research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 2-oxo-2H-chromen-4-yl 4-bromo­benzoate: work carried out as part of the CNRS AFRAMED project

crossmark logo

aLaboratory of Molecular Chemistry and Materials (LC2M), University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Environmental Science and Technology, University Jean Lorougnon GUEDE of Daloa, BP 150 Daloa, Côte d'Ivoire, cLaboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso, dLaboratory of Environment, Health and Society, University of Nouakchott, BP 880-Nouakchott, Mauritania, and eCRM2, CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy CEDEX BP 70239, France
*Correspondence e-mail: emmanuel.wenger@univ-lorraine.fr;_sorghobrahima3@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 3 December 2024; accepted 10 January 2025; online 7 February 2025)

In the title compound, C16H9BrO4, the dihedral angle between the chromen-2-one ring system (r.m.s. deviation = 0.006 Å) and the bromo­benzene ring is 10.29 (6)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds and ππ stacking inter­actions. According to a Hirshfeld surface analysis, H⋯H (22.4%), O⋯H/H⋯O (23.6%) and C⋯H/H⋯C (21%) inter­actions are the most significant contributors to the crystal packing.

1. AFRAMED and chemical context

This work was carried out as part of the CNRS AFRAMED project, which aims to train African Partners (young lecturers with permanent positions) in X-ray diffraction and provide regional laboratories, which serve as focal points to assist their colleagues for remote measurements (Abdel-Aal et al., 2023[Abdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www.iucr.org/news/newsletter/volume-31/number-1/appui-a-la-form­ation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa.]). Coumarin derivatives remain one of our research priorities due to their versatile range of activities, such as anti­coagulant, anti-inflammatory, anti­viral, anti­microbial, anti­cancer, anti­oxidant (Todorov et al., 2023[Todorov, L., Saso, L. & Kostova, I. (2023). J. Pharm. 16, 651.]), anti-glaucoma (Ziki et al., 2023[Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10-33.]) and anti-Parkisonian effects (Kambo et al., 2024[Kambo, K. R., Kouman, K. C., Akonan, L., Abou, A., Megnassan, E., Kakou-Yao, R. & Tenon, A. J. (2024). J. Pharm. Res. Int. 36, 92-116.]). Here we report one result of this training: the synthesis, crystal structure and Hirshfeld surface analysis of the title coumarin derivative, C16H9BrO4 (I).

[Scheme 1]

2. Structural commentary

Compound (I) crystallizes in the ortho­rhom­bic space group P212121 with one mol­ecule in the asymmetric unit (Fig. 1[link]). The side chain is titled with respect to the chromen-2-one ring system with torsion angles C9—C8—O2—C7 = −12.3 (4)° and C16—C8—O2—C7 = 169.9 (2)°. As expected, the chromen-2-one ring (C8—H16) system is almost planar, with a maximum deviation from the mean plane of 0.030 (2) Å for atom O3. The dihedral angle between this coumarin ring and the C1–C6 phenyl group in the 4-bromo­benzoate moiety is 10.29 (6)°. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring, as shown by the differences between C8—C9 [1.350 (3) Å] and C9—C10 [1.452 (4) Å]. This suggests that the electron density is preferentially located in the formal C8=C9 double bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016[Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926-932.]; Ouédraogo et al., 2018[Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530-534.]). One intra­molecular short contact exists between the C9—H9 methine group and atom O1 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9⋯O1 1.00 (4) 2.26 (4) 2.788 (3) 111 (3)
C15—H15⋯O3i 0.97 (3) 2.36 (4) 3.079 (3) 131 (3)
Symmetry code: (i) [x+1, y-1, z].
[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features and Hirshfeld surface analysis

In the crystal of (I), a weak C15—H15⋯O3 hydrogen bond links the mol­ecules into [1[\overline{1}]0] chains (Table 1[link], Fig. 2[link]). The three-dimensional architecture is further consolidated by aromatic π-stacking inter­actions: the Cg1⋯Cg3(1 + x, y, z) separation is 3.8770 (19) Å, where Cg1 and Cg3 are the centroids of the C8–C10/O4/C11/C16 and C11–C16 rings, respectively.

[Figure 2]
Figure 2
The unit-cell packing of (I) showing a hydrogen-bonded [1[\overline{1}]0] chain: dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen-bonding inter­actions have been omitted for clarity.

The inter­molecular inter­actions in (I) were further qu­anti­fied by Hirshfeld surface analysis (Fig. 3[link]) using CrystalExplorer (Spackman et al., 2023[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The inter­actions mentioned above are confirmed by the two-dimensional fingerprint plots for (I) (Fig. 4[link]). The greatest contributions are from O⋯H/H⋯O (23.6%), H⋯H (22.4%) and C⋯H/H⋯C (21%) while the Br⋯H/H⋯Br and Br⋯C/C⋯Br contacts contribute 9.6 and 6.4%, respectively.

[Figure 3]
Figure 3
The Hirshfeld surface of (I) mapped over dnorm. Dotted lines (magenta) represent hydrogen bonds.
[Figure 4]
Figure 4
Fingerprint plots of (I): (a) H⋯H, (b) O⋯H, (c) C⋯O, (d) C⋯H, (e) Br⋯O, (f) Br⋯H and (g) Br⋯C: di is the closest inter­nal distance from a given point on the Hirshfeld surface and de is the closest external contact.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.43; update 3, September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures having a coumarin motif similar to (I) returned thirteen hits, including (7-chloro-2-oxo-2H-chromen-4-yl)methyl­dimethyl­carbamodi­thio­ate (CSD refcode XUFGOW; Kavitha et al., 2015[Kavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263-o264.]); (6-bromo-2-oxo-2H-chromen-4-yl)meth­yl di­ethyl­carbamodi­thio­ate (NUZJOJ; Vinduvahini et al., 2016[Vinduvahini, M., Anitha, B. R., Mahesh Kumar, K., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 2x160015.]); (5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate (UDOGIF01; Anitha et al., 2016[Anitha, B. R., Roopashree, K. R., Mahesh Kumar, K., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.]); (7-fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodi­thio­ate (UYVEE; Anitha et al., 2015[Anitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928-o929.]); (7,8-dimethyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodi­thio­ate (NAGWAW; Ravi et al., 2016[Ravi, A. J., Mahesh Kumar, K. & Devarajegowda (2016). IUCrData, 1x160171.]); methyl 2-[(2-oxo-2H-1-benzo­pyran-4-yl)amino]­benzoate (DIWPAE; Hollauer et al., 2023[Hollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842-846.]). In 2-oxo-2H-chromen-4-yl 4-(dimetyl­amino)­benzoate (AYOXAO; Abou et al., 2011[Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269-o2270.]), the benzoate ring is oriented at a dihedral angle of 43.43 (6)° with the chromene ring system while in 2-oxo-2H-chromen-4-yl 4-tert-butyl­benzoate (GARHAK; Abou et et al., 2012b[Abou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537-o538.]), the benzene ring of the benzoate group is oriented at a dihedral angle of 60.70 (7)° with the chromene ring system. In 2-oxo-2H-chromen-4-yl 4-meth­oxy­benzoate (PECVUQ; Abou et al., 2012a[Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438-o3439.]), the chromen-2-one ring and the 4-meth­oxy­benzoate side chain are inclined to one another at a dihedral angle of 69.82 (9)° and in 2-oxo-2H-chromen-4-yl 4-methyl­benzoate (AFOQET; Abou et al., 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]), the chromene-2-one ring and the 4-methyl­benzoate side chain are inclined to one another at a dihedral angle of 64.79 (10)° in one mol­ecule and 88.3 (1)° in the other. In 2-oxo-2H-chromen-4-yl propionate (AGAREH; Bibila Mayaya Bisseyou et al., 2013[Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125-o1126.]), the 2-oxo-2H-chromene ring system and the non-H atom of the 4-substituent all lie on a crystallographic mirror plane. In 2-oxo-2H-1-benzo­pyran-4-yl 3,3-di­methyl­butano­ate (JOMHUS; Bationo et al., 2024a[Bationo, V., Ziki, E., Sombié, C. B., Semdé, R. & Djandé, A. (2024a). IUCrData, 9, x240494.]), the 2-oxo-2H-1-benzo­pyran-4-yl 3,3-di­methyl­butano­ate the coumarin ring system is oriented at a dihedral angle of 56.24 (18)° with the butano­ate moiety. In 2-oxo-2H-chromen-4-yl penta­noate (PONXUP; Bationo et al., 2024b[Bationo, V., Kambo, K. R., Sombié, C. B., Semdé, R., Francotte, P. & Djandé, A. (2024b). Acta Cryst. E80, 767-770.]), the dihedral angle between the coumarin ring system and the penta­noate is 36.26 (8)°.

5. Synthesis and crystallization

To a solution of 4-bromo­benzoyl chloride (6.2 mmol, 1.35 g) in dried tetra­hydro­furn (30 ml) were added dried tri­ethyl­amine (3 molar equivalents, 2.6 ml) and 4-hy­droxy­coumarin (6.17 mmol, 1.00 g) in small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloro­form. The solution was acidified with dilute (5%) hydro­chloric acid until its discoloration was complete. The organic layers were extracted, concentrated under vacuum until a slight cloudiness was obtained and left in an ice bath. The resulting crude product was filtered off with suction, washed with petroleum ether and purified by recrystallization from a chloro­form–hexane solvent mixture: yield 71%.

Colorless crystals of (I) suitable for data collection were obtained by recrystallization from acetone solution. The melting point was measured in an open capillary with a Cole–Parmer STUART MP. 800D Series-Melting S apparatus and is thus uncorrected, m.p. 423–425 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in difference-Fourier maps and their positions and Uiso values were freely refined.

Table 2
Experimental details

Crystal data
Chemical formula C16H9BrO4
Mr 345.14
Crystal system, space group Orthorhombic, P212121
Temperature (K) 100
a, b, c (Å) 5.4003 (11), 6.367 (2), 38.404 (8)
V3) 1320.4 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.13
Crystal size (mm) 0.27 × 0.21 × 0.13
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.731, 0.895
No. of measured, independent and observed [I > 2σ(I)] reflections 37156, 4975, 4880
Rint 0.034
(sin θ/λ)max−1) 0.768
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.064, 1.11
No. of reflections 4975
No. of parameters 226
No. of restraints 2
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.89, −0.87
Absolute structure Flack x determined using 1967 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.008 (3)
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

2-Oxo-2H-chromen-4-yl 4-bromobenzoate top
Crystal data top
C16H9BrO4Dx = 1.736 Mg m3
Mr = 345.14Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 4940 reflections
a = 5.4003 (11) Åθ = 2.3–30.6°
b = 6.367 (2) ŵ = 3.13 mm1
c = 38.404 (8) ÅT = 100 K
V = 1320.4 (6) Å3Prism, colourless
Z = 40.27 × 0.21 × 0.13 mm
F(000) = 688
Data collection top
Bruker D8 Venture
diffractometer
4880 reflections with I > 2σ(I)
φ and ω scansRint = 0.034
Absorption correction: multi-scan
(SADBAS; Krause et al., 2015)
θmax = 33.1°, θmin = 3.2°
Tmin = 0.731, Tmax = 0.895h = 78
37156 measured reflectionsk = 99
4975 independent reflectionsl = 5858
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0042P)2 + 1.5505P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.064(Δ/σ)max = 0.001
S = 1.11Δρmax = 0.89 e Å3
4975 reflectionsΔρmin = 0.87 e Å3
226 parametersAbsolute structure: Flack x determined using 1967 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
2 restraintsAbsolute structure parameter: 0.008 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.42360 (5)0.17161 (4)0.27424 (2)0.02298 (6)
C50.3903 (4)0.3282 (4)0.34326 (6)0.0189 (4)
O20.2448 (3)0.6887 (3)0.37643 (4)0.0196 (3)
C20.0989 (5)0.1701 (5)0.28876 (6)0.0209 (4)
O30.1051 (4)1.3465 (3)0.41125 (5)0.0301 (4)
C80.2098 (5)0.8636 (4)0.39677 (6)0.0173 (4)
O40.2035 (4)1.2090 (3)0.44169 (5)0.0231 (4)
O10.1096 (4)0.7132 (3)0.34419 (6)0.0291 (5)
C70.0804 (6)0.6245 (4)0.35106 (6)0.0189 (4)
C30.0272 (4)0.3517 (4)0.30635 (6)0.0192 (4)
C60.4630 (5)0.1452 (4)0.32592 (6)0.0188 (4)
C150.5666 (5)0.7219 (4)0.43182 (6)0.0190 (4)
C40.1718 (5)0.4307 (4)0.33372 (6)0.0175 (4)
C90.0415 (5)1.0175 (4)0.39187 (7)0.0209 (5)
C120.5369 (5)1.0775 (4)0.47484 (7)0.0225 (5)
C110.3749 (5)1.0522 (4)0.44687 (6)0.0183 (4)
C100.0358 (5)1.1996 (4)0.41461 (7)0.0219 (5)
C160.3865 (5)0.8749 (4)0.42525 (6)0.0162 (4)
C140.7299 (5)0.7462 (4)0.45953 (7)0.0217 (5)
C10.3163 (5)0.0707 (4)0.29888 (6)0.0179 (4)
C130.7138 (5)0.9227 (5)0.48089 (7)0.0228 (5)
H150.579 (7)0.600 (5)0.4167 (8)0.019 (8)*
H90.096 (8)1.018 (6)0.3743 (9)0.029 (9)*
H20.004 (4)0.106 (4)0.2698 (6)0.026 (9)*
H130.823 (6)0.936 (5)0.5001 (9)0.021 (9)*
H30.124 (6)0.423 (5)0.2999 (8)0.015 (8)*
H120.518 (6)1.206 (6)0.4896 (9)0.027 (9)*
H60.597 (7)0.074 (5)0.3328 (8)0.016 (8)*
H140.851 (7)0.640 (6)0.4629 (9)0.026 (9)*
H50.492 (7)0.386 (6)0.3636 (10)0.037 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02724 (11)0.02177 (10)0.01994 (10)0.00231 (11)0.00180 (10)0.00603 (9)
C50.0192 (10)0.0202 (10)0.0172 (9)0.0005 (10)0.0020 (8)0.0020 (9)
O20.0223 (8)0.0163 (8)0.0201 (8)0.0048 (7)0.0044 (6)0.0035 (7)
C20.0224 (11)0.0223 (10)0.0181 (9)0.0002 (12)0.0044 (8)0.0000 (9)
O30.0362 (11)0.0234 (9)0.0308 (9)0.0166 (10)0.0030 (8)0.0011 (8)
C80.0202 (10)0.0147 (10)0.0169 (9)0.0023 (8)0.0016 (8)0.0000 (7)
O40.0279 (9)0.0174 (9)0.0238 (8)0.0066 (7)0.0018 (7)0.0035 (7)
O10.0261 (10)0.0266 (10)0.0345 (10)0.0087 (8)0.0092 (8)0.0063 (8)
C70.0213 (10)0.0174 (10)0.0182 (9)0.0006 (9)0.0019 (9)0.0013 (7)
C30.0190 (10)0.0192 (11)0.0194 (9)0.0003 (9)0.0020 (8)0.0010 (8)
C60.0185 (11)0.0193 (11)0.0185 (9)0.0014 (9)0.0014 (8)0.0014 (8)
C150.0213 (10)0.0177 (10)0.0180 (9)0.0037 (9)0.0007 (9)0.0007 (7)
C40.0199 (10)0.0177 (10)0.0148 (9)0.0009 (9)0.0008 (8)0.0002 (8)
C90.0231 (12)0.0187 (10)0.0210 (10)0.0073 (9)0.0002 (9)0.0000 (8)
C120.0266 (14)0.0215 (11)0.0195 (10)0.0011 (10)0.0015 (9)0.0045 (9)
C110.0207 (12)0.0162 (10)0.0181 (10)0.0020 (8)0.0019 (8)0.0005 (8)
C100.0248 (12)0.0177 (11)0.0231 (10)0.0057 (9)0.0043 (9)0.0003 (8)
C160.0190 (11)0.0144 (9)0.0150 (9)0.0017 (8)0.0021 (8)0.0002 (7)
C140.0228 (11)0.0225 (11)0.0199 (11)0.0037 (10)0.0014 (9)0.0002 (9)
C10.0216 (11)0.0178 (10)0.0141 (9)0.0010 (9)0.0029 (8)0.0009 (8)
C130.0242 (12)0.0247 (12)0.0195 (11)0.0020 (10)0.0020 (9)0.0015 (9)
Geometric parameters (Å, º) top
Br1—C11.900 (3)C3—C41.403 (3)
C5—C41.397 (4)C3—H30.97 (3)
C5—C61.398 (4)C6—C11.389 (3)
C5—H51.02 (4)C6—H60.89 (4)
O2—C81.373 (3)C15—C141.391 (4)
O2—C71.380 (3)C15—C161.400 (3)
C2—C11.389 (4)C15—H150.97 (3)
C2—C31.394 (4)C9—C101.452 (4)
C2—H21.002 (12)C9—H91.00 (4)
O3—C101.213 (3)C12—C131.392 (4)
C8—C91.350 (3)C12—C111.394 (4)
C8—C161.453 (3)C12—H121.00 (4)
O4—C111.376 (3)C11—C161.403 (3)
O4—C101.380 (3)C14—C131.394 (4)
O1—C71.200 (3)C14—H140.95 (4)
C7—C41.487 (3)C13—H130.95 (3)
C4—C5—C6120.1 (2)C3—C4—C7116.6 (2)
C4—C5—H5119 (2)C8—C9—C10120.7 (2)
C6—C5—H5121 (2)C8—C9—H9127 (2)
C8—O2—C7123.6 (2)C10—C9—H9113 (2)
C1—C2—C3118.5 (2)C13—C12—C11118.5 (2)
C1—C2—H2119.2 (9)C13—C12—H12124 (2)
C3—C2—H2122.3 (9)C11—C12—H12118 (2)
C9—C8—O2127.0 (2)O4—C11—C12116.7 (2)
C9—C8—C16120.7 (2)O4—C11—C16121.9 (2)
O2—C8—C16112.2 (2)C12—C11—C16121.4 (2)
C11—O4—C10121.3 (2)O3—C10—O4117.3 (2)
O1—C7—O2124.5 (2)O3—C10—C9124.4 (3)
O1—C7—C4125.2 (2)O4—C10—C9118.3 (2)
O2—C7—C4110.4 (2)C15—C16—C11119.0 (2)
C2—C3—C4120.4 (2)C15—C16—C8123.9 (2)
C2—C3—H3120.1 (19)C11—C16—C8117.2 (2)
C4—C3—H3119.5 (19)C15—C14—C13120.0 (3)
C1—C6—C5118.7 (2)C15—C14—H14118 (2)
C1—C6—H6120 (2)C13—C14—H14122 (2)
C5—C6—H6121 (2)C2—C1—C6122.4 (2)
C14—C15—C16120.1 (2)C2—C1—Br1119.22 (19)
C14—C15—H15120 (2)C6—C1—Br1118.39 (19)
C16—C15—H15120 (2)C12—C13—C14121.0 (3)
C5—C4—C3119.9 (2)C12—C13—H13120 (2)
C5—C4—C7123.4 (2)C14—C13—H13119 (2)
C7—O2—C8—C912.3 (4)C11—O4—C10—C91.0 (4)
C7—O2—C8—C16169.9 (2)C8—C9—C10—O3177.9 (3)
C8—O2—C7—O10.3 (4)C8—C9—C10—O41.3 (4)
C8—O2—C7—C4179.9 (2)C14—C15—C16—C110.3 (4)
C1—C2—C3—C40.3 (4)C14—C15—C16—C8179.5 (2)
C4—C5—C6—C11.1 (4)O4—C11—C16—C15179.5 (2)
C6—C5—C4—C31.0 (4)C12—C11—C16—C150.7 (4)
C6—C5—C4—C7179.4 (2)O4—C11—C16—C80.3 (3)
C2—C3—C4—C50.6 (4)C12—C11—C16—C8179.9 (2)
C2—C3—C4—C7179.8 (2)C9—C8—C16—C15179.7 (2)
O1—C7—C4—C5177.8 (3)O2—C8—C16—C151.8 (3)
O2—C7—C4—C52.0 (3)C9—C8—C16—C110.6 (4)
O1—C7—C4—C32.5 (4)O2—C8—C16—C11177.3 (2)
O2—C7—C4—C3177.7 (2)C16—C15—C14—C130.2 (4)
O2—C8—C9—C10176.5 (2)C3—C2—C1—C60.4 (4)
C16—C8—C9—C101.0 (4)C3—C2—C1—Br1177.87 (19)
C10—O4—C11—C12179.6 (2)C5—C6—C1—C20.8 (4)
C10—O4—C11—C160.6 (4)C5—C6—C1—Br1177.48 (19)
C13—C12—C11—O4179.7 (2)C11—C12—C13—C140.1 (4)
C13—C12—C11—C160.5 (4)C15—C14—C13—C120.5 (4)
C11—O4—C10—O3178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O11.00 (4)2.26 (4)2.788 (3)111 (3)
C15—H15···O3i0.97 (3)2.36 (4)3.079 (3)131 (3)
Symmetry code: (i) x+1, y1, z.
 

Acknowledgements

The authors thank UNESCO, CNRS and the IUCr for their support to AFRAMED project. The authors also thank the CCDC for providing access to the Cambridge Structural Database through the FAIRE program.

Funding information

Funding for this research was provided by: CNRS through AFRAMED project and IUCr through Africa Initiative.

References

First citationAbdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www.iucr.org/news/newsletter/volume-31/number-1/appui-a-la-form­ation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa.  Google Scholar
First citationAbou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438–o3439.  CSD CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CSD CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269–o2270.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAbou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537–o538.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928–o929.  CSD CrossRef IUCr Journals Google Scholar
First citationAnitha, B. R., Roopashree, K. R., Mahesh Kumar, K., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169.  Google Scholar
First citationBationo, V., Kambo, K. R., Sombié, C. B., Semdé, R., Francotte, P. & Djandé, A. (2024b). Acta Cryst. E80, 767–770.  CrossRef IUCr Journals Google Scholar
First citationBationo, V., Ziki, E., Sombié, C. B., Semdé, R. & Djandé, A. (2024a). IUCrData, 9, x240494.  Google Scholar
First citationBibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationGomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842–846.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKambo, K. R., Kouman, K. C., Akonan, L., Abou, A., Megnassan, E., Kakou-Yao, R. & Tenon, A. J. (2024). J. Pharm. Res. Int. 36, 92–116.  CrossRef Google Scholar
First citationKavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263–o264.  CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOuédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRavi, A. J., Mahesh Kumar, K. & Devarajegowda (2016). IUCrData, 1x160171.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodorov, L., Saso, L. & Kostova, I. (2023). J. Pharm. 16, 651.  Google Scholar
First citationVinduvahini, M., Anitha, B. R., Mahesh Kumar, K., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 2x160015.  Google Scholar
First citationZiki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10–33.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds