research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of a new polymorph of chlorido­bis­­(1,10-phenan­throline-κ2N,N′)copper(II) perchlorate

crossmark logo

aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska, Street 64, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
*Correspondence e-mail: plutenkom@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 20 November 2024; accepted 9 January 2025; online 14 January 2025)

The title salt (systematic name: 2-methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride), [CuCl(C12H8N2)2](ClO4), is comprised of a mononuclear complex cation [Cu(phen)2Cl]+ (phen is 1,10-phenanthroline) and a perchlorate anion, ClO4, both with point group symmetry 2. The CuII atom has a slightly distorted trigonal–bipyramidal coordination environment, defined by a N4Cl coordination set with the Cl atom and two N atoms at the equatorial sites. In the crystal, each phen ring is parallel to neighboring phen rings. The resulting significant ππ stacking inter­actions lead to zigzag chains extending parallel to [001]. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (32.1%), H⋯C/C⋯H (18.2%), H⋯O/O⋯H (14.6%), H⋯Cl/Cl⋯H (12.7%) and C⋯C (10.6%) inter­actions.

1. Chemical context

1,10-Phenanthroline (phen) is one of the most extensively studied chelating N-heterocyclic ligands. Copper(II) complexes of phen, particularly those exhibiting a coordination environment with coordination number 5, have garnered significant attention due to their diverse biological (Barceló-Oliver et al., 2009[Barceló-Oliver, M., García-Raso, A., Terrón, A., Molins, E., Prieto, M. J., Moreno, V., Martínez-Serra, J., Lladó, V., López, I., Gutiérrez, A. & Escribá, P. V. (2009). Inorg. Chim. Acta, 362, 13, 4744-4753.]; Pradeep et al., 2014[Pradeep, I., Megarajan, S., Arunachalam, S., Dhivya, R., Vinothkanna, A., Akbarsha, M. A. & Sekar, S. (2014). New J. Chem. 38, 4204-4211.]), redox catalytic (Huang & Batey, 2007[Huang, F. & Batey, R. A. (2007). Tetrahedron, 63, 32, 7667-7672.]; Liu et al., 2024[Liu, N., Bartling, S., Springer, A., Kubis, C., Bokareva, O. S., Salaya, E., Sun, J., Zhang, Z., Wohlrab, S., Abdel-Mageed, A. M., Liang, H.-Q. & Francke, R. (2024). Adv. Mater. 36, 2309526.]), and photochemical (Freitag et al., 2016[Freitag, M., Giordano, F., Yang, W., Pazoki, M., Hao, Y., Zietz, B., Grätzel, M., Hagfeldt, A. & Boschloo, G. (2016). J. Phys. Chem. C, 120, 18, 9595-9603.]) activities. Furthermore, complexes formed between copper and phen (in both 1:1 and 1:2 metal-to-ligand ratios) have been actively investigated as DNA-binding and oxidative DNA-cleaving agents (Bales et al., 2005[Bales, B. C., Kodama, T., Weledji, Y. N., Pitié, M., Meunier, B. & Greenberg, M. M. (2005). Nucleic Acids Res. 33, 16, 5371-5379.]; Zhang et al., 2006[Zhang, Q., Zhang, F., Wang, W. & Wang, X. (2006). J. Inorg. Biochem. 100, 8, 1344-1352.]; Pradeep et al., 2014[Pradeep, I., Megarajan, S., Arunachalam, S., Dhivya, R., Vinothkanna, A., Akbarsha, M. A. & Sekar, S. (2014). New J. Chem. 38, 4204-4211.]). In this context, structural studies of five-coordinate CuII complexes based on phen are of considerable inter­est for enhancing the understanding of the geometric features of the CuN4X chromophore and for elucidating the structure–property relationships of these compounds.

[Scheme 1]

Here, we report on synthesis, crystal structure, and Hirshfeld surface analysis of the compound [CuCl(phen)2]ClO4, crystallizing as a novel polymorph.

2. Structural commentary

The asymmetric unit of the title compound consists of half a [Cu(phen)2Cl]+ complex cation (point group symmetry 2) and half of a perchlorate anion ClO4 (point group symmetry 2). The CuII ion in the complex cation has a slightly distorted trigonal–bipyramidal coordination environment (τ5 = 0.921; Addison et al., 1984[Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) formed by four nitro­gen atoms from two phen ligands and one Cl ligand (Fig. 1[link]). The equatorial plane is defined by atoms Cl1, N1 and N1i whereas the axial positions are occupied by atoms N2 and N2i [symmetry code: (i) −x, y, −z + [{1\over 2}]]. The Cu—N bond lengths to the equatorial N atoms are shorter by about 0.11 Å in comparison to the axial N atoms (Table 1[link]). The crystallographically unique phen mol­ecule retains its planarity [maximum deviation from the least-squares plane is 0.034 (3) Å for atom C2] and forms a five-membered [Cu—N—C—C—N] chelate ring due to its bidentate coordination. The dihedral angle between the two phen planes coordinating to Cu1 is 59.55 (6)°. The twist angle between the planes is 48.32 (5)°, the fold angle between the planes is 39.10 (8)°, whereby the twist angle refers to the rotation of one phen plane relative to the other, while the fold angle describes the bending between the planes.

Table 1
Selected bond lengths (Å)

Cu1—N1 1.988 (2) Cl2—O2 1.418 (3)
Cu1—N2 2.100 (2) Cl2—O1 1.420 (2)
Cu1—Cl1 2.3402 (12)    
[Figure 1]
Figure 1
The structures of the mol­ecular entities of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line represents a C—H⋯O hydrogen bond. [Symmetry code: (i) −x, y, −z + [{1\over 2}].]

3. Supra­molecular features

In the crystal structure of the title compound (Fig. 2[link]), each phen ring is parallel to its neighboring phen ring. The resulting significant ππ stacking with an inter-planar distance of 3.5085 (16) Å leads to a zigzag chain structure extending parallel to [001]. There are additional weak inter­molecular C—H⋯O hydrogen bonds that link the complex cation to the perchlorate anion. Numerical details of these inter­actions are compiled in Table 2[link]. The shortest Cu⋯Cu separation within the unit cell is 7.7779 (3) Å.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1i 0.95 2.43 3.253 (4) 145
C3—H3⋯O2ii 0.95 2.48 3.368 (5) 157
Symmetry codes: (i) [-x, y, -z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing of the mol­ecular components in the title compound in a view along the a axis. C—H⋯O hydrogen bonds are shown as black dashed lines.

4. Hirshfeld analysis

Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The dark-red spots in Fig. 3[link] arise as a result of short inter­atomic contacts and represent negative dnorm values on the surface, while the other weaker inter­molecular inter­actions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown individually for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯C and C⋯O/O⋯C contacts (Fig. 4[link]). The overall two-dimensional fingerprint plot and those decomposed into individual contacts are given in Fig. 5[link]. The most significant contributions to the overall crystal packing are from H⋯H (32.1%), H⋯C/C⋯H (18.2%), H⋯O/O⋯H (14.6%), H⋯Cl/Cl⋯H (12.7%) and C⋯C (10.6%) contacts. There are also small contributions from C⋯O/O⋯C (5.2%), H⋯N/N⋯H (2.4%), C⋯N/N⋯C (2.2%), O⋯N/N⋯O (1.8%) and O⋯Cl/Cl⋯O (0.3%) inter­molecular contacts.

[Figure 3]
Figure 3
Hirshfeld surface mapped over dnorm in a projection along the b axis (front and back view).
[Figure 4]
Figure 4
Hirshfeld surface representations with the function dnorm plotted onto the surface for individual inter­actions.
[Figure 5]
Figure 5
The overall two-dimensional fingerprint plot and those delineated into specified inter­actions.

In the context of the Hirshfeld surface analysis, qu­anti­tative physical properties for the title compound were obtained, such as mol­ecular volume (460.76 Å3), surface area (398.28 Å2), globularity (0.724) and asphericity (0.097). The asphericity value for the title compound is nearly zero, indicating an almost isotropic nature. The globularity value, being less than one, points to a slight deviation from a spherical shape.

