research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 2-methyl­quinazolin-4(3H)-one hydro­chloride

crossmark logo

aNamangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan, bInstitute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan, and cUniversity of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
*Correspondence e-mail: davlatboyev.muzaffar@mail.ru

Edited by M. Weil, Vienna University of Technology, Austria (Received 14 November 2024; accepted 10 January 2025; online 17 January 2025)

The title salt (systematic name: 2-methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride), C9H9N2O+·Cl, has ortho­rhom­bic (Pbcm) symmetry. Except for two methyl H atoms, all atoms of the mol­ecular cation are located about a mirror plane, making the quinazolinium moiety exactly planar. Individual mol­ecules are arranged in (001) layers in the crystal. Supra­molecular features include N—H⋯Cl hydrogen-bonding inter­actions, leading to zigzag chains along [010] with D11(2) and C12(6) graph-set motifs. Additionally, weak ππ stacking inter­actions occur between benzene rings in adjacent layers. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯H (36.1%), H⋯C/C⋯H (25.8%), and H⋯O/O⋯H (17.7%) inter­actions.

1. Chemical context

Syntheses based on pyrimidines (quinazolines) condensed with a benzene ring are widely used in agricultural and medical practice (Zayed, 2023[Zayed, M. F. (2023). Sci. Pharm. 91, 18.]). In particular, drugs based on compounds of this class are used against viruses, microbes, colds and cancer (Li et al., 2021[Li, G., Jing, X., Zhang, P. & De Clercq, E. (2021). Encyclopedia of Virology, 4th ed. edited by D. Bamford & M. Zuckerman, pp. 121-130. Amsterdam: Elsevier.]; Arachchige & Yi, 2019[Arachchige, P. T. K. & Yi, C. S. (2019). Org. Lett. 21, 3337-3341.]) as well as stimulants and pesticides (Alsibaee et al., 2023[Alsibaee, A. M., Al-Yousef, H. M. & Al-Salem, H. S. (2023). Molecules, 28, 978.]). Examples of such types of drugs that have been used successfully against various types of cancer in recent years are imatinib, erlotinib, lapatinib and afatinib. Therefore, targeted syntheses of biologically active compounds containing this pharmacophore (i.e. the quinazoline ring), are important to determine their physical, chemical and biological properties. In this context, we report here the mol­ecular and crystal structures of 2-methyl quinazolin-4(3H)-one hydro­chloride (I) and its Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I) consists of a quinazolinium cation and a Cl anion (Fig. 1[link]). Except for methyl H atom H11b and its symmetry-related counterpart, all atoms are located on a mirror plane, making the benzene and pyrimidine rings in the cation exactly planar (Fig. 2[link]). The basic heteroatom N1 of the pyrimidine ring is protonated, and the resulting positive charge is delocalized within the –N—C—N– moiety in the ring, making the C2—N1 and C2—N3 bonds shorter than the C4—N3 and C9—N1 bonds. Similar differences were observed in related compounds reported in the literature (Sharma et al., 1993[Sharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115-1121.]; Turgunov et al., 2003[Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379-382.]; Tozhiboev et al., 2005[Tozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950-954.], Tojiboev et al., 2021[Tojiboev, A., Okmanov, R., Englert, U., Wang, R., Pan, F., Turgunov, K. & Tashkhodjaev, B. (2021). Acta Cryst. E77, 629-633.]).

[Figure 1]
Figure 1
The asymmetric unit of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted turquoise line represents an N—H⋯Cl hydrogen bond.
[Figure 2]
Figure 2
Packing of (I) (a) along the a axis and (b) along the b axis, showing the ππ inter­actions.

3. Supra­molecular features

In the crystal of (I), the cationic mol­ecules are arranged in flat (001) layers. Individual mol­ecules are linked to Cl anions through N—H⋯Cl hydrogen-bonding inter­actions (Table 1[link]) into zigzag chains extending parallel to [010] (Fig. 3[link]), generating D11(2) and C21(6) graph-set motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). In addition, weak highly slipped ππ stacking inter­actions (Fig. 2[link]) occur between benzene (centroid Cg2) rings in adjacent layers and involve contact distances Cg2⋯Cg2(1 − x, 1 − y, 1 − z) of 4.987 (14) Å (slippage 3.280 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.86 2.19 3.052 (2) 176
N3—H3⋯Cl1i 0.86 2.25 3.108 (3) 175
Symmetry code: (i) [-x, -y, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Packing of (I) along the c axis. Hydrogen bonding between N1—H1⋯Cl and N3—H3⋯Cl is shown as blue dotted lines.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129-138.]) was carried out using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to visualize non-covalent inter­actions in the crystal packing of (I). The Hirshfeld surface mapped over dnorm is represented in Fig. 4[link]. The white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter or longer than the van der Waals radii, respectively. The bright-red spot near N1 indicates its role as a hydrogen-bond donor towards Cl1.

[Figure 4]
Figure 4
Three-dimensional Hirshfeld surface of (I) mapped over dnorm.

The most important contributions to the Hirshfeld surface arise from H⋯H contacts at 36.1% (Fig. 5[link]b). C⋯H/H⋯C and O⋯H/H⋯O inter­actions follow with contributions of 25.8% and 17.7%, respectively (Fig. 5[link]c,d). The classical N—H⋯Cl hydrogen bonds correspond to H⋯Cl/Cl⋯H contacts (10.3% contribution) and show up as a spike (Fig. 5[link]e). Minor contributors are due to C⋯Cl/Cl⋯C (3.3%), N⋯H/H⋯N (2.4%), N⋯Cl/Cl⋯N (2.2%) and C⋯C (1.8%) inter­actions.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and decomposed into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O, (e) Cl⋯H/H⋯Cl inter­actions. Values for di and de represent the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.43, last update November 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the 2-methyl­quinazolin-4(3H)-one moiety resulted in twelve hits with a similar planar conformation: ACANLC10 (Etter et al., 1983[Etter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115-121.]), AWIYIR (Kalogirou et al., 2021a[Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021a). Molbank, 2021, M1233.]), BIHJUA and BIHKAH (Liao et al., 2018[Liao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.]), BOLGAK (Etter et al., 1983[Etter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115-121.]) and BOYMAD (Chadwick & Easton, 1983[Chadwick, D. J. & Easton, I. W. (1983). Acta Cryst. C39, 454-456.]), DILFEL (Rybarczyk-Pirek et al., 2013[Rybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913-3924.]), RUGTEV (Kalogirou et al., 2020[Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2020). ChemistrySelect, 5, 1884-1889.]), UQOGAL (Kalogirou et al., 2021b[Kalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021b). J. Org. Chem. 86, 5702-5713.]) and YILLEM (Moghimi et al., 2013[Moghimi, A., Khanmiri, R. H., Omrani, I. & Shaabani, A. (2013). Tetrahedron Lett. 54, 3956-3959.]). The main difference with respect to the mol­ecular structures of these compounds is that the C2—N1 bond in the pyrimidine ring of (I) is slightly longer due to the protonation of the N atom.

6. Synthesis and crystallization

30 g (0.2 mol) of N-acetyl­anthranilic acid and 76.53 g (1.4 mol) of ammonium chloride were placed in a 250 ml round-bottom flask. The mixture was heated in a sand bath at 498–503 K for 4 h. Then the reaction mixture was cooled and treated with boiling water. The mixture was filtered and brought to pH 7–9, and then was left at room temperature. The precipitate was filtered off, washed with distilled water and dried. Recrystallization from ethanol yielded 20.4 g (76%) of 2-methyl­quinazolin-4(3H)-one; m.p. 511–513 K, Rf = 0.28. In order to get 2-methyl­quinazolin-4(3H)-one hydro­chloride crystals, the latter was dissolved in a mixture of ethanol and methanol (9:1 v:v) to which 10 drops of 30%wt HCl solution were added and stirred on a magnetic stirrer for 2 h. Crystal growth was carried out in a drying oven at 303 K. Colourless single crystals suitable for X-ray diffraction analysis were obtained after 5 d.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (aromatic C—H = 0.93 Å, N—H = 0.86 Å and methyl C—H = 0.96 Å) and treated as riding atoms, with Uiso(H) = 1.2Ueq(aromatic C, N) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C9H9N2O+·Cl
Mr 196.64
Crystal system, space group Orthorhombic, Pbcm
Temperature (K) 295
a, b, c (Å) 10.1221 (5), 13.6533 (4), 6.6248 (3)
V3) 915.55 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 3.37
Crystal size (mm) 0.20 × 0.15 × 0.05
 
Data collection
Diffractometer PhotonJet (Cu) X-ray Source
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.])
Tmin, Tmax 0.600, 1.000
No. of measured, independent and observed [I ≥ 2u(I)] reflections 7833, 977, 824
Rint 0.086
(sin θ/λ)max−1) 0.616
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.133, 1.01
No. of reflections 977
No. of parameters 84
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.35
Computer programs: CrysAlis PRO (Rigaku OD, 2020[Rigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.]), SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2-refine (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-Methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride top
Crystal data top
C9H9N2O+·ClDx = 1.427 Mg m3
Mr = 196.64Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcmCell parameters from 2575 reflections
a = 10.1221 (5) Åθ = 4.4–70.9°
b = 13.6533 (4) ŵ = 3.37 mm1
c = 6.6248 (3) ÅT = 295 K
V = 915.55 (7) Å3Prizm, colourless
Z = 40.20 × 0.15 × 0.05 mm
F(000) = 410.692
Data collection top
PhotonJet (Cu) X-ray Source
diffractometer
824 reflections with I 2u(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.086
ω scansθmax = 71.7°, θmin = 4.4°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2020)
h = 1212
Tmin = 0.600, Tmax = 1.000k = 1616
7833 measured reflectionsl = 85
977 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full14 constraints
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.2674P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.0005
977 reflectionsΔρmax = 0.29 e Å3
84 parametersΔρmin = 0.35 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.15171 (8)0.09775 (5)0.750.0549 (3)
O10.2374 (3)0.60927 (16)0.750.0819 (9)
N10.1883 (2)0.31959 (17)0.750.0472 (6)
H10.1741 (2)0.25748 (17)0.750.0708 (9)*
C20.0870 (3)0.3786 (2)0.750.0463 (7)
N30.1070 (3)0.47530 (17)0.750.0502 (6)
H30.0384 (3)0.51250 (17)0.750.0753 (10)*
C40.2314 (3)0.5209 (2)0.750.0558 (8)
C50.4723 (3)0.4864 (3)0.750.0622 (9)
H50.4897 (3)0.5532 (3)0.750.0746 (10)*
C60.5757 (4)0.4204 (3)0.750.0679 (9)
H60.6625 (4)0.4428 (3)0.750.0814 (11)*
C70.5498 (4)0.3204 (3)0.750.0659 (9)
H70.6197 (4)0.2762 (3)0.750.0791 (11)*
C80.4220 (3)0.2862 (2)0.750.0584 (8)
H80.4052 (3)0.2192 (2)0.750.0701 (10)*
C90.3187 (3)0.3528 (2)0.750.0469 (7)
C100.3423 (3)0.4534 (2)0.750.0491 (7)
C110.0492 (4)0.3396 (3)0.750.0610 (9)
H11a0.058 (4)0.274 (4)0.750.0914 (13)*
H11b0.090 (3)0.360 (2)0.869 (5)0.0914 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0623 (5)0.0370 (4)0.0655 (5)0.0071 (3)0.0000000.000000
O10.0805 (18)0.0339 (12)0.131 (3)0.0025 (11)0.0000000.000000
N10.0543 (14)0.0323 (11)0.0551 (14)0.0005 (10)0.0000000.000000
C20.0531 (16)0.0375 (13)0.0483 (15)0.0031 (12)0.0000000.000000
N30.0558 (15)0.0351 (12)0.0597 (14)0.0064 (11)0.0000000.000000
C40.0652 (19)0.0372 (15)0.0651 (18)0.0022 (13)0.0000000.000000
C50.065 (2)0.0510 (18)0.070 (2)0.0085 (16)0.0000000.000000
C60.0526 (19)0.071 (2)0.080 (2)0.0055 (17)0.0000000.000000
C70.0546 (19)0.067 (2)0.076 (2)0.0093 (17)0.0000000.000000
C80.0633 (19)0.0425 (16)0.069 (2)0.0071 (14)0.0000000.000000
C90.0555 (17)0.0378 (14)0.0474 (15)0.0000 (13)0.0000000.000000
C100.0566 (17)0.0390 (14)0.0518 (16)0.0038 (13)0.0000000.000000
C110.0562 (19)0.0480 (17)0.079 (2)0.0000 (15)0.0000000.000000
Geometric parameters (Å, º) top
O1—C41.208 (3)C5—C101.391 (5)
N1—H10.8600C6—H60.9300
N1—C21.304 (4)C6—C71.389 (5)
N1—C91.396 (4)C7—H70.9300
C2—N31.335 (4)C7—C81.375 (5)
C2—C111.478 (5)C8—H80.9300
N3—H30.8600C8—C91.386 (4)
N3—C41.404 (4)C9—C101.394 (4)
C4—C101.452 (5)C11—H11a0.91 (5)
C5—H50.9300C11—H11bi0.93 (3)
C5—C61.381 (5)C11—H11b0.93 (3)
C2—N1—H1118.56 (17)H7—C7—C6119.6 (2)
C9—N1—H1118.56 (15)C8—C7—C6120.8 (3)
C9—N1—C2122.9 (2)C8—C7—H7119.6 (2)
N3—C2—N1119.5 (3)H8—C8—C7120.4 (2)
C11—C2—N1120.7 (3)C9—C8—C7119.1 (3)
C11—C2—N3119.9 (3)C9—C8—H8120.43 (19)
H3—N3—C2117.49 (17)C8—C9—N1120.1 (3)
C4—N3—C2125.0 (3)C10—C9—N1118.8 (3)
C4—N3—H3117.49 (16)C10—C9—C8121.1 (3)
N3—C4—O1119.2 (3)C5—C10—C4121.7 (3)
C10—C4—O1126.5 (3)C9—C10—C4119.5 (3)
C10—C4—N3114.3 (2)C9—C10—C5118.7 (3)
C6—C5—H5119.8 (2)H11a—C11—C2117 (3)
C10—C5—H5119.8 (2)H11b—C11—C2107.9 (19)
C10—C5—C6120.4 (3)H11bi—C11—C2107.9 (19)
H6—C6—C5120.1 (2)H11bi—C11—H11a105 (2)
C7—C6—C5119.8 (3)H11b—C11—H11a105 (2)
C7—C6—H6120.1 (2)H11b—C11—H11bi116 (4)
O1—C4—N3—C2180.0N3—C4—C10—C5180.0
O1—C4—C10—C50.0N3—C4—C10—C90.0
O1—C4—C10—C9180.0C4—C10—C5—C6180.0
N1—C2—N3—C40.0C4—C10—C9—C8180.0
N1—C9—C8—C7180.0C5—C6—C7—C80.0
N1—C9—C10—C40.0C5—C10—C9—C80.0
N1—C9—C10—C5180.0C6—C7—C8—C90.0
C2—N3—C4—C100.0C7—C8—C9—C100.0
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.862.193.052 (2)176
N3—H3···Cl1ii0.862.253.108 (3)175
Symmetry code: (ii) x, y, z+1/2.
 

Acknowledgements

The authors thank the Institute of Bioorganic Chemistry of Academy Sciences of Uzbekistan, Tashkent, Uzbekistan for providing the single-crystal XRD facility.

References

First citationAlsibaee, A. M., Al-Yousef, H. M. & Al-Salem, H. S. (2023). Molecules, 28, 978.  CrossRef PubMed Google Scholar
First citationArachchige, P. T. K. & Yi, C. S. (2019). Org. Lett. 21, 3337–3341.  PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChadwick, D. J. & Easton, I. W. (1983). Acta Cryst. C39, 454–456.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEtter, M. C. (1983). J. Chem. Soc. Perkin Trans. 2, pp. 115–121.  CSD CrossRef Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2020). ChemistrySelect, 5, 1884–1889.  CSD CrossRef CAS Google Scholar
First citationKalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021a). Molbank, 2021, M1233.  CSD CrossRef Google Scholar
First citationKalogirou, A. S., Kourtellaris, A. & Koutentis, P. A. (2021b). J. Org. Chem. 86, 5702–5713.  CSD CrossRef CAS PubMed Google Scholar
First citationLi, G., Jing, X., Zhang, P. & De Clercq, E. (2021). Encyclopedia of Virology, 4th ed. edited by D. Bamford & M. Zuckerman, pp. 121–130. Amsterdam: Elsevier.  Google Scholar
First citationLiao, B.-L., Pan, Y.-J., Zhang, W. & Pan, L.-W. (2018). Chem. Biodivers. 15, e1800152.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMoghimi, A., Khanmiri, R. H., Omrani, I. & Shaabani, A. (2013). Tetrahedron Lett. 54, 3956–3959.  CSD CrossRef CAS Google Scholar
First citationRigaku OD (2020). CrysAlis PRO. Rigaku Oxford Diffraction, Wroclaw, Poland.  Google Scholar
First citationRybarczyk-Pirek, A. J., Chęcińska, L., Małecka, M. & Wojtulewski, S. (2013). Cryst. Growth Des. 13, 3913–3924.  CAS Google Scholar
First citationSharma, S. D., Gupta, V. K., Goswami, K. N. & Padmanabhan, V. M. (1993). Cryst. Res. Technol. 28, 1115–1121.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTojiboev, A., Okmanov, R., Englert, U., Wang, R., Pan, F., Turgunov, K. & Tashkhodjaev, B. (2021). Acta Cryst. E77, 629–633.  CSD CrossRef IUCr Journals Google Scholar
First citationTozhiboev, A. G., Turgunov, K. K., Tashkhodzhaev, B. & Musaeva, G. V. (2005). J. Struct. Chem. 46, 950–954.  Web of Science CrossRef CAS Google Scholar
First citationTurgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Shakhidoyatov, Kh. M. (2003). Chem. Nat. Compd. 39, 379–382.  Web of Science CrossRef CAS Google Scholar
First citationZayed, M. F. (2023). Sci. Pharm. 91, 18.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds