

research communications
Synthesis, 3]2[Co(cit)2](NO3)4·4H2O
and Hirshfeld analysis of a novel supramolecular compound [Co(tsc)aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, cTermez University of Economics and Service, 41B Farovon St, Termiz, 190111, Uzbekistan, dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan, and eNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
A new cobalt complex, bis[tris(aminothiourea)cobalt(III)] bis[2-(carboxymethyl)-2-hydroxybutanedioato]cobalt(II) tetranitrate tetrahydrate, [Co(CH5N3S)3][Co(C6H6O7)2]0.5(NO3)2·2H2O, designated as [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O, was synthesized. Two crystallographically independent cobalt centers are present. In the first, the central metal atom is chelated by three thiosemicarbazide ligands in a bidentate fashion whereas the second, positioned on a crystallographic inversion center, is hexacoordinated by two citrate anions in a distorted octahedral geometry. Additionally, two water molecules and two nitrate anions are present in the Hirshfeld surface analysis revealed that the presence of numerous donor and acceptor groups in the complex, which facilitate hydrogen-bonding interactions that contribute significantly to the overall cohesion of the crystal structure.
Keywords: crystal structure; cobalt; thiosemicarbazide; citric acid; hydrogen bonding; Hirshfeld analysis.
CCDC reference: 2364098
1. Chemical context
Thiosemicarbazide is a widely used ligand in coordination chemistry because of its strong complex-forming ability, attributed to the presence of sulfur and nitrogen donor atoms, which enables it to act as a bidentate ligand (Ibrahim & Bekheit, 1988). Its coordination with transition metals is particularly interesting, as these metals can adopt diverse geometries such as tetrahedral, square-planar, and octahedral depending on the surrounding ligands, enhancing the stability and versatility of the resulting complexes (Hussain, 1994
; Yang et al., 2006
; Burrows et al., 1997
). Citric acid, a tricarboxylic acid, is another versatile molecule known for its role in both chemistry and biology. The citrate dianion acts as a multi-dentate ligand, coordinating with metals through carboxylate (–COO−) and hydroxyl (–OH) groups, allowing for the formation of robust metal complexes. The applications of complexes formed from thiosemicarbazide and citric acid can be found in catalysis, biomedicine, and environmental remediation (Koolivand et al., 2021
; Wakizaka et al., 2024
; Andres et al., 2020
; Singh et al., 2023
).
Although extensive research has been conducted on thiosemicarbazide complexes with metals such as nickel, cobalt, and zinc, systems containing two crystallographically independent centers remain underexplored (Konarev et al., 2004; Antsyshkina et al., 2014
). In this work, cobalt was selected as the central metal ion, and citric acid was utilized as a multifunctional ligand to construct a supramolecular framework. This combination provides an excellent model to study the interplay of metal–ligand coordination and hydrogen-bonding networks. We report the synthesis and of a new cobalt complex, [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O, and highlight the role of citric acid as a key component in the assembly of hybrid materials.
2. Structural commentary
The structure of [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O is shown in Fig. 1. The complex crystallizes in the monoclinic system with a P21/c with two crystallographically independent cobalt centers, namely, [Co(tsc)3] and [Co(cit)2], designated as CoC1 and CoC2, respectively. The of [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O comprises one molecule of CoC1, a half-molecule of CoC2, two water molecules, and two nitrate anions (CoC1 and CoC2 are in a 2:1 ratio). The cobalt centers exhibit different oxidation states, with the cobalt atom in CoC1 being in the +3 while in CoC2, it is in the +2 In the first cobalt center (CoC1), the cobalt(III) atom is coordinated by three thiosemicarbazide ligands in a bidentate manner, involving nitrogen and sulfur donor atoms and resulting in the formation of three five-membered rings. The Co—N bond lengths are in the range 1.991 (3)–2.002 (4) Å, while the Co—S bond length are 2.1967 (11)–2.2265 (11) Å. The cobalt(II) atom in the second cobalt center (CoC2) is tridentately chelated by the two citrate ligand through three oxygen atoms from each ligand, i.e. two from carboxylate groups and one from a hydroxyl group of the citrate dianion, forming two five-membered and two six-membered rings around the central metal atom. The central cobalt atom exhibits a distorted octahedral geometry and occupies special position on the inversion center. The Co—O (carboxylate) bond lengths are in the range 2.081 (3)–2.084 (4) Å, and the Co—O (hydroxyl) bond length is 2.060 (3) Å. Two molecules of water and a nitrate anion remain uncoordinated in the but are involved in interactions with both the cobalt centers and assist in the formation of supramolecular construct.
![]() | Figure 1 [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms shown as small spheres. Intramolecular hydrogen bonds are indicated by dotted lines. |
3. Supramolecular features
In the title complex, the complex cations and the water molecule have proton-donor hydrogen-bonding groups, whereas the oxygen atoms of the nitrate anion and citrate ligands act as proton acceptors in an intricate network of hydrogen bonds (Table 1). The nitrate anions participate in strong hydrogen bonding with the amine hydrogen atoms (N4—H4B⋯O12A and N7—H7A⋯O6) of the coordinated thiosemicarbazide ligands. Furthermore, hydrogen bonding is observed between the two cobalt centers. This involves interactions between the amine hydrogens (N7—H7A⋯O6 and N8—H8⋯O5) of the thiosemicarbazide ligands from CoC1 and the oxygen atoms of the citrate ligand in the adjacent CoC2 center.
|
The two uncoordinated water molecules form hydrogen bonds with each other, while also interacting with the amine nitrogen (N1—H1B⋯O14) of the thiosemicarbazide ligand and a neighboring oxygen atom (O14—H14A⋯O4) of the citrate dianion in the second cobalt center (Fig. 1). The nitrate anions are located between two CoC1 layers, whereas the water molecules placed between the CoC1 and CoC2 layers. Thus, both the nitrate anions and the water molecules contribute significantly to the structure of the complex by forming an extensive hydrogen-bond network and form a 1D layered assembly parallel to the c-axis direction. Although the hydrogen bonds are relatively weak, all potential donors and acceptors participate, providing notable cohesion to the overall structure (Fig. 2
).
![]() | Figure 2 View of the packing of molecules in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O along the b axis. |
4. Hirshfeld Surface Analysis
Hirshfeld surface (Spackman & Jayatilaka, 2009) analysis and fingerprint plot analysis (Spackman & McKinnon, 2002
) were performed using CrystalExplorer21.5 (Wolff et al., 2012
) to investigate the intermolecular interactions. These were both performed separately for CoC1 and CoC2, as shown in Figs. 3
and 4
. The red spots on the Hirshfeld surface are due to short O⋯H interactions, which are mapped on the 2D fingerprint plots. The molecule exhibits a significant number of hydrogen-bonding interactions, with O⋯H/H⋯O, H⋯H, S⋯H/H⋯S, S⋯O/O⋯S, and N⋯H/H⋯N interactions accounting for 85.7% of the total interactions in CoC1. In contrast, interactions such as C⋯S, N⋯S, and S⋯S, play a minor role in the crystal cohesion. However, O⋯H/H⋯O, H⋯H, O⋯O, C⋯H/H⋯C and N⋯H/H⋯N contacts represent 99.2% of the total interactions in CoC2 (Figs. 3
, 4
).
![]() | Figure 3 The three-dimensional Hirshfeld surfaces for (a) CoC1 and (b) CoC2 in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O. |
![]() | Figure 4 Two-dimensional fingerprint plots of the Hirshfeld surfaces showing contributions of various contacts for CoC1 (upper row) and CoC2 (lower row) in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O. |
5. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016) revealed that seven crystal structures for cobalt complexes with three thiosemicarbazide ligands have been reported [AZILOL (Liu et al., 2009
); BAYGUD (Rusanovskii et al., 1981
); GEWNIF (Larsen et al., 1988
); KAZBAP (Bulimestru et al., 2005
); THSMCB (Samus et al., 1981
); WEWFUZ (Hussain, 1994
); YUNTUW (Zhang et al., 1994
)]. The CSD includes around 40 structures where citric acid is directly bonded to a cobalt atom, in only three of which [ADENAY, (Herynek et al., 2000
); IDANOR (Galloway et al., 2006
); QEQVAJ (Shvelashvili et al., 2000
)] are two citric acid ligands bonded tridentately to form a hexacoordinated complex. However, no complexes containing both citric acid and thiosemicarbazide with two different coordination centers have been reported.
6. Synthesis and crystallization
Co(NO3)2·6H2O (0. 291 g, 1 mmol), thiosemicarbazide (0.091 g, 1 mmol) and citric acid (0.192 g, 1 mmol) were dissolved separately in 70% ethanol (5 ml), mixed together and stirred for 2 h at 333 K. The obtained pink solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 days (yield: 60%).
7. Refinement
Crystal data, data collection and structure . All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.
|
Supporting information
CCDC reference: 2364098
https://doi.org/10.1107/S2056989025001136/ex2089sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001136/ex2089Isup2.hkl
[Co(CH5N3S)3][Co(C6H6O7)2]0.5(NO3)2·2H2O | F(000) = 1458 |
Mr = 711.97 | Dx = 1.885 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 22.8868 (7) Å | Cell parameters from 6201 reflections |
b = 10.7978 (3) Å | θ = 3.9–71.3° |
c = 10.1946 (3) Å | µ = 11.05 mm−1 |
β = 95.359 (3)° | T = 293 K |
V = 2508.35 (13) Å3 | Block, red |
Z = 4 | 0.12 × 0.08 × 0.06 mm |
XtaLAB Synergy, Single source at home/near, HyPix3000 diffractometer | 4582 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3715 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.113 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 68.2°, θmin = 3.9° |
ω scans | h = −27→27 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2021) | k = −13→12 |
Tmin = 0.419, Tmax = 1.000 | l = −12→9 |
23912 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.055 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.1005P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
4582 reflections | Δρmax = 0.92 e Å−3 |
395 parameters | Δρmin = −0.80 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Co1 | 0.82571 (3) | 0.55594 (6) | 0.44027 (6) | 0.02392 (19) | |
Co2 | 0.500000 | 0.500000 | 0.500000 | 0.0268 (2) | |
S1 | 0.89780 (4) | 0.57221 (10) | 0.31121 (9) | 0.0299 (3) | |
S3 | 0.78409 (5) | 0.72745 (10) | 0.35381 (9) | 0.0307 (3) | |
S2 | 0.87457 (5) | 0.67648 (10) | 0.58544 (9) | 0.0320 (3) | |
O5 | 0.65342 (13) | 0.5523 (3) | 0.7133 (3) | 0.0348 (7) | |
O3 | 0.53844 (12) | 0.3496 (3) | 0.5979 (3) | 0.0283 (6) | |
H3 | 0.5312 (16) | 0.2737 (14) | 0.612 (4) | 0.042* | |
O4 | 0.58648 (13) | 0.5588 (3) | 0.5413 (3) | 0.0350 (7) | |
O6 | 0.66999 (14) | 0.3281 (3) | 0.5325 (3) | 0.0405 (8) | |
O9 | 0.78502 (15) | 0.3036 (3) | 0.7225 (3) | 0.0419 (8) | |
O2 | 0.50796 (15) | 0.6243 (3) | 0.8904 (3) | 0.0423 (8) | |
O14 | 0.64703 (16) | 0.5248 (4) | 0.2882 (4) | 0.0476 (8) | |
H14A | 0.633007 | 0.515855 | 0.361958 | 0.071* | |
H14B | 0.624476 | 0.577204 | 0.247038 | 0.071* | |
O1 | 0.48489 (15) | 0.5703 (3) | 0.6839 (3) | 0.0441 (8) | |
N7 | 0.75933 (15) | 0.5446 (3) | 0.5529 (3) | 0.0285 (7) | |
H7A | 0.736707 | 0.480694 | 0.526268 | 0.034* | |
H7B | 0.773626 | 0.530122 | 0.635701 | 0.034* | |
O7 | 0.67078 (16) | 0.1366 (3) | 0.6050 (4) | 0.0467 (8) | |
H7 | 0.659469 | 0.098157 | 0.667227 | 0.070* | |
O10 | 0.78848 (16) | 0.3037 (3) | 0.9341 (3) | 0.0463 (8) | |
O15 | 0.59049 (15) | 0.6770 (3) | 0.0937 (4) | 0.0476 (8) | |
H15A | 0.567869 | 0.641229 | 0.034498 | 0.071* | |
H15B | 0.571066 | 0.730415 | 0.132922 | 0.071* | |
N1 | 0.78272 (16) | 0.4563 (3) | 0.2980 (3) | 0.0321 (8) | |
H1A | 0.783710 | 0.376846 | 0.321444 | 0.038* | |
H1B | 0.745317 | 0.480000 | 0.288731 | 0.038* | |
N8 | 0.72455 (15) | 0.6531 (3) | 0.5496 (3) | 0.0306 (8) | |
H8 | 0.699347 | 0.662336 | 0.606306 | 0.037* | |
N4 | 0.86476 (15) | 0.4111 (3) | 0.5347 (3) | 0.0304 (8) | |
H4A | 0.837443 | 0.363299 | 0.565348 | 0.037* | |
H4B | 0.883111 | 0.366516 | 0.477627 | 0.037* | |
N10 | 0.79107 (16) | 0.3600 (3) | 0.8299 (3) | 0.0332 (8) | |
O8 | 0.79974 (18) | 0.4753 (3) | 0.8299 (3) | 0.0488 (9) | |
N2 | 0.80682 (18) | 0.4689 (4) | 0.1749 (3) | 0.0373 (9) | |
H2 | 0.786582 | 0.447700 | 0.103111 | 0.045* | |
O11A | 0.9175 (10) | 0.224 (2) | 0.368 (3) | 0.039 (4) | 0.5 |
N11 | 0.96695 (17) | 0.2055 (4) | 0.4343 (4) | 0.0420 (9) | |
N5 | 0.90574 (18) | 0.4465 (4) | 0.6407 (4) | 0.0391 (9) | |
H5 | 0.926274 | 0.390669 | 0.683767 | 0.047* | |
O12A | 0.9715 (11) | 0.240 (2) | 0.542 (2) | 0.061 (6) | 0.5 |
N3 | 0.88378 (19) | 0.5169 (4) | 0.0582 (4) | 0.0404 (9) | |
H3A | 0.864128 | 0.490335 | −0.012262 | 0.048* | |
H3B | 0.918646 | 0.545588 | 0.054621 | 0.048* | |
C7 | 0.60992 (17) | 0.5090 (4) | 0.6455 (4) | 0.0255 (8) | |
C6 | 0.58052 (17) | 0.3947 (4) | 0.6997 (4) | 0.0254 (8) | |
O13A | 0.9996 (14) | 0.114 (3) | 0.4205 (19) | 0.054 (5) | 0.5 |
N9 | 0.69505 (18) | 0.8363 (4) | 0.4571 (4) | 0.0452 (10) | |
H9A | 0.668771 | 0.842184 | 0.511769 | 0.054* | |
H9B | 0.698370 | 0.893546 | 0.399600 | 0.054* | |
N6 | 0.94963 (19) | 0.5926 (5) | 0.7769 (4) | 0.0523 (12) | |
H6A | 0.968543 | 0.534943 | 0.820948 | 0.063* | |
H6B | 0.954741 | 0.668702 | 0.799993 | 0.063* | |
C4 | 0.51204 (19) | 0.5526 (4) | 0.7954 (4) | 0.0313 (9) | |
C8 | 0.62522 (18) | 0.2924 (4) | 0.7339 (4) | 0.0289 (9) | |
H8A | 0.653819 | 0.320826 | 0.803691 | 0.035* | |
H8B | 0.605428 | 0.220686 | 0.766118 | 0.035* | |
C1 | 0.86049 (19) | 0.5134 (4) | 0.1715 (4) | 0.0309 (9) | |
C9 | 0.65656 (18) | 0.2557 (4) | 0.6148 (4) | 0.0318 (9) | |
C5 | 0.55003 (18) | 0.4372 (4) | 0.8193 (4) | 0.0284 (9) | |
H5A | 0.525603 | 0.370103 | 0.846255 | 0.034* | |
H5B | 0.579699 | 0.453559 | 0.891480 | 0.034* | |
C3 | 0.73011 (18) | 0.7399 (4) | 0.4613 (4) | 0.0295 (9) | |
C2 | 0.91294 (19) | 0.5643 (4) | 0.6744 (4) | 0.0349 (10) | |
O12B | 0.9840 (10) | 0.269 (2) | 0.539 (3) | 0.052 (5) | 0.5 |
O11B | 0.9289 (11) | 0.247 (2) | 0.353 (3) | 0.048 (5) | 0.5 |
O13B | 1.0011 (14) | 0.134 (3) | 0.3756 (19) | 0.056 (5) | 0.5 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0275 (4) | 0.0221 (3) | 0.0217 (3) | −0.0001 (2) | −0.0001 (2) | 0.0010 (2) |
Co2 | 0.0268 (5) | 0.0280 (5) | 0.0242 (5) | 0.0007 (4) | −0.0048 (4) | 0.0018 (4) |
S1 | 0.0301 (5) | 0.0346 (6) | 0.0247 (5) | −0.0025 (4) | 0.0014 (4) | −0.0008 (4) |
S3 | 0.0378 (6) | 0.0268 (5) | 0.0279 (5) | 0.0031 (4) | 0.0052 (4) | 0.0073 (4) |
S2 | 0.0401 (6) | 0.0262 (5) | 0.0283 (5) | −0.0023 (4) | −0.0036 (4) | −0.0041 (4) |
O5 | 0.0328 (16) | 0.0409 (18) | 0.0291 (15) | −0.0093 (13) | −0.0050 (12) | −0.0017 (13) |
O3 | 0.0305 (15) | 0.0241 (15) | 0.0286 (14) | −0.0010 (12) | −0.0057 (11) | 0.0024 (12) |
O4 | 0.0317 (16) | 0.0369 (18) | 0.0345 (16) | −0.0070 (13) | −0.0065 (12) | 0.0129 (13) |
O6 | 0.0463 (19) | 0.0425 (19) | 0.0331 (16) | 0.0048 (15) | 0.0051 (14) | −0.0001 (15) |
O9 | 0.060 (2) | 0.0325 (17) | 0.0323 (16) | −0.0073 (15) | 0.0012 (14) | −0.0055 (13) |
O2 | 0.056 (2) | 0.0397 (19) | 0.0302 (16) | 0.0132 (16) | −0.0015 (14) | −0.0056 (14) |
O14 | 0.050 (2) | 0.050 (2) | 0.0435 (19) | −0.0001 (16) | 0.0067 (16) | 0.0027 (16) |
O1 | 0.052 (2) | 0.052 (2) | 0.0268 (16) | 0.0218 (16) | −0.0045 (14) | −0.0042 (14) |
N7 | 0.0287 (18) | 0.0278 (18) | 0.0293 (17) | 0.0015 (14) | 0.0043 (14) | 0.0057 (14) |
O7 | 0.057 (2) | 0.0302 (18) | 0.054 (2) | 0.0096 (15) | 0.0094 (16) | −0.0059 (15) |
O10 | 0.068 (2) | 0.0372 (19) | 0.0330 (16) | −0.0033 (16) | 0.0030 (15) | 0.0072 (14) |
O15 | 0.048 (2) | 0.042 (2) | 0.051 (2) | 0.0017 (16) | −0.0043 (16) | −0.0002 (16) |
N1 | 0.0313 (19) | 0.0305 (19) | 0.0338 (19) | −0.0047 (15) | −0.0001 (15) | −0.0028 (15) |
N8 | 0.0355 (19) | 0.0305 (19) | 0.0264 (17) | 0.0082 (15) | 0.0064 (14) | 0.0057 (14) |
N4 | 0.0334 (19) | 0.0249 (18) | 0.0321 (18) | 0.0008 (14) | −0.0019 (14) | −0.0058 (14) |
N10 | 0.036 (2) | 0.031 (2) | 0.0316 (19) | 0.0016 (15) | −0.0021 (15) | 0.0011 (16) |
O8 | 0.082 (3) | 0.0189 (16) | 0.0432 (19) | −0.0046 (16) | −0.0058 (17) | 0.0012 (14) |
N2 | 0.048 (2) | 0.041 (2) | 0.0225 (17) | −0.0086 (17) | −0.0003 (15) | −0.0089 (16) |
O11A | 0.032 (8) | 0.037 (8) | 0.047 (8) | −0.006 (6) | 0.003 (5) | −0.006 (6) |
N11 | 0.039 (2) | 0.036 (2) | 0.051 (3) | 0.0012 (18) | 0.0054 (19) | −0.0076 (19) |
N5 | 0.047 (2) | 0.030 (2) | 0.037 (2) | 0.0117 (17) | −0.0112 (17) | −0.0004 (16) |
O12A | 0.063 (12) | 0.077 (14) | 0.038 (7) | 0.003 (8) | −0.015 (6) | −0.015 (7) |
N3 | 0.054 (2) | 0.040 (2) | 0.0283 (19) | −0.0080 (18) | 0.0103 (17) | −0.0063 (17) |
C7 | 0.027 (2) | 0.027 (2) | 0.0228 (19) | 0.0032 (16) | 0.0032 (16) | −0.0031 (16) |
C6 | 0.0249 (19) | 0.025 (2) | 0.0254 (19) | −0.0001 (16) | −0.0040 (15) | 0.0010 (16) |
O13A | 0.041 (6) | 0.060 (10) | 0.061 (12) | 0.003 (6) | 0.008 (9) | −0.024 (9) |
N9 | 0.055 (3) | 0.042 (2) | 0.040 (2) | 0.021 (2) | 0.0136 (18) | 0.0125 (18) |
N6 | 0.056 (3) | 0.050 (3) | 0.047 (2) | 0.000 (2) | −0.020 (2) | −0.004 (2) |
C4 | 0.035 (2) | 0.032 (2) | 0.027 (2) | 0.0028 (18) | 0.0008 (17) | 0.0030 (17) |
C8 | 0.033 (2) | 0.028 (2) | 0.0257 (19) | 0.0080 (17) | −0.0003 (16) | 0.0022 (16) |
C1 | 0.038 (2) | 0.020 (2) | 0.034 (2) | −0.0007 (17) | −0.0008 (18) | 0.0002 (16) |
C9 | 0.030 (2) | 0.033 (2) | 0.031 (2) | 0.0044 (17) | −0.0053 (17) | −0.0028 (19) |
C5 | 0.029 (2) | 0.027 (2) | 0.028 (2) | 0.0047 (16) | 0.0007 (16) | 0.0030 (16) |
C3 | 0.030 (2) | 0.032 (2) | 0.026 (2) | 0.0060 (17) | 0.0009 (16) | −0.0007 (17) |
C2 | 0.034 (2) | 0.045 (3) | 0.025 (2) | 0.0021 (19) | 0.0003 (17) | −0.0003 (18) |
O12B | 0.040 (8) | 0.048 (8) | 0.067 (8) | 0.006 (7) | −0.009 (6) | −0.030 (6) |
O11B | 0.046 (10) | 0.056 (10) | 0.039 (7) | −0.019 (6) | −0.005 (7) | 0.005 (6) |
O13B | 0.039 (5) | 0.064 (12) | 0.067 (13) | 0.005 (6) | 0.021 (10) | −0.029 (10) |
Co1—S1 | 2.2112 (12) | N1—N2 | 1.424 (5) |
Co1—S3 | 2.2265 (11) | N8—H8 | 0.8600 |
Co1—S2 | 2.1967 (11) | N8—C3 | 1.314 (5) |
Co1—N7 | 1.992 (3) | N4—H4A | 0.8900 |
Co1—N1 | 1.991 (3) | N4—H4B | 0.8900 |
Co1—N4 | 2.002 (4) | N4—N5 | 1.416 (5) |
Co2—O3 | 2.060 (3) | N10—O8 | 1.260 (5) |
Co2—O3i | 2.060 (3) | N2—H2 | 0.8600 |
Co2—O4 | 2.084 (3) | N2—C1 | 1.322 (6) |
Co2—O4i | 2.084 (3) | O11A—N11 | 1.28 (3) |
Co2—O1 | 2.081 (3) | N11—O12A | 1.15 (2) |
Co2—O1i | 2.081 (3) | N11—O13A | 1.25 (3) |
S1—C1 | 1.712 (4) | N11—O12B | 1.30 (2) |
S3—C3 | 1.731 (4) | N11—O11B | 1.23 (3) |
S2—C2 | 1.707 (5) | N11—O13B | 1.29 (3) |
O5—C7 | 1.249 (5) | N5—H5 | 0.8600 |
O3—H3 | 0.852 (9) | N5—C2 | 1.324 (6) |
O3—C6 | 1.434 (4) | N3—H3A | 0.8600 |
O4—C7 | 1.264 (5) | N3—H3B | 0.8600 |
O6—C9 | 1.207 (5) | N3—C1 | 1.318 (6) |
O9—N10 | 1.249 (5) | C7—C6 | 1.533 (6) |
O2—C4 | 1.251 (5) | C6—C8 | 1.524 (5) |
O14—H14A | 0.8497 | C6—C5 | 1.530 (6) |
O14—H14B | 0.8500 | N9—H9A | 0.8600 |
O1—C4 | 1.258 (5) | N9—H9B | 0.8600 |
N7—H7A | 0.8900 | N9—C3 | 1.313 (6) |
N7—H7B | 0.8900 | N6—H6A | 0.8600 |
N7—N8 | 1.414 (5) | N6—H6B | 0.8600 |
O7—H7 | 0.8200 | N6—C2 | 1.314 (6) |
O7—C9 | 1.333 (5) | C4—C5 | 1.526 (6) |
O10—N10 | 1.231 (5) | C8—H8A | 0.9700 |
O15—H15A | 0.8502 | C8—H8B | 0.9700 |
O15—H15B | 0.8506 | C8—C9 | 1.520 (6) |
N1—H1A | 0.8900 | C5—H5A | 0.9700 |
N1—H1B | 0.8900 | C5—H5B | 0.9700 |
S1—Co1—S3 | 90.79 (4) | N5—N4—H4B | 109.0 |
S2—Co1—S1 | 89.58 (4) | O9—N10—O8 | 119.1 (4) |
S2—Co1—S3 | 86.90 (4) | O10—N10—O9 | 120.3 (4) |
N7—Co1—S1 | 178.29 (11) | O10—N10—O8 | 120.6 (4) |
N7—Co1—S3 | 87.60 (10) | N1—N2—H2 | 120.2 |
N7—Co1—S2 | 90.89 (11) | C1—N2—N1 | 119.7 (3) |
N7—Co1—N4 | 90.30 (15) | C1—N2—H2 | 120.2 |
N1—Co1—S1 | 87.42 (11) | O12A—N11—O11A | 116.5 (18) |
N1—Co1—S3 | 89.84 (11) | O12A—N11—O13A | 111.1 (18) |
N1—Co1—S2 | 175.53 (11) | O13A—N11—O11A | 125.0 (18) |
N1—Co1—N7 | 92.01 (15) | O11B—N11—O12B | 120.3 (18) |
N1—Co1—N4 | 95.51 (15) | O11B—N11—O13B | 109.0 (18) |
N4—Co1—S1 | 91.36 (11) | O13B—N11—O12B | 123.4 (17) |
N4—Co1—S3 | 174.32 (10) | N4—N5—H5 | 119.5 |
N4—Co1—S2 | 87.86 (10) | C2—N5—N4 | 121.0 (3) |
O3i—Co2—O3 | 180.0 | C2—N5—H5 | 119.5 |
O3i—Co2—O4i | 77.75 (11) | H3A—N3—H3B | 120.0 |
O3—Co2—O4 | 77.75 (11) | C1—N3—H3A | 120.0 |
O3i—Co2—O4 | 102.25 (11) | C1—N3—H3B | 120.0 |
O3—Co2—O4i | 102.25 (11) | O5—C7—O4 | 124.0 (4) |
O3i—Co2—O1i | 87.18 (12) | O5—C7—C6 | 117.1 (3) |
O3i—Co2—O1 | 92.82 (12) | O4—C7—C6 | 118.6 (3) |
O3—Co2—O1i | 92.82 (12) | O3—C6—C7 | 107.5 (3) |
O3—Co2—O1 | 87.18 (12) | O3—C6—C8 | 108.1 (3) |
O4i—Co2—O4 | 180.0 | O3—C6—C5 | 110.7 (3) |
O1i—Co2—O4 | 93.37 (14) | C8—C6—C7 | 111.0 (3) |
O1i—Co2—O4i | 86.63 (14) | C8—C6—C5 | 112.4 (3) |
O1—Co2—O4i | 93.36 (14) | C5—C6—C7 | 107.1 (3) |
O1—Co2—O4 | 86.64 (14) | H9A—N9—H9B | 120.0 |
O1i—Co2—O1 | 180.0 | C3—N9—H9A | 120.0 |
C1—S1—Co1 | 97.09 (16) | C3—N9—H9B | 120.0 |
C3—S3—Co1 | 96.78 (14) | H6A—N6—H6B | 120.0 |
C2—S2—Co1 | 98.16 (16) | C2—N6—H6A | 120.0 |
Co2—O3—H3 | 139.7 (18) | C2—N6—H6B | 120.0 |
C6—O3—Co2 | 108.1 (2) | O2—C4—O1 | 122.6 (4) |
C6—O3—H3 | 109.2 (16) | O2—C4—C5 | 117.7 (4) |
C7—O4—Co2 | 111.1 (3) | O1—C4—C5 | 119.6 (4) |
H14A—O14—H14B | 104.5 | C6—C8—H8A | 109.4 |
C4—O1—Co2 | 130.4 (3) | C6—C8—H8B | 109.4 |
Co1—N7—H7A | 108.9 | H8A—C8—H8B | 108.0 |
Co1—N7—H7B | 108.9 | C9—C8—C6 | 111.3 (3) |
H7A—N7—H7B | 107.8 | C9—C8—H8A | 109.4 |
N8—N7—Co1 | 113.1 (2) | C9—C8—H8B | 109.4 |
N8—N7—H7A | 108.9 | N2—C1—S1 | 120.3 (3) |
N8—N7—H7B | 108.9 | N3—C1—S1 | 120.5 (3) |
C9—O7—H7 | 109.5 | N3—C1—N2 | 119.1 (4) |
H15A—O15—H15B | 109.4 | O6—C9—O7 | 119.5 (4) |
Co1—N1—H1A | 109.1 | O6—C9—C8 | 123.8 (4) |
Co1—N1—H1B | 109.1 | O7—C9—C8 | 116.7 (4) |
H1A—N1—H1B | 107.8 | C6—C5—H5A | 108.7 |
N2—N1—Co1 | 112.6 (3) | C6—C5—H5B | 108.7 |
N2—N1—H1A | 109.1 | C4—C5—C6 | 114.4 (3) |
N2—N1—H1B | 109.1 | C4—C5—H5A | 108.7 |
N7—N8—H8 | 119.4 | C4—C5—H5B | 108.7 |
C3—N8—N7 | 121.1 (3) | H5A—C5—H5B | 107.6 |
C3—N8—H8 | 119.4 | N8—C3—S3 | 119.9 (3) |
Co1—N4—H4A | 109.0 | N9—C3—S3 | 120.7 (3) |
Co1—N4—H4B | 109.0 | N9—C3—N8 | 119.4 (4) |
H4A—N4—H4B | 107.8 | N5—C2—S2 | 119.9 (3) |
N5—N4—Co1 | 113.0 (3) | N6—C2—S2 | 121.1 (4) |
N5—N4—H4A | 109.0 | N6—C2—N5 | 119.0 (4) |
Co1—S1—C1—N2 | −4.9 (4) | O3—C6—C8—C9 | 59.8 (4) |
Co1—S1—C1—N3 | 172.1 (3) | O3—C6—C5—C4 | −68.1 (4) |
Co1—S3—C3—N8 | −4.3 (4) | O4—C7—C6—O3 | 14.4 (5) |
Co1—S3—C3—N9 | 174.6 (4) | O4—C7—C6—C8 | 132.4 (4) |
Co1—S2—C2—N5 | 0.1 (4) | O4—C7—C6—C5 | −104.6 (4) |
Co1—S2—C2—N6 | −179.7 (4) | O2—C4—C5—C6 | −147.9 (4) |
Co1—N7—N8—C3 | 12.1 (5) | O1—C4—C5—C6 | 34.2 (6) |
Co1—N1—N2—C1 | 17.5 (5) | N7—N8—C3—S3 | −4.4 (5) |
Co1—N4—N5—C2 | 3.9 (6) | N7—N8—C3—N9 | 176.6 (4) |
Co2—O3—C6—C7 | −37.4 (3) | N1—N2—C1—S1 | −7.5 (6) |
Co2—O3—C6—C8 | −157.3 (3) | N1—N2—C1—N3 | 175.4 (4) |
Co2—O3—C6—C5 | 79.3 (3) | N4—N5—C2—S2 | −2.6 (6) |
Co2—O4—C7—O5 | −158.1 (3) | N4—N5—C2—N6 | 177.1 (4) |
Co2—O4—C7—C6 | 16.3 (4) | C7—C6—C8—C9 | −57.8 (4) |
Co2—O1—C4—O2 | 160.6 (4) | C7—C6—C5—C4 | 48.8 (4) |
Co2—O1—C4—C5 | −21.6 (7) | C6—C8—C9—O6 | 36.7 (6) |
O5—C7—C6—O3 | −170.8 (3) | C6—C8—C9—O7 | −145.1 (4) |
O5—C7—C6—C8 | −52.8 (5) | C8—C6—C5—C4 | 170.9 (4) |
O5—C7—C6—C5 | 70.2 (4) | C5—C6—C8—C9 | −177.7 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O14—H14B···O15 | 0.85 | 2.00 | 2.798 (5) | 157 |
N7—H7A···O6 | 0.89 | 2.25 | 3.100 (5) | 159 |
N7—H7B···O8 | 0.89 | 2.10 | 2.983 (5) | 172 |
O7—H7···O14ii | 0.82 | 1.85 | 2.648 (5) | 163 |
O15—H15A···O2iii | 0.85 | 1.92 | 2.730 (5) | 158 |
O15—H15B···O4iv | 0.85 | 2.50 | 2.902 (5) | 110 |
N1—H1A···O9v | 0.89 | 2.20 | 2.912 (5) | 137 |
N1—H1A···O10v | 0.89 | 2.26 | 3.128 (5) | 165 |
N1—H1B···O14 | 0.89 | 2.30 | 3.185 (5) | 172 |
N8—H8···O5 | 0.86 | 1.98 | 2.670 (5) | 136 |
N4—H4A···O9 | 0.89 | 2.19 | 3.000 (5) | 152 |
N4—H4A···O10v | 0.89 | 2.45 | 3.024 (5) | 122 |
N4—H4B···O11A | 0.89 | 2.09 | 2.96 (3) | 166 |
N4—H4B···O12A | 0.89 | 2.48 | 3.06 (3) | 123 |
N4—H4B···O12B | 0.89 | 2.56 | 3.13 (2) | 122 |
N4—H4B···O11B | 0.89 | 2.15 | 3.04 (3) | 175 |
N2—H2···O10iii | 0.86 | 2.32 | 3.032 (5) | 140 |
N5—H5···O11Aii | 0.86 | 2.28 | 2.96 (3) | 136 |
N5—H5···O12A | 0.86 | 2.47 | 2.92 (3) | 114 |
N5—H5···O12B | 0.86 | 2.45 | 2.88 (2) | 112 |
N5—H5···O11Bii | 0.86 | 2.27 | 3.02 (3) | 145 |
N3—H3A···O8iii | 0.86 | 2.08 | 2.913 (5) | 161 |
N3—H3B···O13Avi | 0.86 | 2.01 | 2.86 (3) | 170 |
N3—H3B···O13Bvi | 0.86 | 2.13 | 2.94 (3) | 157 |
N9—H9A···O15vii | 0.86 | 2.06 | 2.883 (6) | 161 |
N9—H9B···O5iv | 0.86 | 2.15 | 2.844 (5) | 137 |
N6—H6A···O13Aii | 0.86 | 2.00 | 2.85 (3) | 170 |
N6—H6A···O13Bii | 0.86 | 2.03 | 2.86 (3) | 161 |
N6—H6B···O12Aviii | 0.86 | 2.35 | 2.93 (3) | 125 |
N6—H6B···O12Bviii | 0.86 | 2.32 | 2.99 (3) | 134 |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iii) x, y, z−1; (iv) x, −y+3/2, z−1/2; (v) x, −y+1/2, z−1/2; (vi) −x+2, y+1/2, −z+1/2; (vii) x, −y+3/2, z+1/2; (viii) −x+2, y+1/2, −z+3/2. |
Acknowledgements
BT is grateful to the Frank H. Allen International Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD).
References
Andres, S. A., Bajaj, K., Vishnosky, N. S., Peterson, M. A., Mashuta, M. S., Buchanan, R. M., Bates, P. J. & Grapperhaus, C. A. (2020). Inorg. Chem. 59, 4924–4935. CrossRef CAS PubMed Google Scholar
Antsyshkina, A. S., Sadikov, G. G., Koksharova, T. V. & Sergienko, V. S. (2014). Russ. J. Inorg. Chem. 59, 50–57. CrossRef CAS Google Scholar
Bulimestru, I. G., Petrenko, P. A., Gulea, A. P., Gdaniec, M. & Simonov, Y. A. (2005). Russ. J. Coord. Chem. 31, 420–428. CrossRef CAS Google Scholar
Burrows, A. D., Menzer, S., Mingos, D. M. P., White, A. J. & Williams, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240. CrossRef Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Galloway, K. W., Parkin, A., Harte, S. M., Ferguson, A. & Murrie, M. (2006). CrystEngComm, 8, 346–350. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Herynek, V., Bulte, J. W., Douglas, T. & Brooks, R. A. (2000). J. Biol. Inorg. Chem. 5, 51–56. CrossRef PubMed CAS Google Scholar
Hussain, M. S. (1994). Transition Met. Chem. 19, 95–98. Google Scholar
Ibrahim, K. M. & Bekheit, M. M. (1988). Transition Met. Chem. 13, 230–232. CrossRef CAS Google Scholar
Konarev, D. V., Litvinov, A. L., Neretin, I. S., Drichko, N. V., Slovokhotov, Y. L., Lyubovskaya, R. N., Howard, J. A. K. & Yufit, D. S. (2004). Cryst. Growth Des. 4, 643–646. CrossRef CAS Google Scholar
Koolivand, M., Nikoorazm, M., Ghorbani-Choghamarani, A., Azadbakht, R. & Tahmasbi, B. (2021). Sci. Rep. 11, 24475. CrossRef PubMed Google Scholar
Larsen, E., Larsen, S. & Lunding, G. (1988). Inorg. Chem. 27, 3051–3054. CrossRef CAS Google Scholar
Liu, Y., Niu, Sh., Jin, J., Chen, Y., Yu, Z. & Yang, G. (2009). Chin. J. Appl. Chem. 26, 1439. Google Scholar
Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rusanovskii, M. E., Samus, I. D., Samus, N. M., Bologa, O. A. & Belov, N. V. (1981). Dokl. Akad. Nauk SSSR, 260, 98. Google Scholar
Samus, I. D., Rusanovskii, M. E., Bologa, O. A. & Samus, N. M. (1981). Russ. J. Coord. Chem. 7, 120. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shvelashvili, A. E., Miminoshvili, É. B., Belsky, V. K., Kuteliya, E. R., Sakvarelidze, T. N., Ediberidze, D. A. & Tavberidze, M. G. (2000). GEN, 3, 94–99. Google Scholar
Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658. Web of Science CrossRef Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Wakizaka, M. & Yamashita, M. (2024). Eur. J. Inorg. Chem. 27, e202300740. CrossRef Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth. Google Scholar
Yang, R., Shen, X. Q., Mao, H. Y., Zhang, H. Y., Wu, Q. A., Wang, H., Hou, H. & Zhu, Y. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 617–620. CrossRef CAS Google Scholar
Zhang, H., Niu, S., Yang, G., Nie, F. & Li, S. (1994). Transition Met. Chem. 19, 498–502. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.