

research communications
Synthesis and structure of 2-oxo-2H-chromen-4-yl 4-bromobenzoate: work carried out as part of the CNRS AFRAMED project
aLaboratory of Molecular Chemistry and Materials (LC2M), University Joseph KI-ZERBO, 03 BP 7021 Ouagadougou 03, Burkina Faso, bLaboratory of Environmental Science and Technology, University Jean Lorougnon GUEDE of Daloa, BP 150 Daloa, Côte d'Ivoire, cLaboratory of Drug Development, Center of Training, Research and Expertise in Pharmaceutical Sciences (CFOREM), University Joseph KI-ZERBO, 03 BP 7021, Ouagadougou 03, Burkina Faso, dLaboratory of Environment, Health and Society, University of Nouakchott, BP 880-Nouakchott, Mauritania, and eCRM2, CNRS-Université de Lorraine, Vandoeuvre-lès-Nancy CEDEX BP 70239, France
*Correspondence e-mail: emmanuel.wenger@univ-lorraine.fr;_sorghobrahima3@gmail.com
In the title compound, C16H9BrO4, the dihedral angle between the chromen-2-one ring system (r.m.s. deviation = 0.006 Å) and the bromobenzene ring is 10.29 (6)°. In the crystal, the molecules are connected through C—H⋯O hydrogen bonds and π–π stacking interactions. According to a Hirshfeld surface analysis, H⋯H (22.4%), O⋯H/H⋯O (23.6%) and C⋯H/H⋯C (21%) interactions are the most significant contributors to the crystal packing.
Keywords: crystal structure; hydrogen bonds; Hirshfeld surface analysis; coumarin.
CCDC reference: 2416578
1. AFRAMED and chemical context
This work was carried out as part of the CNRS AFRAMED project, which aims to train African Partners (young lecturers with permanent positions) in X-ray diffraction and provide regional laboratories, which serve as focal points to assist their colleagues for remote measurements (Abdel-Aal et al., 2023). Coumarin derivatives remain one of our research priorities due to their versatile range of activities, such as anticoagulant, anti-inflammatory, antiviral, antimicrobial, anticancer, antioxidant (Todorov et al., 2023
), anti-glaucoma (Ziki et al., 2023
) and anti-Parkisonian effects (Kambo et al., 2024
). Here we report one result of this training: the synthesis, and Hirshfeld surface analysis of the title coumarin derivative, C16H9BrO4 (I).
2. Structural commentary
Compound (I) crystallizes in the orthorhombic P212121 with one molecule in the (Fig. 1). The side chain is titled with respect to the chromen-2-one ring system with torsion angles C9—C8—O2—C7 = −12.3 (4)° and C16—C8—O2—C7 = 169.9 (2)°. As expected, the chromen-2-one ring (C8—H16) system is almost planar, with a maximum deviation from the mean plane of 0.030 (2) Å for atom O3. The dihedral angle between this coumarin ring and the C1–C6 phenyl group in the 4-bromobenzoate moiety is 10.29 (6)°. An inspection of the bond lengths shows that there is a slight asymmetry of the electronic distribution around the pyrone ring, as shown by the differences between C8—C9 [1.350 (3) Å] and C9—C10 [1.452 (4) Å]. This suggests that the electron density is preferentially located in the formal C8=C9 double bond of the pyrone ring, as seen in other coumarin derivatives (Gomes et al., 2016
; Ouédraogo et al., 2018
). One intramolecular short contact exists between the C9—H9 methine group and atom O1 (Table 1
).
|
![]() | Figure 1 The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level. |
3. Supramolecular features and Hirshfeld surface analysis
In the crystal of (I), a weak C15—H15⋯O3 hydrogen bond links the molecules into [10] chains (Table 1
, Fig. 2
). The three-dimensional architecture is further consolidated by aromatic π-stacking interactions: the Cg1⋯Cg3(1 + x, y, z) separation is 3.8770 (19) Å, where Cg1 and Cg3 are the centroids of the C8–C10/O4/C11/C16 and C11–C16 rings, respectively.
![]() | Figure 2 The unit-cell packing of (I) showing a hydrogen-bonded [1 |
The intermolecular interactions in (I) were further quantified by Hirshfeld surface analysis (Fig. 3) using CrystalExplorer (Spackman et al., 2023
). The interactions mentioned above are confirmed by the two-dimensional fingerprint plots for (I) (Fig. 4
). The greatest contributions are from O⋯H/H⋯O (23.6%), H⋯H (22.4%) and C⋯H/H⋯C (21%) while the Br⋯H/H⋯Br and Br⋯C/C⋯Br contacts contribute 9.6 and 6.4%, respectively.
![]() | Figure 3 The Hirshfeld surface of (I) mapped over dnorm. Dotted lines (magenta) represent hydrogen bonds. |
![]() | Figure 4 Fingerprint plots of (I): (a) H⋯H, (b) O⋯H, (c) C⋯O, (d) C⋯H, (e) Br⋯O, (f) Br⋯H and (g) Br⋯C: di is the closest internal distance from a given point on the Hirshfeld surface and de is the closest external contact. |
4. Database survey
A search of the Cambridge Structural Database (CSD, version 5.43; update 3, September 2022; Groom et al., 2016) for structures having a coumarin motif similar to (I) returned thirteen hits, including (7-chloro-2-oxo-2H-chromen-4-yl)methyldimethylcarbamodithioate (CSD refcode XUFGOW; Kavitha et al., 2015
); (6-bromo-2-oxo-2H-chromen-4-yl)methyl diethylcarbamodithioate (NUZJOJ; Vinduvahini et al., 2016
); (5,7-dimethyl-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate (UDOGIF01; Anitha et al., 2016
); (7-fluoro-2-oxo-2H-chromen-4-yl)methyl morpholine-4-carbodithioate (UYVEE; Anitha et al., 2015
); (7,8-dimethyl-2-oxo-2H-chromen-4-yl)methyl piperidine-1-carbodithioate (NAGWAW; Ravi et al., 2016
); methyl 2-[(2-oxo-2H-1-benzopyran-4-yl)amino]benzoate (DIWPAE; Hollauer et al., 2023
). In 2-oxo-2H-chromen-4-yl 4-(dimetylamino)benzoate (AYOXAO; Abou et al., 2011
), the benzoate ring is oriented at a dihedral angle of 43.43 (6)° with the chromene ring system while in 2-oxo-2H-chromen-4-yl 4-tert-butylbenzoate (GARHAK; Abou et et al., 2012b
), the benzene ring of the benzoate group is oriented at a dihedral angle of 60.70 (7)° with the chromene ring system. In 2-oxo-2H-chromen-4-yl 4-methoxybenzoate (PECVUQ; Abou et al., 2012a
), the chromen-2-one ring and the 4-methoxybenzoate side chain are inclined to one another at a dihedral angle of 69.82 (9)° and in 2-oxo-2H-chromen-4-yl 4-methylbenzoate (AFOQET; Abou et al., 2013
), the chromene-2-one ring and the 4-methylbenzoate side chain are inclined to one another at a dihedral angle of 64.79 (10)° in one molecule and 88.3 (1)° in the other. In 2-oxo-2H-chromen-4-yl propionate (AGAREH; Bibila Mayaya Bisseyou et al., 2013
), the 2-oxo-2H-chromene ring system and the non-H atom of the 4-substituent all lie on a crystallographic mirror plane. In 2-oxo-2H-1-benzopyran-4-yl 3,3-dimethylbutanoate (JOMHUS; Bationo et al., 2024a
), the 2-oxo-2H-1-benzopyran-4-yl 3,3-dimethylbutanoate the coumarin ring system is oriented at a dihedral angle of 56.24 (18)° with the butanoate moiety. In 2-oxo-2H-chromen-4-yl pentanoate (PONXUP; Bationo et al., 2024b
), the dihedral angle between the coumarin ring system and the pentanoate is 36.26 (8)°.
5. Synthesis and crystallization
To a solution of 4-bromobenzoyl chloride (6.2 mmol, 1.35 g) in dried tetrahydrofurn (30 ml) were added dried triethylamine (3 molar equivalents, 2.6 ml) and 4-hydroxycoumarin (6.17 mmol, 1.00 g) in small portions over 30 min. The mixture was then refluxed for 4 h and poured into 40 ml of chloroform. The solution was acidified with dilute (5%) hydrochloric acid until its discoloration was complete. The organic layers were extracted, concentrated under vacuum until a slight cloudiness was obtained and left in an ice bath. The resulting crude product was filtered off with suction, washed with petroleum ether and purified by recrystallization from a chloroform–hexane solvent mixture: yield 71%.
Colorless crystals of (I) suitable for data collection were obtained by recrystallization from acetone solution. The melting point was measured in an open capillary with a Cole–Parmer STUART MP. 800D Series-Melting S apparatus and is thus uncorrected, m.p. 423–425 K.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in difference-Fourier maps and their positions and Uiso values were freely refined.
|
Supporting information
CCDC reference: 2416578
https://doi.org/10.1107/S2056989025000246/hb8116sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025000246/hb8116Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025000246/hb8116Isup3.cml
C16H9BrO4 | Dx = 1.736 Mg m−3 |
Mr = 345.14 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 4940 reflections |
a = 5.4003 (11) Å | θ = 2.3–30.6° |
b = 6.367 (2) Å | µ = 3.13 mm−1 |
c = 38.404 (8) Å | T = 100 K |
V = 1320.4 (6) Å3 | Prism, colourless |
Z = 4 | 0.27 × 0.21 × 0.13 mm |
F(000) = 688 |
Bruker D8 Venture diffractometer | 4880 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.034 |
Absorption correction: multi-scan (SADBAS; Krause et al., 2015) | θmax = 33.1°, θmin = 3.2° |
Tmin = 0.731, Tmax = 0.895 | h = −7→8 |
37156 measured reflections | k = −9→9 |
4975 independent reflections | l = −58→58 |
Refinement on F2 | Hydrogen site location: difference Fourier map |
Least-squares matrix: full | All H-atom parameters refined |
R[F2 > 2σ(F2)] = 0.029 | w = 1/[σ2(Fo2) + (0.0042P)2 + 1.5505P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.064 | (Δ/σ)max = 0.001 |
S = 1.11 | Δρmax = 0.89 e Å−3 |
4975 reflections | Δρmin = −0.87 e Å−3 |
226 parameters | Absolute structure: Flack x determined using 1967 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
2 restraints | Absolute structure parameter: 0.008 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.42360 (5) | −0.17161 (4) | 0.27424 (2) | 0.02298 (6) | |
C5 | 0.3903 (4) | 0.3282 (4) | 0.34326 (6) | 0.0189 (4) | |
O2 | 0.2448 (3) | 0.6887 (3) | 0.37643 (4) | 0.0196 (3) | |
C2 | 0.0989 (5) | 0.1701 (5) | 0.28876 (6) | 0.0209 (4) | |
O3 | −0.1051 (4) | 1.3465 (3) | 0.41125 (5) | 0.0301 (4) | |
C8 | 0.2098 (5) | 0.8636 (4) | 0.39677 (6) | 0.0173 (4) | |
O4 | 0.2035 (4) | 1.2090 (3) | 0.44169 (5) | 0.0231 (4) | |
O1 | −0.1096 (4) | 0.7132 (3) | 0.34419 (6) | 0.0291 (5) | |
C7 | 0.0804 (6) | 0.6245 (4) | 0.35106 (6) | 0.0189 (4) | |
C3 | 0.0272 (4) | 0.3517 (4) | 0.30635 (6) | 0.0192 (4) | |
C6 | 0.4630 (5) | 0.1452 (4) | 0.32592 (6) | 0.0188 (4) | |
C15 | 0.5666 (5) | 0.7219 (4) | 0.43182 (6) | 0.0190 (4) | |
C4 | 0.1718 (5) | 0.4307 (4) | 0.33372 (6) | 0.0175 (4) | |
C9 | 0.0415 (5) | 1.0175 (4) | 0.39187 (7) | 0.0209 (5) | |
C12 | 0.5369 (5) | 1.0775 (4) | 0.47484 (7) | 0.0225 (5) | |
C11 | 0.3749 (5) | 1.0522 (4) | 0.44687 (6) | 0.0183 (4) | |
C10 | 0.0358 (5) | 1.1996 (4) | 0.41461 (7) | 0.0219 (5) | |
C16 | 0.3865 (5) | 0.8749 (4) | 0.42525 (6) | 0.0162 (4) | |
C14 | 0.7299 (5) | 0.7462 (4) | 0.45953 (7) | 0.0217 (5) | |
C1 | 0.3163 (5) | 0.0707 (4) | 0.29888 (6) | 0.0179 (4) | |
C13 | 0.7138 (5) | 0.9227 (5) | 0.48089 (7) | 0.0228 (5) | |
H15 | 0.579 (7) | 0.600 (5) | 0.4167 (8) | 0.019 (8)* | |
H9 | −0.096 (8) | 1.018 (6) | 0.3743 (9) | 0.029 (9)* | |
H2 | −0.004 (4) | 0.106 (4) | 0.2698 (6) | 0.026 (9)* | |
H13 | 0.823 (6) | 0.936 (5) | 0.5001 (9) | 0.021 (9)* | |
H3 | −0.124 (6) | 0.423 (5) | 0.2999 (8) | 0.015 (8)* | |
H12 | 0.518 (6) | 1.206 (6) | 0.4896 (9) | 0.027 (9)* | |
H6 | 0.597 (7) | 0.074 (5) | 0.3328 (8) | 0.016 (8)* | |
H14 | 0.851 (7) | 0.640 (6) | 0.4629 (9) | 0.026 (9)* | |
H5 | 0.492 (7) | 0.386 (6) | 0.3636 (10) | 0.037 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02724 (11) | 0.02177 (10) | 0.01994 (10) | 0.00231 (11) | −0.00180 (10) | −0.00603 (9) |
C5 | 0.0192 (10) | 0.0202 (10) | 0.0172 (9) | −0.0005 (10) | −0.0020 (8) | −0.0020 (9) |
O2 | 0.0223 (8) | 0.0163 (8) | 0.0201 (8) | 0.0048 (7) | −0.0044 (6) | −0.0035 (7) |
C2 | 0.0224 (11) | 0.0223 (10) | 0.0181 (9) | 0.0002 (12) | −0.0044 (8) | 0.0000 (9) |
O3 | 0.0362 (11) | 0.0234 (9) | 0.0308 (9) | 0.0166 (10) | 0.0030 (8) | −0.0011 (8) |
C8 | 0.0202 (10) | 0.0147 (10) | 0.0169 (9) | 0.0023 (8) | 0.0016 (8) | 0.0000 (7) |
O4 | 0.0279 (9) | 0.0174 (9) | 0.0238 (8) | 0.0066 (7) | 0.0018 (7) | −0.0035 (7) |
O1 | 0.0261 (10) | 0.0266 (10) | 0.0345 (10) | 0.0087 (8) | −0.0092 (8) | −0.0063 (8) |
C7 | 0.0213 (10) | 0.0174 (10) | 0.0182 (9) | 0.0006 (9) | −0.0019 (9) | 0.0013 (7) |
C3 | 0.0190 (10) | 0.0192 (11) | 0.0194 (9) | 0.0003 (9) | −0.0020 (8) | 0.0010 (8) |
C6 | 0.0185 (11) | 0.0193 (11) | 0.0185 (9) | 0.0014 (9) | −0.0014 (8) | −0.0014 (8) |
C15 | 0.0213 (10) | 0.0177 (10) | 0.0180 (9) | 0.0037 (9) | −0.0007 (9) | −0.0007 (7) |
C4 | 0.0199 (10) | 0.0177 (10) | 0.0148 (9) | −0.0009 (9) | −0.0008 (8) | −0.0002 (8) |
C9 | 0.0231 (12) | 0.0187 (10) | 0.0210 (10) | 0.0073 (9) | 0.0002 (9) | 0.0000 (8) |
C12 | 0.0266 (14) | 0.0215 (11) | 0.0195 (10) | −0.0011 (10) | 0.0015 (9) | −0.0045 (9) |
C11 | 0.0207 (12) | 0.0162 (10) | 0.0181 (10) | 0.0020 (8) | 0.0019 (8) | −0.0005 (8) |
C10 | 0.0248 (12) | 0.0177 (11) | 0.0231 (10) | 0.0057 (9) | 0.0043 (9) | 0.0003 (8) |
C16 | 0.0190 (11) | 0.0144 (9) | 0.0150 (9) | 0.0017 (8) | 0.0021 (8) | −0.0002 (7) |
C14 | 0.0228 (11) | 0.0225 (11) | 0.0199 (11) | 0.0037 (10) | −0.0014 (9) | 0.0002 (9) |
C1 | 0.0216 (11) | 0.0178 (10) | 0.0141 (9) | −0.0010 (9) | 0.0029 (8) | −0.0009 (8) |
C13 | 0.0242 (12) | 0.0247 (12) | 0.0195 (11) | −0.0020 (10) | −0.0020 (9) | −0.0015 (9) |
Br1—C1 | 1.900 (3) | C3—C4 | 1.403 (3) |
C5—C4 | 1.397 (4) | C3—H3 | 0.97 (3) |
C5—C6 | 1.398 (4) | C6—C1 | 1.389 (3) |
C5—H5 | 1.02 (4) | C6—H6 | 0.89 (4) |
O2—C8 | 1.373 (3) | C15—C14 | 1.391 (4) |
O2—C7 | 1.380 (3) | C15—C16 | 1.400 (3) |
C2—C1 | 1.389 (4) | C15—H15 | 0.97 (3) |
C2—C3 | 1.394 (4) | C9—C10 | 1.452 (4) |
C2—H2 | 1.002 (12) | C9—H9 | 1.00 (4) |
O3—C10 | 1.213 (3) | C12—C13 | 1.392 (4) |
C8—C9 | 1.350 (3) | C12—C11 | 1.394 (4) |
C8—C16 | 1.453 (3) | C12—H12 | 1.00 (4) |
O4—C11 | 1.376 (3) | C11—C16 | 1.403 (3) |
O4—C10 | 1.380 (3) | C14—C13 | 1.394 (4) |
O1—C7 | 1.200 (3) | C14—H14 | 0.95 (4) |
C7—C4 | 1.487 (3) | C13—H13 | 0.95 (3) |
C4—C5—C6 | 120.1 (2) | C3—C4—C7 | 116.6 (2) |
C4—C5—H5 | 119 (2) | C8—C9—C10 | 120.7 (2) |
C6—C5—H5 | 121 (2) | C8—C9—H9 | 127 (2) |
C8—O2—C7 | 123.6 (2) | C10—C9—H9 | 113 (2) |
C1—C2—C3 | 118.5 (2) | C13—C12—C11 | 118.5 (2) |
C1—C2—H2 | 119.2 (9) | C13—C12—H12 | 124 (2) |
C3—C2—H2 | 122.3 (9) | C11—C12—H12 | 118 (2) |
C9—C8—O2 | 127.0 (2) | O4—C11—C12 | 116.7 (2) |
C9—C8—C16 | 120.7 (2) | O4—C11—C16 | 121.9 (2) |
O2—C8—C16 | 112.2 (2) | C12—C11—C16 | 121.4 (2) |
C11—O4—C10 | 121.3 (2) | O3—C10—O4 | 117.3 (2) |
O1—C7—O2 | 124.5 (2) | O3—C10—C9 | 124.4 (3) |
O1—C7—C4 | 125.2 (2) | O4—C10—C9 | 118.3 (2) |
O2—C7—C4 | 110.4 (2) | C15—C16—C11 | 119.0 (2) |
C2—C3—C4 | 120.4 (2) | C15—C16—C8 | 123.9 (2) |
C2—C3—H3 | 120.1 (19) | C11—C16—C8 | 117.2 (2) |
C4—C3—H3 | 119.5 (19) | C15—C14—C13 | 120.0 (3) |
C1—C6—C5 | 118.7 (2) | C15—C14—H14 | 118 (2) |
C1—C6—H6 | 120 (2) | C13—C14—H14 | 122 (2) |
C5—C6—H6 | 121 (2) | C2—C1—C6 | 122.4 (2) |
C14—C15—C16 | 120.1 (2) | C2—C1—Br1 | 119.22 (19) |
C14—C15—H15 | 120 (2) | C6—C1—Br1 | 118.39 (19) |
C16—C15—H15 | 120 (2) | C12—C13—C14 | 121.0 (3) |
C5—C4—C3 | 119.9 (2) | C12—C13—H13 | 120 (2) |
C5—C4—C7 | 123.4 (2) | C14—C13—H13 | 119 (2) |
C7—O2—C8—C9 | −12.3 (4) | C11—O4—C10—C9 | 1.0 (4) |
C7—O2—C8—C16 | 169.9 (2) | C8—C9—C10—O3 | 177.9 (3) |
C8—O2—C7—O1 | −0.3 (4) | C8—C9—C10—O4 | −1.3 (4) |
C8—O2—C7—C4 | 179.9 (2) | C14—C15—C16—C11 | 0.3 (4) |
C1—C2—C3—C4 | −0.3 (4) | C14—C15—C16—C8 | 179.5 (2) |
C4—C5—C6—C1 | 1.1 (4) | O4—C11—C16—C15 | 179.5 (2) |
C6—C5—C4—C3 | −1.0 (4) | C12—C11—C16—C15 | −0.7 (4) |
C6—C5—C4—C7 | 179.4 (2) | O4—C11—C16—C8 | 0.3 (3) |
C2—C3—C4—C5 | 0.6 (4) | C12—C11—C16—C8 | −179.9 (2) |
C2—C3—C4—C7 | −179.8 (2) | C9—C8—C16—C15 | −179.7 (2) |
O1—C7—C4—C5 | −177.8 (3) | O2—C8—C16—C15 | −1.8 (3) |
O2—C7—C4—C5 | 2.0 (3) | C9—C8—C16—C11 | −0.6 (4) |
O1—C7—C4—C3 | 2.5 (4) | O2—C8—C16—C11 | 177.3 (2) |
O2—C7—C4—C3 | −177.7 (2) | C16—C15—C14—C13 | 0.2 (4) |
O2—C8—C9—C10 | −176.5 (2) | C3—C2—C1—C6 | 0.4 (4) |
C16—C8—C9—C10 | 1.0 (4) | C3—C2—C1—Br1 | −177.87 (19) |
C10—O4—C11—C12 | 179.6 (2) | C5—C6—C1—C2 | −0.8 (4) |
C10—O4—C11—C16 | −0.6 (4) | C5—C6—C1—Br1 | 177.48 (19) |
C13—C12—C11—O4 | −179.7 (2) | C11—C12—C13—C14 | 0.1 (4) |
C13—C12—C11—C16 | 0.5 (4) | C15—C14—C13—C12 | −0.5 (4) |
C11—O4—C10—O3 | −178.2 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
C9—H9···O1 | 1.00 (4) | 2.26 (4) | 2.788 (3) | 111 (3) |
C15—H15···O3i | 0.97 (3) | 2.36 (4) | 3.079 (3) | 131 (3) |
Symmetry code: (i) x+1, y−1, z. |
Acknowledgements
The authors thank UNESCO, CNRS and the IUCr for their support to AFRAMED project. The authors also thank the CCDC for providing access to the Cambridge Structural Database through the FAIRE program.
Funding information
Funding for this research was provided by: CNRS through AFRAMED project and IUCr through Africa Initiative.
References
Abdel-Aal, S. K., Kenfack, T. P., Bouraima, A., Djifa, H. A., Emmanuel, W., Bendeif, E.-E. & Lecomte, C. (2023). https://www.iucr.org/news/newsletter/volume-31/number-1/appui-a-la-formation-et-la-recherche-a-travers-les-mesures-a-distance-aframed-a-recent-and-ambitious-project-for-the-development-of-crystallography-in-africa. Google Scholar
Abou, A., Djandé, A., Danger, G., Saba, A. & Kakou-Yao, R. (2012a). Acta Cryst. E68, o3438–o3439. CSD CrossRef IUCr Journals Google Scholar
Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082. CSD CrossRef IUCr Journals Google Scholar
Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269–o2270. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Abou, A., Sessouma, B., Djandé, A., Saba, A. & Kakou-Yao, R. (2012b). Acta Cryst. E68, o537–o538. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anitha, B. R., Gunaseelan, A. T., Vinduvahini, M., Kavitha, H. D. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o928–o929. CSD CrossRef IUCr Journals Google Scholar
Anitha, B. R., Roopashree, K. R., Mahesh Kumar, K., Ravi, A. J. & Devarajegowda, H. C. (2016). IUCrData, 1, x160169. Google Scholar
Bationo, V., Kambo, K. R., Sombié, C. B., Semdé, R., Francotte, P. & Djandé, A. (2024b). Acta Cryst. E80, 767–770. CrossRef IUCr Journals Google Scholar
Bationo, V., Ziki, E., Sombié, C. B., Semdé, R. & Djandé, A. (2024a). IUCrData, 9, x240494. Google Scholar
Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126. CSD CrossRef IUCr Journals Google Scholar
Bruker (2014). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Gomes, L. R., Low, J. N., Fonseca, A., Matos, M. J. & Borges, F. (2016). Acta Cryst. E72, 926–932. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hollauer, H. V. P., Vilas Novas, R. C., Guedes, G. P., Buarque, C. D. & Escobar, L. B. L. (2023). Acta Cryst. E79, 842–846. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kambo, K. R., Kouman, K. C., Akonan, L., Abou, A., Megnassan, E., Kakou-Yao, R. & Tenon, A. J. (2024). J. Pharm. Res. Int. 36, 92–116. CrossRef Google Scholar
Kavitha, H. D., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2015). Acta Cryst. E71, o263–o264. CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Ouédraogo, M., Abou, A., Djandé, A., Ouari, O. & Zoueu, T. J. (2018). Acta Cryst. E74, 530–534. CSD CrossRef IUCr Journals Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Ravi, A. J., Mahesh Kumar, K. & Devarajegowda (2016). IUCrData, 1x160171. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Todorov, L., Saso, L. & Kostova, I. (2023). J. Pharm. 16, 651. Google Scholar
Vinduvahini, M., Anitha, B. R., Mahesh Kumar, K., Kotresh, O. & Devarajegowda, H. C. (2016). IUCrData, 2x160015. Google Scholar
Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int. 35, 10–33. CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.