research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 5,10-dihy­dr­oxy-9-meth­­oxy-2,2-di­methyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one

crossmark logo

aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry, (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand, bDepartment of Chemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand, and cProgram in Chemistry, Faculty of Science and Technology, Rajabhat Rajanagarindra University, Chachoengsao 24000, Thailand
*Correspondence e-mail: khetpakorn.cha@mahidol.ac.th, sakchai.hon@rru.ac.th

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 29 November 2024; accepted 6 February 2025; online 14 February 2025)

5,10-Dihy­droxy-9-meth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one, C24H24O6 (2), is a prenylated xanthone that was synthesized from 5,9,10-trihy­droxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one or macluraxanthone (1), a known compound isolated from Garcinia schomburgkiana Pierre. The present study describes the synthesis of compound 2 by methyl­ation reaction of 1, and its crystallographic characterization. Compound 2 features a planar xanthone core and a bent pyrano ring adopting a half-boat conformation. An intermolecular O—H⋯O hydrogen bond between the hydroxyl hydrogen donor and the ketone acceptor organizes the molecules into a one-dimensional network along the b-axis direction. Perpendicular to this network, ππ stacking interactions form the three-dimensional supramolecular architecture. These two key intermolecular interactions are distinctly revealed in the Hirshfeld surface analysis.

1. Chemical context

Pyran­oxanthones have long been known for their natural occurrence, showing a broad spectrum of pharmacological and biological activities (Kondedeshmukh & Paradkar, 1994[Kondedeshmukh, R. S. & Paradkar, M. V. (1994). Synth. Commun. 24, 659-664.]). In the past decade, this scaffold has been subjected to chemical structure identification and synthetic investigations. The pyran­oxanthone core also brings a wide range of applications. For example, 1,2-di­hydro-2-hy­droxy-6-meth­oxy-3,3-dimethyl-3H,7H-pyrano[2,3-c]xanthen-7-one showed a potent cytotoxicity against leukemia L1210 cell line (Ghirtis et al., 2001[Ghirtis, K., Pouli, N., Marakos, P., Skaltsounis, A.-L., Leonce, S., Atassi, G. & Caignard, D. H. (2001). J. Heterocycl. Chem. 38, 147-152.]). Because various substituents on pyran­oxanthones cause different properties, the structure–activity relationships (SAR) play a pivotal role in the discovery of their biological activities.

5,10-Dihy­droxy-9-meth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one (2) is a pyran­oxanthone that was isolated from leaves and twigs of Garcinia speciosa. This compound showed weak inhibitory activity toward HIV-1 reverse transcriptase (Pailee et al., 2018[Pailee, P., Kuhakarn, C., Sangsuwan, C., Hongthong, S., Piyachaturawat, P., Suksen, K., Jariyawat, S., Akkarawongsapat, R., Limthongkul, J., Napaswad, C., Kongsaeree, P., Prabpai, S., Jaipetch, T., Pohmakotr, M., Tuchinda, P. & Reutrakul, V. (2018). Phytochemistry, 147, 68-79.]). In addition, a parent analog 5,9,10-trihy­droxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one (1), also known as macluraxanthone, was isolated from the same plant (Sangsuwon & Jiratchariyakul, 2015[Sangsuwon, C. & Jiratchariyakul, W. (2015). Behav. Sci. 197, 1422-1427.]). Compound 1 was first isolated from osage orange (Maclura pomifera) in 1964 (Wolfrom et al., 1964[Wolfrom, M. L., Komitsky, F. Jr, Fraenkel, G., Looker, J. H., Dickey, E. E., McWain, P., Thompson, A., Mundell, P. M. & Windrath, O. M. (1964). J. Org. Chem. 29, 692-697.]). Subsequently, it was also found in different parts of various plants such as Garcinia bancana (Rifaldi et al., 2024[Rifaldi, Fadlan, A., Fatmawati, S., Purnomo, A. S. & Ersam, T. (2024). Nat. Prod. Res. 38, 885-890.]), and Cratoxylum soulattri (Mah et al., 2011[Mah, S. H., Ee, G. C. L., Rahmani, M., Taufiq-Yap, Y. H., Sukari, M. A. & Teh, S. S. (2011). Molecules, 16, 3999-4004.]). Recently, 1 was also isolated from fruits and twigs of Garcinia schomburgkiana, a Thai plant known locally as ‘Ma Dun’, with a considerable qu­antity (1.07% from fruits and 5.29% from twigs) (Sukkum et al., 2024[Sukkum, C., Lekklar, C., Chongsri, K., Deeying, S., Srisomsap, C., Surapanich, N., Kanjanasingh, P. & Hongthong, S. (2024). J. Appl. Pharm. Sci. 15, 241-247.]). Prompted by the above results, we performed the synthesis of compounds 2 and 3 from macluraxanthone (1) via methyl­ation reaction using dimethyl carbonate (DMC) as a methyl­ating reagent in the presence of K2CO3 as a base, and polysorbate 80 as a phase transfer catalyst (Prakoso et al., 2016[Prakoso, N. I., Pangestu, P. H. & Wahyuningsih, T. D. (2016). IOP Conf. Ser. Mater. Sci. Eng. 107, 012065.]) as shown in Fig. 1[link]. The identities of the products were confirmed by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Based on the spectroscopic and spectrometry data and by comparison with the data reported in the literature (Pailee et al., 2018[Pailee, P., Kuhakarn, C., Sangsuwan, C., Hongthong, S., Piyachaturawat, P., Suksen, K., Jariyawat, S., Akkarawongsapat, R., Limthongkul, J., Napaswad, C., Kongsaeree, P., Prabpai, S., Jaipetch, T., Pohmakotr, M., Tuchinda, P. & Reutrakul, V. (2018). Phytochemistry, 147, 68-79.]; Wolfrom et al., 1964[Wolfrom, M. L., Komitsky, F. Jr, Fraenkel, G., Looker, J. H., Dickey, E. E., McWain, P., Thompson, A., Mundell, P. M. & Windrath, O. M. (1964). J. Org. Chem. 29, 692-697.]), compounds 2 and 3 were determined as 5,10-dihy­droxy-9-meth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one (2) and 5-hy­droxy-9,10-dimeth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H, 6H-pyrano[3,2-b]xanthen-6-one (3). The structure of 2 was further confirmed by single-crystal X-ray crystallography.

[Scheme 1]
[Figure 1]
Figure 1
Methyl­ation reaction of macluraxanthone (1) to produce xanthones 2 and 3.

2. Structural commentary

Compound 2 crystallizes in the monoclinic P21 space group with two independent mol­ecules in the asymmetric unit (Z = 4). The structure of 2 shows the expected methyl­ation of the hydroxyl group at O17 position (Fig. 2[link]). The methyl group is coplanar with the core xanthone structure, with C8—C9—O17—C18 torsion angles of 3.8 (3) and −1.4 (3)° for the first and second mol­ecules, respectively. The xanthone core structure (O11, C4A–C12A) is planar, while the pyrano ring (O1, C2–C4A, C12A) is bent, adopting a half-boat conformation with the C2 atom deviating out of the plane generated by the remaining 17 atoms (O1, O11, C3–C12A) by 0.456 (2) and 0.534 (2) Å, for the first and second mol­ecules, respectively. This result supports the chemical structure that C2 is not conjugated with the aromatic system. The root-mean-square deviations of the mol­ecular plane formed from these 17 atoms are 0.034 and 0.035 Å for the first and second mol­ecules, respectively.

[Figure 2]
Figure 2
ORTEP view of compound 2 plotted as displacement ellipsoids at the 50% probability level. Two mol­ecules comprise the asymmetric unit.

The structure of 2 features an intra­molecular hydrogen bond (Table 1[link]) between its carbonyl and the nearby hydroxyl group, with an O15⋯O16 distance of 2.530 (2) and 2.547 (2) Å for the first and second mol­ecules in the asymmetric unit, respectively. This distance is considered relatively short for O⋯O distances involved in hydrogen bonding.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O15—H15⋯O16 0.84 1.78 2.530 (2) 147
O15_2—H15_2⋯O16_2 0.84 1.80 2.547 (2) 147
O19—H19⋯O16i 0.84 1.92 2.719 (2) 159
O19_2—H19_2⋯O16_2ii 0.84 1.92 2.704 (2) 156
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y+{\script{1\over 2}}, -z+1].

3. Supra­molecular features

An inter­molecular hydrogen bond is found between O16 and O19 with an O⋯O distance of 2.719 (2) and 2.704 (2) Å (Table 1[link]) for the first and second mol­ecules in the asymmetric unit, respectively. This hydrogen bonding consolidates the mol­ecular packing, which forms a one-dimensional network of 2 along the b-axis direction (Fig. 3[link]). The meth­oxy group of 2 formed upon the methyl­ation of 1 is not involved in any significant hydrogen-bonding inter­actions.

[Figure 3]
Figure 3
Packing of 2 in the unit cell, consolidated by inter­molecular hydrogen bonding. The unit cell is shown as a gray box where the c axis is parallel to the reader's view. The a and b axes and the origin center are labeled in the figure.

The planarity of the mol­ecule facilitates mol­ecular stacking in the structure. The first and second mol­ecules in the asymmetric unit are aligned almost parallel to each other; the angle between the two mol­ecular planes are 11.23 (4)°. The shortest C⋯C distance between the two mol­ecules is 3.366 (3) Å, found between C4 of the first mol­ecule and C11A of the second mol­ecule, indicating possible ππ inter­actions (Fig. 4[link]a). The ππ stackings run along the [10[\overline{1}]] direction perpendicular to the inter­molecular hydrogen-bonding network (Fig. 4[link]b), altogether forming a three-dimensional supramolecular arrangement.

[Figure 4]
Figure 4
(a) Two mol­ecules of 2 in the asymmetric unit viewed perpendicular to the pyran­oxanthone rings to highlight ππ stacking. The pyran­oxanthone core atoms of the first and second mol­ecules are labeled in black and gray, respectively. (b) Stacking of 2 in the unit cell. The unit cell is shown as a gray box where the b axis is parallel to the reader's view. The a and c axes and the origin center are labeled in the figure.

4. Hirshfeld surface analysis

Hirshfeld surface analysis was performed to more accurately identify and qu­antify inter­molecular inter­actions. The analysis was performed using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The three-dimensional Hirshfeld surface of 2 is plotted in Fig. 5[link]a, including the two mol­ecules of the asymmetric unit, mapped over normalized contact distance (dnorm) on a scale from −0.65 to 1.66 a.u. Blue, white, and red regions indicate contacts that are longer, equal, and shorter than the sum of van der Waals radii, respectively. The apparent red regions around O atoms indicate short contacts from inter­molecular hydrogen bonding. Fig. 5[link]b depicts a two-dimensional fingerprint plot of (di, de). Two sharp spikes in the fingerprint plot indicate the short inter­molecular O—H⋯O hydrogen bonding inter­actions, which contribute 15.8% to the overall Hirshfeld surface area. A ππ planar stacking was also identified in the cyan-green region of the plot centered around di = de = 1.8 Å, contributing 8.7%. The surface corresponding to these C⋯C inter­actions spans over two of the four aromatic rings of 2, indicating that ππ stacking is impeded. The remaining major inter­molecular inter­actions are H⋯H and C⋯H inter­actions, contributing 62.4 and 9.7%, respectively.

[Figure 5]
Figure 5
(a) Three-dimensional Hirshfeld surface representation of 2 plotted over dnorm and (b) two-dimensional fingerprint plot of 2 showing all inter­actions.

5. Database survey

A search for the pyran­oxanthone core structure revealed five crystal structures in the Cambridge Structural Database (CSD version 5.45, last update November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The structure of macluraxanthone (1) (QAYTOA; Fun et al., 2006[Fun, H.-K., Ng, S.-L., Razak, I. A., Boonnak, N. & Chantrapromma, S. (2006). Acta Cryst. E62, o130-o132.]) shows similar structural features including the bent pyrano ring and planar xanthone rings, but differs in the inter­molecular packing: 1 engages in hydrogen-bonding inter­actions involving the O17 position, which is absent in 2 due to the methyl­ation of this oxygen atom. A di-p-bromo­benzene­sulfonyl­ated derivative was also reported (YIZPAZ; Boonnak et al., 2008[Boonnak, N., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Anal. Sci. X, 24, X71-X72.]), featuring a similar bent pyrano ring and planar xanthone rings. In addition, three other pyran­oxanthone structures possessing different substituents on C12 were found in the database: CIXSIL (Kosela et al., 1999[Kosela, S., Hu, L.-H., Yip, S.-C., Rachmatia, T., Sukri, T., Daulay, T. D., Tan, G.-K., Vittal, J. J. & Sim, K.-Y. (1999). Phytochemistry, 52, 1375-1377.]), MAPMIA (Chantrapromma et al., 2005[Chantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst. E61, o2136-o2138.]), and CABFAP (Sukandar et al., 2016[Sukandar, E. R., Ersam, T., Fatmawati, S., Siripong, P., Aree, T. & Tip-pyang, S. (2016). Fitoterapia, 108, 62-65.]).

6. Synthesis and crystallization

The synthetic reaction was modified from a published procedure according to Prakoso et al. (2016[Prakoso, N. I., Pangestu, P. H. & Wahyuningsih, T. D. (2016). IOP Conf. Ser. Mater. Sci. Eng. 107, 012065.]). Briefly, a 50 mL round-bottom flask equipped with a magnetic stir bar was charged with 1 (0.13 mmol, 1 equiv.), K2CO3 (0.56 mmol, 4.3 equiv.), and polysorbate 80 (0.163 mmol, 1.25 equiv.). Then, dimethyl carbonate (DMC) (1.30 mmol, 10 equiv.) was added to the reaction mixture. After refluxing at 373 K for 5 h, the reaction mixture was quenched with aqueous acetic acid (20 mL) and extracted with di­chloro­methane (5 × 50 mL). The combined organic layers were washed with a saturated NaCl solution (20 mL) and dried over anhydrous Na2SO4. After removal of the solvent, the crude mixture was purified by column chromatography (acetone:hexane, 1:5 v/v, isocratic system) to afford compound 2 (48% yield), compound 3 (11% yield), and a recovered starting material (1) (36% yield).

5,10-Dihy­droxy-9-meth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one (2): yellow solid, 1H NMR (400 MHz, CDCl3), δ 13.48 (s, 1H), 7.68 (d, J = 9.0 Hz,1H), 6.90 (d, J = 9.0 Hz, 1H), 6.69 (d, J = 10.0 Hz, 1H), 6.61 (s, 1H), 6.59 (dd, J = 16.0, 10.0 Hz, 1H), 5.54 (d, J = 10.0 Hz, 1H), 5.12 (dd, J = 16.0, 1.0 Hz, 1H), 5.09 (dd, J = 10.0, 1.0 Hz, 1H), 3.95 (s, 3H), 1.59 (s, 6H), 1.44 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3), δ 180.8, 159.1, 156.7, 154.9, 154.4, 151.5, 144.3, 133.5, 127.1, 116.8, 116.0, 114.2, 113.3, 108.4, 105.4, 104.6, 103.6, 78.2, 55.6, 41.3, 28.5, 27.1 ppm. HR-ESI-MS of 407.1482 [M–H] (calculated for C24H23O6; 407.1500).

5-Hy­droxy-9,10-dimeth­oxy-2,2-dimethyl-12-(2-methyl­but-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one (3): yellow solid, 1H NMR (400 MHz, CDCl3), δ 13.57 (s, 1H, OH), 7.90 (d, J = 8.0 Hz, 1H), 6.92 (d, J = 8.0 Hz, 1H), 6.68 (d, J = 9.6 Hz, 1H), 6.30 (dd, J = 12.1, 8.0 Hz, 1H), 5.52 (d, J = 9.6 Hz, 1H), 4.86 (dd, J = 17.0, 1.0 Hz, 1H), 4.78 (dd, J = 10.0, 1.0 Hz, 1H), 3.94 (s, 3H, OCH3), 3.86 (s, 3H, OCH3), 1.66 (s, 6H), 1.40 (s, 6H) ppm. 13C NMR (100 MHz, CDCl3), δ 181.0, 159.4, 158.0, 156.5, 155.4, 150.8, 150.0, 136.4, 127.3, 121.4, 116.0, 114.9, 113.7, 108.6, 107.9, 105.2, 103.3, 78.2, 61.5, 55.4, 41.5, 31.9, 27.9 ppm. HR-ESI-MS of 445.1622 [M + Na]+ (calculated for C25H26O6Na; 445.1622).

Single crystals of 2 were obtained as yellow blocks from vapor diffusion of n-hexane into an acetone solution.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All non-hydrogen atoms were refined anisotropically. The vinyl group of the second mol­ecule was found to be disordered; refinement was accomplished by modeling over two positions. The occupancy of each disordered component was initially refined freely, and converged to a 0.53:0.47 occupancy ratio. Thus, the occupancy of both components was subsequently constrained to 0.5. The anisotropic displacement refinement of the disordered atoms was stabilized by the application of enhanced rigid bond restraints. Hydrogen atoms bonded to carbon were included in calculated positions and refined using a riding model. Hydrogen atoms bound to O atoms were located in the difference-Fourier map, and refined semi-freely with the help of distance restraints.

Table 2
Experimental details

Crystal data
Chemical formula C24H24O6
Mr 408.43
Crystal system, space group Monoclinic, P21
Temperature (K) 101
a, b, c (Å) 10.6205 (3), 14.8160 (4), 12.7073 (3)
β (°) 96.209 (1)
V3) 1987.81 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.80
Crystal size (mm) 0.18 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker D8 QUEST PHOTON III C7
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.703, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 32650, 7256, 6891
Rint 0.042
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.079, 1.06
No. of reflections 7256
No. of parameters 581
No. of restraints 253
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.20, −0.25
Absolute structure Flack x determined using 3110 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.00 (5)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2015 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

5,10-Dihydroxy-9-methoxy-2,2-dimethyl-12-(2-methylbut-3-en-2-yl)-2H,6H-pyrano[3,2-b]xanthen-6-one top
Crystal data top
C24H24O6F(000) = 864
Mr = 408.43Dx = 1.365 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 10.6205 (3) ÅCell parameters from 9895 reflections
b = 14.8160 (4) Åθ = 4.6–68.5°
c = 12.7073 (3) ŵ = 0.80 mm1
β = 96.209 (1)°T = 101 K
V = 1987.81 (9) Å3Block, clear light yellow
Z = 40.18 × 0.11 × 0.06 mm
Data collection top
Bruker D8 QUEST PHOTON III C7
diffractometer
6891 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tube, Incoatec IµsRint = 0.042
ω and φ scansθmax = 68.6°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1112
Tmin = 0.703, Tmax = 0.753k = 1717
32650 measured reflectionsl = 1515
7256 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.2292P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.079(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.20 e Å3
7256 reflectionsΔρmin = 0.24 e Å3
581 parametersAbsolute structure: Flack x determined using 3110 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
253 restraintsAbsolute structure parameter: 0.00 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.48934 (14)0.63254 (10)0.88990 (12)0.0157 (3)
C20.56134 (19)0.68143 (15)0.97693 (17)0.0171 (4)
C30.5962 (2)0.77380 (14)0.94037 (18)0.0178 (4)
H30.6720190.8018260.9707040.021*
C40.5213 (2)0.81629 (15)0.86586 (17)0.0172 (4)
H40.5395700.8766510.8473780.021*
C4A0.4109 (2)0.77029 (14)0.81235 (17)0.0153 (4)
C50.3218 (2)0.81468 (14)0.74379 (16)0.0151 (4)
C60.13155 (19)0.81253 (14)0.61298 (16)0.0153 (4)
C6A0.03222 (19)0.75829 (14)0.55740 (17)0.0150 (4)
C70.0620 (2)0.79472 (15)0.48401 (16)0.0174 (4)
H70.0630510.8577190.4700360.021*
C80.1531 (2)0.73982 (15)0.43193 (17)0.0179 (4)
H80.2162830.7649130.3817530.021*
C90.15260 (19)0.64708 (14)0.45291 (16)0.0159 (4)
C100.0607 (2)0.60890 (14)0.52692 (16)0.0144 (4)
C10A0.03125 (19)0.66544 (14)0.57792 (16)0.0141 (4)
O110.11980 (13)0.62404 (9)0.64739 (12)0.0151 (3)
C11A0.21661 (18)0.67169 (14)0.70155 (16)0.0134 (4)
C120.30334 (19)0.62308 (14)0.77021 (16)0.0141 (4)
C12A0.39954 (19)0.67621 (14)0.82519 (16)0.0137 (4)
C130.6763 (2)0.62260 (16)1.00704 (18)0.0211 (5)
H13A0.6488440.5635621.0308480.032*
H13B0.7310420.6515231.0643200.032*
H13C0.7232470.6146430.9454230.032*
C140.4786 (2)0.68963 (16)1.06809 (17)0.0216 (5)
H14A0.3999110.7213121.0432750.032*
H14B0.5243590.7235961.1263680.032*
H14C0.4584690.6292261.0929040.032*
O150.33355 (14)0.90468 (10)0.73218 (12)0.0197 (3)
H150.2757920.9235170.6871510.029*
O160.14017 (14)0.89588 (10)0.59763 (12)0.0206 (3)
O170.23789 (14)0.58673 (10)0.40592 (12)0.0196 (3)
C180.3305 (2)0.62000 (16)0.32450 (18)0.0217 (5)
H18A0.2875420.6457400.2669610.033*
H18B0.3818490.6666990.3539530.033*
H18C0.3853460.5702580.2969960.033*
O190.05738 (13)0.51996 (10)0.55172 (11)0.0170 (3)
H190.0989520.4906600.5031330.026*
C5A0.2222 (2)0.76596 (15)0.68675 (17)0.0150 (4)
C200.30221 (18)0.51977 (14)0.79184 (16)0.0155 (4)
C210.4241 (2)0.47936 (15)0.76007 (18)0.0208 (4)
H210.4454440.4942860.6914770.025*
C220.5035 (2)0.42587 (17)0.8174 (2)0.0270 (5)
H22A0.577 (3)0.404 (2)0.790 (2)0.036 (8)*
H22B0.495 (3)0.413 (2)0.890 (3)0.044 (9)*
C230.28615 (19)0.50328 (14)0.90934 (17)0.0178 (4)
H23A0.2795870.4383040.9220850.027*
H23B0.2090510.5334130.9270590.027*
H23C0.3596030.5276430.9536120.027*
C240.1957 (2)0.46614 (15)0.72720 (19)0.0239 (5)
H24A0.2029850.4736010.6514680.036*
H24B0.1132040.4887430.7432730.036*
H24C0.2033560.4020440.7458390.036*
O1_20.00836 (14)0.37560 (10)0.13071 (12)0.0194 (3)
C2_20.0698 (2)0.33552 (15)0.03272 (17)0.0191 (4)
C3_20.0966 (2)0.23753 (16)0.05003 (18)0.0205 (5)
H3_20.1689200.2097600.0129610.025*
C4_20.0189 (2)0.18992 (15)0.11731 (17)0.0188 (4)
H4_20.0311870.1267510.1239820.023*
C4A_20.08530 (19)0.23455 (15)0.18108 (17)0.0162 (4)
C5_20.17783 (19)0.18563 (15)0.24207 (16)0.0157 (4)
C5A_20.27205 (19)0.23093 (15)0.30899 (16)0.0152 (4)
C6_20.36855 (19)0.18113 (14)0.37328 (16)0.0149 (4)
C6A_20.46335 (19)0.23343 (14)0.43777 (17)0.0155 (4)
C7_20.5642 (2)0.19459 (15)0.50217 (17)0.0171 (4)
H7_20.5738530.1308400.5037830.021*
C8_20.6496 (2)0.24795 (15)0.56324 (17)0.0179 (4)
H8_20.7172020.2208150.6071650.021*
C9_20.6371 (2)0.34219 (15)0.56086 (17)0.0166 (4)
C10_20.5381 (2)0.38304 (14)0.49622 (16)0.0149 (4)
C10A_20.45264 (19)0.32757 (14)0.43611 (16)0.0142 (4)
O11_20.35792 (13)0.37211 (9)0.37575 (11)0.0154 (3)
C11A_20.26721 (19)0.32619 (15)0.31288 (16)0.0149 (4)
C12_20.17537 (19)0.37960 (15)0.25460 (17)0.0174 (5)
C12A_20.08667 (19)0.32959 (14)0.18777 (17)0.0162 (4)
C13_20.0193 (2)0.34614 (17)0.05354 (18)0.0243 (5)
H13A_20.0357500.4103780.0643170.037*
H13B_20.0202930.3197960.1197630.037*
H13C_20.0992840.3150450.0317620.037*
C14_20.1887 (2)0.39184 (16)0.00810 (19)0.0231 (5)
H14A_20.2421990.3859210.0659030.035*
H14B_20.2353840.3706610.0580270.035*
H14C_20.1652750.4553060.0005330.035*
O15_20.17522 (14)0.09498 (10)0.23611 (12)0.0188 (3)
H15_20.2357330.0735470.2764620.028*
O16_20.36869 (14)0.09641 (10)0.37326 (11)0.0185 (3)
O17_20.71448 (13)0.40131 (10)0.61783 (12)0.0185 (3)
C18_20.8165 (2)0.36517 (16)0.68843 (17)0.0202 (5)
H18A_20.8730470.3302050.6479380.030*
H18B_20.7822630.3258710.7404540.030*
H18C_20.8640000.4147310.7251680.030*
O19_20.52116 (14)0.47341 (10)0.48892 (12)0.0197 (3)
H19_20.5706150.4991770.5355630.030*
C20_20.1758 (2)0.48402 (14)0.26600 (18)0.0209 (5)
C21_20.0906 (4)0.5329 (3)0.1751 (4)0.0166 (8)0.5
H21_20.1014630.5187750.1037410.020*0.5
C21B_20.0423 (5)0.5244 (3)0.2329 (5)0.0271 (11)0.5
H21B_20.0285980.4968950.2595440.032*0.5
C22_20.004 (2)0.5934 (16)0.1942 (15)0.030 (3)0.5
H22A_20.0082890.6083860.2650740.037*0.5
H22B_20.0460650.6217010.1369950.037*0.5
C22B_20.022 (2)0.5936 (15)0.1710 (15)0.045 (4)0.5
H22C_20.0915590.6224250.1432540.054*0.5
H22D_20.0612840.6154570.1533940.054*0.5
C23_20.1694 (3)0.51099 (16)0.3812 (2)0.0372 (6)
H23A_20.0950650.4830150.4071630.056*
H23B_20.1628260.5767920.3861660.056*
H23C_20.2462210.4904740.4242070.056*
C24_20.2965 (3)0.52333 (17)0.2285 (2)0.0374 (7)
H24A_20.3705560.4996580.2726790.056*
H24B_20.2948610.5892640.2343770.056*
H24C_20.3014510.5062340.1546070.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0154 (7)0.0140 (7)0.0165 (7)0.0001 (5)0.0043 (6)0.0001 (6)
C20.0139 (10)0.0208 (11)0.0155 (10)0.0014 (8)0.0040 (8)0.0021 (8)
C30.0141 (10)0.0176 (11)0.0214 (11)0.0031 (8)0.0008 (8)0.0047 (9)
C40.0164 (10)0.0151 (10)0.0204 (11)0.0022 (8)0.0029 (8)0.0013 (8)
C4A0.0165 (10)0.0150 (11)0.0147 (10)0.0012 (8)0.0034 (8)0.0013 (8)
C50.0171 (11)0.0126 (10)0.0157 (10)0.0015 (8)0.0027 (8)0.0010 (8)
C60.0162 (11)0.0160 (11)0.0138 (10)0.0002 (8)0.0027 (8)0.0009 (8)
C6A0.0178 (11)0.0136 (10)0.0135 (10)0.0000 (8)0.0020 (8)0.0008 (8)
C70.0199 (11)0.0154 (10)0.0166 (10)0.0013 (8)0.0007 (8)0.0027 (8)
C80.0174 (10)0.0190 (11)0.0166 (10)0.0039 (9)0.0012 (8)0.0022 (9)
C90.0146 (10)0.0190 (11)0.0137 (10)0.0003 (8)0.0006 (8)0.0023 (8)
C100.0185 (10)0.0124 (10)0.0125 (9)0.0001 (8)0.0031 (8)0.0003 (8)
C10A0.0149 (10)0.0170 (10)0.0103 (9)0.0039 (8)0.0008 (8)0.0025 (8)
O110.0162 (7)0.0119 (7)0.0159 (7)0.0006 (5)0.0044 (6)0.0023 (6)
C11A0.0132 (10)0.0150 (10)0.0120 (10)0.0001 (7)0.0014 (8)0.0006 (8)
C120.0176 (10)0.0123 (11)0.0127 (10)0.0002 (7)0.0033 (8)0.0006 (8)
C12A0.0136 (10)0.0156 (10)0.0120 (10)0.0009 (8)0.0019 (8)0.0003 (8)
C130.0175 (11)0.0241 (12)0.0207 (11)0.0009 (8)0.0031 (8)0.0003 (9)
C140.0208 (11)0.0247 (12)0.0189 (11)0.0000 (9)0.0003 (8)0.0001 (9)
O150.0224 (8)0.0119 (7)0.0229 (8)0.0022 (6)0.0056 (6)0.0038 (6)
O160.0248 (8)0.0127 (8)0.0229 (8)0.0007 (6)0.0039 (6)0.0046 (6)
O170.0195 (7)0.0172 (8)0.0200 (7)0.0002 (6)0.0074 (6)0.0005 (6)
C180.0191 (11)0.0229 (12)0.0212 (11)0.0021 (9)0.0071 (9)0.0022 (9)
O190.0199 (7)0.0125 (7)0.0172 (7)0.0009 (6)0.0048 (6)0.0003 (6)
C5A0.0163 (10)0.0147 (11)0.0142 (10)0.0002 (8)0.0029 (8)0.0015 (8)
C200.0166 (10)0.0115 (10)0.0176 (10)0.0005 (8)0.0019 (8)0.0023 (8)
C210.0263 (11)0.0154 (10)0.0214 (11)0.0004 (8)0.0057 (9)0.0002 (9)
C220.0248 (12)0.0244 (12)0.0327 (14)0.0077 (10)0.0062 (10)0.0020 (10)
C230.0170 (10)0.0157 (10)0.0208 (10)0.0014 (8)0.0020 (8)0.0043 (8)
C240.0288 (12)0.0119 (10)0.0282 (12)0.0028 (9)0.0093 (9)0.0043 (9)
O1_20.0175 (7)0.0180 (8)0.0207 (8)0.0011 (6)0.0062 (6)0.0006 (6)
C2_20.0154 (10)0.0232 (11)0.0174 (10)0.0022 (8)0.0036 (8)0.0022 (9)
C3_20.0146 (10)0.0245 (11)0.0215 (11)0.0059 (9)0.0023 (8)0.0008 (9)
C4_20.0168 (10)0.0176 (11)0.0217 (11)0.0039 (8)0.0010 (8)0.0006 (9)
C4A_20.0149 (10)0.0192 (11)0.0145 (10)0.0037 (8)0.0020 (8)0.0002 (8)
C5_20.0180 (11)0.0136 (10)0.0157 (10)0.0024 (8)0.0034 (8)0.0014 (8)
C5A_20.0165 (10)0.0157 (11)0.0135 (10)0.0008 (8)0.0019 (8)0.0006 (8)
C6_20.0175 (10)0.0141 (10)0.0136 (10)0.0001 (8)0.0039 (8)0.0006 (8)
C6A_20.0167 (10)0.0161 (11)0.0139 (10)0.0011 (8)0.0027 (8)0.0007 (8)
C7_20.0183 (10)0.0139 (10)0.0187 (11)0.0012 (8)0.0002 (8)0.0025 (8)
C8_20.0166 (10)0.0177 (11)0.0186 (11)0.0033 (8)0.0022 (8)0.0031 (9)
C9_20.0153 (10)0.0190 (11)0.0152 (10)0.0025 (8)0.0005 (8)0.0016 (8)
C10_20.0180 (10)0.0124 (10)0.0143 (10)0.0006 (8)0.0018 (8)0.0009 (8)
C10A_20.0150 (10)0.0155 (10)0.0122 (10)0.0021 (8)0.0010 (8)0.0020 (8)
O11_20.0163 (7)0.0126 (7)0.0162 (7)0.0004 (5)0.0044 (6)0.0002 (6)
C11A_20.0157 (11)0.0139 (10)0.0149 (10)0.0022 (8)0.0004 (8)0.0009 (8)
C12_20.0167 (10)0.0133 (11)0.0212 (11)0.0010 (8)0.0020 (9)0.0003 (8)
C12A_20.0143 (10)0.0178 (11)0.0160 (10)0.0023 (8)0.0002 (8)0.0028 (8)
C13_20.0185 (11)0.0297 (13)0.0241 (12)0.0011 (9)0.0007 (9)0.0055 (10)
C14_20.0175 (10)0.0281 (13)0.0227 (11)0.0018 (9)0.0030 (9)0.0050 (10)
O15_20.0218 (8)0.0120 (7)0.0212 (8)0.0009 (6)0.0042 (6)0.0014 (6)
O16_20.0227 (8)0.0118 (7)0.0199 (7)0.0007 (6)0.0029 (6)0.0018 (6)
O17_20.0183 (7)0.0152 (7)0.0198 (8)0.0003 (6)0.0072 (6)0.0008 (6)
C18_20.0170 (10)0.0211 (11)0.0207 (11)0.0010 (8)0.0067 (8)0.0006 (9)
O19_20.0236 (8)0.0113 (7)0.0219 (8)0.0003 (6)0.0083 (6)0.0015 (6)
C20_20.0211 (11)0.0114 (10)0.0281 (12)0.0010 (8)0.0068 (9)0.0004 (9)
C21_20.021 (2)0.010 (2)0.018 (2)0.0030 (18)0.0004 (18)0.0042 (16)
C21B_20.022 (2)0.019 (2)0.038 (3)0.0019 (19)0.008 (2)0.002 (2)
C22_20.028 (4)0.027 (5)0.035 (5)0.012 (3)0.003 (4)0.001 (4)
C22B_20.046 (10)0.022 (5)0.059 (10)0.004 (5)0.027 (7)0.006 (6)
C23_20.0562 (16)0.0155 (11)0.0456 (16)0.0025 (11)0.0319 (13)0.0015 (11)
C24_20.0649 (18)0.0137 (11)0.0394 (15)0.0023 (11)0.0315 (14)0.0024 (10)
Geometric parameters (Å, º) top
O1—C21.466 (2)C2_2—C13_21.531 (3)
O1—C12A1.355 (2)C2_2—C14_21.518 (3)
C2—C31.504 (3)C3_2—H3_20.9500
C2—C131.515 (3)C3_2—C4_21.325 (3)
C2—C141.533 (3)C4_2—H4_20.9500
C3—H30.9500C4_2—C4A_21.458 (3)
C3—C41.328 (3)C4A_2—C5_21.388 (3)
C4—H40.9500C4A_2—C12A_21.411 (3)
C4—C4A1.459 (3)C5_2—C5A_21.411 (3)
C4A—C51.382 (3)C5_2—O15_21.345 (3)
C4A—C12A1.410 (3)C5A_2—C6_21.443 (3)
C5—O151.349 (3)C5A_2—C11A_21.413 (3)
C5—C5A1.414 (3)C6_2—C6A_21.452 (3)
C6—C6A1.448 (3)C6_2—O16_21.255 (3)
C6—O161.255 (3)C6A_2—C7_21.399 (3)
C6—C5A1.445 (3)C6A_2—C10A_21.399 (3)
C6A—C71.400 (3)C7_2—H7_20.9500
C6A—C10A1.401 (3)C7_2—C8_21.377 (3)
C7—H70.9500C8_2—H8_20.9500
C7—C81.378 (3)C8_2—C9_21.403 (3)
C8—H80.9500C9_2—C10_21.400 (3)
C8—C91.400 (3)C9_2—O17_21.356 (3)
C9—C101.399 (3)C10_2—C10A_21.390 (3)
C9—O171.364 (3)C10_2—O19_21.353 (3)
C10—C10A1.393 (3)C10A_2—O11_21.367 (2)
C10—O191.354 (3)O11_2—C11A_21.365 (2)
C10A—O111.364 (2)C11A_2—C12_21.403 (3)
O11—C11A1.370 (2)C12_2—C12A_21.409 (3)
C11A—C121.398 (3)C12_2—C20_21.554 (3)
C11A—C5A1.411 (3)C13_2—H13A_20.9800
C12—C12A1.413 (3)C13_2—H13B_20.9800
C12—C201.555 (3)C13_2—H13C_20.9800
C13—H13A0.9800C14_2—H14A_20.9800
C13—H13B0.9800C14_2—H14B_20.9800
C13—H13C0.9800C14_2—H14C_20.9800
C14—H14A0.9800O15_2—H15_20.8400
C14—H14B0.9800O17_2—C18_21.434 (2)
C14—H14C0.9800C18_2—H18A_20.9800
O15—H150.8400C18_2—H18B_20.9800
O17—C181.435 (3)C18_2—H18C_20.9800
C18—H18A0.9800O19_2—H19_20.8400
C18—H18B0.9800C20_2—C21_21.566 (5)
C18—H18C0.9800C20_2—C21B_21.555 (5)
O19—H190.8400C20_2—C23_21.526 (3)
C20—C211.520 (3)C20_2—C24_21.530 (3)
C20—C231.540 (3)C21_2—H21_20.9500
C20—C241.544 (3)C21_2—C22_21.33 (2)
C21—H210.9500C21B_2—H21B_20.9500
C21—C221.317 (3)C21B_2—C22B_21.29 (2)
C22—H22A0.95 (3)C22_2—H22A_20.9500
C22—H22B0.95 (3)C22_2—H22B_20.9500
C23—H23A0.9800C22B_2—H22C_20.9500
C23—H23B0.9800C22B_2—H22D_20.9500
C23—H23C0.9800C23_2—H23A_20.9800
C24—H24A0.9800C23_2—H23B_20.9800
C24—H24B0.9800C23_2—H23C_20.9800
C24—H24C0.9800C24_2—H24A_20.9800
O1_2—C2_21.467 (3)C24_2—H24B_20.9800
O1_2—C12A_21.360 (2)C24_2—H24C_20.9800
C2_2—C3_21.500 (3)
C12A—O1—C2119.84 (16)C3_2—C2_2—C14_2113.27 (18)
O1—C2—C3110.01 (17)C14_2—C2_2—C13_2111.13 (19)
O1—C2—C13104.27 (17)C2_2—C3_2—H3_2120.2
O1—C2—C14108.31 (17)C4_2—C3_2—C2_2119.6 (2)
C3—C2—C13112.53 (18)C4_2—C3_2—H3_2120.2
C3—C2—C14109.97 (18)C3_2—C4_2—H4_2120.0
C13—C2—C14111.53 (18)C3_2—C4_2—C4A_2120.0 (2)
C2—C3—H3119.9C4A_2—C4_2—H4_2120.0
C4—C3—C2120.21 (19)C5_2—C4A_2—C4_2121.5 (2)
C4—C3—H3119.9C5_2—C4A_2—C12A_2119.04 (19)
C3—C4—H4120.0C12A_2—C4A_2—C4_2119.2 (2)
C3—C4—C4A120.0 (2)C4A_2—C5_2—C5A_2120.08 (19)
C4A—C4—H4120.0O15_2—C5_2—C4A_2118.74 (18)
C5—C4A—C4122.18 (19)O15_2—C5_2—C5A_2121.18 (19)
C5—C4A—C12A118.84 (19)C5_2—C5A_2—C6_2120.81 (19)
C12A—C4A—C4118.82 (19)C5_2—C5A_2—C11A_2118.03 (19)
C4A—C5—C5A120.23 (19)C11A_2—C5A_2—C6_2121.15 (19)
O15—C5—C4A118.31 (19)C5A_2—C6_2—C6A_2116.97 (18)
O15—C5—C5A121.45 (19)O16_2—C6_2—C5A_2120.81 (19)
O16—C6—C6A122.13 (19)O16_2—C6_2—C6A_2122.22 (19)
O16—C6—C5A121.07 (19)C7_2—C6A_2—C6_2123.42 (19)
C5A—C6—C6A116.79 (18)C10A_2—C6A_2—C6_2118.25 (19)
C7—C6A—C6122.78 (19)C10A_2—C6A_2—C7_2118.3 (2)
C7—C6A—C10A118.93 (19)C6A_2—C7_2—H7_2119.7
C10A—C6A—C6118.30 (18)C8_2—C7_2—C6A_2120.6 (2)
C6A—C7—H7119.8C8_2—C7_2—H7_2119.7
C8—C7—C6A120.4 (2)C7_2—C8_2—H8_2119.9
C8—C7—H7119.8C7_2—C8_2—C9_2120.3 (2)
C7—C8—H8120.0C9_2—C8_2—H8_2119.9
C7—C8—C9120.0 (2)C10_2—C9_2—C8_2120.43 (19)
C9—C8—H8120.0O17_2—C9_2—C8_2125.52 (19)
C10—C9—C8120.86 (19)O17_2—C9_2—C10_2114.05 (18)
O17—C9—C8124.86 (19)C10A_2—C10_2—C9_2118.09 (19)
O17—C9—C10114.27 (18)O19_2—C10_2—C9_2123.63 (19)
C10A—C10—C9118.21 (18)O19_2—C10_2—C10A_2118.28 (18)
O19—C10—C9123.27 (19)C10_2—C10A_2—C6A_2122.27 (19)
O19—C10—C10A118.52 (18)O11_2—C10A_2—C6A_2122.90 (19)
C10—C10A—C6A121.54 (18)O11_2—C10A_2—C10_2114.82 (18)
O11—C10A—C6A122.95 (18)C11A_2—O11_2—C10A_2121.19 (17)
O11—C10A—C10115.51 (18)O11_2—C11A_2—C5A_2119.48 (18)
C10A—O11—C11A121.40 (16)O11_2—C11A_2—C12_2115.73 (18)
O11—C11A—C12117.14 (18)C12_2—C11A_2—C5A_2124.78 (19)
O11—C11A—C5A118.90 (18)C11A_2—C12_2—C12A_2113.75 (19)
C12—C11A—C5A123.95 (19)C11A_2—C12_2—C20_2121.16 (18)
C11A—C12—C12A114.45 (18)C12A_2—C12_2—C20_2125.09 (19)
C11A—C12—C20126.87 (18)O1_2—C12A_2—C4A_2117.76 (19)
C12A—C12—C20118.67 (18)O1_2—C12A_2—C12_2117.83 (19)
O1—C12A—C4A118.63 (18)C12_2—C12A_2—C4A_2124.3 (2)
O1—C12A—C12117.26 (18)C2_2—C13_2—H13A_2109.5
C4A—C12A—C12124.03 (19)C2_2—C13_2—H13B_2109.5
C2—C13—H13A109.5C2_2—C13_2—H13C_2109.5
C2—C13—H13B109.5H13A_2—C13_2—H13B_2109.5
C2—C13—H13C109.5H13A_2—C13_2—H13C_2109.5
H13A—C13—H13B109.5H13B_2—C13_2—H13C_2109.5
H13A—C13—H13C109.5C2_2—C14_2—H14A_2109.5
H13B—C13—H13C109.5C2_2—C14_2—H14B_2109.5
C2—C14—H14A109.5C2_2—C14_2—H14C_2109.5
C2—C14—H14B109.5H14A_2—C14_2—H14B_2109.5
C2—C14—H14C109.5H14A_2—C14_2—H14C_2109.5
H14A—C14—H14B109.5H14B_2—C14_2—H14C_2109.5
H14A—C14—H14C109.5C5_2—O15_2—H15_2109.5
H14B—C14—H14C109.5C9_2—O17_2—C18_2117.80 (17)
C5—O15—H15109.5O17_2—C18_2—H18A_2109.5
C9—O17—C18117.48 (16)O17_2—C18_2—H18B_2109.5
O17—C18—H18A109.5O17_2—C18_2—H18C_2109.5
O17—C18—H18B109.5H18A_2—C18_2—H18B_2109.5
O17—C18—H18C109.5H18A_2—C18_2—H18C_2109.5
H18A—C18—H18B109.5H18B_2—C18_2—H18C_2109.5
H18A—C18—H18C109.5C10_2—O19_2—H19_2109.5
H18B—C18—H18C109.5C12_2—C20_2—C21_2113.4 (2)
C10—O19—H19109.5C12_2—C20_2—C21B_2111.4 (2)
C5—C5A—C6119.86 (19)C23_2—C20_2—C12_2110.50 (19)
C11A—C5A—C5118.49 (19)C23_2—C20_2—C21_2120.3 (2)
C11A—C5A—C6121.62 (19)C23_2—C20_2—C21B_291.4 (3)
C21—C20—C12108.51 (16)C23_2—C20_2—C24_2108.9 (2)
C21—C20—C23112.43 (17)C24_2—C20_2—C12_2110.11 (18)
C21—C20—C24104.60 (18)C24_2—C20_2—C21_291.8 (2)
C23—C20—C12109.34 (16)C24_2—C20_2—C21B_2122.7 (3)
C23—C20—C24106.41 (17)C20_2—C21_2—H21_2118.8
C24—C20—C12115.57 (17)C22_2—C21_2—C20_2122.4 (9)
C20—C21—H21116.5C22_2—C21_2—H21_2118.8
C22—C21—C20127.0 (2)C20_2—C21B_2—H21B_2118.2
C22—C21—H21116.5C22B_2—C21B_2—C20_2123.6 (12)
C21—C22—H22A120.5 (18)C22B_2—C21B_2—H21B_2118.2
C21—C22—H22B122.2 (19)C21_2—C22_2—H22A_2120.0
H22A—C22—H22B117 (3)C21_2—C22_2—H22B_2120.0
C20—C23—H23A109.5H22A_2—C22_2—H22B_2120.0
C20—C23—H23B109.5C21B_2—C22B_2—H22C_2120.0
C20—C23—H23C109.5C21B_2—C22B_2—H22D_2120.0
H23A—C23—H23B109.5H22C_2—C22B_2—H22D_2120.0
H23A—C23—H23C109.5C20_2—C23_2—H23A_2109.5
H23B—C23—H23C109.5C20_2—C23_2—H23B_2109.5
C20—C24—H24A109.5C20_2—C23_2—H23C_2109.5
C20—C24—H24B109.5H23A_2—C23_2—H23B_2109.5
C20—C24—H24C109.5H23A_2—C23_2—H23C_2109.5
H24A—C24—H24B109.5H23B_2—C23_2—H23C_2109.5
H24A—C24—H24C109.5C20_2—C24_2—H24A_2109.5
H24B—C24—H24C109.5C20_2—C24_2—H24B_2109.5
C12A_2—O1_2—C2_2119.05 (16)C20_2—C24_2—H24C_2109.5
O1_2—C2_2—C3_2109.96 (18)H24A_2—C24_2—H24B_2109.5
O1_2—C2_2—C13_2108.29 (17)H24A_2—C24_2—H24C_2109.5
O1_2—C2_2—C14_2103.65 (17)H24B_2—C24_2—H24C_2109.5
C3_2—C2_2—C13_2110.26 (19)
O1—C2—C3—C430.5 (3)C2_2—C3_2—C4_2—C4A_25.5 (3)
C2—O1—C12A—C4A26.1 (3)C3_2—C4_2—C4A_2—C5_2171.6 (2)
C2—O1—C12A—C12157.12 (17)C3_2—C4_2—C4A_2—C12A_213.6 (3)
C2—C3—C4—C4A5.6 (3)C4_2—C4A_2—C5_2—C5A_2175.24 (18)
C3—C4—C4A—C5171.99 (19)C4_2—C4A_2—C5_2—O15_24.6 (3)
C3—C4—C4A—C12A12.6 (3)C4_2—C4A_2—C12A_2—O1_22.2 (3)
C4—C4A—C5—O154.6 (3)C4_2—C4A_2—C12A_2—C12_2173.6 (2)
C4—C4A—C5—C5A174.56 (18)C4A_2—C5_2—C5A_2—C6_2179.70 (18)
C4—C4A—C12A—O12.4 (3)C4A_2—C5_2—C5A_2—C11A_21.1 (3)
C4—C4A—C12A—C12174.12 (19)C5_2—C4A_2—C12A_2—O1_2177.14 (18)
C4A—C5—C5A—C6178.24 (18)C5_2—C4A_2—C12A_2—C12_21.3 (3)
C4A—C5—C5A—C11A0.1 (3)C5_2—C5A_2—C6_2—C6A_2178.57 (18)
C5—C4A—C12A—O1177.93 (18)C5_2—C5A_2—C6_2—O16_22.0 (3)
C5—C4A—C12A—C121.4 (3)C5_2—C5A_2—C11A_2—O11_2179.13 (17)
C6—C6A—C7—C8178.87 (18)C5_2—C5A_2—C11A_2—C12_20.2 (3)
C6—C6A—C10A—C10179.52 (18)C5A_2—C6_2—C6A_2—C7_2178.49 (19)
C6—C6A—C10A—O110.3 (3)C5A_2—C6_2—C6A_2—C10A_22.1 (3)
C6A—C6—C5A—C5180.00 (17)C5A_2—C11A_2—C12_2—C12A_21.3 (3)
C6A—C6—C5A—C11A1.9 (3)C5A_2—C11A_2—C12_2—C20_2178.5 (2)
C6A—C7—C8—C90.6 (3)C6_2—C5A_2—C11A_2—O11_22.3 (3)
C6A—C10A—O11—C11A0.3 (3)C6_2—C5A_2—C11A_2—C12_2178.76 (19)
C7—C6A—C10A—C100.2 (3)C6_2—C6A_2—C7_2—C8_2178.62 (18)
C7—C6A—C10A—O11179.41 (18)C6_2—C6A_2—C10A_2—C10_2179.21 (18)
C7—C8—C9—C100.3 (3)C6_2—C6A_2—C10A_2—O11_20.7 (3)
C7—C8—C9—O17179.88 (18)C6A_2—C7_2—C8_2—C9_20.6 (3)
C8—C9—C10—C10A1.0 (3)C6A_2—C10A_2—O11_2—C11A_20.0 (3)
C8—C9—C10—O19178.67 (19)C7_2—C6A_2—C10A_2—C10_20.2 (3)
C8—C9—O17—C183.8 (3)C7_2—C6A_2—C10A_2—O11_2179.82 (18)
C9—C10—C10A—C6A0.7 (3)C7_2—C8_2—C9_2—C10_20.2 (3)
C9—C10—C10A—O11178.59 (17)C7_2—C8_2—C9_2—O17_2179.52 (19)
C10—C9—O17—C18176.38 (17)C8_2—C9_2—C10_2—C10A_20.7 (3)
C10—C10A—O11—C11A178.99 (16)C8_2—C9_2—C10_2—O19_2179.11 (19)
C10A—C6A—C7—C80.8 (3)C8_2—C9_2—O17_2—C18_21.4 (3)
C10A—O11—C11A—C12179.40 (16)C9_2—C10_2—C10A_2—C6A_20.5 (3)
C10A—O11—C11A—C5A1.7 (3)C9_2—C10_2—C10A_2—O11_2179.42 (17)
O11—C11A—C12—C12A178.88 (16)C10_2—C9_2—O17_2—C18_2178.34 (17)
O11—C11A—C12—C200.2 (3)C10_2—C10A_2—O11_2—C11A_2179.90 (16)
O11—C11A—C5A—C5179.38 (17)C10A_2—C6A_2—C7_2—C8_20.8 (3)
O11—C11A—C5A—C62.5 (3)C10A_2—O11_2—C11A_2—C5A_20.8 (3)
C11A—C12—C12A—O1177.53 (16)C10A_2—O11_2—C11A_2—C12_2179.85 (17)
C11A—C12—C12A—C4A1.0 (3)O11_2—C11A_2—C12_2—C12A_2177.64 (17)
C11A—C12—C20—C21119.1 (2)O11_2—C11A_2—C12_2—C20_22.5 (3)
C11A—C12—C20—C23117.9 (2)C11A_2—C5A_2—C6_2—C6A_22.9 (3)
C11A—C12—C20—C242.1 (3)C11A_2—C5A_2—C6_2—O16_2176.54 (19)
C12—C11A—C5A—C50.5 (3)C11A_2—C12_2—C12A_2—O1_2177.95 (17)
C12—C11A—C5A—C6178.64 (18)C11A_2—C12_2—C12A_2—C4A_22.1 (3)
C12—C20—C21—C22129.5 (2)C11A_2—C12_2—C20_2—C21_2164.8 (3)
C12A—O1—C2—C341.4 (2)C11A_2—C12_2—C20_2—C21B_2156.8 (3)
C12A—O1—C2—C13162.25 (16)C11A_2—C12_2—C20_2—C23_256.8 (3)
C12A—O1—C2—C1478.9 (2)C11A_2—C12_2—C20_2—C24_263.6 (3)
C12A—C4A—C5—O15179.98 (18)C12_2—C20_2—C21_2—C22_2128.5 (13)
C12A—C4A—C5—C5A0.8 (3)C12_2—C20_2—C21B_2—C22B_2133.2 (12)
C12A—C12—C20—C2161.8 (2)C12A_2—O1_2—C2_2—C3_244.4 (2)
C12A—C12—C20—C2361.1 (2)C12A_2—O1_2—C2_2—C13_276.1 (2)
C12A—C12—C20—C24178.89 (18)C12A_2—O1_2—C2_2—C14_2165.80 (17)
C13—C2—C3—C4146.3 (2)C12A_2—C4A_2—C5_2—C5A_20.5 (3)
C14—C2—C3—C488.7 (2)C12A_2—C4A_2—C5_2—O15_2179.34 (18)
O15—C5—C5A—C60.9 (3)C12A_2—C12_2—C20_2—C21_215.3 (4)
O15—C5—C5A—C11A179.09 (18)C12A_2—C12_2—C20_2—C21B_223.0 (4)
O16—C6—C6A—C70.9 (3)C12A_2—C12_2—C20_2—C23_2123.1 (2)
O16—C6—C6A—C10A178.77 (19)C12A_2—C12_2—C20_2—C24_2116.5 (2)
O16—C6—C5A—C50.7 (3)C13_2—C2_2—C3_2—C4_286.9 (3)
O16—C6—C5A—C11A177.38 (19)C14_2—C2_2—C3_2—C4_2147.9 (2)
O17—C9—C10—C10A179.24 (17)O15_2—C5_2—C5A_2—C6_20.1 (3)
O17—C9—C10—O191.1 (3)O15_2—C5_2—C5A_2—C11A_2178.65 (18)
O19—C10—C10A—C6A178.94 (18)O16_2—C6_2—C6A_2—C7_22.1 (3)
O19—C10—C10A—O111.8 (3)O16_2—C6_2—C6A_2—C10A_2177.35 (19)
C5A—C6—C6A—C7179.82 (18)O17_2—C9_2—C10_2—C10A_2179.01 (17)
C5A—C6—C6A—C10A0.5 (3)O17_2—C9_2—C10_2—O19_21.1 (3)
C5A—C11A—C12—C12A0.0 (3)O19_2—C10_2—C10A_2—C6A_2179.34 (19)
C5A—C11A—C12—C20179.06 (19)O19_2—C10_2—C10A_2—O11_20.7 (3)
C20—C12—C12A—O13.3 (3)C20_2—C12_2—C12A_2—O1_21.9 (3)
C20—C12—C12A—C4A179.87 (18)C20_2—C12_2—C12A_2—C4A_2177.8 (2)
C23—C20—C21—C228.5 (3)C23_2—C20_2—C21_2—C22_25.5 (13)
C24—C20—C21—C22106.6 (3)C23_2—C20_2—C21B_2—C22B_2114.1 (12)
O1_2—C2_2—C3_2—C4_232.4 (3)C24_2—C20_2—C21_2—C22_2118.7 (13)
C2_2—O1_2—C12A_2—C4A_228.2 (3)C24_2—C20_2—C21B_2—C22B_20.5 (13)
C2_2—O1_2—C12A_2—C12_2155.71 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O15—H15···O160.841.782.530 (2)147
O15_2—H15_2···O16_20.841.802.547 (2)147
O19—H19···O16i0.841.922.719 (2)159
O19_2—H19_2···O16_2ii0.841.922.704 (2)156
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y+1/2, z+1.
 

Footnotes

KC and SH contributed equally as corres­ponding authors.

Acknowledgements

The authors thank the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Mahidol University, Thailand, for the use of spectroscopic instruments, and the Faculty of Science, Mahidol University, for the use of the X-ray diffractometer. SH thanks the Faculty of Science and Technology, Rajabhat Rajanagarindra University, Thailand, for laboratory facilities support.

Funding information

Funding for this research was provided by: Rajabhat Rajanagarindra University, Thailand.

References

First citationBoonnak, N., Chantrapromma, S., Fun, H.-K. & Karalai, C. (2008). Anal. Sci. X, 24, X71–X72.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChantrapromma, S., Boonnak, N., Fun, H.-K., Anjum, S. & Atta-ur-Rahman (2005). Acta Cryst. E61, o2136–o2138.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Ng, S.-L., Razak, I. A., Boonnak, N. & Chantrapromma, S. (2006). Acta Cryst. E62, o130–o132.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGhirtis, K., Pouli, N., Marakos, P., Skaltsounis, A.-L., Leonce, S., Atassi, G. & Caignard, D. H. (2001). J. Heterocycl. Chem. 38, 147–152.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKondedeshmukh, R. S. & Paradkar, M. V. (1994). Synth. Commun. 24, 659–664.  CrossRef Google Scholar
First citationKosela, S., Hu, L.-H., Yip, S.-C., Rachmatia, T., Sukri, T., Daulay, T. D., Tan, G.-K., Vittal, J. J. & Sim, K.-Y. (1999). Phytochemistry, 52, 1375–1377.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMah, S. H., Ee, G. C. L., Rahmani, M., Taufiq-Yap, Y. H., Sukari, M. A. & Teh, S. S. (2011). Molecules, 16, 3999–4004.  CrossRef Google Scholar
First citationPailee, P., Kuhakarn, C., Sangsuwan, C., Hongthong, S., Piyachaturawat, P., Suksen, K., Jariyawat, S., Akkarawongsapat, R., Limthongkul, J., Napaswad, C., Kongsaeree, P., Prabpai, S., Jaipetch, T., Pohmakotr, M., Tuchinda, P. & Reutrakul, V. (2018). Phytochemistry, 147, 68–79.  CrossRef PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPrakoso, N. I., Pangestu, P. H. & Wahyuningsih, T. D. (2016). IOP Conf. Ser. Mater. Sci. Eng. 107, 012065.  Google Scholar
First citationRifaldi, Fadlan, A., Fatmawati, S., Purnomo, A. S. & Ersam, T. (2024). Nat. Prod. Res. 38, 885–890.  CrossRef PubMed Google Scholar
First citationSangsuwon, C. & Jiratchariyakul, W. (2015). Behav. Sci. 197, 1422–1427.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSukandar, E. R., Ersam, T., Fatmawati, S., Siripong, P., Aree, T. & Tip-pyang, S. (2016). Fitoterapia, 108, 62–65.  CrossRef PubMed Google Scholar
First citationSukkum, C., Lekklar, C., Chongsri, K., Deeying, S., Srisomsap, C., Surapanich, N., Kanjanasingh, P. & Hongthong, S. (2024). J. Appl. Pharm. Sci. 15, 241–247.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWolfrom, M. L., Komitsky, F. Jr, Fraenkel, G., Looker, J. H., Dickey, E. E., McWain, P., Thompson, A., Mundell, P. M. & Windrath, O. M. (1964). J. Org. Chem. 29, 692–697.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds