

research communications

H)-one hydrochloride
and Hirshfeld surface analysis of 2-methylquinazolin-4(3aNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan, bInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and cUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: davlatboyev.muzaffar@mail.ru
The title salt (systematic name: 2-methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride), C9H9N2O+·Cl−, has orthorhombic (Pbcm) symmetry. Except for two methyl H atoms, all atoms of the molecular cation are located about a mirror plane, making the quinazolinium moiety exactly planar. Individual molecules are arranged in (001) layers in the crystal. Supramolecular features include N—H⋯Cl hydrogen-bonding interactions, leading to zigzag chains along [010] with D11(2) and C12(6) graph-set motifs. Additionally, weak π–π stacking interactions occur between benzene rings in adjacent layers. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯H (36.1%), H⋯C/C⋯H (25.8%), and H⋯O/O⋯H (17.7%) interactions.
Keywords: quinazolin-4-one; crystal structure; hydrogen-bonding; intermolecular interactions; organic salt.
CCDC reference: 2416982
1. Chemical context
Syntheses based on pyrimidines (quinazolines) condensed with a benzene ring are widely used in agricultural and medical practice (Zayed, 2023). In particular, drugs based on compounds of this class are used against viruses, microbes, colds and cancer (Li et al., 2021
; Arachchige & Yi, 2019
) as well as stimulants and pesticides (Alsibaee et al., 2023
). Examples of such types of drugs that have been used successfully against various types of cancer in recent years are imatinib, erlotinib, lapatinib and afatinib. Therefore, targeted syntheses of biologically active compounds containing this pharmacophore (i.e. the quinazoline ring), are important to determine their physical, chemical and biological properties. In this context, we report here the molecular and crystal structures of 2-methyl quinazolin-4(3H)-one hydrochloride (I) and its Hirshfeld surface analysis.
2. Structural commentary
The I) consists of a quinazolinium cation and a Cl− anion (Fig. 1). Except for methyl H atom H11b and its symmetry-related counterpart, all atoms are located on a mirror plane, making the benzene and pyrimidine rings in the cation exactly planar (Fig. 2
). The basic heteroatom N1 of the pyrimidine ring is protonated, and the resulting positive charge is delocalized within the –N—C—N– moiety in the ring, making the C2—N1 and C2—N3 bonds shorter than the C4—N3 and C9—N1 bonds. Similar differences were observed in related compounds reported in the literature (Sharma et al., 1993
; Turgunov et al., 2003
; Tozhiboev et al., 2005
, Tojiboev et al., 2021
).
![]() | Figure 1 The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted turquoise line represents an N—H⋯Cl hydrogen bond. |
![]() | Figure 2 Packing of (I) (a) along the a axis and (b) along the b axis, showing the π–π interactions. |
3. Supramolecular features
In the crystal of (I), the cationic molecules are arranged in flat (001) layers. Individual molecules are linked to Cl− anions through N—H⋯Cl hydrogen-bonding interactions (Table 1) into zigzag chains extending parallel to [010] (Fig. 3
), generating D11(2) and C21(6) graph-set motifs (Bernstein et al., 1995
). In addition, weak highly slipped π–π stacking interactions (Fig. 2
) occur between benzene (centroid Cg2) rings in adjacent layers and involve contact distances Cg2⋯Cg2(1 − x, 1 − y, 1 − z) of 4.987 (14) Å (slippage 3.280 Å).
|
![]() | Figure 3 Packing of (I) along the c axis. Hydrogen bonding between N1—H1⋯Cl and N3—H3⋯Cl is shown as blue dotted lines. |
4. Hirshfeld surface analysis
A Hirshfeld surface analysis (Hirshfeld, 1977) was carried out using CrystalExplorer (Spackman et al., 2021
) to visualize non-covalent interactions in the crystal packing of (I). The Hirshfeld surface mapped over dnorm is represented in Fig. 4
. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red spot near N1 indicates its role as a hydrogen-bond donor towards Cl1.
![]() | Figure 4 Three-dimensional Hirshfeld surface of (I) mapped over dnorm. |
The most important contributions to the Hirshfeld surface arise from H⋯H contacts at 36.1% (Fig. 5b). C⋯H/H⋯C and O⋯H/H⋯O interactions follow with contributions of 25.8% and 17.7%, respectively (Fig. 5
c,d). The classical N—H⋯Cl hydrogen bonds correspond to H⋯Cl/Cl⋯H contacts (10.3% contribution) and show up as a spike (Fig. 5
e). Minor contributors are due to C⋯Cl/Cl⋯C (3.3%), N⋯H/H⋯N (2.4%), N⋯Cl/Cl⋯N (2.2%) and C⋯C (1.8%) interactions.
![]() | Figure 5 Two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and decomposed into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl interactions. Values for di and de represent the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
5. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016) for the 2-methylquinazolin-4(3H)-one moiety resulted in twelve hits with a similar planar conformation: ACANLC10 (Etter et al., 1983
), AWIYIR (Kalogirou et al., 2021a
), BIHJUA and BIHKAH (Liao et al., 2018
), BOLGAK (Etter et al., 1983
) and BOYMAD (Chadwick & Easton, 1983
), DILFEL (Rybarczyk-Pirek et al., 2013
), RUGTEV (Kalogirou et al., 2020
), UQOGAL (Kalogirou et al., 2021b
) and YILLEM (Moghimi et al., 2013
). The main difference with respect to the molecular structures of these compounds is that the C2—N1 bond in the pyrimidine ring of (I) is slightly longer due to the protonation of the N atom.
6. Synthesis and crystallization
30 g (0.2 mol) of N-acetylanthranilic acid and 76.53 g (1.4 mol) of ammonium chloride were placed in a 250 ml round-bottom flask. The mixture was heated in a sand bath at 498–503 K for 4 h. Then the reaction mixture was cooled and treated with boiling water. The mixture was filtered and brought to pH 7–9, and then was left at room temperature. The precipitate was filtered off, washed with distilled water and dried. Recrystallization from ethanol yielded 20.4 g (76%) of 2-methylquinazolin-4(3H)-one; m.p. 511–513 K, Rf = 0.28. In order to get 2-methylquinazolin-4(3H)-one hydrochloride crystals, the latter was dissolved in a mixture of ethanol and methanol (9:1 v:v) to which 10 drops of 30%wt HCl solution were added and stirred on a magnetic stirrer for 2 h. Crystal growth was carried out in a drying oven at 303 K. Colourless single crystals suitable for X-ray were obtained after 5 d.
7. Refinement
Crystal data, data collection and structure . H atoms were positioned geometrically (aromatic C—H = 0.93 Å, N—H = 0.86 Å and methyl C—H = 0.96 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(aromatic C, N) or 1.5Ueq(methyl C).
|
Supporting information
CCDC reference: 2416982
https://doi.org/10.1107/S2056989025000258/wm5743sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025000258/wm5743Isup2.hkl
C9H9N2O+·Cl− | Dx = 1.427 Mg m−3 |
Mr = 196.64 | Cu Kα radiation, λ = 1.54184 Å |
Orthorhombic, Pbcm | Cell parameters from 2575 reflections |
a = 10.1221 (5) Å | θ = 4.4–70.9° |
b = 13.6533 (4) Å | µ = 3.37 mm−1 |
c = 6.6248 (3) Å | T = 295 K |
V = 915.55 (7) Å3 | Prizm, colourless |
Z = 4 | 0.20 × 0.15 × 0.05 mm |
F(000) = 410.692 |
PhotonJet (Cu) X-ray Source diffractometer | 824 reflections with I ≥ 2u(I) |
Detector resolution: 10.0000 pixels mm-1 | Rint = 0.086 |
ω scans | θmax = 71.7°, θmin = 4.4° |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2020) | h = −12→12 |
Tmin = 0.600, Tmax = 1.000 | k = −16→16 |
7833 measured reflections | l = −8→5 |
977 independent reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | 14 constraints |
R[F2 > 2σ(F2)] = 0.043 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.133 | w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2674P] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max = −0.0005 |
977 reflections | Δρmax = 0.29 e Å−3 |
84 parameters | Δρmin = −0.35 e Å−3 |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.15171 (8) | 0.09775 (5) | 0.75 | 0.0549 (3) | |
O1 | 0.2374 (3) | 0.60927 (16) | 0.75 | 0.0819 (9) | |
N1 | 0.1883 (2) | 0.31959 (17) | 0.75 | 0.0472 (6) | |
H1 | 0.1741 (2) | 0.25748 (17) | 0.75 | 0.0708 (9)* | |
C2 | 0.0870 (3) | 0.3786 (2) | 0.75 | 0.0463 (7) | |
N3 | 0.1070 (3) | 0.47530 (17) | 0.75 | 0.0502 (6) | |
H3 | 0.0384 (3) | 0.51250 (17) | 0.75 | 0.0753 (10)* | |
C4 | 0.2314 (3) | 0.5209 (2) | 0.75 | 0.0558 (8) | |
C5 | 0.4723 (3) | 0.4864 (3) | 0.75 | 0.0622 (9) | |
H5 | 0.4897 (3) | 0.5532 (3) | 0.75 | 0.0746 (10)* | |
C6 | 0.5757 (4) | 0.4204 (3) | 0.75 | 0.0679 (9) | |
H6 | 0.6625 (4) | 0.4428 (3) | 0.75 | 0.0814 (11)* | |
C7 | 0.5498 (4) | 0.3204 (3) | 0.75 | 0.0659 (9) | |
H7 | 0.6197 (4) | 0.2762 (3) | 0.75 | 0.0791 (11)* | |
C8 | 0.4220 (3) | 0.2862 (2) | 0.75 | 0.0584 (8) | |
H8 | 0.4052 (3) | 0.2192 (2) | 0.75 | 0.0701 (10)* | |
C9 | 0.3187 (3) | 0.3528 (2) | 0.75 | 0.0469 (7) | |
C10 | 0.3423 (3) | 0.4534 (2) | 0.75 | 0.0491 (7) | |
C11 | −0.0492 (4) | 0.3396 (3) | 0.75 | 0.0610 (9) | |
H11a | −0.058 (4) | 0.274 (4) | 0.75 | 0.0914 (13)* | |
H11b | −0.090 (3) | 0.360 (2) | 0.869 (5) | 0.0914 (13)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0623 (5) | 0.0370 (4) | 0.0655 (5) | −0.0071 (3) | −0.000000 | 0.000000 |
O1 | 0.0805 (18) | 0.0339 (12) | 0.131 (3) | −0.0025 (11) | −0.000000 | 0.000000 |
N1 | 0.0543 (14) | 0.0323 (11) | 0.0551 (14) | −0.0005 (10) | −0.000000 | 0.000000 |
C2 | 0.0531 (16) | 0.0375 (13) | 0.0483 (15) | 0.0031 (12) | −0.000000 | 0.000000 |
N3 | 0.0558 (15) | 0.0351 (12) | 0.0597 (14) | 0.0064 (11) | −0.000000 | 0.000000 |
C4 | 0.0652 (19) | 0.0372 (15) | 0.0651 (18) | −0.0022 (13) | −0.000000 | 0.000000 |
C5 | 0.065 (2) | 0.0510 (18) | 0.070 (2) | −0.0085 (16) | −0.000000 | 0.000000 |
C6 | 0.0526 (19) | 0.071 (2) | 0.080 (2) | −0.0055 (17) | −0.000000 | 0.000000 |
C7 | 0.0546 (19) | 0.067 (2) | 0.076 (2) | 0.0093 (17) | −0.000000 | 0.000000 |
C8 | 0.0633 (19) | 0.0425 (16) | 0.069 (2) | 0.0071 (14) | −0.000000 | 0.000000 |
C9 | 0.0555 (17) | 0.0378 (14) | 0.0474 (15) | 0.0000 (13) | −0.000000 | 0.000000 |
C10 | 0.0566 (17) | 0.0390 (14) | 0.0518 (16) | −0.0038 (13) | −0.000000 | 0.000000 |
C11 | 0.0562 (19) | 0.0480 (17) | 0.079 (2) | 0.0000 (15) | −0.000000 | 0.000000 |
O1—C4 | 1.208 (3) | C5—C10 | 1.391 (5) |
N1—H1 | 0.8600 | C6—H6 | 0.9300 |
N1—C2 | 1.304 (4) | C6—C7 | 1.389 (5) |
N1—C9 | 1.396 (4) | C7—H7 | 0.9300 |
C2—N3 | 1.335 (4) | C7—C8 | 1.375 (5) |
C2—C11 | 1.478 (5) | C8—H8 | 0.9300 |
N3—H3 | 0.8600 | C8—C9 | 1.386 (4) |
N3—C4 | 1.404 (4) | C9—C10 | 1.394 (4) |
C4—C10 | 1.452 (5) | C11—H11a | 0.91 (5) |
C5—H5 | 0.9300 | C11—H11bi | 0.93 (3) |
C5—C6 | 1.381 (5) | C11—H11b | 0.93 (3) |
C2—N1—H1 | 118.56 (17) | H7—C7—C6 | 119.6 (2) |
C9—N1—H1 | 118.56 (15) | C8—C7—C6 | 120.8 (3) |
C9—N1—C2 | 122.9 (2) | C8—C7—H7 | 119.6 (2) |
N3—C2—N1 | 119.5 (3) | H8—C8—C7 | 120.4 (2) |
C11—C2—N1 | 120.7 (3) | C9—C8—C7 | 119.1 (3) |
C11—C2—N3 | 119.9 (3) | C9—C8—H8 | 120.43 (19) |
H3—N3—C2 | 117.49 (17) | C8—C9—N1 | 120.1 (3) |
C4—N3—C2 | 125.0 (3) | C10—C9—N1 | 118.8 (3) |
C4—N3—H3 | 117.49 (16) | C10—C9—C8 | 121.1 (3) |
N3—C4—O1 | 119.2 (3) | C5—C10—C4 | 121.7 (3) |
C10—C4—O1 | 126.5 (3) | C9—C10—C4 | 119.5 (3) |
C10—C4—N3 | 114.3 (2) | C9—C10—C5 | 118.7 (3) |
C6—C5—H5 | 119.8 (2) | H11a—C11—C2 | 117 (3) |
C10—C5—H5 | 119.8 (2) | H11b—C11—C2 | 107.9 (19) |
C10—C5—C6 | 120.4 (3) | H11bi—C11—C2 | 107.9 (19) |
H6—C6—C5 | 120.1 (2) | H11bi—C11—H11a | 105 (2) |
C7—C6—C5 | 119.8 (3) | H11b—C11—H11a | 105 (2) |
C7—C6—H6 | 120.1 (2) | H11b—C11—H11bi | 116 (4) |
O1—C4—N3—C2 | 180.0 | N3—C4—C10—C5 | 180.0 |
O1—C4—C10—C5 | 0.0 | N3—C4—C10—C9 | 0.0 |
O1—C4—C10—C9 | 180.0 | C4—C10—C5—C6 | 180.0 |
N1—C2—N3—C4 | 0.0 | C4—C10—C9—C8 | 180.0 |
N1—C9—C8—C7 | 180.0 | C5—C6—C7—C8 | 0.0 |
N1—C9—C10—C4 | 0.0 | C5—C10—C9—C8 | 0.0 |
N1—C9—C10—C5 | 180.0 | C6—C7—C8—C9 | 0.0 |
C2—N3—C4—C10 | 0.0 | C7—C8—C9—C10 | 0.0 |
Symmetry code: (i) x, y, −z+3/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.86 | 2.19 | 3.052 (2) | 176 |
N3—H3···Cl1ii | 0.86 | 2.25 | 3.108 (3) | 175 |
Symmetry code: (ii) −x, −y, z+1/2. |
Acknowledgements
The authors thank the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan, Tashkent, Uzbekistan for providing the single-crystal XRD facility.
References
Alsibaee, A. M., Al-Yousef, H. M. & Al-Salem, H. S. (2023). Molecules, 28, 978. CrossRef PubMed Google Scholar
Arachchige, P. T. K. & Yi, C. S. (2019). Org. Lett. 21, 3337–3341. PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75. Web of Science CrossRef IUCr Journals Google Scholar
Chadwick, D. J. & Easton, I. W. (1983). Acta Cryst. C39, 454–456. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Etter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115–121. CSD CrossRef Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2020). ChemistrySelect, 5, 1884–1889. CSD CrossRef CAS Google Scholar
Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021a). Molbank, 2021, M1233. CSD CrossRef Google Scholar
Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021b). J. Org. Chem. 86, 5702–5713. CSD CrossRef CAS PubMed Google Scholar
Li, G., Jing, X., Zhang, P. & De Clercq, E. (2021). Encyclopedia of Virology, 4th ed. edited by D. Bamford & M. Zuckerman, pp. 121–130. Amsterdam: Elsevier. Google Scholar
Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152. Web of Science CSD CrossRef PubMed Google Scholar
Moghimi, A., Khanmiri, R. H., Omrani, I. & Shaabani, A. (2013). Tetrahedron Lett. 54, 3956–3959. CSD CrossRef CAS Google Scholar
Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland. Google Scholar
Rybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913–3924. CAS Google Scholar
Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115–1121. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tojiboev, A., Okmanov, R., Englert, U., Wang, R., Pan, F., Turgunov, K. & Tashkhodjaev, B. (2021). Acta Cryst. E77, 629–633. CSD CrossRef IUCr Journals Google Scholar
Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950–954. Web of Science CrossRef CAS Google Scholar
Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382. Web of Science CrossRef CAS Google Scholar
Zayed, M. F. (2023). Sci. Pharm. 91, 18. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
