research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of [Sr(urea)(NO3)2]n

crossmark logo

aKarakalpak State University, 1 Ch. Abdirov St Nukus, 230112, Uzbekistan, bInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan, cPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, and dNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 16 December 2024; accepted 23 December 2024; online 7 January 2025)

The crystal structure of poly[di-μ2-nitrato-μ2-urea-strontium(II)], [Sr(NO3)2(CH4N2O)]n, was determined using single-crystal X-ray diffraction. Crystallizing in the ortho­rhom­bic space group Aba2, the asymmetric unit consists of an SrII cation, two nitrate anions, and two half urea mol­ecules. The SrII cation adopts a distorted deca­hedral geometry coordinated by ten oxygen atoms, with Sr—O bond lengths ranging from 2.573 (3) to 2.847 (5) Å. The nitrate anions act as bidentate ligands, displaying both terminal and bridging coordination modes. The structure features a robust coordination network supported by hydrogen bonding. These results provide insight into the coord­ination behaviour of SrII with nitrate and urea ligands, contributing to the understanding of supra­molecular architectures in metal–organic frameworks (MOFs).

1. Chemical context

The study of coordination polymers (CPs) and the crystal engineering of MOFs has garnered significant inter­est due to their diverse structural architectures and potential applications in catalysis, gas storage, and sensing (Allendorf & Stavila, 2015[Allendorf, M. D. & Stavila, V. (2015). CrystEngComm, 17, 229-246.]). Metal ions such as SrII have proven versatile in forming coordination complexes owing to their ability to adopt various coordination geometries (Kainat et al., 2024[Kainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Aziz, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464-21537.]). Ligands like urea and nitrate, capable of acting as terminal and bridging ligands, offer unique opportunities for the construction of supra­mol­ecular networks (Reek et al., 2022[Reek, J. N., de Bruin, B., Pullen, S., Mooibroek, T. J., Kluwer, A. M. & Caumes, X. (2022). Chem. Rev. 122, 12308-12369.]). In this study, the polymeric complex [Sr(urea)(NO3)2]n was synthesized and characterized.

[Scheme 1]

2. Structural commentary

The crystal structure of the title compound [Sr(urea)(NO3)2]n was determined in the ortho­rhom­bic space group Aba2. The asymmetric unit consists of an SrII cation, two nitrate anions, and one urea mol­ecule. The SrII cation is coordinated by ten oxygen atoms, eight of which originate from nitrate anions and two from urea mol­ecules, adopting a deca­hedral geometry (Fig. 1[link]). The SrII cation forms a distorted deca­hedral coordination environment through inter­actions with oxygen atoms from the urea and nitrate ligands. The nitrate anions exhibit dual binding modes, participating in bidentate bridging inter­actions, which stabilize the structure through hydrogen bonds and inter­mol­ecular forces. Such versatility in coordination and binding contributes to the robust di-periodic layered network observed in the crystal structure. These findings provide insights into the design of SrII-based CPs and MOFs, highlighting the significance of urea and nitrate ligands in generating diverse structural motifs and functional materials (Preethi et al., 2024[Preethi, P. C., Harisankar, A., Maneesha, M., Sreeja, T. G., Al-Otaibi, J. S., Mary, Y. S. & Raghunandan, R. (2024). Opt. Mater. 154, 115750.]).

[Figure 1]
Figure 1
(a) The asymmetric unit of [Sr(urea)(NO3)2]n with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. (b) Extended coordination sphere of the polymeric complex.

3. Supra­molecular features

In the crystal, closely associated mol­ecules form a di-periodic sheet structure along the a- and b-axis directions. Along the c axis, mol­ecules are connected by hydrogen bonds (N4—H4A⋯O3ii, N4—H4B⋯O5vi, N4—H4B⋯O6vi, N2—H2A⋯O6i, N2—H2B⋯O1vii, N2—H2B⋯O3vii; Table 1[link]). The Sr—O (Sr-nitrate) bond lengths range from 2.622 (3) Å to 2.847 (5) Å, while the Sr–O (Sr-urea) bond lengths fall between 2.573 (3) Å and 2.604 (3) Å, reflecting variations due to ligand-field effects and steric factors (Fig. 1[link]). The nitrate anions act as bidentate ligand, contributing to the coordination geometry in two distinct modes. First, two oxygen atoms from each nitrate mol­ecule coordinate to the same SrII ion. Second, the oxygen atoms O7 and O8 are bidentate bridging ligands, connecting two SrII cations and forming a distorted parallelogram. The bond angles of the bridging oxygen atoms are 108.0 (2)° for (Sr—O7—Sr) and 106.13 (19)° for (Sr—O8—Sr). In the crystal structure, the urea mol­ecules are located on a special position with a twofold rotation axis at (−x, −y, z), oriented along the [001] direction. This structural arrangement results in a stable coordination network supported by inter­actions between the SrII cations, nitrate anions, and urea (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O3i 0.86 2.44 2.956 (6) 119
N4—H4B⋯O5ii 0.86 2.29 3.086 (6) 154
N4—H4B⋯O6ii 0.86 2.59 3.304 (7) 141
N2—H2A⋯O6iii 0.86 2.50 3.020 (6) 120
N2—H2B⋯O1iv 0.86 2.33 3.139 (7) 157
N2—H2B⋯O3iv 0.86 2.57 3.312 (6) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [-x+{\script{3\over 2}}, y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonded chains (blue dashed lines) in the crystal of [Sr(urea)(NO3)2]n.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed around 320 metal complexes where urea is directly bonded to a metal via oxygen, whereas only one structure where Sr is directly bonded to the oxygen atom of the urea mol­ecule has been reported (MOXJUG; Schwarz & Streb, 2015[Schwarz, B. & Streb, C. (2015). Dalton Trans. 44, 4195-4199.]). Moreover, no crystal structure similar to that of [Sr(urea)(NO3)2]n has been reported.

5. Synthesis and crystallization

Strontium nitrate (Sr(NO3)2, 0.212 g, 1 mmol) and carbamide (urea, 0.12 g, 2 mmol) were each individually dissolved in 5 mL of a 1:1 volumetric mixture of water and ethanol, ensuring complete dissolution of both compounds. The solutions were mixed together and kept for 10 min in an ultrasonic bath. The obtained colourless solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 days.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula [Sr(NO3)2(CH4N2O)]
Mr 271.70
Crystal system, space group Orthorhombic, Aba2
Temperature (K) 293
a, b, c (Å) 9.3527 (1), 9.9701 (1), 17.0496 (2)
V3) 1589.83 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 9.77
Crystal size (mm) 0.12 × 0.08 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.300, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 6435, 1517, 1487
Rint 0.029
(sin θ/λ)max−1) 0.614
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.055, 1.07
No. of reflections 1517
No. of parameters 121
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.27
Absolute structure Flack x)' determined using 678 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.020 (15)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Ooly[di-µ2-nitrato-µ2-urea-strontium(II)] top
Crystal data top
[Sr(NO3)2(CH4N2O)]Dx = 2.270 Mg m3
Mr = 271.70Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, Aba2Cell parameters from 5341 reflections
a = 9.3527 (1) Åθ = 4.7–71.3°
b = 9.9701 (1) ŵ = 9.77 mm1
c = 17.0496 (2) ÅT = 293 K
V = 1589.83 (3) Å3Block, colourless
Z = 80.12 × 0.08 × 0.06 mm
F(000) = 1056
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
1517 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source1487 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.0000 pixels mm-1θmax = 71.2°, θmin = 5.2°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2022)
k = 1112
Tmin = 0.300, Tmax = 1.000l = 2020
6435 measured reflections
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0374P)2 + 0.1494P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 0.74 e Å3
S = 1.07Δρmin = 0.27 e Å3
1517 reflectionsExtinction correction: SHELXL2016/6 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
121 parametersExtinction coefficient: 0.00038 (6)
1 restraintAbsolute structure: Flack x)' determined using 678 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.020 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.66197 (3)0.35686 (3)0.50071 (5)0.02435 (15)
O50.5691 (4)0.2029 (4)0.6237 (2)0.0380 (8)
O70.5000000.5000000.5894 (3)0.0317 (12)
O40.4300 (3)0.2135 (4)0.52232 (18)0.0361 (8)
O80.5000000.5000000.4089 (3)0.0328 (12)
O10.8252 (4)0.4683 (4)0.3800 (2)0.0396 (9)
O20.7896 (4)0.5891 (3)0.48352 (18)0.0367 (8)
O60.3592 (4)0.1112 (5)0.6265 (3)0.0508 (10)
O30.8632 (4)0.6835 (4)0.3775 (2)0.0463 (9)
C10.5000000.5000000.6641 (5)0.042 (2)
N30.4530 (4)0.1754 (4)0.5924 (2)0.0314 (8)
N40.4670 (6)0.3903 (6)0.2952 (3)0.0610 (14)
H4A0.4451710.3178650.3198810.073*
H4B0.4672640.3912530.2447520.073*
N20.6152 (6)0.5375 (8)0.7034 (3)0.0719 (18)
H2A0.6907190.5620250.6784550.086*
H2B0.6145710.5372600.7538090.086*
N10.8270 (4)0.5799 (4)0.4124 (3)0.0312 (9)
C20.5000000.5000000.3348 (5)0.038 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0243 (2)0.0232 (2)0.0255 (2)0.00128 (10)0.0001 (2)0.00073 (18)
O50.0368 (19)0.0425 (19)0.0346 (18)0.0014 (15)0.0072 (14)0.0028 (15)
O70.037 (3)0.036 (3)0.022 (3)0.006 (2)0.0000.000
O40.0326 (15)0.0439 (18)0.032 (2)0.0061 (14)0.0059 (11)0.0078 (13)
O80.037 (3)0.043 (3)0.019 (3)0.011 (2)0.0000.000
O10.049 (2)0.031 (2)0.038 (2)0.0005 (14)0.0039 (14)0.0070 (15)
O20.0462 (16)0.0334 (16)0.030 (2)0.0066 (13)0.0083 (14)0.0046 (12)
O60.051 (2)0.059 (2)0.043 (2)0.0199 (18)0.0080 (18)0.010 (2)
O30.065 (2)0.037 (2)0.036 (2)0.0119 (19)0.0026 (19)0.0080 (17)
C10.054 (5)0.042 (5)0.029 (5)0.028 (4)0.0000.000
N30.029 (2)0.0276 (18)0.037 (2)0.0002 (15)0.0008 (16)0.0026 (16)
N40.084 (4)0.072 (3)0.028 (2)0.021 (3)0.013 (3)0.016 (2)
N20.070 (4)0.110 (5)0.036 (3)0.030 (4)0.021 (3)0.024 (3)
N10.0311 (19)0.029 (2)0.034 (2)0.0006 (14)0.0019 (14)0.0016 (17)
C20.034 (4)0.056 (6)0.025 (5)0.015 (4)0.0000.000
Geometric parameters (Å, º) top
Sr1—O52.740 (4)O4—N31.272 (5)
Sr1—O72.573 (3)O8—C21.264 (10)
Sr1—O42.624 (3)O1—N11.243 (6)
Sr1—O4i2.629 (3)O2—N11.265 (5)
Sr1—O82.604 (3)O6—N31.232 (5)
Sr1—O12.793 (4)O3—N11.239 (6)
Sr1—O2ii2.723 (3)C1—N21.322 (7)
Sr1—O22.622 (3)C1—N2iii1.322 (7)
Sr1—O6i2.847 (5)N4—H4A0.8600
Sr1—O3ii2.731 (4)N4—H4B0.8600
Sr1—N33.088 (4)N4—C21.322 (7)
Sr1—N13.097 (4)N2—H2A0.8600
O5—N31.241 (5)N2—H2B0.8600
O7—C11.274 (11)
O5—Sr1—O1163.75 (10)O2ii—Sr1—N1124.65 (11)
O5—Sr1—O6i72.03 (13)O6i—Sr1—N395.41 (13)
O5—Sr1—N323.62 (10)O6i—Sr1—N187.87 (13)
O5—Sr1—N1158.76 (11)O3ii—Sr1—O5101.94 (11)
O7—Sr1—O571.00 (11)O3ii—Sr1—O174.45 (12)
O7—Sr1—O4i128.84 (10)O3ii—Sr1—O6i134.94 (11)
O7—Sr1—O474.49 (8)O3ii—Sr1—N387.94 (12)
O7—Sr1—O872.94 (8)O3ii—Sr1—N197.10 (12)
O7—Sr1—O1122.30 (10)N3—Sr1—N1169.13 (10)
O7—Sr1—O281.01 (8)N3—O5—Sr194.1 (3)
O7—Sr1—O2ii134.83 (9)Sr1—O7—Sr1iii108.0 (2)
O7—Sr1—O6i82.92 (12)C1—O7—Sr1126.00 (10)
O7—Sr1—O3ii138.81 (11)C1—O7—Sr1iii126.00 (10)
O7—Sr1—N369.81 (9)Sr1—O4—Sr1iv156.08 (14)
O7—Sr1—N1100.42 (9)N3—O4—Sr198.9 (2)
O4—Sr1—O547.58 (9)N3—O4—Sr1iv102.3 (2)
O4i—Sr1—O592.60 (10)Sr1—O8—Sr1iii106.13 (19)
O4—Sr1—O4i128.56 (4)C2—O8—Sr1126.94 (9)
O4—Sr1—O1140.54 (10)C2—O8—Sr1iii126.94 (9)
O4i—Sr1—O171.84 (10)N1—O1—Sr192.1 (3)
O4—Sr1—O2ii67.60 (11)Sr1—O2—Sr1v158.35 (14)
O4i—Sr1—O2ii66.10 (11)N1—O2—Sr199.7 (2)
O4i—Sr1—O6i46.09 (10)N1—O2—Sr1v97.4 (2)
O4—Sr1—O6i119.40 (13)N3—O6—Sr1iv92.7 (3)
O4i—Sr1—O3ii91.21 (11)N1—O3—Sr1v97.7 (3)
O4—Sr1—O3ii72.06 (12)O7—C1—N2120.4 (4)
O4—Sr1—N324.02 (9)O7—C1—N2iii120.4 (4)
O4i—Sr1—N3112.09 (11)N2iii—C1—N2119.2 (8)
O4—Sr1—N1150.61 (10)Sr1—N3—Sr1iv110.78 (12)
O4i—Sr1—N177.56 (10)O5—N3—Sr1iv172.2 (3)
O8—Sr1—O5125.63 (9)O5—N3—Sr162.2 (2)
O8—Sr1—O484.36 (7)O5—N3—O4119.1 (4)
O8—Sr1—O4i141.75 (10)O4—N3—Sr1iv54.49 (19)
O8—Sr1—O169.95 (10)O4—N3—Sr157.1 (2)
O8—Sr1—O273.36 (8)O6—N3—Sr1173.7 (4)
O8—Sr1—O2ii124.70 (9)O6—N3—Sr1iv64.3 (3)
O8—Sr1—O6i140.21 (11)O6—N3—O5122.4 (4)
O8—Sr1—O3ii80.46 (12)O6—N3—O4118.5 (4)
O8—Sr1—N3104.90 (9)H4A—N4—H4B120.0
O8—Sr1—N166.70 (8)C2—N4—H4A120.0
O1—Sr1—O6i99.01 (12)C2—N4—H4B120.0
O1—Sr1—N3162.17 (11)C1—N2—H2A120.0
O1—Sr1—N123.64 (11)C1—N2—H2B120.0
O2ii—Sr1—O565.54 (10)H2A—N2—H2B120.0
O2—Sr1—O5136.45 (11)Sr1—N1—Sr1v114.45 (13)
O2—Sr1—O4i79.48 (11)O1—N1—Sr1v177.6 (3)
O2—Sr1—O4150.83 (11)O1—N1—Sr164.3 (2)
O2—Sr1—O146.95 (10)O1—N1—O2119.2 (4)
O2ii—Sr1—O1102.69 (11)O2—N1—Sr1v59.1 (2)
O2—Sr1—O2ii141.08 (5)O2—N1—Sr156.5 (2)
O2ii—Sr1—O6i94.76 (12)O3—N1—Sr1165.5 (3)
O2—Sr1—O6i71.96 (14)O3—N1—Sr1v59.3 (3)
O2—Sr1—O3ii120.82 (11)O3—N1—O1122.4 (5)
O2ii—Sr1—O3ii46.46 (10)O3—N1—O2118.4 (4)
O2ii—Sr1—N365.51 (11)O8—C2—N4iii120.7 (4)
O2—Sr1—N3149.57 (10)O8—C2—N4120.7 (4)
O2—Sr1—N123.74 (10)N4—C2—N4iii118.6 (8)
Sr1—O5—N3—O45.5 (4)Sr1—O8—C2—N4iii117.5 (3)
Sr1—O5—N3—O6175.1 (4)Sr1—O1—N1—O214.2 (4)
Sr1iii—O7—C1—N2117.6 (4)Sr1—O1—N1—O3165.2 (4)
Sr1iii—O7—C1—N2iii62.4 (4)Sr1v—O2—N1—Sr1166.7 (2)
Sr1—O7—C1—N262.4 (4)Sr1—O2—N1—Sr1v166.7 (2)
Sr1—O7—C1—N2iii117.6 (4)Sr1—O2—N1—O115.3 (4)
Sr1iv—O4—N3—Sr1168.9 (2)Sr1v—O2—N1—O1178.0 (3)
Sr1—O4—N3—Sr1iv168.9 (2)Sr1—O2—N1—O3164.1 (3)
Sr1—O4—N3—O55.8 (4)Sr1v—O2—N1—O32.6 (4)
Sr1iv—O4—N3—O5174.7 (3)Sr1iv—O6—N3—O5175.3 (4)
Sr1iv—O4—N3—O65.9 (5)Sr1iv—O6—N3—O45.3 (4)
Sr1—O4—N3—O6174.8 (4)Sr1v—O3—N1—Sr168.3 (14)
Sr1iii—O8—C2—N4iii62.5 (3)Sr1v—O3—N1—O1178.0 (3)
Sr1—O8—C2—N462.5 (3)Sr1v—O3—N1—O22.6 (4)
Sr1iii—O8—C2—N4117.5 (3)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y1/2, z; (iii) x+1, y+1, z; (iv) x1/2, y+1/2, z; (v) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O3ii0.862.442.956 (6)119
N4—H4B···O5vi0.862.293.086 (6)154
N4—H4B···O6vi0.862.593.304 (7)141
N2—H2A···O6i0.862.503.020 (6)120
N2—H2B···O1vii0.862.333.139 (7)157
N2—H2B···O3vii0.862.573.312 (6)145
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+3/2, y1/2, z; (vi) x+1, y+1/2, z1/2; (vii) x+3/2, y, z+1/2.
 

References

First citationAllendorf, M. D. & Stavila, V. (2015). CrystEngComm, 17, 229–246.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKainat, S. F., Hawsawi, M. B., Mughal, E. U., Naeem, N., Almohyawi, A. M., Altass, H. M., Hussein, E. M., Sadiq, A., Moussa, Z., Abd-El-Aziz, A. S. & Ahmed, S. A. (2024). RSC Adv. 14, 21464–21537.  CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPreethi, P. C., Harisankar, A., Maneesha, M., Sreeja, T. G., Al-Otaibi, J. S., Mary, Y. S. & Raghunandan, R. (2024). Opt. Mater. 154, 115750.  CrossRef Google Scholar
First citationReek, J. N., de Bruin, B., Pullen, S., Mooibroek, T. J., Kluwer, A. M. & Caumes, X. (2022). Chem. Rev. 122, 12308–12369.  CrossRef PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSchwarz, B. & Streb, C. (2015). Dalton Trans. 44, 4195–4199.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds