research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of the organic–inorganic hybrid compound tris­­(2-iodo­ethyl­ammonium) hexa­iodido­bis­­muthate(III)

crossmark logo

aDepartment of Chemistry, Taras Shevchenko National University of Kyiv, Volodymyrska St. 64, Kyiv 01601, Ukraine, and bDepartment of General and Inorganic Chemistry, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Beresteiskyi Pr. 37, 03056 Kyiv, Ukraine
*Correspondence e-mail: olesia.kucheriv@univ.kiev.ua

Edited by M. Weil, Vienna University of Technology, Austria (Received 16 December 2024; accepted 15 January 2025; online 24 January 2025)

The asymmetric unit of the title organic–inorganic salt, (IC2H4NH3)3[BiI6], consists of a [BiI6]3− octa­hedron and three 2-iodo­ethyl­ammonium cations. The octa­hedra do not inter­act with each other, and the supra­molecular arrangement is ensured by an intricate network of N—H⋯I hydrogen bonds between cations and anions. In addition, a weak I⋯I inter­action between an organic cation and the coordination octa­hedron is present in the crystal structure. Hirshfeld surface analysis revealed that the most important contributions to the crystal packing are from H⋯I (72.3%) and I⋯I (11.3%) inter­actions.

1. Chemical context

Organic–inorganic halidobismuthates(III) represent a promising class of hybrid compounds that attract attention due to their structural versatility in combination with inter­esting physical properties. For example, these bis­muth-based compounds are currently used as a less toxic alternative to lead-based perovskites for applications as light-emitting diodes (Zhou et al., 2018[Zhou, C., Lin, H., Tian, Y., Yuan, Z., Clark, R., Chen, B., van de Burgt, L. J., Wang, J. C., Zhou, Y., Hanson, K., Meisner, Q. J., Neu, J., Besara, T., Siegrist, T., Lambers, E., Djurovich, P. & Ma, B. (2018). Chem. Sci. 9, 586-593.]), for X-ray detection (Wang et al., 2023[Wang, Y., Zhang, S., Wang, Y., Yan, J., Yao, X., Xu, M., Lei, X. W., Lin, G. & Yue, C. Y. (2023). Chem. Commun. 59, 9239-9242.]) or for photovoltaics (Zhang et al., 2020[Zhang, Y., Fadaei Tirani, F., Pattison, P., Schenk-Joss, K., Xiao, Z., Nazeeruddin, M. K. & Gao, P. (2020). Dalton Trans. 49, 5815-5822.]).

Hybrid halidobismuthates(III) contain the [BiX6]3– (X = Cl, Br or I) coordination octa­hedron as a fundamental building block, which can assemble into very different topologies in the crystal structure, starting from those containing discrete anionic halidometallic units up to structures with anionic chains or layers (alternatively named as 0-D, 1-D and 2-D halidometallic building blocks). For instance, hybrid bis­muthates with general formula A3[Bi2X9] tend to crystallize with two structural set-ups: one forms inorganic layers, exemplified by methyl­ammonium (MA) bis­muth bromide (MA)3[Bi2Br9] (Li et al., 2019[Li, Q., Yin, L., Chen, Z., Deng, K., Luo, S., Zou, B., Wang, Z., Tang, J. & Quan, Z. (2019). Inorg. Chem. 58, 1621-1626.]), while the other one is characterized by a formation of isolated face-sharing [Bi2X9]3– bi-octa­hedra, exemplified by (MA)3Bi2I9 (Hoye et al., 2016[Hoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanović, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulović, V. & Buonassisi, T. (2016). Chem. Eur. J. 22, 2605-2610.]).

Inter­estingly, the decrease of dimensionality in the anion leads to an increased localization of electronic states and decreased valence and conduction bands, which results in the occurrence of self-trapped excitons and strong excitonic emission. Hence, highly effective luminescence with different emission wavelengths have been observed for 0-D halidobismuthates. For example, highly efficient blue (480 nm) emission with a quantum yield of 58% was achieved for 0-D hybrid tetra­phenyl­phospho­nium (TPP) bis­muth chloride (TPP)2[BiCl5] (Lai et al., 2024[Lai, J., Wu, D., He, P., An, K., Wang, Y., Feng, P., Chen, W., Wang, Z., Guo, L. & Tang, X. (2024). J. Alloys Compd. 971, 172788.]). At the same time, 4-(chloro­meth­yl)pyridinium bis­muth chloride (4-cmpyH)2[BiCl5] was shown to display yellow luminescence with an emission wavelength of 597 nm and a quantum yield of 5.56% (Qi et al., 2022[Qi, Z., Gao, H., Zhu, X., Lu, Z. & Zhang, X.-M. (2022). Inorg. Chem. 61, 19483-19491.]).

[Scheme 1]

In this context, we report here on the crystal structure and Hirshfeld surface analysis of a new organic-inorganic compound, (2-iodo­ethyl­ammonium)3[BiI6], which is composed of discrete [BiI6]3– anions.

2. Structural commentary

The coordination octa­hedron [BiI6]3– is slightly distorted (Fig. 1[link]), with Bi—I bond lengths ranging from 3.0287 (3) to 3.1333 (3) Å (Table 1[link]). Such a small variation in bond length leads to a relatively small bond length distortion parameter, Δd = 1/6 Σ(di − d)2/d2 = 1.1·10−4 (where di is one of six individual bond lengths in the octa­hedron and d is the mean Bi—I bond length). The cis-(I—Bi—I) angles (α) lie in the inter­val 88.529 (9)–91.561 (9)°, which also indicates the occurrence of octa­hedral distortion, and can be described by the following parameter, Σ = Σ|90°–α| = 19.674°. The formed coordination octa­hedra are isolated, providing a 0-D topology in the crystal structure (Fig. 2[link]); these octa­hedra are aligned parallel to (003). The charge of the [BiI6]3– anions is balanced by three crystallographically unique 2-iodo­ethyl­ammonium cations, the I—C, C—C and C—N bond lengths of which are within the expected range. All three 2-iodo­ethyl­ammonium cations adopt a synclinal conformation with torsion angles of 68.6 (5)° (for the N1-containing cation), −66.2 (4)° (N2) and 64.1 (5)° (N3).

Table 1
Selected bond lengths (Å)

Bi1—I6 3.0287 (3) Bi1—I4 3.0786 (3)
Bi1—I3 3.0698 (3) Bi1—I1 3.1068 (4)
Bi1—I2 3.0733 (3) Bi1—I5 3.1333 (3)
[Figure 1]
Figure 1
The mol­ecular structures of the entities in the asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level; dashed lines represent N—H⋯I hydrogen bonds.
[Figure 2]
Figure 2
Details of the N—H⋯I hydrogen-bonding network (dashed lines) between organic cations and inorganic anions (represented as polyhedra). Only H atoms involved in these inter­actions are shown.

3. Supra­molecular features

In the crystal structure, the supra­molecular arrangement is mainly provided by numerous N—H⋯I hydrogen bonds between the ammonium groups of the cations and the I ligand atoms of the anions (Fig. 2[link]). All of the I ligand atoms of the anion, and all of the H atoms of the ammonium NH3 groups are involved in these inter­actions, one (N1—H1C) in a bifurcated manner (Table 2[link]). In addition, the distances between the carbon atoms of CH2 groups in organic cations and I atoms of coordination octa­hedra range from 3.801 to 3.963 Å suggesting the presence of weak C—H⋯I inter­actions. In addition, a weak I7⋯I3 contact [3.9663 (4) Å] is formed between one iodine atom of 2-iodo­ethyl­ammonium and another iodine atom of the coordination octa­hedron (Fig. 3[link]). The length of this contact is in the order of the sum of the van der Waals radius of two iodine atoms.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯I1 0.94 2.77 3.639 (4) 154
N1—H1B⋯I5i 0.94 3.04 3.735 (4) 132
N1—H1C⋯I5 0.94 2.97 3.726 (4) 138
N1—H1C⋯I4i 0.94 3.08 3.751 (4) 130
N2—H2A⋯I2 0.84 2.83 3.660 (4) 170
N2—H2B⋯I4ii 0.84 2.98 3.716 (4) 148
N2—H2C⋯I1ii 0.84 3.00 3.730 (4) 146
N3—H3C⋯I3 0.85 2.89 3.712 (4) 167
N3—H3D⋯I6iii 0.85 2.91 3.659 (4) 148
N3—H3E⋯I3iii 0.85 2.90 3.614 (4) 144
Symmetry codes: (i) [-x, -y+1, -z]; (ii) [x+1, y, z]; (iii) [-x+1, -y+2, -z+1].
[Figure 3]
Figure 3
Crystal packing of the title compound plotted along the a axis. N—H⋯I hydrogen bonds are drawn as black dashed lines, and weak I⋯I contacts as pink dashed lines.

4. Hirshfeld surface analysis

Weak inter­actions in the structure were additionally analysed by means of a Hirshfeld surface analysis using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). According to the colour code of the calculated Hirshfeld surface (Fig. 4[link]a,b), the contacts between atoms with lengths approximately equal to the sum of their van der Waals radii are shown in white, and contacts that are shorter are shown in red, while those that are longer are shown in blue. On the 3-D colour map only N—H⋯I contacts are marked in red, suggesting that these are the strongest inter­actions. The weak I⋯I contact is shown in white, which supports the statement given in the previous section. Two-dimensional fingerprint plots (Fig. 4[link]ce) display the presence of two types of relevant contacts in the structure: H⋯I with 72.3% contribution and I⋯I with 11.3% contribution. The remaining contacts are represented by H⋯H inter­actions.

[Figure 4]
Figure 4
(a), (b) Hirshfeld surface plotted over a fixed colour scale, which shows the strongest inter­molecular inter­actions in red; (c), (d), (e) two-dimensional fingerprint plots and their percentage contributions.

5. Database survey

A search of the Cambridge Structure Database (CSD, version 5.45, updated September 2024; Groom et al.. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that the formation of [Bi2I9]3– dimers is more common than of isolated [BiI6]3– octa­hedra. Some selected examples of crystal structures with discrete [BiI6]3– moieties are HUFBAO, which is (MA)3[BiI6]·3MACl (MA = methyl­ammonium; Zhang et al., 2020[Zhang, Y., Fadaei Tirani, F., Pattison, P., Schenk-Joss, K., Xiao, Z., Nazeeruddin, M. K. & Gao, P. (2020). Dalton Trans. 49, 5815-5822.]), MAMNEX02, which is (PBA)4[BiI6]I·H2O [(PBA) = C6H5(CH2)4NH3] (Chen et al., 2021[Chen, D., Hao, S., Fan, L., Guo, Y., Yao, J., Wolverton, C., Kanatzidis, M. G., Zhao, J. & Liu, Q. (2021). Chem. Mater. 33, 8106-8111.]) and MIJVEK, which is (DPA)2[BiI6]I3 (DPA = C5H16N2; Wang et al., 2023[Wang, Y., Zhang, S., Wang, Y., Yan, J., Yao, X., Xu, M., Lei, X. W., Lin, G. & Yue, C. Y. (2023). Chem. Commun. 59, 9239-9242.]). The main difference between these structures and the title compound is a mutual arrangement of isolated [BiI6]3– inorganic octa­hedra. In the case of HUFBAO, [BiI6]3− octa­hedra are stacked along the ac plane, in MIJVEK these octa­hedra are located along the ab plane and in MAMNEX02 along the bc plane. Thus, three examples from the literature can generally be described as structures containing ‘layers’ of inorganic octa­hedra (although these octa­hedra are not bonded to each other), which alternate with an organic component. In the title compound, the inorganic octa­hedra are arranged relative to each other like the vertices of a honeycomb (when viewed along the a axis). This arrangement allows for more significant inter­action between the organic and inorganic parts of the structure, resulting in the formation of multiple hydrogen bonds, as described.

6. Synthesis and crystallization

Crystals of the title compound have been obtained serendipitously during an intended synthesis of aziridinium (AzrH) bis­muth iodide. (AzrH)3[Bi2I9]·Bi2O3 (0.1 mmol) was dissolved in 0.5 ml of concentrated HI (57%wt). Aziridine (0.1 mol) was dissolved in 1 ml of water and added dropwise to the former solution. Orange crystals formed within 30 minutes, were collected and stored under Paratone(R) oil prior to the diffraction measurement. The formation of (2-IC2H4NH3)3[BiI6] instead of the target perovskite was established only in the single-crystal X-ray diffraction experiment.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed at calculated positions and refined isotropically with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.2Ueq(N). H atoms of secondary CH2 groups were refined as riding, while H atoms of NH3+ groups were refined as rotating.

Table 3
Experimental details

Crystal data
Chemical formula (C2H7IN)3·[BiI6]
Mr 1486.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 8.5014 (2), 12.8233 (3), 13.6364 (3)
α, β, γ (°) 107.689 (2), 107.067 (2), 92.749 (2)
V3) 1338.49 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 16.96
Crystal size (mm) 0.19 × 0.1 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.137, 0.506
No. of measured, independent and observed [I > 2σ(I)] reflections 19499, 6651, 5947
Rint 0.028
(sin θ/λ)max−1) 0.712
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.049, 1.04
No. of reflections 6651
No. of parameters 179
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 2.38, −1.94
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.], OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Tris(2-iodoethylammonium) hexaiodidobismuthate(III) top
Crystal data top
(C2H7IN)3·[BiI6]Z = 2
Mr = 1486.34F(000) = 1276
Triclinic, P1Dx = 3.688 Mg m3
a = 8.5014 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.8233 (3) ÅCell parameters from 12539 reflections
c = 13.6364 (3) Åθ = 2.5–30.2°
α = 107.689 (2)°µ = 16.96 mm1
β = 107.067 (2)°T = 100 K
γ = 92.749 (2)°Prism, clear intense orange
V = 1338.49 (6) Å30.19 × 0.1 × 0.05 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
5947 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.028
ω scansθmax = 30.4°, θmin = 2.5°
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2023)
h = 1110
Tmin = 0.137, Tmax = 0.506k = 1617
19499 measured reflectionsl = 1818
6651 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0173P)2 + 0.4063P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.049(Δ/σ)max = 0.001
S = 1.04Δρmax = 2.38 e Å3
6651 reflectionsΔρmin = 1.94 e Å3
179 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00014 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.16816 (2)0.69742 (2)0.33843 (2)0.01111 (5)
I50.33222 (3)0.60094 (2)0.15861 (2)0.01361 (7)
I40.16844 (3)0.62750 (2)0.15397 (2)0.01349 (7)
I10.11528 (3)0.46673 (2)0.36362 (2)0.01363 (7)
I30.19810 (4)0.92705 (2)0.31390 (2)0.01440 (7)
I20.51762 (3)0.76130 (2)0.50855 (2)0.01362 (7)
I60.01073 (3)0.79056 (3)0.51288 (2)0.01571 (7)
I80.58571 (4)0.31642 (3)0.11272 (3)0.01952 (8)
I70.17041 (4)0.14625 (3)0.15984 (3)0.02642 (9)
I90.66397 (5)1.02469 (3)0.16011 (3)0.03205 (9)
N20.6922 (4)0.5384 (3)0.3540 (3)0.0149 (8)
H2A0.663 (3)0.5957 (17)0.390 (2)0.018*
H2B0.684 (3)0.5409 (14)0.2918 (18)0.018*
H2C0.791 (3)0.5349 (12)0.386 (2)0.018*
N30.6590 (5)0.9734 (4)0.3921 (3)0.0219 (10)
H3C0.556 (3)0.9749 (17)0.3818 (15)0.026*
H3D0.704 (4)1.034 (2)0.3922 (16)0.026*
H3E0.704 (4)0.9647 (14)0.453 (2)0.026*
N10.0028 (5)0.3580 (3)0.0687 (3)0.0183 (9)
H1A0.031 (4)0.3599 (4)0.141 (2)0.022*
H1B0.086 (3)0.3978 (13)0.0535 (17)0.022*
H1C0.095 (3)0.3901 (12)0.0579 (18)0.022*
C50.6821 (6)0.8794 (4)0.3028 (4)0.0204 (11)
H5A0.8015170.8841700.3093590.025*
H5B0.6475530.8085150.3109310.025*
C40.6282 (6)0.3321 (4)0.2813 (4)0.0180 (10)
H4A0.5620640.2683870.2847550.022*
H4B0.7472150.3298480.3162240.022*
C10.0476 (6)0.2402 (4)0.0057 (4)0.0177 (10)
H1D0.0897610.2390600.0819090.021*
H1E0.1394060.2050920.0099410.021*
C30.5814 (5)0.4380 (4)0.3433 (4)0.0167 (10)
H3A0.4646430.4426940.3054700.020*
H3B0.5888740.4368130.4168070.020*
C20.0940 (6)0.1740 (4)0.0064 (4)0.0207 (11)
H2D0.1900980.2134980.0014330.025*
H2E0.0598060.1015760.0528590.025*
C60.5834 (6)0.8803 (4)0.1924 (4)0.0244 (12)
H6A0.4643890.8779120.1866930.029*
H6B0.5942390.8130960.1366110.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.01029 (9)0.01076 (9)0.01174 (9)0.00051 (6)0.00391 (7)0.00285 (7)
I50.01205 (14)0.01543 (16)0.01372 (15)0.00326 (11)0.00523 (12)0.00415 (12)
I40.01107 (14)0.01490 (15)0.01383 (15)0.00077 (11)0.00348 (11)0.00456 (12)
I10.01375 (14)0.01310 (15)0.01452 (15)0.00132 (11)0.00420 (12)0.00576 (12)
I30.01689 (15)0.01120 (15)0.01465 (15)0.00080 (11)0.00440 (12)0.00454 (12)
I20.01114 (14)0.01473 (15)0.01353 (15)0.00037 (11)0.00297 (11)0.00390 (12)
I60.01468 (15)0.01651 (16)0.01551 (16)0.00063 (11)0.00765 (12)0.00232 (12)
I80.02162 (16)0.01834 (17)0.01683 (16)0.00061 (12)0.00818 (13)0.00205 (13)
I70.02723 (18)0.0288 (2)0.0284 (2)0.00564 (14)0.00640 (15)0.01908 (16)
I90.0554 (2)0.0230 (2)0.02364 (19)0.00998 (17)0.01751 (17)0.01078 (15)
N20.0132 (19)0.014 (2)0.015 (2)0.0011 (15)0.0032 (16)0.0023 (16)
N30.021 (2)0.024 (2)0.019 (2)0.0036 (17)0.0082 (18)0.0047 (18)
N10.025 (2)0.013 (2)0.018 (2)0.0042 (16)0.0068 (17)0.0050 (17)
C50.030 (3)0.011 (2)0.020 (3)0.003 (2)0.009 (2)0.004 (2)
C40.018 (2)0.015 (3)0.021 (3)0.0007 (19)0.004 (2)0.008 (2)
C10.015 (2)0.014 (2)0.018 (3)0.0010 (18)0.0014 (19)0.0018 (19)
C30.013 (2)0.024 (3)0.013 (2)0.0011 (19)0.0048 (19)0.007 (2)
C20.019 (2)0.021 (3)0.022 (3)0.004 (2)0.007 (2)0.008 (2)
C60.031 (3)0.021 (3)0.018 (3)0.000 (2)0.008 (2)0.002 (2)
Geometric parameters (Å, º) top
Bi1—I63.0287 (3)N1—H1B0.94 (3)
Bi1—I33.0698 (3)N1—H1C0.94 (3)
Bi1—I23.0733 (3)N1—C11.498 (6)
Bi1—I43.0786 (3)C5—H5A0.9900
Bi1—I13.1068 (4)C5—H5B0.9900
Bi1—I53.1333 (3)C5—C61.496 (7)
I8—C42.163 (5)C4—H4A0.9900
I7—C22.145 (5)C4—H4B0.9900
I9—C62.155 (5)C4—C31.506 (7)
N2—H2A0.84 (2)C1—H1D0.9900
N2—H2B0.84 (2)C1—H1E0.9900
N2—H2C0.84 (2)C1—C21.505 (6)
N2—C31.502 (6)C3—H3A0.9900
N3—H3C0.85 (3)C3—H3B0.9900
N3—H3D0.85 (3)C2—H2D0.9900
N3—H3E0.85 (3)C2—H2E0.9900
N3—C51.499 (6)C6—H6A0.9900
N1—H1A0.94 (3)C6—H6B0.9900
I4—Bi1—I586.834 (9)H5A—C5—H5B107.9
I4—Bi1—I187.370 (9)C6—C5—N3112.2 (4)
I1—Bi1—I591.043 (9)C6—C5—H5A109.2
I3—Bi1—I591.561 (9)C6—C5—H5B109.2
I3—Bi1—I490.279 (9)I8—C4—H4A109.2
I3—Bi1—I1176.391 (9)I8—C4—H4B109.2
I3—Bi1—I289.461 (9)H4A—C4—H4B107.9
I2—Bi1—I588.607 (9)C3—C4—I8112.2 (3)
I2—Bi1—I4175.425 (10)C3—C4—H4A109.2
I2—Bi1—I193.101 (9)C3—C4—H4B109.2
I6—Bi1—I5179.779 (10)N1—C1—H1D109.1
I6—Bi1—I493.367 (9)N1—C1—H1E109.1
I6—Bi1—I188.876 (9)N1—C1—C2112.5 (4)
I6—Bi1—I388.529 (9)H1D—C1—H1E107.8
I6—Bi1—I291.192 (9)C2—C1—H1D109.1
H2A—N2—H2B109.5C2—C1—H1E109.1
H2A—N2—H2C109.5N2—C3—C4112.2 (4)
H2B—N2—H2C109.5N2—C3—H3A109.2
C3—N2—H2A109.5N2—C3—H3B109.2
C3—N2—H2B109.5C4—C3—H3A109.2
C3—N2—H2C109.5C4—C3—H3B109.2
H3C—N3—H3D109.5H3A—C3—H3B107.9
H3C—N3—H3E109.5I7—C2—H2D109.0
H3D—N3—H3E109.5I7—C2—H2E109.0
C5—N3—H3C109.5C1—C2—I7113.0 (3)
C5—N3—H3D109.5C1—C2—H2D109.0
C5—N3—H3E109.5C1—C2—H2E109.0
H1A—N1—H1B109.5H2D—C2—H2E107.8
H1A—N1—H1C109.5I9—C6—H6A109.1
H1B—N1—H1C109.5I9—C6—H6B109.1
C1—N1—H1A109.5C5—C6—I9112.3 (3)
C1—N1—H1B109.5C5—C6—H6A109.1
C1—N1—H1C109.5C5—C6—H6B109.1
N3—C5—H5A109.2H6A—C6—H6B107.9
N3—C5—H5B109.2
I8—C4—C3—N266.2 (4)N1—C1—C2—I768.6 (5)
N3—C5—C6—I964.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···I10.942.773.639 (4)154
N1—H1B···I5i0.943.043.735 (4)132
N1—H1C···I50.942.973.726 (4)138
N1—H1C···I4i0.943.083.751 (4)130
N2—H2A···I20.842.833.660 (4)170
N2—H2B···I4ii0.842.983.716 (4)148
N2—H2C···I1ii0.843.003.730 (4)146
N3—H3C···I30.852.893.712 (4)167
N3—H3D···I6iii0.852.913.659 (4)148
N3—H3E···I3iii0.852.903.614 (4)144
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+2, z+1.
 

Funding information

Funding for this research was provided by: Ministry of Education and Science of Ukraine (grant No. 24BF037-02); European Commission [grant No. 871072 (EURIZON Fellowship Program: "Remote Research Grants for Ukrainian Researchers"].

References

First citationChen, D., Hao, S., Fan, L., Guo, Y., Yao, J., Wolverton, C., Kanatzidis, M. G., Zhao, J. & Liu, Q. (2021). Chem. Mater. 33, 8106–8111.  CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoye, R. L. Z., Brandt, R. E., Osherov, A., Stevanović, V., Stranks, S. D., Wilson, M. W. B., Kim, H., Akey, A. J., Perkins, J. D., Kurchin, R. C., Poindexter, J. R., Wang, E. N., Bawendi, M. G., Bulović, V. & Buonassisi, T. (2016). Chem. Eur. J. 22, 2605–2610.  CSD CrossRef ICSD CAS PubMed Google Scholar
First citationLai, J., Wu, D., He, P., An, K., Wang, Y., Feng, P., Chen, W., Wang, Z., Guo, L. & Tang, X. (2024). J. Alloys Compd. 971, 172788.  CSD CrossRef Google Scholar
First citationLi, Q., Yin, L., Chen, Z., Deng, K., Luo, S., Zou, B., Wang, Z., Tang, J. & Quan, Z. (2019). Inorg. Chem. 58, 1621–1626.  CrossRef CAS PubMed Google Scholar
First citationQi, Z., Gao, H., Zhu, X., Lu, Z. & Zhang, X.-M. (2022). Inorg. Chem. 61, 19483–19491.  CSD CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y., Zhang, S., Wang, Y., Yan, J., Yao, X., Xu, M., Lei, X. W., Lin, G. & Yue, C. Y. (2023). Chem. Commun. 59, 9239–9242.  CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Fadaei Tirani, F., Pattison, P., Schenk-Joss, K., Xiao, Z., Nazeeruddin, M. K. & Gao, P. (2020). Dalton Trans. 49, 5815–5822.  CSD CrossRef CAS PubMed Google Scholar
First citationZhou, C., Lin, H., Tian, Y., Yuan, Z., Clark, R., Chen, B., van de Burgt, L. J., Wang, J. C., Zhou, Y., Hanson, K., Meisner, Q. J., Neu, J., Besara, T., Siegrist, T., Lambers, E., Djurovich, P. & Ma, B. (2018). Chem. Sci. 9, 586–593.  CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds