research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 5,5-di­phenyl-2-[2-(propan-2-yl­­idene)hydrazin-1-yl]-4,5-di­hydro-1H-imidazol-4-one N,N-di­methyl­formamide hemisolvate

crossmark logo

aLaboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom, cLaboratory of Medicinal Chemistry, Faculty of Clinical Pharmacy, 21 September University, Yemen, dDepartment of Chemistry, Faculty of Science Islamic University of Madinah, Madinah, 42351, Saudi Arabia, and eDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: alsubaripharmaco@21umas.edu.ye, y.ramli@um5r.ac.ma

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 15 November 2024; accepted 5 January 2025; online 10 January 2025)

The asymmetric unit of the title structure, 2C18H18N4O2·C3H7NO, consists of two independent mol­ecules of the substituted imidazolone having different conformations, and one mol­ecule of solvent DMF. The two imidazolone mol­ecules are linked by N—H⋯N and C—H⋯O hydrogen bonds and the DMF is joined to one of these by an N—H⋯O hydrogen bond. Additional N—H⋯N and C—H⋯O hydrogen bonds link these groups into corrugated layers parallel to the (101) plane with the layers joined by C—H⋯π (ring) inter­actions. A Hirshfeld surface analysis indicated that H⋯H inter­actions account for over half of the inter­molecular contacts.

1. Chemical context

In recent years, hydrazide-hydrazone derivatives have attracted increasing inter­est because of their wide range of applications in medicinal chemistry. In particular, the presence of an azomethine moiety (–NHN=CH–) in these compounds is often associated with their biological activity. In vitro studies on the toxicity of isoniazid on different cell lines have demonstrated that isoniazid induces cytotoxicity through apoptosis, leading to significant disruption of the cell cycle in mammalian cells (Naveen Kumar et al., 2014[Naveen Kumar, H. S., Parumasivam, T., Jumaat, F., Ibrahim, P., Asmawi, M. Z. & Sadikun, A. (2014). Med. Chem. Res. 23, 269-279.]). Recently, several new hydrazine and hydrazone derivatives based on hydantoin have been synthesized (Attanasi et al., 2011[Attanasi, O. A., Crescentini, L. D., Favi, G., Nicolini, S., Perrulli, F. R. & Santeusanio, S. (2011). Org. Lett. 13, 353-355.]) and have shown remarkable biological activity, especially as anti­tumor agents (Guerrab et al., 2023[Guerrab, W., Akachar, J., Jemli, M. E., Abudunia, A.-M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. 41, 4592-4600.]). Additionally, hydantoin is an important pharmacophore in medicinal chemistry because of its numerous biological applications, including as an anti­bacterial (El Moutaouakil Ala Allah et al., 2024a[El Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.],b[El Moutaouakil Ala Allah, A., Guerrab, W., Mague, J. T., Alsubari, A., Alzahrani, A. Y. A. & Ramli, Y. (2024b). Acta Cryst. E80, 532-536.]), anti­epileptic (El Moutaouakil Ala Allah et al., 2024c[El Moutaouakil Ala Allah, A., Said, M. A., Al-Kaff, N. S., Mague, J. T., Demirtaş, G. & Ramli, Y. (2024c). J. Mol. Struct. 1318, 139430.]), anti­plasmodial (Chin et al., 2024[Chin, E.-Z., Chang, W.-J., Tan, H.-Y., Liew, S. Y., Lau, Y.-L., Ng, Y.-L., Nafiah, M. A., Kurz, T. & Tan, S.-P. (2024). Bioorg. Med. Chem. Lett. 103, 129701.]), and anti­viral (Pardali et al., 2023[Pardali, V., Giannakopoulou, E., Mpekoulis, G., Tsopela, V., Panos, G., Taylor, M. C., Kelly, J. M., Vassilaki, N. & Zoidis, G. (2023). Pharmaceuticals 16, 1046.]) agent. Continuing our research in this field, we synthesized the title compound 5,5-diphenyl-2-[2-(propan-2-yl­idene)hydrazin-1-yl]-4,5-di­hydro-1H-imidazol-4-one N,N-di­methyl­formamide hemisolvate via a condensation reaction between 2-hydrazinyl-4,4-diphenyl-1H-imidazol-5(4H)-one and acetone in the presence of acetic acid as a catalyst. We determined its mol­ecular and crystalline structures, and conducted a Hirshfeld surface analysis.

[Scheme 1]

2. Structural commentary

The asymmetric unit consists of two independent mol­ecules of the imidazolone derivative and one mol­ecule of solvent di­methyl­formamide (DMF) (Fig. 1[link]). The independent mol­ecules differ in the orientations of the phenyl rings and in the departure from planarity of the imidazolone rings (Fig. 2[link]). For the mol­ecule containing O1, N2 is 0.0387 (12) Å to one side of the mean plane of the imidazolone ring (r.m.s. deviation of the fitted atoms = 0.0285 Å) while C1 is 0.0358 (12) Å to the other side. In that containing O2, N5 is 0.0520 (11) Å to one side of the mean plane of the imidazolone ring (r.m.s. deviation of the fitted atoms = 0.0399 Å) while C19 is 0.0519 (10) Å to the other side. In fact, the latter ring is sufficiently non-planar as to be amenable to a Cremer–Pople puckering analysis (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]), which gave Q(2) = 0.08193 (1) Å and φ(2) = 206.4 (12)° and a conformation having a twist on the N5—C19 bond. In the first mol­ecule, the mean planes of the C4–C9 and the C10–C15 rings are inclined to that of the imidazolone ring by 77.64 (9) and 55.80 (7)°, respectively, while the corresponding angles for the C22–C27 and the C28–C33 rings are 76.92 (8) and 70.98 (6)°, respectively. Another difference is in the conformation of the propanylidenehydrazineyl substituent where the N4—N3—C3—N1 and the N8—N7—C21—N6 torsion angles are 178.35 (18) and −174.16 (16)°, respectively. The sum of the angles about N3 and N7 are 358.2 (15) and 359.6 (14)°, respectively, indicating participation of their lone pairs in π bonding to adjacent atoms. This appears to be primarily with C3 and C21 as the N3—C3 and N7—C21 bond lengths are 1.332 (2) and 1.310 (2) Å, respectively.

[Figure 1]
Figure 1
Perspective view of the asymmetric unit with numbering scheme and 30% probability ellipsoids. The N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds are depicted, respectively, by blue, violet and black dashed lines.
[Figure 2]
Figure 2
Overlay of the two independent mol­ecules (mol­ecule containing O1 in blue and that containing O2 in red).

3. Supra­molecular features

The two independent mol­ecules are connected by N3—H3⋯N8, N5—H5A⋯N1 and C29—H29⋯O1 hydrogen bonds while the solvent DMF mol­ecule is attached by an N2—H2⋯O3 hydrogen bond (Table 1[link] and Fig. 1[link]), thereby grouping the components of the asymmetric unit into the fundamental building block of the full crystal structure. N7—H7A⋯N6i hydrogen bonds (Table 1[link]) connect two such blocks into centrosymmetric dimers, which are then linked into chains parallel to the (101) plane by inversion-related C14—H14⋯O1ii hydrogen bonds (Table 1[link]). The chains are linked by inversion-related C32—H32⋯O2iv hydrogen bonds into corrugated layers parallel to the (101) plane (Table 1[link] and Fig. 3[link]). The layers are linked by C17—H17BCg5iii inter­actions (Table 1[link] and Fig. 4[link]), generating the full 3-D structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C22–C27 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.88 (1) 2.09 (1) 2.952 (2) 165 (2)
N3—H3⋯N8 0.90 (1) 2.22 (1) 3.078 (2) 161 (2)
N5—H5A⋯N1 0.88 (1) 2.24 (1) 3.089 (2) 161 (2)
N7—H7A⋯N6i 0.88 (1) 2.10 (1) 2.964 (2) 172 (2)
C14—H14⋯O1ii 0.93 2.55 3.464 (3) 169
C17—H17BCg5iii 0.96 2.94 3.549 (3) 122
C29—H29⋯O1 0.93 2.43 3.183 (3) 137
C32—H32⋯O2iv 0.93 2.40 3.330 (3) 174
C33—H33⋯O2 0.93 2.52 3.131 (3) 124
C35—H35A⋯O2i 0.96 2.46 3.411 (3) 171
Symmetry codes: (i) [-x, -y+1, -z+2]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+1, -y+1, -z+2]; (iv) [-x, -y+2, -z+2].
[Figure 3]
Figure 3
A portion of one layer projected onto the (101) plane with the N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by blue, violet and black dashed lines. Hydrogen atoms not involved in these inter­actions are omitted for clarity.
[Figure 4]
Figure 4
The packing viewed along the b-axis direction with N—H⋯N, N—H⋯O and C—H⋯O hydrogen bonds depicted, respectively, by blue, violet and black dashed lines. The C—H⋯π (ring) inter­actions are depicted by green dashed lines and hydrogen atoms not involved in these inter­actions are omitted for clarity.

4. Database survey

A search of the Cambridge Structural Database (CSD, updated to June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) with the fragment shown in Fig. 5[link] gave two hits, one with R = CH2COOEt (REFREB; Karolak-Wojciechowska et al., 1998[Karolak-Wojciechowska, J., Mrozek, A., Kwiatkowski, W., Ksiażek, W., Kieć-Kononowicz, K. & Handzlik, J. (1998). J. Mol. Struct. 447, 89-96.]) and the other with R = 4-hy­droxy­phenyl (HOHBAL; El Moutaouakil et al., 2024[El Moutaouakil Ala Allah, A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572.]). Both structures have one mol­ecule per asymmetric unit and no solvent. In REFREB, the dihedral angles between the mean planes of the phenyl rings and that of the imidazolone ring are 63.3 (2) and 82.9 (2)° and the imidazolone ring has an ‘open envelope’ conformation. The exocyclic C—N bond length to the imidazolone ring is 1.325 (4) Å, suggesting involvement of the nitro­gen lone pair in N→C π bonding. The corresponding dihedral angles in HOHBAL are 73.33 (9) and 50.78 (11)°, which are very similar to those in one of the mol­ecules of the title compound. The imidazolone ring deviates from planarity by 0.021 (2) Å and the exocyclic C—N bond is 1.329 (3) Å, again indicating nitro­gen lone pair involvement in N→C π bonding.

[Figure 5]
Figure 5
The fragment used in the database search.

5. Hirshfeld surface analysis

A Hirshfeld surface analysis was performed with CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to determine the relative contributions of the several types of inter­molecular inter­actions in the crystal. Details of the process and the inter­pretations of the plots obtained have been published (Tan et al., 2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). Fig. 6[link]a shows the Hirshfeld surface of the asymmetric unit plotted over dnorm together with several neighboring mol­ecules, which are hydrogen-bonded to it as described in Section 3. The surface plotted over the curvature function is shown in Fig. 6[link]b from which it is evident that there are no extensive flat regions, which is consistent with the absence of π-stacking inter­actions. Fig. 7[link] shows the 2-D fingerprint plots for all inter­molecular contacts (Fig. 7[link]a) as well as those delineated into the four most prominent, specific contacts together with the percent each contributes to the total. More than half come from H⋯H contacts (Fig. 7[link]b), which is consistent with the majority of the hydrogen atoms being part of phenyl and methyl groups and represent the van der Waals contacts. Next in importance are the C⋯H/H⋯C contacts (Fig. 7[link]c), which involve the C—H⋯π (ring) inter­actions tying the layers together (cf. Section 3) followed by the O—H/H⋯O and N⋯H/H⋯N contacts (Fig. 7[link]d and e, respectively), which represent the C—H⋯O and N—H⋯N hydrogen bonds, respectively. As these involve narrow ranges of donor⋯H and H⋯acceptor distances, they appear as sharp spikes. Other possible contacts contribute very minor amounts.

[Figure 6]
Figure 6
The Hirshfeld surface of the asymmetric unit with several neighboring mol­ecules plotted over (a) dnorm and (b) the curvature function. Hydrogen bonds are depicted as dashed lines.
[Figure 7]
Figure 7
2-D fingerprint plots showing (a) all inter­molecular contacts and those delineated into (b) H⋯H, (c) C⋯H/H⋯C, (d) O⋯H/H⋯O and (e) N⋯H/H⋯N inter­actions.

6. Synthesis and crystallization

This compound was synthesized following a method comparable to that described in the literature (Ait Mansour et al., 2024[Ait Mansour, A., Lgaz, H., El Moutaouakil Ala Allah, A., Jang, J., Messali, M., Bazzi, L., Lee, H., Ramli, Y. & Salghi, R. (2024). J. Mol. Struct. 1303, 137592.], 2025[Ait Mansour, A., El Boutaouakil Ala Allah, A., Lgaz, H., Messali, M., Lee, H., Bazzi, L., Salghi, R., Ramli, Y. & Hammouti, B. (2025). J. Mol. Struct. 1321, 139910.]; Ettahiri et al., 2024[Ettahiri, W., El Moutaouakil Ala Allah, A., Lazrak, J., Safir, E. H., Yadav, K. K., Hammouti, B., Obaidullah, A. J., Rais, Z., Ramli, Y. & Taleb, M. (2024). J. Ind. Eng. Chem. 140, 631-646.]).

[Scheme 2]

To a solution of 2-hydrazinyl-4,4-diphenyl-1H-imidazol-5(4H)-one (1.0 g, 3.75 mmol) in ethanol (15 ml), dry acetone (0.3 ml, 4 mmol) was added along with a few drops of acetic acid. The reaction mixture was kept under reflux for 22 h, and then cooled. The precipitated solid was filtered and recrystallized from an ethanol–di­methyl­formamide mixture (9:1), yielding the title compound with a 90% yield, colorless, m.p.479–481 K. FT–IR (ATR, ν, cm−1): 3410 (N—H), 3058 (H—C=C), 2918 (CH3), 1685 (C=O), 1584, 1552, 1491, 1445 (Ar—C=C). 1H NMR (500 MHz, DMSO-d6): δppm= 1.97–1.99 (m, 6H, 2CH3), 7.24–7.48 (m, 10H, Ar—H), 9.18 (s, 1H, NH—imidazole), 11.48 (s, 1H, N—NH). 13C NMR (125 MHz, DMSO-d6); δppm = 18–20 (2CH3), 71.90 (C—2Ph), 128.33, 128.79, 129.40, 141.00 (C—Ar); 150.18 (N—N=C), 168.34 (C=N), 180.23 (C=O). HRMS (ESI–MS) (m/z) calculated for C18H18N4O 307,1481; found 307,15411.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to carbon were placed in idealized positions with isotropic displacement parameters tied to those of the attached atoms and included as riding contributions. Those attached to nitro­gen were located in difference maps and refined with a DFIX 0.89 0.01 instruction.

Table 2
Experimental details

Crystal data
Chemical formula 2C18H18N4O·C3H7NO
Mr 685.82
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 293
a, b, c (Å) 9.1009 (3), 11.0914 (6), 18.5952 (9)
α, β, γ (°) 81.381 (4), 83.221 (3), 86.838 (3)
V3) 1841.52 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.34 × 0.26 × 0.17
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.767, 1.00
No. of measured, independent and observed [I > 2σ(I)] reflections 18303, 8798, 5925
Rint 0.028
(sin θ/λ)max−1) 0.697
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.173, 1.06
No. of reflections 8798
No. of parameters 478
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2019/1 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]).

Supporting information


Computing details top

5,5-Diphenyl-2-[2-(propan-2-ylidene)hydrazin-1-yl]-4,5-dihydro-1H-imidazol-4-one N,N-dimethylformamide hemisolvate top
Crystal data top
2C18H18N4O·C3H7NOZ = 2
Mr = 685.82F(000) = 728
Triclinic, P1Dx = 1.237 Mg m3
a = 9.1009 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.0914 (6) ÅCell parameters from 6730 reflections
c = 18.5952 (9) Åθ = 3.9–28.2°
α = 81.381 (4)°µ = 0.08 mm1
β = 83.221 (3)°T = 293 K
γ = 86.838 (3)°Block, colourless
V = 1841.52 (15) Å30.34 × 0.26 × 0.17 mm
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
5925 reflections with I > 2σ(I)
Detector resolution: 10.5082 pixels mm-1Rint = 0.028
ω scansθmax = 29.7°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1212
Tmin = 0.767, Tmax = 1.00k = 1514
18303 measured reflectionsl = 2423
8798 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: mixed
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0627P)2 + 0.7615P]
where P = (Fo2 + 2Fc2)/3
8798 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.93 - 0.96 Å) and were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms. Those attached to nitrogen were placed in locations derived from a difference map and refined with a DFIX 0.89 0.01 instruction.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4540 (2)0.85849 (14)0.66174 (9)0.0675 (5)
N10.42499 (19)0.66472 (16)0.72534 (9)0.0465 (4)
N20.61495 (18)0.56641 (15)0.66433 (9)0.0411 (4)
H20.6793 (19)0.5062 (15)0.6559 (12)0.049*
N30.4718 (2)0.45755 (16)0.76305 (10)0.0469 (4)
H30.3854 (16)0.456 (2)0.7917 (11)0.056*
N40.5561 (2)0.35323 (16)0.75034 (10)0.0478 (4)
C10.6314 (2)0.69382 (17)0.63182 (10)0.0397 (4)
C20.4921 (2)0.75106 (19)0.67378 (11)0.0462 (5)
C30.5036 (2)0.56028 (18)0.71804 (10)0.0398 (4)
C40.7762 (3)0.73867 (19)0.65145 (12)0.0488 (5)
C50.9076 (3)0.7131 (3)0.61045 (16)0.0682 (7)
H50.9065420.6753210.5691370.082*
C61.0413 (3)0.7436 (3)0.6305 (2)0.0881 (9)
H61.1292030.7254370.6025820.106*
C71.0457 (4)0.7991 (3)0.6900 (2)0.0957 (11)
H71.1359710.8197840.7026710.115*
C80.9177 (5)0.8247 (4)0.7313 (2)0.1030 (12)
H80.9205000.8624360.7725340.124*
C90.7818 (4)0.7945 (3)0.71222 (16)0.0811 (9)
H90.6946030.8123840.7407620.097*
C100.6214 (2)0.71560 (17)0.54934 (10)0.0380 (4)
C110.6219 (2)0.6203 (2)0.50932 (12)0.0506 (5)
H110.6276810.5402570.5326850.061*
C120.6138 (3)0.6433 (2)0.43450 (13)0.0607 (6)
H120.6141920.5784110.4080250.073*
C130.6051 (3)0.7606 (3)0.39926 (13)0.0611 (6)
H130.5991570.7753630.3490970.073*
C140.6053 (3)0.8571 (2)0.43840 (12)0.0562 (6)
H140.5999800.9370060.4146660.067*
C150.6134 (2)0.83423 (19)0.51344 (11)0.0465 (5)
H150.6135080.8991660.5398010.056*
C160.5405 (2)0.2595 (2)0.79895 (12)0.0510 (5)
C170.4406 (3)0.2507 (3)0.86839 (15)0.0779 (8)
H17A0.4071220.3311270.8776440.117*
H17B0.4931450.2114150.9078860.117*
H17C0.3569550.2039180.8646110.117*
C180.6338 (3)0.1493 (2)0.78539 (18)0.0827 (9)
H18A0.6952600.1664010.7397210.124*
H18B0.5712760.0832050.7833680.124*
H18C0.6949890.1270750.8243030.124*
O20.21476 (15)0.77014 (13)1.04962 (7)0.0442 (3)
N50.26143 (17)0.66567 (14)0.88060 (8)0.0372 (4)
H5A0.287 (2)0.6600 (19)0.8338 (6)0.045*
N60.12404 (16)0.62615 (14)0.99037 (8)0.0363 (3)
N70.09055 (18)0.51005 (15)0.89877 (9)0.0407 (4)
H7A0.0235 (19)0.4673 (17)0.9278 (10)0.049*
N80.14707 (18)0.48358 (15)0.82887 (9)0.0425 (4)
C190.29550 (19)0.76453 (16)0.91936 (10)0.0331 (4)
C200.20791 (19)0.72256 (16)0.99519 (10)0.0339 (4)
C210.15679 (19)0.59687 (16)0.92148 (10)0.0341 (4)
C220.46015 (19)0.76775 (17)0.92707 (10)0.0371 (4)
C230.5478 (3)0.6618 (2)0.93107 (14)0.0580 (6)
H230.5079300.5884060.9263110.070*
C240.6963 (3)0.6652 (3)0.94226 (17)0.0785 (8)
H240.7545840.5933970.9455800.094*
C250.7571 (3)0.7722 (3)0.94840 (16)0.0776 (8)
H250.8566510.7736050.9550710.093*
C260.6713 (3)0.8777 (3)0.94471 (15)0.0662 (7)
H260.7122540.9508930.9490510.079*
C270.5226 (2)0.8752 (2)0.93446 (12)0.0485 (5)
H270.4644900.9470330.9325600.058*
C280.23073 (19)0.88526 (16)0.88283 (10)0.0339 (4)
C290.2820 (2)0.92591 (19)0.81048 (11)0.0469 (5)
H290.3587590.8825770.7869440.056*
C300.2207 (3)1.0296 (2)0.77290 (12)0.0588 (6)
H300.2552681.0550530.7241880.071*
C310.1088 (3)1.0953 (2)0.80731 (14)0.0661 (7)
H310.0673781.1652280.7820810.079*
C320.0588 (3)1.0575 (2)0.87866 (15)0.0724 (8)
H320.0166201.1022270.9021390.087*
C330.1191 (3)0.9530 (2)0.91657 (12)0.0546 (6)
H330.0839830.9284300.9652980.066*
C340.0538 (2)0.45658 (18)0.78857 (11)0.0445 (5)
C350.1081 (3)0.4505 (3)0.80821 (15)0.0783 (9)
H35A0.1286150.3903770.8505830.117*
H35B0.1529540.4284020.7680620.117*
H35C0.1479100.5286950.8187390.117*
C360.1165 (3)0.4298 (3)0.71405 (13)0.0670 (7)
H36A0.2128390.4631300.7017080.101*
H36B0.0523540.4660120.6786080.101*
H36C0.1242780.3430970.7141550.101*
O30.8365 (2)0.38834 (19)0.60869 (13)0.0860 (6)
N90.8657 (2)0.1959 (2)0.58003 (14)0.0711 (6)
C370.7936 (3)0.3009 (3)0.5857 (2)0.0901 (10)
H370.6994370.3091150.5703700.108*
C381.0119 (4)0.1762 (4)0.5999 (3)0.1186 (14)
H38A1.0559390.2533200.5983020.178*
H38B1.0696470.1296600.5663510.178*
H38C1.0088440.1321290.6486070.178*
C390.8031 (4)0.0955 (4)0.5538 (3)0.1303 (17)
H39A0.7081340.1210040.5379300.195*
H39B0.7916720.0279320.5925750.195*
H39C0.8679160.0711240.5135040.195*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0965 (13)0.0415 (9)0.0531 (10)0.0172 (8)0.0198 (9)0.0007 (7)
N10.0549 (10)0.0415 (9)0.0389 (9)0.0023 (8)0.0067 (7)0.0027 (7)
N20.0468 (9)0.0325 (8)0.0405 (9)0.0011 (7)0.0039 (7)0.0017 (7)
N30.0513 (10)0.0402 (9)0.0446 (10)0.0041 (8)0.0049 (8)0.0016 (8)
N40.0541 (10)0.0386 (9)0.0477 (10)0.0015 (8)0.0022 (8)0.0004 (8)
C10.0489 (11)0.0315 (9)0.0362 (10)0.0007 (8)0.0014 (8)0.0024 (8)
C20.0614 (13)0.0390 (11)0.0351 (10)0.0046 (9)0.0021 (9)0.0030 (8)
C30.0461 (10)0.0384 (10)0.0340 (10)0.0040 (8)0.0017 (8)0.0036 (8)
C40.0633 (13)0.0392 (11)0.0430 (11)0.0093 (10)0.0085 (10)0.0012 (9)
C50.0558 (14)0.0803 (19)0.0709 (17)0.0026 (13)0.0116 (12)0.0151 (14)
C60.0593 (16)0.100 (2)0.107 (3)0.0079 (16)0.0208 (16)0.012 (2)
C70.090 (2)0.093 (2)0.111 (3)0.0244 (19)0.043 (2)0.006 (2)
C80.127 (3)0.114 (3)0.083 (2)0.041 (2)0.031 (2)0.033 (2)
C90.096 (2)0.092 (2)0.0634 (17)0.0286 (17)0.0041 (15)0.0300 (16)
C100.0372 (9)0.0397 (10)0.0354 (10)0.0025 (8)0.0019 (7)0.0042 (8)
C110.0645 (13)0.0444 (12)0.0421 (12)0.0096 (10)0.0032 (10)0.0080 (9)
C120.0746 (16)0.0660 (16)0.0440 (13)0.0189 (13)0.0017 (11)0.0169 (11)
C130.0631 (14)0.0823 (18)0.0360 (11)0.0107 (13)0.0031 (10)0.0014 (12)
C140.0598 (13)0.0575 (14)0.0449 (12)0.0012 (11)0.0002 (10)0.0081 (10)
C150.0531 (12)0.0423 (11)0.0411 (11)0.0008 (9)0.0006 (9)0.0017 (9)
C160.0575 (13)0.0441 (12)0.0497 (12)0.0074 (10)0.0101 (10)0.0039 (10)
C170.094 (2)0.0692 (17)0.0593 (16)0.0055 (15)0.0030 (14)0.0202 (13)
C180.086 (2)0.0507 (15)0.101 (2)0.0086 (14)0.0019 (17)0.0114 (15)
O20.0528 (8)0.0464 (8)0.0347 (7)0.0030 (6)0.0003 (6)0.0128 (6)
N50.0445 (8)0.0362 (8)0.0302 (8)0.0080 (7)0.0060 (6)0.0086 (6)
N60.0378 (8)0.0383 (8)0.0322 (8)0.0036 (7)0.0021 (6)0.0066 (6)
N70.0423 (9)0.0440 (9)0.0355 (9)0.0119 (7)0.0054 (7)0.0087 (7)
N80.0467 (9)0.0449 (9)0.0367 (9)0.0078 (7)0.0021 (7)0.0117 (7)
C190.0360 (9)0.0307 (9)0.0319 (9)0.0022 (7)0.0021 (7)0.0070 (7)
C200.0337 (9)0.0340 (9)0.0324 (9)0.0016 (7)0.0002 (7)0.0041 (7)
C210.0342 (9)0.0330 (9)0.0339 (9)0.0015 (7)0.0006 (7)0.0038 (7)
C220.0352 (9)0.0400 (10)0.0338 (9)0.0012 (8)0.0023 (7)0.0034 (8)
C230.0529 (13)0.0516 (13)0.0699 (16)0.0120 (10)0.0079 (11)0.0150 (11)
C240.0541 (15)0.091 (2)0.090 (2)0.0319 (15)0.0153 (14)0.0199 (17)
C250.0393 (12)0.114 (3)0.0791 (19)0.0008 (15)0.0093 (12)0.0117 (17)
C260.0502 (13)0.0738 (17)0.0745 (17)0.0187 (13)0.0153 (12)0.0024 (14)
C270.0430 (11)0.0463 (12)0.0555 (13)0.0048 (9)0.0081 (9)0.0015 (10)
C280.0356 (9)0.0326 (9)0.0339 (9)0.0026 (7)0.0034 (7)0.0059 (7)
C290.0561 (12)0.0448 (11)0.0366 (10)0.0000 (9)0.0050 (9)0.0040 (9)
C300.0777 (16)0.0527 (13)0.0404 (12)0.0002 (12)0.0008 (11)0.0055 (10)
C310.0842 (17)0.0509 (14)0.0583 (15)0.0172 (13)0.0134 (13)0.0054 (11)
C320.0826 (18)0.0637 (16)0.0621 (16)0.0332 (14)0.0042 (13)0.0036 (13)
C330.0609 (13)0.0544 (13)0.0414 (11)0.0184 (11)0.0061 (10)0.0009 (10)
C340.0571 (12)0.0388 (10)0.0374 (10)0.0061 (9)0.0070 (9)0.0019 (8)
C350.0567 (14)0.124 (3)0.0563 (15)0.0181 (16)0.0146 (12)0.0090 (16)
C360.0878 (18)0.0712 (17)0.0458 (13)0.0145 (14)0.0067 (12)0.0169 (12)
O30.0787 (13)0.0637 (12)0.1172 (18)0.0015 (10)0.0023 (12)0.0301 (12)
N90.0510 (11)0.0618 (13)0.1043 (18)0.0014 (10)0.0067 (11)0.0275 (12)
C370.0521 (15)0.072 (2)0.148 (3)0.0021 (14)0.0073 (17)0.026 (2)
C380.088 (2)0.118 (3)0.166 (4)0.030 (2)0.053 (2)0.055 (3)
C390.101 (3)0.082 (3)0.223 (5)0.013 (2)0.034 (3)0.054 (3)
Geometric parameters (Å, º) top
O1—C21.218 (2)N7—C211.310 (2)
N1—C31.343 (3)N7—N81.407 (2)
N1—C21.364 (3)N7—H7A0.875 (9)
N2—C31.333 (2)N8—C341.272 (3)
N2—C11.460 (2)C19—C221.525 (2)
N2—H20.883 (9)C19—C281.529 (2)
N3—C31.333 (2)C19—C201.555 (2)
N3—N41.388 (2)C22—C271.381 (3)
N3—H30.895 (10)C22—C231.381 (3)
N4—C161.274 (3)C23—C241.395 (4)
C1—C101.529 (3)C23—H230.9300
C1—C41.535 (3)C24—C251.363 (4)
C1—C21.564 (3)C24—H240.9300
C4—C91.375 (3)C25—C261.368 (4)
C4—C51.380 (3)C25—H250.9300
C5—C61.387 (4)C26—C271.391 (3)
C5—H50.9300C26—H260.9300
C6—C71.350 (5)C27—H270.9300
C6—H60.9300C28—C331.377 (3)
C7—C81.359 (5)C28—C291.387 (3)
C7—H70.9300C29—C301.379 (3)
C8—C91.398 (4)C29—H290.9300
C8—H80.9300C30—C311.371 (3)
C9—H90.9300C30—H300.9300
C10—C111.380 (3)C31—C321.362 (4)
C10—C151.386 (3)C31—H310.9300
C11—C121.386 (3)C32—C331.384 (3)
C11—H110.9300C32—H320.9300
C12—C131.370 (4)C33—H330.9300
C12—H120.9300C34—C351.478 (3)
C13—C141.382 (4)C34—C361.501 (3)
C13—H130.9300C35—H35A0.9600
C14—C151.391 (3)C35—H35B0.9600
C14—H140.9300C35—H35C0.9600
C15—H150.9300C36—H36A0.9600
C16—C171.483 (3)C36—H36B0.9600
C16—C181.485 (3)C36—H36C0.9600
C17—H17A0.9600O3—C371.217 (4)
C17—H17B0.9600N9—C371.316 (4)
C17—H17C0.9600N9—C381.419 (4)
C18—H18A0.9600N9—C391.450 (4)
C18—H18B0.9600C37—H370.9300
C18—H18C0.9600C38—H38A0.9600
O2—C201.219 (2)C38—H38B0.9600
N5—C211.343 (2)C38—H38C0.9600
N5—C191.465 (2)C39—H39A0.9600
N5—H5A0.884 (9)C39—H39B0.9600
N6—C211.364 (2)C39—H39C0.9600
N6—C201.367 (2)
C3—N1—C2105.43 (16)N5—C19—C28109.33 (14)
C3—N2—C1108.70 (15)C22—C19—C28113.47 (14)
C3—N2—H2125.3 (15)N5—C19—C2099.29 (13)
C1—N2—H2124.9 (15)C22—C19—C20110.11 (14)
C3—N3—N4117.29 (16)C28—C19—C20111.17 (14)
C3—N3—H3117.7 (15)O2—C20—N6126.44 (16)
N4—N3—H3123.2 (15)O2—C20—C19124.10 (16)
C16—N4—N3117.31 (18)N6—C20—C19109.45 (15)
N2—C1—C10113.29 (16)N7—C21—N5124.50 (17)
N2—C1—C4109.06 (16)N7—C21—N6122.16 (16)
C10—C1—C4112.25 (15)N5—C21—N6113.33 (16)
N2—C1—C298.90 (14)C27—C22—C23118.64 (19)
C10—C1—C2110.66 (16)C27—C22—C19120.69 (17)
C4—C1—C2112.00 (17)C23—C22—C19120.56 (18)
O1—C2—N1126.40 (19)C22—C23—C24119.9 (2)
O1—C2—C1123.29 (18)C22—C23—H23120.1
N1—C2—C1110.28 (16)C24—C23—H23120.1
N3—C3—N2122.63 (18)C25—C24—C23120.8 (2)
N3—C3—N1121.15 (17)C25—C24—H24119.6
N2—C3—N1116.21 (17)C23—C24—H24119.6
C9—C4—C5118.3 (2)C24—C25—C26119.8 (2)
C9—C4—C1122.4 (2)C24—C25—H25120.1
C5—C4—C1119.1 (2)C26—C25—H25120.1
C4—C5—C6120.4 (3)C25—C26—C27119.9 (3)
C4—C5—H5119.8C25—C26—H26120.1
C6—C5—H5119.8C27—C26—H26120.1
C7—C6—C5120.9 (3)C22—C27—C26120.9 (2)
C7—C6—H6119.5C22—C27—H27119.5
C5—C6—H6119.5C26—C27—H27119.5
C6—C7—C8119.7 (3)C33—C28—C29118.04 (18)
C6—C7—H7120.2C33—C28—C19123.66 (17)
C8—C7—H7120.2C29—C28—C19118.23 (16)
C7—C8—C9120.3 (3)C30—C29—C28121.00 (19)
C7—C8—H8119.8C30—C29—H29119.5
C9—C8—H8119.8C28—C29—H29119.5
C4—C9—C8120.4 (3)C31—C30—C29120.0 (2)
C4—C9—H9119.8C31—C30—H30120.0
C8—C9—H9119.8C29—C30—H30120.0
C11—C10—C15118.91 (19)C32—C31—C30119.6 (2)
C11—C10—C1121.87 (17)C32—C31—H31120.2
C15—C10—C1119.22 (17)C30—C31—H31120.2
C10—C11—C12120.4 (2)C31—C32—C33120.6 (2)
C10—C11—H11119.8C31—C32—H32119.7
C12—C11—H11119.8C33—C32—H32119.7
C13—C12—C11120.5 (2)C28—C33—C32120.6 (2)
C13—C12—H12119.7C28—C33—H33119.7
C11—C12—H12119.7C32—C33—H33119.7
C12—C13—C14119.9 (2)N8—C34—C35126.2 (2)
C12—C13—H13120.1N8—C34—C36115.8 (2)
C14—C13—H13120.1C35—C34—C36118.0 (2)
C13—C14—C15119.7 (2)C34—C35—H35A109.5
C13—C14—H14120.2C34—C35—H35B109.5
C15—C14—H14120.2H35A—C35—H35B109.5
C10—C15—C14120.6 (2)C34—C35—H35C109.5
C10—C15—H15119.7H35A—C35—H35C109.5
C14—C15—H15119.7H35B—C35—H35C109.5
N4—C16—C17126.3 (2)C34—C36—H36A109.5
N4—C16—C18116.8 (2)C34—C36—H36B109.5
C17—C16—C18116.9 (2)H36A—C36—H36B109.5
C16—C17—H17A109.5C34—C36—H36C109.5
C16—C17—H17B109.5H36A—C36—H36C109.5
H17A—C17—H17B109.5H36B—C36—H36C109.5
C16—C17—H17C109.5C37—N9—C38120.4 (3)
H17A—C17—H17C109.5C37—N9—C39123.1 (3)
H17B—C17—H17C109.5C38—N9—C39116.5 (3)
C16—C18—H18A109.5O3—C37—N9127.3 (3)
C16—C18—H18B109.5O3—C37—H37116.4
H18A—C18—H18B109.5N9—C37—H37116.4
C16—C18—H18C109.5N9—C38—H38A109.5
H18A—C18—H18C109.5N9—C38—H38B109.5
H18B—C18—H18C109.5H38A—C38—H38B109.5
C21—N5—C19109.78 (14)N9—C38—H38C109.5
C21—N5—H5A122.1 (14)H38A—C38—H38C109.5
C19—N5—H5A126.6 (14)H38B—C38—H38C109.5
C21—N6—C20107.25 (14)N9—C39—H39A109.5
C21—N7—N8114.93 (15)N9—C39—H39B109.5
C21—N7—H7A120.9 (15)H39A—C39—H39B109.5
N8—N7—H7A123.8 (15)N9—C39—H39C109.5
C34—N8—N7116.78 (16)H39A—C39—H39C109.5
N5—C19—C22112.61 (14)H39B—C39—H39C109.5
C3—N3—N4—C16170.2 (2)C21—N5—C19—C22125.71 (16)
C3—N2—C1—C10123.75 (18)C21—N5—C19—C28107.19 (17)
C3—N2—C1—C4110.46 (18)C21—N5—C19—C209.25 (18)
C3—N2—C1—C26.6 (2)C21—N6—C20—O2175.91 (18)
C3—N1—C2—O1179.2 (2)C21—N6—C20—C194.26 (19)
C3—N1—C2—C12.3 (2)N5—C19—C20—O2172.00 (17)
N2—C1—C2—O1176.0 (2)C22—C19—C20—O253.7 (2)
C10—C1—C2—O156.9 (3)C28—C19—C20—O273.0 (2)
C4—C1—C2—O169.2 (3)N5—C19—C20—N68.17 (18)
N2—C1—C2—N15.5 (2)C22—C19—C20—N6126.51 (16)
C10—C1—C2—N1124.59 (18)C28—C19—C20—N6106.86 (17)
C4—C1—C2—N1109.3 (2)N8—N7—C21—N56.1 (3)
N4—N3—C3—N22.6 (3)N8—N7—C21—N6174.16 (16)
N4—N3—C3—N1178.35 (18)C19—N5—C21—N7171.89 (17)
C1—N2—C3—N3172.76 (19)C19—N5—C21—N67.9 (2)
C1—N2—C3—N16.4 (2)C20—N6—C21—N7177.72 (17)
C2—N1—C3—N3176.68 (19)C20—N6—C21—N52.0 (2)
C2—N1—C3—N22.4 (2)N5—C19—C22—C27154.22 (18)
N2—C1—C4—C992.1 (3)C28—C19—C22—C2729.4 (2)
C10—C1—C4—C9141.5 (2)C20—C19—C22—C2796.0 (2)
C2—C1—C4—C916.4 (3)N5—C19—C22—C2329.6 (2)
N2—C1—C4—C582.3 (2)C28—C19—C22—C23154.43 (18)
C10—C1—C4—C544.1 (3)C20—C19—C22—C2380.2 (2)
C2—C1—C4—C5169.3 (2)C27—C22—C23—C240.1 (3)
C9—C4—C5—C60.0 (4)C19—C22—C23—C24176.4 (2)
C1—C4—C5—C6174.6 (2)C22—C23—C24—C250.9 (4)
C4—C5—C6—C70.4 (5)C23—C24—C25—C261.0 (5)
C5—C6—C7—C80.6 (6)C24—C25—C26—C270.2 (4)
C6—C7—C8—C90.4 (6)C23—C22—C27—C260.9 (3)
C5—C4—C9—C80.2 (4)C19—C22—C27—C26177.2 (2)
C1—C4—C9—C8174.6 (3)C25—C26—C27—C220.7 (4)
C7—C8—C9—C40.0 (5)N5—C19—C28—C33114.8 (2)
N2—C1—C10—C1110.2 (3)C22—C19—C28—C33118.6 (2)
C4—C1—C10—C11113.9 (2)C20—C19—C28—C336.2 (3)
C2—C1—C10—C11120.2 (2)N5—C19—C28—C2961.9 (2)
N2—C1—C10—C15170.62 (17)C22—C19—C28—C2964.7 (2)
C4—C1—C10—C1565.3 (2)C20—C19—C28—C29170.54 (17)
C2—C1—C10—C1560.6 (2)C33—C28—C29—C301.4 (3)
C15—C10—C11—C120.3 (3)C19—C28—C29—C30175.4 (2)
C1—C10—C11—C12179.5 (2)C28—C29—C30—C310.9 (4)
C10—C11—C12—C130.0 (4)C29—C30—C31—C320.0 (4)
C11—C12—C13—C140.4 (4)C30—C31—C32—C330.4 (5)
C12—C13—C14—C150.4 (4)C29—C28—C33—C321.0 (4)
C11—C10—C15—C140.3 (3)C19—C28—C33—C32175.7 (2)
C1—C10—C15—C14179.52 (19)C31—C32—C33—C280.1 (4)
C13—C14—C15—C100.0 (3)N7—N8—C34—C350.0 (3)
N3—N4—C16—C170.1 (4)N7—N8—C34—C36179.48 (18)
N3—N4—C16—C18178.8 (2)C38—N9—C37—O31.9 (6)
C21—N7—N8—C34143.08 (19)C39—N9—C37—O3178.1 (4)
Hydrogen-bond geometry (Å, º) top
Cg5 is the centroid of the C22–C27 benzene ring.
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.88 (1)2.09 (1)2.952 (2)165 (2)
N3—H3···N80.90 (1)2.22 (1)3.078 (2)161 (2)
N5—H5A···N10.88 (1)2.24 (1)3.089 (2)161 (2)
N7—H7A···N6i0.88 (1)2.10 (1)2.964 (2)172 (2)
C14—H14···O1ii0.932.553.464 (3)169
C17—H17B···Cg5iii0.962.943.549 (3)122
C29—H29···O10.932.433.183 (3)137
C32—H32···O2iv0.932.403.330 (3)174
C33—H33···O20.932.523.131 (3)124
C35—H35A···O2i0.962.463.411 (3)171
Symmetry codes: (i) x, y+1, z+2; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+2; (iv) x, y+2, z+2.
 

Acknowledgements

YR is thankful to the National Center for Scientific and Technical Research of Morocco (CNRST) for its continuous support. The contributions of the authors are as follows: conceptualization, YR; methodology, AA; investigation, AEMAA and WG; writing (original draft), AEMAA; writing (review and editing of the manuscript), YR; formal analysis, JTM and BMK; supervision, YR; crystal structure determination, BMK and JTM; resources, MAS.

References

First citationAit Mansour, A., El Boutaouakil Ala Allah, A., Lgaz, H., Messali, M., Lee, H., Bazzi, L., Salghi, R., Ramli, Y. & Hammouti, B. (2025). J. Mol. Struct. 1321, 139910.  Web of Science CrossRef Google Scholar
First citationAit Mansour, A., Lgaz, H., El Moutaouakil Ala Allah, A., Jang, J., Messali, M., Bazzi, L., Lee, H., Ramli, Y. & Salghi, R. (2024). J. Mol. Struct. 1303, 137592.  Web of Science CrossRef Google Scholar
First citationAttanasi, O. A., Crescentini, L. D., Favi, G., Nicolini, S., Perrulli, F. R. & Santeusanio, S. (2011). Org. Lett. 13, 353–355.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChin, E.-Z., Chang, W.-J., Tan, H.-Y., Liew, S. Y., Lau, Y.-L., Ng, Y.-L., Nafiah, M. A., Kurz, T. & Tan, S.-P. (2024). Bioorg. Med. Chem. Lett. 103, 129701.  Web of Science CrossRef PubMed Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Maatallah, M., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024a). J. Mol. Struct. 1310, 138324.  Web of Science CSD CrossRef Google Scholar
First citationEl Moutaouakil Ala Allah, A., Guerrab, W., Mague, J. T., Alsubari, A., Alzahrani, A. Y. A. & Ramli, Y. (2024b). Acta Cryst. E80, 532–536.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Moutaouakil Ala Allah, A., Said, M. A., Al-Kaff, N. S., Mague, J. T., Demirtaş, G. & Ramli, Y. (2024c). J. Mol. Struct. 1318, 139430.  Web of Science CSD CrossRef Google Scholar
First citationEl Moutaouakil Ala Allah, A., Temel, E., Guerrab, W., Nchioua, I., Mague, J. T., Talbaoui, A., Alzahrani, A. Y. A. & Ramli, Y. (2024). J. Mol. Struct. 1312, 138572.  Google Scholar
First citationEttahiri, W., El Moutaouakil Ala Allah, A., Lazrak, J., Safir, E. H., Yadav, K. K., Hammouti, B., Obaidullah, A. J., Rais, Z., Ramli, Y. & Taleb, M. (2024). J. Ind. Eng. Chem. 140, 631–646.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuerrab, W., Akachar, J., Jemli, M. E., Abudunia, A.-M., Ouaabou, R., Alaoui, K., Ibrahimi, A. & Ramli, Y. (2023). J. Biomol. Struct. Dyn. 41, 4592–4600.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKarolak-Wojciechowska, J., Mrozek, A., Kwiatkowski, W., Ksiażek, W., Kieć-Kononowicz, K. & Handzlik, J. (1998). J. Mol. Struct. 447, 89–96.  CAS Google Scholar
First citationNaveen Kumar, H. S., Parumasivam, T., Jumaat, F., Ibrahim, P., Asmawi, M. Z. & Sadikun, A. (2014). Med. Chem. Res. 23, 269–279.  Web of Science CrossRef CAS Google Scholar
First citationPardali, V., Giannakopoulou, E., Mpekoulis, G., Tsopela, V., Panos, G., Taylor, M. C., Kelly, J. M., Vassilaki, N. & Zoidis, G. (2023). Pharmaceuticals 16, 1046.  Web of Science CrossRef PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds