research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld analysis of a novel supra­molecular compound [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bPhysical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India, cTermez University of Economics and Service, 41B Farovon St, Termiz, 190111, Uzbekistan, dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan, and eNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St., Tashkent, 100174, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 23 December 2024; accepted 6 February 2025; online 18 February 2025)

A new cobalt complex, bis­[tris­(amino­thio­urea)cobalt(III)] bis­[2-(carb­oxy­methyl)-2-hy­droxy­butane­dioato]cobalt(II) tetra­nitrate tetra­hydrate, [Co(CH5N3S)3][Co(C6H6O7)2]0.5(NO3)2·2H2O, designated as [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O, was synthesized. Two crystallographically independent cobalt centers are present. In the first, the central metal atom is chelated by three thio­semicarbazide ligands in a bidentate fashion whereas the second, positioned on a crystallographic inversion center, is hexa­coordinated by two citrate anions in a distorted octa­hedral geometry. Additionally, two water mol­ecules and two nitrate anions are present in the asymmetric unit. Hirshfeld surface analysis revealed that the presence of numerous donor and acceptor groups in the complex, which facilitate hydrogen-bonding inter­actions that contribute significantly to the overall cohesion of the crystal structure.

1. Chemical context

Thio­semicarbazide is a widely used ligand in coordination chemistry because of its strong complex-forming ability, attributed to the presence of sulfur and nitro­gen donor atoms, which enables it to act as a bidentate ligand (Ibrahim & Bekheit, 1988[Ibrahim, K. M. & Bekheit, M. M. (1988). Transition Met. Chem. 13, 230-232.]). Its coordination with transition metals is particularly inter­esting, as these metals can adopt diverse geometries such as tetra­hedral, square-planar, and octa­hedral depending on the surrounding ligands, enhancing the stability and versatility of the resulting complexes (Hussain, 1994[Hussain, M. S. (1994). Transition Met. Chem. 19, 95-98.]; Yang et al., 2006[Yang, R., Shen, X. Q., Mao, H. Y., Zhang, H. Y., Wu, Q. A., Wang, H., Hou, H. & Zhu, Y. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 617-620.]; Burrows et al., 1997[Burrows, A. D., Menzer, S., Mingos, D. M. P., White, A. J. & Williams, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 4237-4240.]). Citric acid, a tri­carb­oxy­lic acid, is another versatile mol­ecule known for its role in both chemistry and biology. The citrate dianion acts as a multi-dentate ligand, coordinating with metals through carboxyl­ate (–COO) and hydroxyl (–OH) groups, allowing for the formation of robust metal complexes. The applications of complexes formed from thio­semicarbazide and citric acid can be found in catalysis, biomedicine, and environmental remediation (Koolivand et al., 2021[Koolivand, M., Nikoorazm, M., Ghorbani-Choghamarani, A., Azadbakht, R. & Tahmasbi, B. (2021). Sci. Rep. 11, 24475.]; Wakizaka et al., 2024[Wakizaka, M. & Yamashita, M. (2024). Eur. J. Inorg. Chem. 27, e202300740.]; Andres et al., 2020[Andres, S. A., Bajaj, K., Vishnosky, N. S., Peterson, M. A., Mashuta, M. S., Buchanan, R. M., Bates, P. J. & Grapperhaus, C. A. (2020). Inorg. Chem. 59, 4924-4935.]; Singh et al., 2023[Singh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.]).

Although extensive research has been conducted on thio­semicarbazide complexes with metals such as nickel, cobalt, and zinc, systems containing two crystallographically independent centers remain underexplored (Konarev et al., 2004[Konarev, D. V., Litvinov, A. L., Neretin, I. S., Drichko, N. V., Slovokhotov, Y. L., Lyubovskaya, R. N., Howard, J. A. K. & Yufit, D. S. (2004). Cryst. Growth Des. 4, 643-646.]; Antsyshkina et al., 2014[Antsyshkina, A. S., Sadikov, G. G., Koksharova, T. V. & Sergienko, V. S. (2014). Russ. J. Inorg. Chem. 59, 50-57.]). In this work, cobalt was selected as the central metal ion, and citric acid was utilized as a multifunctional ligand to construct a supra­molecular framework. This combination provides an excellent model to study the inter­play of metal–ligand coordination and hydrogen-bonding networks. We report the synthesis and crystal structure of a new cobalt complex, [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O, and highlight the role of citric acid as a key component in the assembly of hybrid materials.

[Scheme 1]

2. Structural commentary

The structure of [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O is shown in Fig. 1[link]. The complex crystallizes in the monoclinic system with a P21/c space group with two crystallographically independent cobalt centers, namely, [Co(tsc)3] and [Co(cit)2], designated as CoC1 and CoC2, respectively. The asymmetric unit of [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O comprises one mol­ecule of CoC1, a half-mol­ecule of CoC2, two water mol­ecules, and two nitrate anions (CoC1 and CoC2 are in a 2:1 ratio). The cobalt centers exhibit different oxidation states, with the cobalt atom in CoC1 being in the +3 oxidation state, while in CoC2, it is in the +2 oxidation state. In the first cobalt center (CoC1), the cobalt(III) atom is coordinated by three thio­semicarbazide ligands in a bidentate manner, involving nitro­gen and sulfur donor atoms and resulting in the formation of three five-membered rings. The Co—N bond lengths are in the range 1.991 (3)–2.002 (4) Å, while the Co—S bond length are 2.1967 (11)–2.2265 (11) Å. The cobalt(II) atom in the second cobalt center (CoC2) is tridentately chelated by the two citrate ligand through three oxygen atoms from each ligand, i.e. two from carboxyl­ate groups and one from a hydroxyl group of the citrate dianion, forming two five-membered and two six-membered rings around the central metal atom. The central cobalt atom exhibits a distorted octa­hedral geometry and occupies special position on the inversion center. The Co—O (carboxyl­ate) bond lengths are in the range 2.081 (3)–2.084 (4) Å, and the Co—O (hydrox­yl) bond length is 2.060 (3) Å. Two mol­ecules of water and a nitrate anion remain uncoordinated in the asymmetric unit but are involved in inter­actions with both the cobalt centers and assist in the formation of supra­mol­ecular construct.

[Figure 1]
Figure 1
[Co(tsc)3]2[Co(cit)2](NO3)4·4H2O with displacement ellipsoids drawn at the 50% probability level and hydrogen atoms shown as small spheres. Intra­mol­ecular hydrogen bonds are indicated by dotted lines.

3. Supra­molecular features

In the title complex, the complex cations and the water mol­ecule have proton-donor hydrogen-bonding groups, whereas the oxygen atoms of the nitrate anion and citrate ligands act as proton acceptors in an intricate network of hydrogen bonds (Table 1[link]). The nitrate anions participate in strong hydrogen bonding with the amine hydrogen atoms (N4—H4B⋯O12A and N7—H7A⋯O6) of the coordinated thio­semicarbazide ligands. Furthermore, hydrogen bonding is observed between the two cobalt centers. This involves inter­actions between the amine hydrogens (N7—H7A⋯O6 and N8—H8⋯O5) of the thio­semicarbazide ligands from CoC1 and the oxygen atoms of the citrate ligand in the adjacent CoC2 center.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14B⋯O15 0.85 2.00 2.798 (5) 157
N7—H7A⋯O6 0.89 2.25 3.100 (5) 159
N7—H7B⋯O8 0.89 2.10 2.983 (5) 172
O7—H7⋯O14i 0.82 1.85 2.648 (5) 163
O15—H15A⋯O2ii 0.85 1.92 2.730 (5) 158
O15—H15B⋯O4iii 0.85 2.50 2.902 (5) 110
N1—H1A⋯O9iv 0.89 2.20 2.912 (5) 137
N1—H1A⋯O10iv 0.89 2.26 3.128 (5) 165
N1—H1B⋯O14 0.89 2.30 3.185 (5) 172
N8—H8⋯O5 0.86 1.98 2.670 (5) 136
N4—H4A⋯O9 0.89 2.19 3.000 (5) 152
N4—H4A⋯O10iv 0.89 2.45 3.024 (5) 122
N4—H4B⋯O11A 0.89 2.09 2.96 (3) 166
N4—H4B⋯O12A 0.89 2.48 3.06 (3) 123
N4—H4B⋯O12B 0.89 2.56 3.13 (2) 122
N4—H4B⋯O11B 0.89 2.15 3.04 (3) 175
N2—H2⋯O10ii 0.86 2.32 3.032 (5) 140
N5—H5⋯O11Ai 0.86 2.28 2.96 (3) 136
N5—H5⋯O12A 0.86 2.47 2.92 (3) 114
N5—H5⋯O12B 0.86 2.45 2.88 (2) 112
N5—H5⋯O11Bi 0.86 2.27 3.02 (3) 145
N3—H3A⋯O8ii 0.86 2.08 2.913 (5) 161
N3—H3B⋯O13Av 0.86 2.01 2.86 (3) 170
N3—H3B⋯O13Bv 0.86 2.13 2.94 (3) 157
N9—H9A⋯O15vi 0.86 2.06 2.883 (6) 161
N9—H9B⋯O5iii 0.86 2.15 2.844 (5) 137
N6—H6A⋯O13Ai 0.86 2.00 2.85 (3) 170
N6—H6A⋯O13Bi 0.86 2.03 2.86 (3) 161
N6—H6B⋯O12Avii 0.86 2.35 2.93 (3) 125
N6—H6B⋯O12Bvii 0.86 2.32 2.99 (3) 134
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, y, z-1]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vi) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (vii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

The two uncoordinated water mol­ecules form hydrogen bonds with each other, while also inter­acting with the amine nitro­gen (N1—H1B⋯O14) of the thio­semicarbazide ligand and a neighboring oxygen atom (O14—H14A⋯O4) of the citrate dianion in the second cobalt center (Fig. 1[link]). The nitrate anions are located between two CoC1 layers, whereas the water mol­ecules placed between the CoC1 and CoC2 layers. Thus, both the nitrate anions and the water mol­ecules contribute significantly to the structure of the complex by forming an extensive hydrogen-bond network and form a 1D layered assembly parallel to the c-axis direction. Although the hydrogen bonds are relatively weak, all potential donors and acceptors participate, providing notable cohesion to the overall structure (Fig. 2[link]).

[Figure 2]
Figure 2
View of the packing of mol­ecules in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O along the b axis.

4. Hirshfeld Surface Analysis

Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) analysis and fingerprint plot analysis (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were performed using CrystalExplorer21.5 (Wolff et al., 2012[Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.]) to investigate the inter­molecular inter­actions. These were both performed separately for CoC1 and CoC2, as shown in Figs. 3[link] and 4[link]. The red spots on the Hirshfeld surface are due to short O⋯H inter­actions, which are mapped on the 2D fingerprint plots. The mol­ecule exhibits a significant number of hydrogen-bonding inter­actions, with O⋯H/H⋯O, H⋯H, S⋯H/H⋯S, S⋯O/O⋯S, and N⋯H/H⋯N inter­actions accounting for 85.7% of the total inter­actions in CoC1. In contrast, inter­actions such as C⋯S, N⋯S, and S⋯S, play a minor role in the crystal cohesion. However, O⋯H/H⋯O, H⋯H, O⋯O, C⋯H/H⋯C and N⋯H/H⋯N contacts represent 99.2% of the total inter­actions in CoC2 (Figs. 3[link], 4[link]).

[Figure 3]
Figure 3
The three-dimensional Hirshfeld surfaces for (a) CoC1 and (b) CoC2 in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the Hirshfeld surfaces showing contributions of various contacts for CoC1 (upper row) and CoC2 (lower row) in [Co(tsc)3]2[Co(cit)2](NO3)4·4H2O.

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed that seven crystal structures for cobalt complexes with three thio­semicarbazide ligands have been reported [AZILOL (Liu et al., 2009[Liu, Y., Niu, Sh., Jin, J., Chen, Y., Yu, Z. & Yang, G. (2009). Chin. J. Appl. Chem. 26, 1439.]); BAYGUD (Rusanovskii et al., 1981[Rusanovskii, M. E., Samus, I. D., Samus, N. M., Bologa, O. A. & Belov, N. V. (1981). Dokl. Akad. Nauk SSSR, 260, 98.]); GEWNIF (Larsen et al., 1988[Larsen, E., Larsen, S. & Lunding, G. (1988). Inorg. Chem. 27, 3051-3054.]); KAZBAP (Bulimestru et al., 2005[Bulimestru, I. G., Petrenko, P. A., Gulea, A. P., Gdaniec, M. & Simonov, Y. A. (2005). Russ. J. Coord. Chem. 31, 420-428.]); THSMCB (Samus et al., 1981[Samus, I. D., Rusanovskii, M. E., Bologa, O. A. & Samus, N. M. (1981). Russ. J. Coord. Chem. 7, 120.]); WEWFUZ (Hussain, 1994[Hussain, M. S. (1994). Transition Met. Chem. 19, 95-98.]); YUNTUW (Zhang et al., 1994[Zhang, H., Niu, S., Yang, G., Nie, F. & Li, S. (1994). Transition Met. Chem. 19, 498-502.])]. The CSD includes around 40 structures where citric acid is directly bonded to a cobalt atom, in only three of which [ADENAY, (Herynek et al., 2000[Herynek, V., Bulte, J. W., Douglas, T. & Brooks, R. A. (2000). J. Biol. Inorg. Chem. 5, 51-56.]); IDANOR (Galloway et al., 2006[Galloway, K. W., Parkin, A., Harte, S. M., Ferguson, A. & Murrie, M. (2006). CrystEngComm, 8, 346-350.]); QEQVAJ (Shvelashvili et al., 2000[Shvelashvili, A. E., Miminoshvili, É. B., Belsky, V. K., Kuteliya, E. R., Sakvarelidze, T. N., Ediberidze, D. A. & Tavberidze, M. G. (2000). GEN, 3, 94-99.])] are two citric acid ligands bonded tridentately to form a hexa­coordinated complex. However, no complexes containing both citric acid and thio­semicarbazide with two different coordination centers have been reported.

6. Synthesis and crystallization

Co(NO3)2·6H2O (0. 291 g, 1 mmol), thio­semicarbazide (0.091 g, 1 mmol) and citric acid (0.192 g, 1 mmol) were dissolved separately in 70% ethanol (5 ml), mixed together and stirred for 2 h at 333 K. The obtained pink solution was filtered and left for crystallization. Single crystals of the title complex suitable for X-ray analysis were obtained by slow evaporation of the solution over a period of 10 days (yield: 60%).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All the hydrogen atoms were located in difference-Fourier maps and refined using an isotropic approximation.

Table 2
Experimental details

Crystal data
Chemical formula [Co(CH5N3S)3][Co(C6H6O7)2]0.5(NO3)2·2H2O
Mr 711.97
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 22.8868 (7), 10.7978 (3), 10.1946 (3)
β (°) 95.359 (3)
V3) 2508.35 (13)
Z 4
Radiation type Cu Kα
μ (mm−1) 11.05
Crystal size (mm) 0.12 × 0.08 × 0.06
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.419, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 23912, 4582, 3715
Rint 0.113
(sin θ/λ)max−1) 0.602
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.150, 1.00
No. of reflections 4582
No. of parameters 395
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.92, −0.80
Computer programs: CrysAlis PRO (Rigaku OD, 2021[Rigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis[tris(aminothiourea)cobalt(III)] bis[2-(carboxymethyl)-2-hydroxybutanedioato]cobalt(II) tetranitrate tetrahydrate top
Crystal data top
[Co(CH5N3S)3][Co(C6H6O7)2]0.5(NO3)2·2H2OF(000) = 1458
Mr = 711.97Dx = 1.885 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 22.8868 (7) ÅCell parameters from 6201 reflections
b = 10.7978 (3) Åθ = 3.9–71.3°
c = 10.1946 (3) ŵ = 11.05 mm1
β = 95.359 (3)°T = 293 K
V = 2508.35 (13) Å3Block, red
Z = 40.12 × 0.08 × 0.06 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
4582 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3715 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.113
Detector resolution: 10.0000 pixels mm-1θmax = 68.2°, θmin = 3.9°
ω scansh = 2727
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2021)
k = 1312
Tmin = 0.419, Tmax = 1.000l = 129
23912 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.1005P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4582 reflectionsΔρmax = 0.92 e Å3
395 parametersΔρmin = 0.80 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.82571 (3)0.55594 (6)0.44027 (6)0.02392 (19)
Co20.5000000.5000000.5000000.0268 (2)
S10.89780 (4)0.57221 (10)0.31121 (9)0.0299 (3)
S30.78409 (5)0.72745 (10)0.35381 (9)0.0307 (3)
S20.87457 (5)0.67648 (10)0.58544 (9)0.0320 (3)
O50.65342 (13)0.5523 (3)0.7133 (3)0.0348 (7)
O30.53844 (12)0.3496 (3)0.5979 (3)0.0283 (6)
H30.5312 (16)0.2737 (14)0.612 (4)0.042*
O40.58648 (13)0.5588 (3)0.5413 (3)0.0350 (7)
O60.66999 (14)0.3281 (3)0.5325 (3)0.0405 (8)
O90.78502 (15)0.3036 (3)0.7225 (3)0.0419 (8)
O20.50796 (15)0.6243 (3)0.8904 (3)0.0423 (8)
O140.64703 (16)0.5248 (4)0.2882 (4)0.0476 (8)
H14A0.6330070.5158550.3619580.071*
H14B0.6244760.5772040.2470380.071*
O10.48489 (15)0.5703 (3)0.6839 (3)0.0441 (8)
N70.75933 (15)0.5446 (3)0.5529 (3)0.0285 (7)
H7A0.7367070.4806940.5262680.034*
H7B0.7736260.5301220.6357010.034*
O70.67078 (16)0.1366 (3)0.6050 (4)0.0467 (8)
H70.6594690.0981570.6672270.070*
O100.78848 (16)0.3037 (3)0.9341 (3)0.0463 (8)
O150.59049 (15)0.6770 (3)0.0937 (4)0.0476 (8)
H15A0.5678690.6412290.0344980.071*
H15B0.5710660.7304150.1329220.071*
N10.78272 (16)0.4563 (3)0.2980 (3)0.0321 (8)
H1A0.7837100.3768460.3214440.038*
H1B0.7453170.4800000.2887310.038*
N80.72455 (15)0.6531 (3)0.5496 (3)0.0306 (8)
H80.6993470.6623360.6063060.037*
N40.86476 (15)0.4111 (3)0.5347 (3)0.0304 (8)
H4A0.8374430.3632990.5653480.037*
H4B0.8831110.3665160.4776270.037*
N100.79107 (16)0.3600 (3)0.8299 (3)0.0332 (8)
O80.79974 (18)0.4753 (3)0.8299 (3)0.0488 (9)
N20.80682 (18)0.4689 (4)0.1749 (3)0.0373 (9)
H20.7865820.4477000.1031110.045*
O11A0.9175 (10)0.224 (2)0.368 (3)0.039 (4)0.5
N110.96695 (17)0.2055 (4)0.4343 (4)0.0420 (9)
N50.90574 (18)0.4465 (4)0.6407 (4)0.0391 (9)
H50.9262740.3906690.6837670.047*
O12A0.9715 (11)0.240 (2)0.542 (2)0.061 (6)0.5
N30.88378 (19)0.5169 (4)0.0582 (4)0.0404 (9)
H3A0.8641280.4903350.0122620.048*
H3B0.9186460.5455880.0546210.048*
C70.60992 (17)0.5090 (4)0.6455 (4)0.0255 (8)
C60.58052 (17)0.3947 (4)0.6997 (4)0.0254 (8)
O13A0.9996 (14)0.114 (3)0.4205 (19)0.054 (5)0.5
N90.69505 (18)0.8363 (4)0.4571 (4)0.0452 (10)
H9A0.6687710.8421840.5117690.054*
H9B0.6983700.8935460.3996000.054*
N60.94963 (19)0.5926 (5)0.7769 (4)0.0523 (12)
H6A0.9685430.5349430.8209480.063*
H6B0.9547410.6687020.7999930.063*
C40.51204 (19)0.5526 (4)0.7954 (4)0.0313 (9)
C80.62522 (18)0.2924 (4)0.7339 (4)0.0289 (9)
H8A0.6538190.3208260.8036910.035*
H8B0.6054280.2206860.7661180.035*
C10.86049 (19)0.5134 (4)0.1715 (4)0.0309 (9)
C90.65656 (18)0.2557 (4)0.6148 (4)0.0318 (9)
C50.55003 (18)0.4372 (4)0.8193 (4)0.0284 (9)
H5A0.5256030.3701030.8462550.034*
H5B0.5796990.4535590.8914800.034*
C30.73011 (18)0.7399 (4)0.4613 (4)0.0295 (9)
C20.91294 (19)0.5643 (4)0.6744 (4)0.0349 (10)
O12B0.9840 (10)0.269 (2)0.539 (3)0.052 (5)0.5
O11B0.9289 (11)0.247 (2)0.353 (3)0.048 (5)0.5
O13B1.0011 (14)0.134 (3)0.3756 (19)0.056 (5)0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0275 (4)0.0221 (3)0.0217 (3)0.0001 (2)0.0001 (2)0.0010 (2)
Co20.0268 (5)0.0280 (5)0.0242 (5)0.0007 (4)0.0048 (4)0.0018 (4)
S10.0301 (5)0.0346 (6)0.0247 (5)0.0025 (4)0.0014 (4)0.0008 (4)
S30.0378 (6)0.0268 (5)0.0279 (5)0.0031 (4)0.0052 (4)0.0073 (4)
S20.0401 (6)0.0262 (5)0.0283 (5)0.0023 (4)0.0036 (4)0.0041 (4)
O50.0328 (16)0.0409 (18)0.0291 (15)0.0093 (13)0.0050 (12)0.0017 (13)
O30.0305 (15)0.0241 (15)0.0286 (14)0.0010 (12)0.0057 (11)0.0024 (12)
O40.0317 (16)0.0369 (18)0.0345 (16)0.0070 (13)0.0065 (12)0.0129 (13)
O60.0463 (19)0.0425 (19)0.0331 (16)0.0048 (15)0.0051 (14)0.0001 (15)
O90.060 (2)0.0325 (17)0.0323 (16)0.0073 (15)0.0012 (14)0.0055 (13)
O20.056 (2)0.0397 (19)0.0302 (16)0.0132 (16)0.0015 (14)0.0056 (14)
O140.050 (2)0.050 (2)0.0435 (19)0.0001 (16)0.0067 (16)0.0027 (16)
O10.052 (2)0.052 (2)0.0268 (16)0.0218 (16)0.0045 (14)0.0042 (14)
N70.0287 (18)0.0278 (18)0.0293 (17)0.0015 (14)0.0043 (14)0.0057 (14)
O70.057 (2)0.0302 (18)0.054 (2)0.0096 (15)0.0094 (16)0.0059 (15)
O100.068 (2)0.0372 (19)0.0330 (16)0.0033 (16)0.0030 (15)0.0072 (14)
O150.048 (2)0.042 (2)0.051 (2)0.0017 (16)0.0043 (16)0.0002 (16)
N10.0313 (19)0.0305 (19)0.0338 (19)0.0047 (15)0.0001 (15)0.0028 (15)
N80.0355 (19)0.0305 (19)0.0264 (17)0.0082 (15)0.0064 (14)0.0057 (14)
N40.0334 (19)0.0249 (18)0.0321 (18)0.0008 (14)0.0019 (14)0.0058 (14)
N100.036 (2)0.031 (2)0.0316 (19)0.0016 (15)0.0021 (15)0.0011 (16)
O80.082 (3)0.0189 (16)0.0432 (19)0.0046 (16)0.0058 (17)0.0012 (14)
N20.048 (2)0.041 (2)0.0225 (17)0.0086 (17)0.0003 (15)0.0089 (16)
O11A0.032 (8)0.037 (8)0.047 (8)0.006 (6)0.003 (5)0.006 (6)
N110.039 (2)0.036 (2)0.051 (3)0.0012 (18)0.0054 (19)0.0076 (19)
N50.047 (2)0.030 (2)0.037 (2)0.0117 (17)0.0112 (17)0.0004 (16)
O12A0.063 (12)0.077 (14)0.038 (7)0.003 (8)0.015 (6)0.015 (7)
N30.054 (2)0.040 (2)0.0283 (19)0.0080 (18)0.0103 (17)0.0063 (17)
C70.027 (2)0.027 (2)0.0228 (19)0.0032 (16)0.0032 (16)0.0031 (16)
C60.0249 (19)0.025 (2)0.0254 (19)0.0001 (16)0.0040 (15)0.0010 (16)
O13A0.041 (6)0.060 (10)0.061 (12)0.003 (6)0.008 (9)0.024 (9)
N90.055 (3)0.042 (2)0.040 (2)0.021 (2)0.0136 (18)0.0125 (18)
N60.056 (3)0.050 (3)0.047 (2)0.000 (2)0.020 (2)0.004 (2)
C40.035 (2)0.032 (2)0.027 (2)0.0028 (18)0.0008 (17)0.0030 (17)
C80.033 (2)0.028 (2)0.0257 (19)0.0080 (17)0.0003 (16)0.0022 (16)
C10.038 (2)0.020 (2)0.034 (2)0.0007 (17)0.0008 (18)0.0002 (16)
C90.030 (2)0.033 (2)0.031 (2)0.0044 (17)0.0053 (17)0.0028 (19)
C50.029 (2)0.027 (2)0.028 (2)0.0047 (16)0.0007 (16)0.0030 (16)
C30.030 (2)0.032 (2)0.026 (2)0.0060 (17)0.0009 (16)0.0007 (17)
C20.034 (2)0.045 (3)0.025 (2)0.0021 (19)0.0003 (17)0.0003 (18)
O12B0.040 (8)0.048 (8)0.067 (8)0.006 (7)0.009 (6)0.030 (6)
O11B0.046 (10)0.056 (10)0.039 (7)0.019 (6)0.005 (7)0.005 (6)
O13B0.039 (5)0.064 (12)0.067 (13)0.005 (6)0.021 (10)0.029 (10)
Geometric parameters (Å, º) top
Co1—S12.2112 (12)N1—N21.424 (5)
Co1—S32.2265 (11)N8—H80.8600
Co1—S22.1967 (11)N8—C31.314 (5)
Co1—N71.992 (3)N4—H4A0.8900
Co1—N11.991 (3)N4—H4B0.8900
Co1—N42.002 (4)N4—N51.416 (5)
Co2—O32.060 (3)N10—O81.260 (5)
Co2—O3i2.060 (3)N2—H20.8600
Co2—O42.084 (3)N2—C11.322 (6)
Co2—O4i2.084 (3)O11A—N111.28 (3)
Co2—O12.081 (3)N11—O12A1.15 (2)
Co2—O1i2.081 (3)N11—O13A1.25 (3)
S1—C11.712 (4)N11—O12B1.30 (2)
S3—C31.731 (4)N11—O11B1.23 (3)
S2—C21.707 (5)N11—O13B1.29 (3)
O5—C71.249 (5)N5—H50.8600
O3—H30.852 (9)N5—C21.324 (6)
O3—C61.434 (4)N3—H3A0.8600
O4—C71.264 (5)N3—H3B0.8600
O6—C91.207 (5)N3—C11.318 (6)
O9—N101.249 (5)C7—C61.533 (6)
O2—C41.251 (5)C6—C81.524 (5)
O14—H14A0.8497C6—C51.530 (6)
O14—H14B0.8500N9—H9A0.8600
O1—C41.258 (5)N9—H9B0.8600
N7—H7A0.8900N9—C31.313 (6)
N7—H7B0.8900N6—H6A0.8600
N7—N81.414 (5)N6—H6B0.8600
O7—H70.8200N6—C21.314 (6)
O7—C91.333 (5)C4—C51.526 (6)
O10—N101.231 (5)C8—H8A0.9700
O15—H15A0.8502C8—H8B0.9700
O15—H15B0.8506C8—C91.520 (6)
N1—H1A0.8900C5—H5A0.9700
N1—H1B0.8900C5—H5B0.9700
S1—Co1—S390.79 (4)N5—N4—H4B109.0
S2—Co1—S189.58 (4)O9—N10—O8119.1 (4)
S2—Co1—S386.90 (4)O10—N10—O9120.3 (4)
N7—Co1—S1178.29 (11)O10—N10—O8120.6 (4)
N7—Co1—S387.60 (10)N1—N2—H2120.2
N7—Co1—S290.89 (11)C1—N2—N1119.7 (3)
N7—Co1—N490.30 (15)C1—N2—H2120.2
N1—Co1—S187.42 (11)O12A—N11—O11A116.5 (18)
N1—Co1—S389.84 (11)O12A—N11—O13A111.1 (18)
N1—Co1—S2175.53 (11)O13A—N11—O11A125.0 (18)
N1—Co1—N792.01 (15)O11B—N11—O12B120.3 (18)
N1—Co1—N495.51 (15)O11B—N11—O13B109.0 (18)
N4—Co1—S191.36 (11)O13B—N11—O12B123.4 (17)
N4—Co1—S3174.32 (10)N4—N5—H5119.5
N4—Co1—S287.86 (10)C2—N5—N4121.0 (3)
O3i—Co2—O3180.0C2—N5—H5119.5
O3i—Co2—O4i77.75 (11)H3A—N3—H3B120.0
O3—Co2—O477.75 (11)C1—N3—H3A120.0
O3i—Co2—O4102.25 (11)C1—N3—H3B120.0
O3—Co2—O4i102.25 (11)O5—C7—O4124.0 (4)
O3i—Co2—O1i87.18 (12)O5—C7—C6117.1 (3)
O3i—Co2—O192.82 (12)O4—C7—C6118.6 (3)
O3—Co2—O1i92.82 (12)O3—C6—C7107.5 (3)
O3—Co2—O187.18 (12)O3—C6—C8108.1 (3)
O4i—Co2—O4180.0O3—C6—C5110.7 (3)
O1i—Co2—O493.37 (14)C8—C6—C7111.0 (3)
O1i—Co2—O4i86.63 (14)C8—C6—C5112.4 (3)
O1—Co2—O4i93.36 (14)C5—C6—C7107.1 (3)
O1—Co2—O486.64 (14)H9A—N9—H9B120.0
O1i—Co2—O1180.0C3—N9—H9A120.0
C1—S1—Co197.09 (16)C3—N9—H9B120.0
C3—S3—Co196.78 (14)H6A—N6—H6B120.0
C2—S2—Co198.16 (16)C2—N6—H6A120.0
Co2—O3—H3139.7 (18)C2—N6—H6B120.0
C6—O3—Co2108.1 (2)O2—C4—O1122.6 (4)
C6—O3—H3109.2 (16)O2—C4—C5117.7 (4)
C7—O4—Co2111.1 (3)O1—C4—C5119.6 (4)
H14A—O14—H14B104.5C6—C8—H8A109.4
C4—O1—Co2130.4 (3)C6—C8—H8B109.4
Co1—N7—H7A108.9H8A—C8—H8B108.0
Co1—N7—H7B108.9C9—C8—C6111.3 (3)
H7A—N7—H7B107.8C9—C8—H8A109.4
N8—N7—Co1113.1 (2)C9—C8—H8B109.4
N8—N7—H7A108.9N2—C1—S1120.3 (3)
N8—N7—H7B108.9N3—C1—S1120.5 (3)
C9—O7—H7109.5N3—C1—N2119.1 (4)
H15A—O15—H15B109.4O6—C9—O7119.5 (4)
Co1—N1—H1A109.1O6—C9—C8123.8 (4)
Co1—N1—H1B109.1O7—C9—C8116.7 (4)
H1A—N1—H1B107.8C6—C5—H5A108.7
N2—N1—Co1112.6 (3)C6—C5—H5B108.7
N2—N1—H1A109.1C4—C5—C6114.4 (3)
N2—N1—H1B109.1C4—C5—H5A108.7
N7—N8—H8119.4C4—C5—H5B108.7
C3—N8—N7121.1 (3)H5A—C5—H5B107.6
C3—N8—H8119.4N8—C3—S3119.9 (3)
Co1—N4—H4A109.0N9—C3—S3120.7 (3)
Co1—N4—H4B109.0N9—C3—N8119.4 (4)
H4A—N4—H4B107.8N5—C2—S2119.9 (3)
N5—N4—Co1113.0 (3)N6—C2—S2121.1 (4)
N5—N4—H4A109.0N6—C2—N5119.0 (4)
Co1—S1—C1—N24.9 (4)O3—C6—C8—C959.8 (4)
Co1—S1—C1—N3172.1 (3)O3—C6—C5—C468.1 (4)
Co1—S3—C3—N84.3 (4)O4—C7—C6—O314.4 (5)
Co1—S3—C3—N9174.6 (4)O4—C7—C6—C8132.4 (4)
Co1—S2—C2—N50.1 (4)O4—C7—C6—C5104.6 (4)
Co1—S2—C2—N6179.7 (4)O2—C4—C5—C6147.9 (4)
Co1—N7—N8—C312.1 (5)O1—C4—C5—C634.2 (6)
Co1—N1—N2—C117.5 (5)N7—N8—C3—S34.4 (5)
Co1—N4—N5—C23.9 (6)N7—N8—C3—N9176.6 (4)
Co2—O3—C6—C737.4 (3)N1—N2—C1—S17.5 (6)
Co2—O3—C6—C8157.3 (3)N1—N2—C1—N3175.4 (4)
Co2—O3—C6—C579.3 (3)N4—N5—C2—S22.6 (6)
Co2—O4—C7—O5158.1 (3)N4—N5—C2—N6177.1 (4)
Co2—O4—C7—C616.3 (4)C7—C6—C8—C957.8 (4)
Co2—O1—C4—O2160.6 (4)C7—C6—C5—C448.8 (4)
Co2—O1—C4—C521.6 (7)C6—C8—C9—O636.7 (6)
O5—C7—C6—O3170.8 (3)C6—C8—C9—O7145.1 (4)
O5—C7—C6—C852.8 (5)C8—C6—C5—C4170.9 (4)
O5—C7—C6—C570.2 (4)C5—C6—C8—C9177.7 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14B···O150.852.002.798 (5)157
N7—H7A···O60.892.253.100 (5)159
N7—H7B···O80.892.102.983 (5)172
O7—H7···O14ii0.821.852.648 (5)163
O15—H15A···O2iii0.851.922.730 (5)158
O15—H15B···O4iv0.852.502.902 (5)110
N1—H1A···O9v0.892.202.912 (5)137
N1—H1A···O10v0.892.263.128 (5)165
N1—H1B···O140.892.303.185 (5)172
N8—H8···O50.861.982.670 (5)136
N4—H4A···O90.892.193.000 (5)152
N4—H4A···O10v0.892.453.024 (5)122
N4—H4B···O11A0.892.092.96 (3)166
N4—H4B···O12A0.892.483.06 (3)123
N4—H4B···O12B0.892.563.13 (2)122
N4—H4B···O11B0.892.153.04 (3)175
N2—H2···O10iii0.862.323.032 (5)140
N5—H5···O11Aii0.862.282.96 (3)136
N5—H5···O12A0.862.472.92 (3)114
N5—H5···O12B0.862.452.88 (2)112
N5—H5···O11Bii0.862.273.02 (3)145
N3—H3A···O8iii0.862.082.913 (5)161
N3—H3B···O13Avi0.862.012.86 (3)170
N3—H3B···O13Bvi0.862.132.94 (3)157
N9—H9A···O15vii0.862.062.883 (6)161
N9—H9B···O5iv0.862.152.844 (5)137
N6—H6A···O13Aii0.862.002.85 (3)170
N6—H6A···O13Bii0.862.032.86 (3)161
N6—H6B···O12Aviii0.862.352.93 (3)125
N6—H6B···O12Bviii0.862.322.99 (3)134
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y, z1; (iv) x, y+3/2, z1/2; (v) x, y+1/2, z1/2; (vi) x+2, y+1/2, z+1/2; (vii) x, y+3/2, z+1/2; (viii) x+2, y+1/2, z+3/2.
 

Acknowledgements

BT is grateful to the Frank H. Allen International Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD).

References

First citationAndres, S. A., Bajaj, K., Vishnosky, N. S., Peterson, M. A., Mashuta, M. S., Buchanan, R. M., Bates, P. J. & Grapperhaus, C. A. (2020). Inorg. Chem. 59, 4924–4935.  CrossRef CAS PubMed Google Scholar
First citationAntsyshkina, A. S., Sadikov, G. G., Koksharova, T. V. & Sergienko, V. S. (2014). Russ. J. Inorg. Chem. 59, 50–57.  CrossRef CAS Google Scholar
First citationBulimestru, I. G., Petrenko, P. A., Gulea, A. P., Gdaniec, M. & Simonov, Y. A. (2005). Russ. J. Coord. Chem. 31, 420–428.  CrossRef CAS Google Scholar
First citationBurrows, A. D., Menzer, S., Mingos, D. M. P., White, A. J. & Williams, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 4237–4240.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGalloway, K. W., Parkin, A., Harte, S. M., Ferguson, A. & Murrie, M. (2006). CrystEngComm, 8, 346–350.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHerynek, V., Bulte, J. W., Douglas, T. & Brooks, R. A. (2000). J. Biol. Inorg. Chem. 5, 51–56.  CrossRef PubMed CAS Google Scholar
First citationHussain, M. S. (1994). Transition Met. Chem. 19, 95–98.  Google Scholar
First citationIbrahim, K. M. & Bekheit, M. M. (1988). Transition Met. Chem. 13, 230–232.  CrossRef CAS Google Scholar
First citationKonarev, D. V., Litvinov, A. L., Neretin, I. S., Drichko, N. V., Slovokhotov, Y. L., Lyubovskaya, R. N., Howard, J. A. K. & Yufit, D. S. (2004). Cryst. Growth Des. 4, 643–646.  CrossRef CAS Google Scholar
First citationKoolivand, M., Nikoorazm, M., Ghorbani-Choghamarani, A., Azadbakht, R. & Tahmasbi, B. (2021). Sci. Rep. 11, 24475.  CrossRef PubMed Google Scholar
First citationLarsen, E., Larsen, S. & Lunding, G. (1988). Inorg. Chem. 27, 3051–3054.  CrossRef CAS Google Scholar
First citationLiu, Y., Niu, Sh., Jin, J., Chen, Y., Yu, Z. & Yang, G. (2009). Chin. J. Appl. Chem. 26, 1439.  Google Scholar
First citationRigaku OD (2021). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRusanovskii, M. E., Samus, I. D., Samus, N. M., Bologa, O. A. & Belov, N. V. (1981). Dokl. Akad. Nauk SSSR, 260, 98.  Google Scholar
First citationSamus, I. D., Rusanovskii, M. E., Bologa, O. A. & Samus, N. M. (1981). Russ. J. Coord. Chem. 7, 120.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShvelashvili, A. E., Miminoshvili, É. B., Belsky, V. K., Kuteliya, E. R., Sakvarelidze, T. N., Ediberidze, D. A. & Tavberidze, M. G. (2000). GEN, 3, 94–99.  Google Scholar
First citationSingh, V., Palakkeezhillam, V. N. V., Manakkadan, V., Rasin, P., Valsan, A. K., Kumar, V. S. & Sreekanth, A. (2023). Polyhedron, 245, 116658.  Web of Science CrossRef Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationWakizaka, M. & Yamashita, M. (2024). Eur. J. Inorg. Chem. 27, e202300740.  CrossRef Google Scholar
First citationWolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). Crystal Explorer. University of Western Australia, Perth.  Google Scholar
First citationYang, R., Shen, X. Q., Mao, H. Y., Zhang, H. Y., Wu, Q. A., Wang, H., Hou, H. & Zhu, Y. (2006). Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 36, 617–620.  CrossRef CAS Google Scholar
First citationZhang, H., Niu, S., Yang, G., Nie, F. & Li, S. (1994). Transition Met. Chem. 19, 498–502.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds