |
Sr1iii—O7—C1—N2iii | 62.4 (4) | Sr1v—O2—N1—Sr1 | −166.7 (2) |
Sr1—O7—C1—N2 | 62.4 (4) | Sr1—O2—N1—Sr1v | 166.7 (2) |
Sr1—O7—C1—N2iii | −117.6 (4) | Sr1—O2—N1—O1 | −15.3 (4) |
Sr1iv—O4—N3—Sr1 | −168.9 (2) | Sr1v—O2—N1—O1 | 178.0 (3) |
Sr1—O4—N3—Sr1iv | 168.9 (2) | Sr1—O2—N1—O3 | 164.1 (3) |
Sr1—O4—N3—O5 | −5.8 (4) | Sr1v—O2—N1—O3 | −2.6 (4) |
Sr1iv—O4—N3—O5 | −174.7 (3) | Sr1iv—O6—N3—O5 | 175.3 (4) |
Sr1iv—O4—N3—O6 | 5.9 (5) | Sr1iv—O6—N3—O4 | −5.3 (4) |
Sr1—O4—N3—O6 | 174.8 (4) | Sr1v—O3—N1—Sr1 | 68.3 (14) |
Sr1iii—O8—C2—N4iii | 62.5 (3) | Sr1v—O3—N1—O1 | −178.0 (3) |
Sr1—O8—C2—N4 | 62.5 (3) | Sr1v—O3—N1—O2 | 2.6 (4) |
Sr1iii—O8—C2—N4 | −117.5 (3) |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+3/2, y−1/2, z; (iii) −x+1, −y+1, z; (iv) x−1/2, −y+1/2, z; (v) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O3ii | 0.86 | 2.44 | 2.956 (6) | 119 |
N4—H4B···O5vi | 0.86 | 2.29 | 3.086 (6) | 154 |
N4—H4B···O6vi | 0.86 | 2.59 | 3.304 (7) | 141 |
N2—H2A···O6i | 0.86 | 2.50 | 3.020 (6) | 120 |
N2—H2B···O1vii | 0.86 | 2.33 | 3.139 (7) | 157 |
N2—H2B···O3vii | 0.86 | 2.57 | 3.312 (6) | 145 |
Symmetry codes: (i) x+1/2, −y+1/2, z; (ii) −x+3/2, y−1/2, z; (vi) −x+1, −y+1/2, z−1/2; (vii) −x+3/2, y, z+1/2. |
References
Allendorf, M. D. & Stavila, V. (2015). CrystEngComm, 17, 229–246. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Aziz, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464–21537. CrossRef PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Preethi, P. C., Harisankar, A., Maneesha, M., Sreeja, T. G., Al-Otaibi, J. S., Mary, Y. S. & Raghunandan, R. (2024). Opt. Mater. 154, 115750. CrossRef Google Scholar
Reek, J. N., de Bruin, B., Pullen, S., Mooibroek, T. J., Kluwer, A. M. & Caumes, X. (2022). Chem. Rev. 122, 12308–12369. CrossRef PubMed Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Schwarz, B. & Streb, C. (2015). Dalton Trans. 44, 4195–4199. Web of Science CSD CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.