

research communications

κ2N,N′)copper(II) perchlorate
and Hirshfeld surface analysis of a new polymorph of chloridobis(1,10-phenanthroline-aDepartment of Chemistry, National Taras Shevchenko University, Volodymyrska, Street 64, 01601 Kyiv, Ukraine, and bDepartment of Chemistry, University of Jyväskylä, PO Box 35, Jyväskylä, FI-40014, Finland
*Correspondence e-mail: plutenkom@gmail.com
The title salt (systematic name: 2-methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride), [CuCl(C12H8N2)2](ClO4), is comprised of a mononuclear complex cation [Cu(phen)2Cl]+ (phen is 1,10-phenanthroline) and a perchlorate anion, ClO4−, both with symmetry 2. The CuII atom has a slightly distorted trigonal–bipyramidal coordination environment, defined by a N4Cl coordination set with the Cl atom and two N atoms at the equatorial sites. In the crystal, each phen ring is parallel to neighboring phen rings. The resulting significant π–π stacking interactions lead to zigzag chains extending parallel to [001]. Hirshfeld surface analysis suggests that the most important contributions to the surface contacts are from H⋯H (32.1%), H⋯C/C⋯H (18.2%), H⋯O/O⋯H (14.6%), H⋯Cl/Cl⋯H (12.7%) and C⋯C (10.6%) interactions.
Keywords: copper; copper(II) complex; crystal structure; 1,10-phenanthroline; Hirshfeld surface analysis.
CCDC reference: 2415829
1. Chemical context
1,10-Phenanthroline (phen) is one of the most extensively studied chelating N-heterocyclic ligands. Copper(II) complexes of phen, particularly those exhibiting a coordination environment with et al., 2009; Pradeep et al., 2014
), redox catalytic (Huang & Batey, 2007
; Liu et al., 2024
), and photochemical (Freitag et al., 2016
) activities. Furthermore, complexes formed between copper and phen (in both 1:1 and 1:2 metal-to-ligand ratios) have been actively investigated as DNA-binding and oxidative DNA-cleaving agents (Bales et al., 2005
; Zhang et al., 2006
; Pradeep et al., 2014
). In this context, structural studies of five-coordinate CuII complexes based on phen are of considerable interest for enhancing the understanding of the geometric features of the CuN4X chromophore and for elucidating the structure–property relationships of these compounds.
Here, we report on synthesis, 2]ClO4, crystallizing as a novel polymorph.
and Hirshfeld surface analysis of the compound [CuCl(phen)2. Structural commentary
The 2Cl]+ complex cation (point group symmetry 2) and half of a perchlorate anion ClO4− (point group symmetry 2). The CuII ion in the complex cation has a slightly distorted trigonal–bipyramidal coordination environment (τ5 = 0.921; Addison et al., 1984) formed by four nitrogen atoms from two phen ligands and one Cl− ligand (Fig. 1
). The equatorial plane is defined by atoms Cl1, N1 and N1i whereas the axial positions are occupied by atoms N2 and N2i [symmetry code: (i) −x, y, −z +
]. The Cu—N bond lengths to the equatorial N atoms are shorter by about 0.11 Å in comparison to the axial N atoms (Table 1
). The crystallographically unique phen molecule retains its planarity [maximum deviation from the least-squares plane is 0.034 (3) Å for atom C2] and forms a five-membered [Cu—N—C—C—N] chelate ring due to its bidentate coordination. The dihedral angle between the two phen planes coordinating to Cu1 is 59.55 (6)°. The twist angle between the planes is 48.32 (5)°, the fold angle between the planes is 39.10 (8)°, whereby the twist angle refers to the rotation of one phen plane relative to the other, while the fold angle describes the bending between the planes.
|
![]() | Figure 1 The structures of the molecular entities of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The dashed line represents a C—H⋯O hydrogen bond. [Symmetry code: (i) −x, y, −z + |
3. Supramolecular features
In the ), each phen ring is parallel to its neighboring phen ring. The resulting significant π–π stacking with an inter-planar distance of 3.5085 (16) Å leads to a zigzag chain structure extending parallel to [001]. There are additional weak intermolecular C—H⋯O hydrogen bonds that link the complex cation to the perchlorate anion. Numerical details of these interactions are compiled in Table 2
. The shortest Cu⋯Cu separation within the is 7.7779 (3) Å.
|
![]() | Figure 2 Packing of the molecular components in the title compound in a view along the a axis. C—H⋯O hydrogen bonds are shown as black dashed lines. |
4. Hirshfeld analysis
Hirshfeld surface analysis was performed and the associated two-dimensional fingerprint plots were generated using CrystalExplorer (Spackman et al., 2021). The dark-red spots in Fig. 3
arise as a result of short interatomic contacts and represent negative dnorm values on the surface, while the other weaker intermolecular interactions appear as light-red spots. The Hirshfeld surfaces mapped over dnorm are shown individually for the H⋯H, H⋯C/C⋯H, H⋯O/O⋯H, H⋯Cl/Cl⋯H, C⋯C and C⋯O/O⋯C contacts (Fig. 4
). The overall two-dimensional fingerprint plot and those decomposed into individual contacts are given in Fig. 5
. The most significant contributions to the overall crystal packing are from H⋯H (32.1%), H⋯C/C⋯H (18.2%), H⋯O/O⋯H (14.6%), H⋯Cl/Cl⋯H (12.7%) and C⋯C (10.6%) contacts. There are also small contributions from C⋯O/O⋯C (5.2%), H⋯N/N⋯H (2.4%), C⋯N/N⋯C (2.2%), O⋯N/N⋯O (1.8%) and O⋯Cl/Cl⋯O (0.3%) intermolecular contacts.
![]() | Figure 3 Hirshfeld surface mapped over dnorm in a projection along the b axis (front and back view). |
![]() | Figure 4 Hirshfeld surface representations with the function dnorm plotted onto the surface for individual interactions. |
![]() | Figure 5 The overall two-dimensional fingerprint plot and those delineated into specified interactions. |
In the context of the Hirshfeld surface analysis, quantitative physical properties for the title compound were obtained, such as molecular volume (460.76 Å3), surface area (398.28 Å2), globularity (0.724) and asphericity (0.097). The asphericity value for the title compound is nearly zero, indicating an almost isotropic nature. The globularity value, being less than one, points to a slight deviation from a spherical shape.
5. Database survey
A search conducted in the Cambridge Structural Database (CSD, version 5.44, updated June 2023; Groom et al., 2016) identified a total of 118 entries corresponding to compounds containing the [CuCl(phen)2]+ cation. Among these, five entries specifically pertain to compounds that include both the [CuCl(phen)2]+ cation and the perchlorate anion. Notably, one structure was identified with the same formula as the title compound, [CuCl(phen)2]ClO4 (CLPLCU, Boys et al., 1981
; CLPLCU01, Daizhi et al., 2006
), revealing that this compound is at least dimorphic. The other matches have formulas [CuCl(phen)2]ClO4·0.5H2O (ASUCOG, Wei & Yang, 2004
) and [CuCl(phen)2]ClO4·H2O (FUVWUP, Chang et al., 2008
; JATRAA, Crispini et al., 2018
).
CLPLCU and ASUCOG crystallize in P21/c, FUVWUP in P21/n and JATRAA in P. The cell volumes are 4490.3 Å3 for ASUCOG (Z = 8), 2283.0 Å3 for CLPLCU (Z = 4), 2335.18 Å3 for FUVWUP (Z = 4), 1185.88 Å3 for JATRAA (Z = 2), and 2153.12 Å3 for the title compound (C2/c, Z = 4). Thus, the title compound has the smallest volume per formula unit.
ASUCOG contains two crystallographically unique [CuCl(phen)2]+ cations, while all other structures contain only one crystallographically unique complex cation. In general, bond lengths and angles of the [CuCl(phen)2]+ cation are very similar for all described complexes. Cu—N bond lengths lie in the range 1.970–2.135 Å, in good agreement with the title complex, whereas Cu—Cl bond lengths (2.269–2.326 Å) are slightly shorter than in the title compound. The crystal structures of all hydrous compounds (ASUCOG, FUVWUP, JATRAA) include Cu—Cl⋯HOH⋯O—Cl hydrogen-bond motifs.
6. Synthesis and crystallization
The title compound was obtained during an attempt to synthesize a trinuclear complex based on the polypyridyl ligand L, which includes one tetradentate and two bidentate metal-binding sites (Fig. 6; Fritsky et al., 2003
; Strotmeyer et al., 2003
). Copper(II) chloride dihydrate (0.034 g, 0.2 mmol) dissolved in methanol (5 ml) was added to a solution of 1,10-phenanthroline (0.036 g, 0.2 mmol) in methanol (5 ml). Separately, [Cu(L-H)(MeOH)]ClO4 (0.070 g, 0.1 mmol), prepared according to Fritsky et al. (2001
), was dissolved in a 1:1 (v:v) methanol–water mixture (10 ml). The two solutions were combined, stirred in air for 30 min. while heated (323 K), then cooled, filtered, and left at room temperature for crystallization. X-ray-quality, small green block-like crystals formed after two weeks. Yield: 0.034 g (61%).
![]() | Figure 6 The polypyridyl ligand involved in the synthesis of the title compound. |
7. Refinement
Crystal data, data collection and structure . The positions of H atoms were positioned geometrically and refined isotropically using a riding model with C—H = 0.95 Å; Uiso(H) = 1.2Ueq(C).
|
Supporting information
CCDC reference: 2415829
https://doi.org/10.1107/S2056989025000209/wm5744sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025000209/wm5744Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000209/wm5744Isup3.cdx
[CuCl(C12H8N2)2](ClO4) | F(000) = 1132 |
Mr = 558.85 | Dx = 1.724 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 15.7143 (5) Å | Cell parameters from 1037 reflections |
b = 11.6386 (4) Å | θ = 3.1–27.5° |
c = 13.0138 (5) Å | µ = 1.31 mm−1 |
β = 115.227 (2)° | T = 120 K |
V = 2153.12 (13) Å3 | Block, green |
Z = 4 | 0.13 × 0.13 × 0.09 mm |
Nonius KappaCCD diffractometer | 2471 independent reflections |
Radiation source: fine-focus sealed tube | 1947 reflections with I > 2σ(I) |
Detector resolution: 9 pixels mm-1 | Rint = 0.050 |
φ scans and ω scans with κ offset | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −20→20 |
Tmin = 0.642, Tmax = 0.880 | k = −15→15 |
21362 measured reflections | l = −16→16 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H-atom parameters constrained |
wR(F2) = 0.105 | w = 1/[σ2(Fo2) + (0.0393P)2 + 5.6416P] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max < 0.001 |
2471 reflections | Δρmax = 0.70 e Å−3 |
160 parameters | Δρmin = −0.56 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.000000 | 0.24858 (4) | 0.250000 | 0.03782 (18) | |
Cl1 | 0.000000 | 0.04751 (9) | 0.250000 | 0.0380 (3) | |
Cl2 | 0.000000 | 0.37251 (8) | −0.250000 | 0.0303 (2) | |
O1 | 0.07641 (18) | 0.4406 (2) | −0.2458 (3) | 0.0632 (8) | |
O2 | 0.0293 (2) | 0.3002 (3) | −0.1533 (3) | 0.0819 (10) | |
N1 | −0.10679 (18) | 0.2549 (2) | 0.2935 (2) | 0.0364 (6) | |
N2 | −0.09691 (17) | 0.33812 (19) | 0.1083 (2) | 0.0320 (5) | |
C1 | −0.1099 (2) | 0.2086 (3) | 0.3852 (3) | 0.0430 (7) | |
H1 | −0.055627 | 0.170922 | 0.439318 | 0.052* | |
C2 | −0.1913 (2) | 0.2140 (3) | 0.4040 (3) | 0.0438 (8) | |
H2 | −0.191784 | 0.179833 | 0.470096 | 0.053* | |
C3 | −0.2694 (2) | 0.2679 (3) | 0.3281 (3) | 0.0399 (7) | |
H3 | −0.324559 | 0.271466 | 0.340803 | 0.048* | |
C4 | −0.2683 (2) | 0.3186 (2) | 0.2303 (2) | 0.0349 (7) | |
C5 | −0.3467 (2) | 0.3764 (3) | 0.1452 (3) | 0.0415 (7) | |
H5 | −0.403151 | 0.384501 | 0.154666 | 0.050* | |
C6 | −0.3421 (2) | 0.4199 (3) | 0.0512 (3) | 0.0405 (7) | |
H6 | −0.395219 | 0.458075 | −0.004311 | 0.049* | |
C7 | −0.2578 (2) | 0.4090 (2) | 0.0343 (3) | 0.0343 (6) | |
C8 | −0.2487 (2) | 0.4508 (2) | −0.0620 (3) | 0.0382 (7) | |
H8 | −0.300060 | 0.487821 | −0.121269 | 0.046* | |
C9 | −0.1647 (2) | 0.4373 (2) | −0.0691 (3) | 0.0385 (7) | |
H9 | −0.157107 | 0.466637 | −0.132784 | 0.046* | |
C10 | −0.0908 (2) | 0.3806 (2) | 0.0169 (3) | 0.0359 (7) | |
H10 | −0.033379 | 0.371728 | 0.010016 | 0.043* | |
C11 | −0.1797 (2) | 0.3536 (2) | 0.1167 (2) | 0.0308 (6) | |
C12 | −0.1844 (2) | 0.3084 (2) | 0.2167 (2) | 0.0320 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0417 (3) | 0.0452 (3) | 0.0423 (3) | 0.000 | 0.0331 (3) | 0.000 |
Cl1 | 0.0354 (5) | 0.0433 (6) | 0.0415 (6) | 0.000 | 0.0222 (5) | 0.000 |
Cl2 | 0.0319 (5) | 0.0321 (5) | 0.0365 (5) | 0.000 | 0.0239 (4) | 0.000 |
O1 | 0.0645 (16) | 0.0475 (14) | 0.112 (2) | −0.0249 (12) | 0.0710 (17) | −0.0274 (14) |
O2 | 0.0681 (18) | 0.123 (3) | 0.0741 (19) | 0.0427 (18) | 0.0489 (16) | 0.0583 (19) |
N1 | 0.0428 (14) | 0.0412 (13) | 0.0388 (13) | −0.0026 (11) | 0.0303 (12) | −0.0019 (11) |
N2 | 0.0399 (13) | 0.0307 (12) | 0.0373 (13) | −0.0015 (10) | 0.0278 (11) | −0.0046 (10) |
C1 | 0.0514 (19) | 0.0477 (17) | 0.0452 (18) | −0.0009 (15) | 0.0352 (16) | 0.0023 (14) |
C2 | 0.057 (2) | 0.0477 (17) | 0.0468 (18) | −0.0089 (15) | 0.0414 (17) | −0.0061 (15) |
C3 | 0.0404 (17) | 0.0485 (18) | 0.0453 (17) | −0.0152 (14) | 0.0321 (15) | −0.0160 (14) |
C4 | 0.0384 (16) | 0.0372 (15) | 0.0397 (16) | −0.0130 (12) | 0.0269 (14) | −0.0174 (13) |
C5 | 0.0330 (15) | 0.0512 (18) | 0.0486 (18) | −0.0122 (13) | 0.0254 (14) | −0.0187 (15) |
C6 | 0.0333 (15) | 0.0471 (18) | 0.0437 (18) | −0.0033 (13) | 0.0190 (14) | −0.0113 (14) |
C7 | 0.0367 (15) | 0.0327 (14) | 0.0389 (16) | −0.0083 (12) | 0.0211 (13) | −0.0129 (12) |
C8 | 0.0434 (17) | 0.0359 (15) | 0.0383 (17) | −0.0038 (13) | 0.0202 (14) | −0.0067 (12) |
C9 | 0.0538 (19) | 0.0337 (15) | 0.0377 (16) | −0.0058 (14) | 0.0288 (15) | −0.0025 (13) |
C10 | 0.0455 (17) | 0.0347 (15) | 0.0403 (16) | −0.0030 (13) | 0.0305 (14) | −0.0028 (12) |
C11 | 0.0383 (15) | 0.0281 (13) | 0.0355 (15) | −0.0089 (11) | 0.0248 (13) | −0.0122 (11) |
C12 | 0.0383 (15) | 0.0312 (14) | 0.0357 (15) | −0.0089 (12) | 0.0246 (13) | −0.0116 (12) |
Cu1—N1 | 1.988 (2) | C3—C4 | 1.409 (4) |
Cu1—N1i | 1.988 (2) | C3—H3 | 0.9500 |
Cu1—N2i | 2.100 (2) | C4—C12 | 1.408 (4) |
Cu1—N2 | 2.100 (2) | C4—C5 | 1.426 (5) |
Cu1—Cl1 | 2.3402 (12) | C5—C6 | 1.355 (5) |
Cl2—O2ii | 1.418 (3) | C5—H5 | 0.9500 |
Cl2—O2 | 1.418 (3) | C6—C7 | 1.438 (4) |
Cl2—O1 | 1.420 (2) | C6—H6 | 0.9500 |
Cl2—O1ii | 1.420 (2) | C7—C11 | 1.397 (4) |
N1—C1 | 1.330 (4) | C7—C8 | 1.406 (4) |
N1—C12 | 1.354 (4) | C8—C9 | 1.370 (4) |
N2—C10 | 1.329 (3) | C8—H8 | 0.9500 |
N2—C11 | 1.363 (3) | C9—C10 | 1.389 (4) |
C1—C2 | 1.403 (4) | C9—H9 | 0.9500 |
C1—H1 | 0.9500 | C10—H10 | 0.9500 |
C2—C3 | 1.358 (5) | C11—C12 | 1.435 (4) |
C2—H2 | 0.9500 | ||
N1—Cu1—N1i | 175.73 (14) | C2—C3—H3 | 120.1 |
N1—Cu1—N2i | 96.66 (9) | C4—C3—H3 | 120.1 |
N1i—Cu1—N2i | 81.20 (9) | C12—C4—C3 | 116.8 (3) |
N1—Cu1—N2 | 81.20 (9) | C12—C4—C5 | 119.2 (3) |
N1i—Cu1—N2 | 96.66 (9) | C3—C4—C5 | 124.0 (3) |
N2i—Cu1—N2 | 120.50 (12) | C6—C5—C4 | 121.0 (3) |
N1—Cu1—Cl1 | 92.13 (7) | C6—C5—H5 | 119.5 |
N1i—Cu1—Cl1 | 92.13 (7) | C4—C5—H5 | 119.5 |
N2i—Cu1—Cl1 | 119.75 (6) | C5—C6—C7 | 120.9 (3) |
N2—Cu1—Cl1 | 119.75 (6) | C5—C6—H6 | 119.6 |
O2ii—Cl2—O2 | 107.1 (3) | C7—C6—H6 | 119.6 |
O2ii—Cl2—O1 | 108.37 (15) | C11—C7—C8 | 117.0 (3) |
O2—Cl2—O1 | 110.36 (19) | C11—C7—C6 | 119.2 (3) |
O2ii—Cl2—O1ii | 110.36 (19) | C8—C7—C6 | 123.8 (3) |
O2—Cl2—O1ii | 108.37 (15) | C9—C8—C7 | 119.2 (3) |
O1—Cl2—O1ii | 112.1 (2) | C9—C8—H8 | 120.4 |
C1—N1—C12 | 118.9 (3) | C7—C8—H8 | 120.4 |
C1—N1—Cu1 | 126.8 (2) | C8—C9—C10 | 119.9 (3) |
C12—N1—Cu1 | 114.29 (18) | C8—C9—H9 | 120.1 |
C10—N2—C11 | 117.2 (3) | C10—C9—H9 | 120.1 |
C10—N2—Cu1 | 132.0 (2) | N2—C10—C9 | 122.9 (3) |
C11—N2—Cu1 | 110.81 (18) | N2—C10—H10 | 118.5 |
N1—C1—C2 | 121.6 (3) | C9—C10—H10 | 118.5 |
N1—C1—H1 | 119.2 | N2—C11—C7 | 123.8 (2) |
C2—C1—H1 | 119.2 | N2—C11—C12 | 116.4 (3) |
C3—C2—C1 | 120.2 (3) | C7—C11—C12 | 119.9 (2) |
C3—C2—H2 | 119.9 | N1—C12—C4 | 122.9 (3) |
C1—C2—H2 | 119.9 | N1—C12—C11 | 117.3 (2) |
C2—C3—C4 | 119.7 (3) | C4—C12—C11 | 119.8 (3) |
C12—N1—C1—C2 | 0.0 (5) | C10—N2—C11—C12 | −179.2 (2) |
Cu1—N1—C1—C2 | −176.8 (2) | Cu1—N2—C11—C12 | 0.4 (3) |
N1—C1—C2—C3 | −0.3 (5) | C8—C7—C11—N2 | −0.2 (4) |
C1—C2—C3—C4 | −0.1 (5) | C6—C7—C11—N2 | 179.5 (2) |
C2—C3—C4—C12 | 0.8 (4) | C8—C7—C11—C12 | −179.7 (2) |
C2—C3—C4—C5 | 179.5 (3) | C6—C7—C11—C12 | 0.0 (4) |
C12—C4—C5—C6 | 1.0 (4) | C1—N1—C12—C4 | 0.8 (4) |
C3—C4—C5—C6 | −177.7 (3) | Cu1—N1—C12—C4 | 178.0 (2) |
C4—C5—C6—C7 | 0.0 (5) | C1—N1—C12—C11 | −177.7 (3) |
C5—C6—C7—C11 | −0.5 (4) | Cu1—N1—C12—C11 | −0.5 (3) |
C5—C6—C7—C8 | 179.1 (3) | C3—C4—C12—N1 | −1.2 (4) |
C11—C7—C8—C9 | −1.2 (4) | C5—C4—C12—N1 | 180.0 (3) |
C6—C7—C8—C9 | 179.2 (3) | C3—C4—C12—C11 | 177.3 (2) |
C7—C8—C9—C10 | 1.5 (4) | C5—C4—C12—C11 | −1.5 (4) |
C11—N2—C10—C9 | −1.0 (4) | N2—C11—C12—N1 | 0.1 (4) |
Cu1—N2—C10—C9 | 179.5 (2) | C7—C11—C12—N1 | 179.6 (2) |
C8—C9—C10—N2 | −0.4 (4) | N2—C11—C12—C4 | −178.5 (2) |
C10—N2—C11—C7 | 1.3 (4) | C7—C11—C12—C4 | 1.0 (4) |
Cu1—N2—C11—C7 | −179.1 (2) |
Symmetry codes: (i) −x, y, −z+1/2; (ii) −x, y, −z−1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1ii | 0.95 | 2.43 | 3.253 (4) | 145 |
C3—H3···O2iii | 0.95 | 2.48 | 3.368 (5) | 157 |
Symmetry codes: (ii) −x, y, −z−1/2; (iii) x−1/2, −y+1/2, z+1/2. |
Funding information
Funding for this research was provided by: the Ministry of Education and Science of Ukraine through grants No. 22BF037-09 and 24DF037-04N (RN/61-2024) .
References
Addison, A. W., Rao, N. T., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Bales, B. C., Kodama, T., Weledji, Y. N., Pitié, M., Meunier, B. & Greenberg, M. M. (2005). Nucleic Acids Res. 33, 16, 5371–5379. Google Scholar
Barceló-Oliver, M., García-Raso, A., Terrón, A., Molins, E., Prieto, M. J., Moreno, V., Martínez-Serra, J., Lladó, V., López, I., Gutiérrez, A. & Escribá, P. V. (2009). Inorg. Chim. Acta, 362, 13, 4744–4753. Google Scholar
Boys, D., Escobar, C. & Martínez-Carrera, S. (1981). Acta Cryst. B37, 351–355. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2004). COLLECT. Bruker AXS BV, Delft, The Netherlands. Google Scholar
Chang, L., Zhang, W., Cui, Q., Sun, P. & Yu, Z. (2008). Huaxue Yanjiu, 19, 20–22. Google Scholar
Crispini, A., Cretu, C., Aparaschivei, D., Andelescu, A. A., Sasca, V., Badea, V., Aiello, I., Szerb, E. I. & Costisor, O. (2018). Inorg. Chim. Acta, 470, 342–351. Web of Science CSD CrossRef Google Scholar
Daizhi, K., Yonglan, F., Jianqiu, W., Fuxing, Z. & Zhifeng, X. (2006). Yingyong Huaxue, 23, 1188–1192. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Freitag, M., Giordano, F., Yang, W., Pazoki, M., Hao, Y., Zietz, B., Grätzel, M., Hagfeldt, A. & Boschloo, G. (2016). J. Phys. Chem. C, 120, 18, 9595–9603. Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2001). Chem. Eur. J. 7, 1221–1231. Web of Science CSD CrossRef PubMed CAS Google Scholar
Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Inorg. Chim. Acta, 346, 111–118. Web of Science CSD CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, F. & Batey, R. A. (2007). Tetrahedron, 63, 32, 7667–7672. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Liu, N., Bartling, S., Springer, A., Kubis, C., Bokareva, O. S., Salaya, E., Sun, J., Zhang, Z., Wohlrab, S., Abdel–Mageed, A. M., Liang, H.-Q. & Francke, R. (2024). Adv. Mater. 36, 2309526. Web of Science CrossRef Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Pradeep, I., Megarajan, S., Arunachalam, S., Dhivya, R., Vinothkanna, A., Akbarsha, M. A. & Sekar, S. (2014). New J. Chem. 38, 4204–4211. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strotmeyer, K. P., Fritsky, I. O., Ott, R., Pritzkow, H. & Krämer, R. (2003). Supramol. Chem. 15, 529–547. Web of Science CSD CrossRef CAS Google Scholar
Wei, Y.-B. & Yang, P. (2004). Acta Cryst. E60, m429–m431. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhang, Q., Zhang, F., Wang, W. & Wang, X. (2006). J. Inorg. Biochem. 100, 8, 1344–1352. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