5. Database survey

A search conducted in the Cambridge Structural Database (CSD, version 5.44, updated June 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) identified a total of 118 entries corresponding to compounds containing the [CuCl(phen)2]+ cation. Among these, five entries specifically pertain to compounds that include both the [CuCl(phen)2]+ cation and the perchlorate anion. Notably, one structure was identified with the same formula as the title compound, [CuCl(phen)2]ClO4 (CLPLCU, Boys et al., 1981[Boys, D., Escobar, C. & Martínez-Carrera, S. (1981). Acta Cryst. B37, 351-355.]; CLPLCU01, Daizhi et al., 2006[Daizhi, K., Yonglan, F., Jianqiu, W., Fuxing, Z. & Zhifeng, X. (2006). Yingyong Huaxue, 23, 1188-1192.]), revealing that this compound is at least dimorphic. The other matches have formulas [CuCl(phen)2]ClO4·0.5H2O (ASUCOG, Wei & Yang, 2004[Wei, Y.-B. & Yang, P. (2004). Acta Cryst. E60, m429-m431.]) and [CuCl(phen)2]ClO4·H2O (FUVWUP, Chang et al., 2008[Chang, L., Zhang, W., Cui, Q., Sun, P. & Yu, Z. (2008). Huaxue Yanjiu, 19, 20-22.]; JATRAA, Crispini et al., 2018[Crispini, A., Cretu, C., Aparaschivei, D., Andelescu, A. A., Sasca, V., Badea, V., Aiello, I., Szerb, E. I. & Costisor, O. (2018). Inorg. Chim. Acta, 470, 342-351.]).

CLPLCU and ASUCOG crystallize in space group P21/c, FUVWUP in P21/n and JATRAA in P[\overline{1}]. The cell volumes are 4490.3 Å3 for ASUCOG (Z = 8), 2283.0 Å3 for CLPLCU (Z = 4), 2335.18 Å3 for FUVWUP (Z = 4), 1185.88 Å3 for JATRAA (Z = 2), and 2153.12 Å3 for the title compound (C2/c, Z = 4). Thus, the title compound has the smallest volume per formula unit.

ASUCOG contains two crystallographically unique [CuCl(phen)2]+ cations, while all other structures contain only one crystallographically unique complex cation. In general, bond lengths and angles of the [CuCl(phen)2]+ cation are very similar for all described complexes. Cu—N bond lengths lie in the range 1.970–2.135 Å, in good agreement with the title complex, whereas Cu—Cl bond lengths (2.269–2.326 Å) are slightly shorter than in the title compound. The crystal structures of all hydrous compounds (ASUCOG, FUVWUP, JATRAA) include Cu—Cl⋯HOH⋯O—Cl hydrogen-bond motifs.

6. Synthesis and crystallization

The title compound was obtained during an attempt to synthesize a trinuclear complex based on the polypyridyl ligand L, which includes one tetra­dentate and two bidentate metal-binding sites (Fig. 6[link]; Fritsky et al., 2003[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111-118.]; Strotmeyer et al., 2003[Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529-547.]). Copper(II) chloride dihydrate (0.034 g, 0.2 mmol) dissolved in methanol (5 ml) was added to a solution of 1,10-phenanthroline (0.036 g, 0.2 mmol) in methanol (5 ml). Separately, [Cu(L-H)(MeOH)]ClO4 (0.070 g, 0.1 mmol), prepared according to Fritsky et al. (2001[Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221-1231.]), was dissolved in a 1:1 (v:v) methanol–water mixture (10 ml). The two solutions were combined, stirred in air for 30 min. while heated (323 K), then cooled, filtered, and left at room temperature for crystallization. X-ray-quality, small green block-like crystals formed after two weeks. Yield: 0.034 g (61%).

[Figure 6]
Figure 6
The polypyridyl ligand involved in the synthesis of the title compound.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The positions of H atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

Crystal data
Chemical formula [CuCl(C12H8N2)2](ClO4)
Mr 558.85
Crystal system, space group Monoclinic, C2/c
Temperature (K) 120
a, b, c (Å) 15.7143 (5), 11.6386 (4), 13.0138 (5)
β (°) 115.227 (2)
V3) 2153.12 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.31
Crystal size (mm) 0.13 × 0.13 × 0.09
 
Data collection
Diffractometer Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.642, 0.880
No. of measured, independent and observed [I > 2σ(I)] reflections 21362, 2471, 1947
Rint 0.050
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.105, 1.06
No. of reflections 2471
No. of parameters 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.70, −0.57
Computer programs: COLLECT (Bruker, 2004[Bruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands.]), DENZO/SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/2 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. A71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Chloridobis(1,10-phenanthroline-κ2N,N')copper(II) perchlorate top
Crystal data top
[CuCl(C12H8N2)2](ClO4)F(000) = 1132
Mr = 558.85Dx = 1.724 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 15.7143 (5) ÅCell parameters from 1037 reflections
b = 11.6386 (4) Åθ = 3.1–27.5°
c = 13.0138 (5) ŵ = 1.31 mm1
β = 115.227 (2)°T = 120 K
V = 2153.12 (13) Å3Block, green
Z = 40.13 × 0.13 × 0.09 mm
Data collection top
Nonius KappaCCD
diffractometer
2471 independent reflections
Radiation source: fine-focus sealed tube1947 reflections with I > 2σ(I)
Detector resolution: 9 pixels mm-1Rint = 0.050
φ scans and ω scans with κ offsetθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 2020
Tmin = 0.642, Tmax = 0.880k = 1515
21362 measured reflectionsl = 1616
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0393P)2 + 5.6416P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2471 reflectionsΔρmax = 0.70 e Å3
160 parametersΔρmin = 0.56 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.0000000.24858 (4)0.2500000.03782 (18)
Cl10.0000000.04751 (9)0.2500000.0380 (3)
Cl20.0000000.37251 (8)0.2500000.0303 (2)
O10.07641 (18)0.4406 (2)0.2458 (3)0.0632 (8)
O20.0293 (2)0.3002 (3)0.1533 (3)0.0819 (10)
N10.10679 (18)0.2549 (2)0.2935 (2)0.0364 (6)
N20.09691 (17)0.33812 (19)0.1083 (2)0.0320 (5)
C10.1099 (2)0.2086 (3)0.3852 (3)0.0430 (7)
H10.0556270.1709220.4393180.052*
C20.1913 (2)0.2140 (3)0.4040 (3)0.0438 (8)
H20.1917840.1798330.4700960.053*
C30.2694 (2)0.2679 (3)0.3281 (3)0.0399 (7)
H30.3245590.2714660.3408030.048*
C40.2683 (2)0.3186 (2)0.2303 (2)0.0349 (7)
C50.3467 (2)0.3764 (3)0.1452 (3)0.0415 (7)
H50.4031510.3845010.1546660.050*
C60.3421 (2)0.4199 (3)0.0512 (3)0.0405 (7)
H60.3952190.4580750.0043110.049*
C70.2578 (2)0.4090 (2)0.0343 (3)0.0343 (6)
C80.2487 (2)0.4508 (2)0.0620 (3)0.0382 (7)
H80.3000600.4878210.1212690.046*
C90.1647 (2)0.4373 (2)0.0691 (3)0.0385 (7)
H90.1571070.4666370.1327840.046*
C100.0908 (2)0.3806 (2)0.0169 (3)0.0359 (7)
H100.0333790.3717280.0100160.043*
C110.1797 (2)0.3536 (2)0.1167 (2)0.0308 (6)
C120.1844 (2)0.3084 (2)0.2167 (2)0.0320 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0417 (3)0.0452 (3)0.0423 (3)0.0000.0331 (3)0.000
Cl10.0354 (5)0.0433 (6)0.0415 (6)0.0000.0222 (5)0.000
Cl20.0319 (5)0.0321 (5)0.0365 (5)0.0000.0239 (4)0.000
O10.0645 (16)0.0475 (14)0.112 (2)0.0249 (12)0.0710 (17)0.0274 (14)
O20.0681 (18)0.123 (3)0.0741 (19)0.0427 (18)0.0489 (16)0.0583 (19)
N10.0428 (14)0.0412 (13)0.0388 (13)0.0026 (11)0.0303 (12)0.0019 (11)
N20.0399 (13)0.0307 (12)0.0373 (13)0.0015 (10)0.0278 (11)0.0046 (10)
C10.0514 (19)0.0477 (17)0.0452 (18)0.0009 (15)0.0352 (16)0.0023 (14)
C20.057 (2)0.0477 (17)0.0468 (18)0.0089 (15)0.0414 (17)0.0061 (15)
C30.0404 (17)0.0485 (18)0.0453 (17)0.0152 (14)0.0321 (15)0.0160 (14)
C40.0384 (16)0.0372 (15)0.0397 (16)0.0130 (12)0.0269 (14)0.0174 (13)
C50.0330 (15)0.0512 (18)0.0486 (18)0.0122 (13)0.0254 (14)0.0187 (15)
C60.0333 (15)0.0471 (18)0.0437 (18)0.0033 (13)0.0190 (14)0.0113 (14)
C70.0367 (15)0.0327 (14)0.0389 (16)0.0083 (12)0.0211 (13)0.0129 (12)
C80.0434 (17)0.0359 (15)0.0383 (17)0.0038 (13)0.0202 (14)0.0067 (12)
C90.0538 (19)0.0337 (15)0.0377 (16)0.0058 (14)0.0288 (15)0.0025 (13)
C100.0455 (17)0.0347 (15)0.0403 (16)0.0030 (13)0.0305 (14)0.0028 (12)
C110.0383 (15)0.0281 (13)0.0355 (15)0.0089 (11)0.0248 (13)0.0122 (11)
C120.0383 (15)0.0312 (14)0.0357 (15)0.0089 (12)0.0246 (13)0.0116 (12)
Geometric parameters (Å, º) top
Cu1—N11.988 (2)C3—C41.409 (4)
Cu1—N1i1.988 (2)C3—H30.9500
Cu1—N2i2.100 (2)C4—C121.408 (4)
Cu1—N22.100 (2)C4—C51.426 (5)
Cu1—Cl12.3402 (12)C5—C61.355 (5)
Cl2—O2ii1.418 (3)C5—H50.9500
Cl2—O21.418 (3)C6—C71.438 (4)
Cl2—O11.420 (2)C6—H60.9500
Cl2—O1ii1.420 (2)C7—C111.397 (4)
N1—C11.330 (4)C7—C81.406 (4)
N1—C121.354 (4)C8—C91.370 (4)
N2—C101.329 (3)C8—H80.9500
N2—C111.363 (3)C9—C101.389 (4)
C1—C21.403 (4)C9—H90.9500
C1—H10.9500C10—H100.9500
C2—C31.358 (5)C11—C121.435 (4)
C2—H20.9500
N1—Cu1—N1i175.73 (14)C2—C3—H3120.1
N1—Cu1—N2i96.66 (9)C4—C3—H3120.1
N1i—Cu1—N2i81.20 (9)C12—C4—C3116.8 (3)
N1—Cu1—N281.20 (9)C12—C4—C5119.2 (3)
N1i—Cu1—N296.66 (9)C3—C4—C5124.0 (3)
N2i—Cu1—N2120.50 (12)C6—C5—C4121.0 (3)
N1—Cu1—Cl192.13 (7)C6—C5—H5119.5
N1i—Cu1—Cl192.13 (7)C4—C5—H5119.5
N2i—Cu1—Cl1119.75 (6)C5—C6—C7120.9 (3)
N2—Cu1—Cl1119.75 (6)C5—C6—H6119.6
O2ii—Cl2—O2107.1 (3)C7—C6—H6119.6
O2ii—Cl2—O1108.37 (15)C11—C7—C8117.0 (3)
O2—Cl2—O1110.36 (19)C11—C7—C6119.2 (3)
O2ii—Cl2—O1ii110.36 (19)C8—C7—C6123.8 (3)
O2—Cl2—O1ii108.37 (15)C9—C8—C7119.2 (3)
O1—Cl2—O1ii112.1 (2)C9—C8—H8120.4
C1—N1—C12118.9 (3)C7—C8—H8120.4
C1—N1—Cu1126.8 (2)C8—C9—C10119.9 (3)
C12—N1—Cu1114.29 (18)C8—C9—H9120.1
C10—N2—C11117.2 (3)C10—C9—H9120.1
C10—N2—Cu1132.0 (2)N2—C10—C9122.9 (3)
C11—N2—Cu1110.81 (18)N2—C10—H10118.5
N1—C1—C2121.6 (3)C9—C10—H10118.5
N1—C1—H1119.2N2—C11—C7123.8 (2)
C2—C1—H1119.2N2—C11—C12116.4 (3)
C3—C2—C1120.2 (3)C7—C11—C12119.9 (2)
C3—C2—H2119.9N1—C12—C4122.9 (3)
C1—C2—H2119.9N1—C12—C11117.3 (2)
C2—C3—C4119.7 (3)C4—C12—C11119.8 (3)
C12—N1—C1—C20.0 (5)C10—N2—C11—C12179.2 (2)
Cu1—N1—C1—C2176.8 (2)Cu1—N2—C11—C120.4 (3)
N1—C1—C2—C30.3 (5)C8—C7—C11—N20.2 (4)
C1—C2—C3—C40.1 (5)C6—C7—C11—N2179.5 (2)
C2—C3—C4—C120.8 (4)C8—C7—C11—C12179.7 (2)
C2—C3—C4—C5179.5 (3)C6—C7—C11—C120.0 (4)
C12—C4—C5—C61.0 (4)C1—N1—C12—C40.8 (4)
C3—C4—C5—C6177.7 (3)Cu1—N1—C12—C4178.0 (2)
C4—C5—C6—C70.0 (5)C1—N1—C12—C11177.7 (3)
C5—C6—C7—C110.5 (4)Cu1—N1—C12—C110.5 (3)
C5—C6—C7—C8179.1 (3)C3—C4—C12—N11.2 (4)
C11—C7—C8—C91.2 (4)C5—C4—C12—N1180.0 (3)
C6—C7—C8—C9179.2 (3)C3—C4—C12—C11177.3 (2)
C7—C8—C9—C101.5 (4)C5—C4—C12—C111.5 (4)
C11—N2—C10—C91.0 (4)N2—C11—C12—N10.1 (4)
Cu1—N2—C10—C9179.5 (2)C7—C11—C12—N1179.6 (2)
C8—C9—C10—N20.4 (4)N2—C11—C12—C4178.5 (2)
C10—N2—C11—C71.3 (4)C7—C11—C12—C41.0 (4)
Cu1—N2—C11—C7179.1 (2)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O1ii0.952.433.253 (4)145
C3—H3···O2iii0.952.483.368 (5)157
Symmetry codes: (ii) x, y, z1/2; (iii) x1/2, y+1/2, z+1/2.
 

Funding information

Funding for this research was provided by: the Ministry of Education and Science of Ukraine through grants No. 22BF037-09 and 24DF037-04N (RN/61-2024) .

References

First citationAddison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBales, B. C., Kodama, T., Weledji, Y. N., Pitié, M., Meunier, B. & Greenberg, M. M. (2005). Nucleic Acids Res. 33, 16, 5371–5379.  Google Scholar
First citationBarceló-Oliver, M., García-Raso, A., Terrón, A., Molins, E., Prieto, M. J., Moreno, V., Martínez-Serra, J., Lladó, V., López, I., Gutiérrez, A. & Escribá, P. V. (2009). Inorg. Chim. Acta, 362, 13, 4744–4753.  Google Scholar
First citationBoys, D., Escobar, C. & Martínez-Carrera, S. (1981). Acta Cryst. B37, 351–355.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands.  Google Scholar
First citationChang, L., Zhang, W., Cui, Q., Sun, P. & Yu, Z. (2008). Huaxue Yanjiu, 19, 20–22.  Google Scholar
First citationCrispini, A., Cretu, C., Aparaschivei, D., Andelescu, A. A., Sasca, V., Badea, V., Aiello, I., Szerb, E. I. & Costisor, O. (2018). Inorg. Chim. Acta, 470, 342–351.  Web of Science CSD CrossRef Google Scholar
First citationDaizhi, K., Yonglan, F., Jianqiu, W., Fuxing, Z. & Zhifeng, X. (2006). Yingyong Huaxue, 23, 1188–1192.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFreitag, M., Giordano, F., Yang, W., Pazoki, M., Hao, Y., Zietz, B., Grätzel, M., Hagfeldt, A. & Boschloo, G. (2016). J. Phys. Chem. C, 120, 18, 9595–9603.  Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, F. & Batey, R. A. (2007). Tetrahedron, 63, 32, 7667–7672.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLiu, N., Bartling, S., Springer, A., Kubis, C., Bokareva, O. S., Salaya, E., Sun, J., Zhang, Z., Wohlrab, S., Abdel–Mageed, A. M., Liang, H.-Q. & Francke, R. (2024). Adv. Mater. 36, 2309526.  Web of Science CrossRef Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPradeep, I., Megarajan, S., Arunachalam, S., Dhivya, R., Vinothkanna, A., Akbarsha, M. A. & Sekar, S. (2014). New J. Chem. 38, 4204–4211.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStrotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547.  Web of Science CSD CrossRef CAS Google Scholar
First citationWei, Y.-B. & Yang, P. (2004). Acta Cryst. E60, m429–m431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Zhang, F., Wang, W. & Wang, X. (2006). J. Inorg. Biochem. 100, 8, 1344–1352.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds