research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[[tetra­aquacobalt(II)]-μ2-1,5-di­hy­droxy­naphthalene-2,6-di­carboxyl­ato] di­methyl­formamide disolvate]

crossmark logo

aToyota Central R&D Labs., Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan, and bDepartment of Chemistry, Fukuoka University, 8-19-1 Nanakuma Jonan-ku, Fukuoka, 814-0180, Japan
*Correspondence e-mail: e1254@mosk.tytlabs.co.jp

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 27 January 2025; accepted 3 February 2025; online 7 February 2025)

The asymmetric unit of the title compound, {[Co(C12H6O6)(H2O)4]·2C3H7NO}n or {[Co(H2dondc)(H2O)4]·2DMF}n, comprises half of a CoII ion, half of a 1,5-di­hydroxy­naphthalene-2,6-di­carboxyl­ate dianion (H2dondc2−), two water mol­ecules and a di­methyl­formamide (DMF) mol­ecule. The CoII ion, which is located on a crystallographic inversion center, exhibits a distorted six-coord­inated octa­hedral geometry with two oxygen atoms of the H2dondc2− ligand and four oxygen atoms of the water mol­ecules. The carboxyl­ate group is almost coplanar with the naphthalene moiety and shows monodentate coordination to the CoII ion. The CoII ions are bridged by the H2dondc2− ligand to form a one-dimensional chain. The hy­droxy groups of the ligand have intra-chain hydrogen bonding inter­actions with coordinated water mol­ecules. The coordinated water mol­ecules exhibit not only intra-chain hydrogen bonding inter­actions, but also inter-chain hydrogen-bonding inter­actions. The chains are connected by inter-chain hydrogen-bonding inter­actions and are arranged in parallel to form a two-dimensional network. The chains are further connected by inter-chain hydrogen-bonding inter­actions via the DMF mol­ecules and C—H⋯π inter­actions to give a three-dimensional network.

1. Chemical context

Metal–organic frameworks (MOFs) or coordination polymers (CPs) are being actively investigated due to their applications in gas adsorption, separation and catalysis (Cheetham et al., 1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268-3292.]; Eddaoudi et al., 2002[Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469-472.]; Kitagawa et al., 2004[Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375.]). Polycarboxyl­ate ligands such as benzene­dicarboxyl­ate (bdc2− dianion), also known as a terephthalate dianion, are well-known linkers that yield functional materials (Furukawa et al., 2010[Furukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424-428.]; Kurmoo, 2009[Kurmoo, M. (2009). Chem. Soc. Rev. 38, 1353-1379.]). We have not only prepared electrode materials using the terephthalate dianion and its derivatives (Ogihara et al., 2014[Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467-11472.], 2021[Ogihara, N., Hasegawa, M., Kumagai, H. & Nozaki, H. (2021). ACS Nano, 15, 2719-2729.],2023[Ogihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1-14.]; Yasuda & Ogihara, 2014[Yasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565-11567.]), but also magnetic materials that involve polycarboxyl­ates in which the number of carboxyl­ate groups and the distances between carboxyl­ate groups vary systematically (Kumagai et al., 2001[Kumagai, H., Akita-Tanaka, M., Inoue, K. & Kurmoo, M. (2001). J. Mater. Chem. 11, 2146-2151.], 2002[Kumagai, H., Kepert, C. J. & Kurmoo, M. (2002). Inorg. Chem. 41, 3410-3422.]; Kurmoo et al., 2001[Kurmoo, M., Kumagai, H., Green, M. A., Lovett, B. W., Blundell, S. J., Ardavan, A. & Singleton, J. (2001). J. Solid State Chem. 159, 343-351.], 2003[Kurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. (2003). Inorg. Chem. 42, 6709-6722.]). The functionalization of an organic ligand provides further coordination capabilities, reaction centers, and inter­action sites for specific functions. The 2,5-dihy­droxy-1,4-benzene­dicarb­oxy­lic acid (2,5-H4dobdc) ligand is a 1,4-benzene­dicarb­oxy­lic acid derivative with two hy­droxy groups introduced as functional groups and functional MOFs with this ligand have been reported (Caskey et al., 2008[Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. (2008). J. Am. Chem. Soc. 130, 10870-10871.]; Cozzolino et al., 2014[Cozzolino, A. F., Brozek, C. K., Palmer, R. D., Yano, J., Li, M. Y. & Dincă, M. (2014). J. Am. Chem. Soc. 136, 3334-3337.]; Geier et al., 2013[Geier, S. J., Mason, J. A., Bloch, E. D., Queen, W. L., Hudson, M. R., Brown, C. M. & Long, J. R. (2013). Chem. Sci. 4, 2054-2061.]; Maurice et al., 2013[Maurice, R., Verma, P., Zadrozny, J. M., Luo, S. J., Borycz, J., Long, J. R., Truhlar, D. G. & Gagliardi, L. (2013). Inorg. Chem. 52, 9379-9389.]; Queen et al., 2014[Queen, W. L., Hudson, M. R., Bloch, E. D., Mason, J. A., Gonzalez, M. I., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R. & Brown, C. M. (2014). Chem. Sci. 5, 4569-4581.]). 1,5-Di­hydroxy­naphthalene-2,6-di­carboxyl­ate (H4dondc) is an analogue of 2,5-H4dobdc. The H4dondc ligand can be deprotonated to give four available charges (1- to 4-); however, only metal complexes of the 4- anion have been reported (Dietzel et al., 2020[Dietzel, P. D. C., Georgiev, P. A., Frøseth, M., Johnsen, R. E., Fjellvåg, H. & Blom, R. (2020). Chem. Eur. J. 26, 13523-13531.]; Yeon et al., 2015[Yeon, J. S., Lee, W. R., Kim, N. W., Jo, H., Lee, H., Song, J. H., Lim, K. S., Kang, D. W., Seo, J. G., Moon, D., Wiers, B. & Hong, C. S. (2015). J. Mater. Chem. A, 3, 19177-19185.]). In this contribution, we have focused on the use of 1,5-di­hydroxy­naphthalene-2,6-di­carboxyl­ate (H2dondc2−) in the synthesis of a CoII–H2dondc2− dianion system and report on the single-crystal structure of [Co(H2dondc)(H2O)4]·2DMF in which the ligand is a 2- anion. This is a new structure of the metal complex synthesized from H4dondc.

[Scheme 1]

2. Structural commentary

The title compound, [Co(H2dondc)(H2O)4]·2DMF, consists of a CoII ion, a 1,5-di­hydroxy­naphthalene-2,6-di­carboxyl­ate dianion (H2dondc2−), four water mol­ecules and two DMF mol­ecules. The CoII ion lies on a crystallographic inversion center and its asymmetric unit consists of half of a CoII ion, half of a H2dondc2− ligand, two water mol­ecules and a DMF mol­ecule. The key feature of the structure is a three-dimensional (3D) hydrogen-bonding network that consists of one-dimensional (1D) coordination chains built up by CoO6 octa­hedra bridged by H2dondc2− ligands and inter­chain O–H⋯O hydrogen-bonding inter­actions. Fig. 1[link] shows the 1D chain structure of [Co(H2dondc)(H2O)4] and DMF mol­ecules with the numbering scheme. The CoII ion occupies a crystallographic inversion center; therefore, each pair of H2dondc2− ligands and water mol­ecules coordinate trans to each other to form a linear chain. The Co—O1 (carboxyl­ate) bond length [2.0750 (9) Å] in the title compound is shorter than the Co—O (H2O) bond lengths [2.0931 (10) and 2.1023 (10) Å], which is indicative of the compressed octa­hedral geometry of the CoII ion. The Co⋯Co separation defined by Co–H2dondc2−–Co connectivity within the chain is 13.27 Å. We have reported CPs that consist of tetra­halogenated terephthalate dianions as bridging ligands in which the carboxyl­ate groups exhibited monodentate coordination similar to the title compound. The Co⋯Co separation distance (ca. 11 Å) is shorter than that observed in the title compound (Kumagai et al., 2021[Kumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571-1578.]), which is due to the long naphthalene backbone. The carboxyl­ate group exhibits monodentate coordination, and the dihedral angle between the carboxyl­ate group and the naphthalene ring system is slightly tilted with an O1—C1—C3—C4 torsion angle of 171.94 (11)°. Non-coordinated oxygen atoms of the carboxyl­ate groups show intra-chain hydrogen-bonding inter­actions with coordinated water mol­ecules. The non-coordinated oxygen atoms of the carboxyl­ate groups act as hydrogen-bond acceptors and coordinated water mol­ecules act as hydrogen-bond donors. The H2dondc2− ligand binds to the CoII ion solely through its carboxyl­ate oxygen atoms and the phenolic hydroxyl groups show no coordination bonding to CoII ions. The hydroxyl groups act as hydrogen-bond donors and undergo hydrogen bonding with the coordinated carboxyl­ate oxygen atoms as hydrogen-bond acceptors. The H4dondc ligand can be deprotonated to give four available charges (1− to 4−), although only metal complexes of the 4− anion have been reported so far. Both the hy­droxy and carb­oxy­lic acid groups of the ligand are deprotonated to give a 4− anion and the resultant oxido and carboxyl­ate groups are coordinated by metal ions to give the M2(dondc) composition (M = Mn, Mg, Ni, Co) and a honeycomb-like structure (Dietzel et al., 2020[Dietzel, P. D. C., Georgiev, P. A., Frøseth, M., Johnsen, R. E., Fjellvåg, H. & Blom, R. (2020). Chem. Eur. J. 26, 13523-13531.]; Yeon et al., 2015[Yeon, J. S., Lee, W. R., Kim, N. W., Jo, H., Lee, H., Song, J. H., Lim, K. S., Kang, D. W., Seo, J. G., Moon, D., Wiers, B. & Hong, C. S. (2015). J. Mater. Chem. A, 3, 19177-19185.]).

[Figure 1]
Figure 1
One-dimensional chain structure of the title compound with the atom-labeling scheme and 50% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity. [Symmetry code: (i) −x + 1, −y + 1, −z + 1.]

3. Supra­molecular features

The coordinated water mol­ecules in the crystal structure act as hydrogen-bonding donors and the oxygen atoms of the DMF mol­ecules act as hydrogen-bonding acceptors (Table 1[link]). The coordinated water mol­ecule (O4) shows two types of hydrogen-bonding inter­actions. One is an inter-chain hydrogen-bonding inter­action between the non-coordinated oxygen atom of the adjacent chain to give a two-dimensional hydrogen-bonding network in which the chains are arranged in parallel when viewed along the b-axis direction (Fig. 2[link]). The other is an inter-mol­ecular hydrogen-bonding inter­action between the DMF and water mol­ecules. The coordinated water mol­ecule (O5) exhibits not only inter-chain hydrogen-bonding inter­actions with the oxygen atom of a DMF mol­ecule but also intra-chain hydrogen-bonding inter­actions with an oxygen atom (O2) of the carboxyl­ate group not bound to the CoII ions. The DMF mol­ecule acts as a hydrogen-bond acceptor for both O4 and O5 in different chains to yield a hydrogen-bonding network (Fig. 3[link]). The C3⋯C8 distance of 3.497 (2) Å between the carbon atoms of DMF mol­ecules and the naphthalene ring system, and the C8⋯centroid distance of 3.53 Å are indicative of some degree of C—H⋯π inter­action (Nishio, 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]; Nishio et al., 2009[Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757-1788.]). Therefore, the DMF mol­ecules are held in between the one-dimensional chains by hydrogen-bonding inter­actions and C—H⋯π inter­actions(Fig. S1 in the supporting information). The presence of DMF mol­ecules between the chains prevents ππ stacking inter­actions between the planar naphthalene moieties and the two naphthalene moieties are 6.96 Å apart.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1 0.78 (2) 1.81 (2) 2.5168 (13) 149.1 (19)
O4—H1⋯O6 0.76 (2) 1.99 (2) 2.7449 (16) 178 (2)
O4—H2⋯O2i 0.78 (2) 1.96 (2) 2.7284 (15) 168 (2)
O5—H6⋯O2ii 0.79 (3) 2.00 (3) 2.7182 (14) 151 (2)
O5—H10⋯O6iii 0.85 (2) 1.95 (2) 2.7836 (15) 166 (2)
C8—H8C⋯C3ii 0.98 2.85 3.497 (2) 124
Symmetry codes: (i) [-x+2, -y+1, -z+1]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+1, -y+2, -z+1].
[Figure 2]
Figure 2
View of the two-dimensional hydrogen-bonding network with inter- and intra-chain hydrogen-bonding inter­actions. Dashed lines represent hydrogen bonds.
[Figure 3]
Figure 3
Inter-chain hydrogen-bonding inter­actions via DMF mol­ecules. Dashed lines represent inter-chain hydrogen bonds.

4. Database survey

Although a search of the Sci Finder database for structures with a H2dondc2− and CoII ion resulted in no complete matches, partially matched structures were found. They are metal complexes composed of a MnII ion and a dondc4− ligand that form a three-dimensional network consisting of hexa­gonal channels (CADYOZ and CADYUF; Dietzel et al., 2020[Dietzel, P. D. C., Georgiev, P. A., Frøseth, M., Johnsen, R. E., Fjellvåg, H. & Blom, R. (2020). Chem. Eur. J. 26, 13523-13531.]). A search of the Web of Science database for the keywords 2,6-naphthalenedi­carb­oxy­lic acid and 1,5-dihy­droxy- led to lanthanide-based compounds [DUDXOS (La) and DUDXUY (Ce); Mahmoud et al., 2020[Mahmoud, M. E., Moussa, Z., Prakasam, T., Li, L., Abiad, M. G., Patra, D. & Hmadeh, M. (2020). J. Solid State Chem. 281, 121031.]] and an MgII compound (Yeon et al., 2015[Yeon, J. S., Lee, W. R., Kim, N. W., Jo, H., Lee, H., Song, J. H., Lim, K. S., Kang, D. W., Seo, J. G., Moon, D., Wiers, B. & Hong, C. S. (2015). J. Mater. Chem. A, 3, 19177-19185.]). The structure of the MgII compound is similar to that of the MnII compound.

5. Synthesis and crystallization

Cobalt(II) nitrate hexa­hydrate (0.12 g, 0.4 mmol) and H4dondc were dissolved in an ethanol (10 mL)–N,N-di­methyl­formamide (20 mL) mixture. The mixture was placed in the Teflon liner of an autoclave, sealed, and heated at 353 K for two days. The mixture was then cooled to room temperature. Pink crystals were obtained and one of these crystals was used for single-crystal X-ray crystallography analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The non-hydrogen atoms were refined anisotropically. The hydrogen atoms attached to oxygen atoms of the ligand and water mol­ecules were extracted from difference-Fourier maps. Other hydrogen atoms were placed in idealized positions (C—H = 0.95–0.98 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C12H6O6)(H2O)4]·2C3H7NO
Mr 523.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 110
a, b, c (Å) 6.886 (1), 6.945 (1), 12.0366 (15)
α, β, γ (°) 85.543 (5), 84.371 (5), 83.981 (5)
V3) 568.37 (14)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.82
Crystal size (mm) 0.25 × 0.25 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.760, 0.922
No. of measured, independent and observed [I > 2σ(I)] reflections 9228, 2595, 2413
Rint 0.027
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.074, 1.11
No. of reflections 2595
No. of parameters 173
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.62, −0.24
Computer programs: RAPID-AUTO (Rigaku, 2002[Rigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Yadokari-XG (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari]).

Supporting information


Computing details top

catena-Poly[[[tetraaquacobalt(II)]-µ2-1,5-dihydroxynaphthalene-2,6-dicarboxylato] dimethylformamide disolvate] top
Crystal data top
[Co(C12H6O6)(H2O)4]·2C3H7NOZ = 1
Mr = 523.35F(000) = 273
Triclinic, P1Dx = 1.529 Mg m3
a = 6.886 (1) ÅMo Kα radiation, λ = 0.71075 Å
b = 6.945 (1) ÅCell parameters from 7544 reflections
c = 12.0366 (15) Åθ = 3.3–27.5°
α = 85.543 (5)°µ = 0.82 mm1
β = 84.371 (5)°T = 110 K
γ = 83.981 (5)°Block, orange
V = 568.37 (14) Å30.25 × 0.25 × 0.10 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2413 reflections with I > 2σ(I)
ω scansRint = 0.027
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
θmax = 27.5°, θmin = 3.3°
Tmin = 0.760, Tmax = 0.922h = 88
9228 measured reflectionsk = 99
2595 independent reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0456P)2 + 0.1029P]
where P = (Fo2 + 2Fc2)/3
2595 reflections(Δ/σ)max < 0.001
173 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.5000000.5000000.5000000.01471 (10)
O10.67306 (14)0.46799 (15)0.35020 (7)0.0190 (2)
O20.96008 (13)0.33348 (15)0.40363 (8)0.0210 (2)
O30.62385 (13)0.54304 (15)0.14635 (8)0.0179 (2)
H30.597 (3)0.535 (3)0.2110 (17)0.030 (5)*
O40.66579 (15)0.72005 (16)0.53529 (8)0.0191 (2)
O50.30573 (15)0.69999 (16)0.41516 (8)0.0199 (2)
O60.50238 (16)0.98724 (16)0.68258 (9)0.0271 (2)
N10.22328 (19)1.01767 (18)0.80010 (10)0.0243 (3)
C10.85613 (19)0.41209 (19)0.33048 (10)0.0156 (3)
C20.81861 (18)0.50097 (18)0.12707 (10)0.0142 (2)
C30.94074 (18)0.44228 (18)0.21177 (10)0.0141 (2)
C41.14541 (18)0.40885 (19)0.18353 (10)0.0161 (3)
H41.2290790.3719760.2413830.019*
C51.22599 (18)0.42820 (19)0.07517 (11)0.0160 (3)
H51.3639220.4062790.0585490.019*
C61.10219 (17)0.48131 (18)0.01250 (10)0.0138 (2)
C70.3219 (2)1.0217 (2)0.70011 (12)0.0250 (3)
H70.2491931.0532930.6369600.030*
C80.0115 (2)1.0587 (2)0.81476 (16)0.0349 (4)
H8A0.0390951.0898400.7415160.042*
H8B0.0225841.1692620.8611940.042*
H8C0.0466460.9446450.8514660.042*
C90.3257 (3)0.9726 (2)0.90075 (13)0.0345 (4)
H9A0.2997101.0815910.9488700.041*
H9B0.4669500.9500190.8798450.041*
H9C0.2791860.8557100.9411910.041*
H10.619 (3)0.795 (3)0.5747 (18)0.034 (6)*
H20.769 (3)0.690 (3)0.5561 (16)0.028 (5)*
H60.214 (4)0.728 (4)0.458 (2)0.057 (7)*
H100.351 (3)0.806 (3)0.3928 (17)0.037 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01037 (14)0.02391 (15)0.00905 (13)0.00095 (9)0.00171 (8)0.00044 (9)
O10.0131 (4)0.0315 (5)0.0112 (4)0.0002 (4)0.0027 (3)0.0011 (4)
O20.0125 (4)0.0359 (6)0.0131 (4)0.0005 (4)0.0008 (3)0.0026 (4)
O30.0106 (4)0.0320 (5)0.0102 (4)0.0008 (4)0.0025 (3)0.0015 (4)
O40.0128 (5)0.0269 (5)0.0175 (5)0.0001 (4)0.0010 (4)0.0032 (4)
O50.0142 (5)0.0277 (5)0.0161 (5)0.0004 (4)0.0018 (4)0.0024 (4)
O60.0247 (5)0.0275 (5)0.0273 (6)0.0020 (4)0.0060 (4)0.0019 (4)
N10.0268 (7)0.0218 (6)0.0231 (6)0.0044 (5)0.0058 (5)0.0024 (5)
C10.0133 (6)0.0206 (6)0.0131 (6)0.0046 (5)0.0018 (4)0.0028 (5)
C20.0112 (6)0.0176 (6)0.0139 (6)0.0034 (4)0.0025 (4)0.0036 (5)
C30.0129 (6)0.0172 (6)0.0121 (6)0.0023 (5)0.0023 (4)0.0027 (4)
C40.0133 (6)0.0215 (6)0.0134 (6)0.0024 (5)0.0008 (4)0.0009 (5)
C50.0110 (6)0.0217 (6)0.0152 (6)0.0017 (5)0.0009 (4)0.0027 (5)
C60.0122 (6)0.0165 (6)0.0128 (6)0.0028 (5)0.0016 (4)0.0029 (5)
C70.0272 (8)0.0252 (7)0.0222 (7)0.0049 (6)0.0021 (6)0.0009 (6)
C80.0272 (8)0.0304 (8)0.0463 (10)0.0085 (7)0.0131 (7)0.0098 (7)
C90.0504 (11)0.0291 (8)0.0220 (8)0.0001 (7)0.0024 (7)0.0014 (6)
Geometric parameters (Å, º) top
Co1—O1i2.0750 (9)N1—C91.458 (2)
Co1—O12.0750 (9)C1—C31.4969 (17)
Co1—O4i2.0931 (10)C2—C31.3945 (18)
Co1—O42.0931 (10)C2—C6ii1.4334 (17)
Co1—O52.1023 (10)C3—C41.4161 (17)
Co1—O5i2.1023 (10)C4—C51.3687 (17)
O1—C11.2842 (16)C4—H40.9500
O2—C11.2460 (17)C5—C61.4235 (18)
O3—C21.3436 (15)C5—H50.9500
O3—H30.78 (2)C6—C6ii1.411 (2)
O4—H10.76 (2)C7—H70.9500
O4—H20.78 (2)C8—H8A0.9800
O5—H60.79 (3)C8—H8B0.9800
O5—H100.85 (2)C8—H8C0.9800
O6—C71.2409 (19)C9—H9A0.9800
N1—C71.3226 (19)C9—H9B0.9800
N1—C81.452 (2)C9—H9C0.9800
O1i—Co1—O1180.0O3—C2—C6ii116.24 (11)
O1i—Co1—O4i89.40 (4)C3—C2—C6ii120.54 (11)
O1—Co1—O4i90.60 (4)C2—C3—C4119.02 (11)
O1i—Co1—O490.60 (4)C2—C3—C1120.40 (11)
O1—Co1—O489.40 (4)C4—C3—C1120.57 (11)
O4i—Co1—O4180.0C5—C4—C3121.81 (12)
O1i—Co1—O591.09 (4)C5—C4—H4119.1
O1—Co1—O588.91 (4)C3—C4—H4119.1
O4i—Co1—O588.28 (4)C4—C5—C6119.71 (12)
O4—Co1—O591.72 (4)C4—C5—H5120.1
O1i—Co1—O5i88.91 (4)C6—C5—H5120.1
O1—Co1—O5i91.09 (4)C6ii—C6—C5120.13 (14)
O4i—Co1—O5i91.72 (4)C6ii—C6—C2ii118.74 (14)
O4—Co1—O5i88.28 (4)C5—C6—C2ii121.14 (11)
O5—Co1—O5i180.00 (8)O6—C7—N1124.91 (14)
C1—O1—Co1130.95 (8)O6—C7—H7117.5
C2—O3—H3107.8 (14)N1—C7—H7117.5
Co1—O4—H1118.7 (16)N1—C8—H8A109.5
Co1—O4—H2117.9 (14)N1—C8—H8B109.5
H1—O4—H2104 (2)H8A—C8—H8B109.5
Co1—O5—H6107.4 (18)N1—C8—H8C109.5
Co1—O5—H10114.6 (14)H8A—C8—H8C109.5
H6—O5—H10105 (2)H8B—C8—H8C109.5
C7—N1—C8122.13 (14)N1—C9—H9A109.5
C7—N1—C9120.50 (14)N1—C9—H9B109.5
C8—N1—C9117.37 (13)H9A—C9—H9B109.5
O2—C1—O1123.35 (11)N1—C9—H9C109.5
O2—C1—C3120.55 (12)H9A—C9—H9C109.5
O1—C1—C3116.08 (11)H9B—C9—H9C109.5
O3—C2—C3123.22 (11)
Co1—O1—C1—O212.6 (2)O1—C1—C3—C4171.94 (11)
Co1—O1—C1—C3168.77 (8)C2—C3—C4—C51.54 (19)
O3—C2—C3—C4177.43 (11)C1—C3—C4—C5177.49 (12)
C6ii—C2—C3—C42.82 (19)C3—C4—C5—C60.7 (2)
O3—C2—C3—C13.5 (2)C4—C5—C6—C6ii1.6 (2)
C6ii—C2—C3—C1176.22 (11)C4—C5—C6—C2ii178.74 (12)
O2—C1—C3—C2169.63 (12)C8—N1—C7—O6179.71 (14)
O1—C1—C3—C29.05 (18)C9—N1—C7—O60.7 (2)
O2—C1—C3—C49.39 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O10.78 (2)1.81 (2)2.5168 (13)149.1 (19)
C7—H7···O4iii0.952.563.2322 (18)128
O4—H1···O60.76 (2)1.99 (2)2.7449 (16)178 (2)
O4—H2···O2iv0.78 (2)1.96 (2)2.7284 (15)168 (2)
O5—H6···O2i0.79 (3)2.00 (3)2.7182 (14)151 (2)
O5—H10···O6iii0.85 (2)1.95 (2)2.7836 (15)166 (2)
C8—H8C···C3i0.982.853.497 (2)124
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1.
 

References

First citationCaskey, S. R., Wong-Foy, A. G. & Matzger, A. J. (2008). J. Am. Chem. Soc. 130, 10870–10871.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 38, 3268–3292.  Web of Science CrossRef CAS Google Scholar
First citationCozzolino, A. F., Brozek, C. K., Palmer, R. D., Yano, J., Li, M. Y. & Dincă, M. (2014). J. Am. Chem. Soc. 136, 3334–3337.  CrossRef CAS PubMed Google Scholar
First citationDietzel, P. D. C., Georgiev, P. A., Frøseth, M., Johnsen, R. E., Fjellvåg, H. & Blom, R. (2020). Chem. Eur. J. 26, 13523–13531.  CrossRef CAS PubMed Google Scholar
First citationEddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O'Keeffe, M. & Yaghi, O. M. (2002). Science, 295, 469–472.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFurukawa, H., Ko, N., Go, Y. B., Aratani, N., Choi, S. B., Choi, E., Yazaydin, A. O., Snurr, R. Q., O'Keeffe, M., Kim, J. & Yaghi, O. M. (2010). Science, 329, 424–428.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationGeier, S. J., Mason, J. A., Bloch, E. D., Queen, W. L., Hudson, M. R., Brown, C. M. & Long, J. R. (2013). Chem. Sci. 4, 2054–2061.  CrossRef CAS Google Scholar
First citationKitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334–2375.  Web of Science CrossRef CAS Google Scholar
First citationKumagai, H., Akita-Tanaka, M., Inoue, K. & Kurmoo, M. (2001). J. Mater. Chem. 11, 2146–2151.  CrossRef CAS Google Scholar
First citationKumagai, H., Kepert, C. J. & Kurmoo, M. (2002). Inorg. Chem. 41, 3410–3422.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumagai, H., Setoyama, N., Kawata, S. & Sakamoto, Y. (2021). Bull. Chem. Soc. Jpn, 94, 1571–1578.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurmoo, M. (2009). Chem. Soc. Rev. 38, 1353–1379.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKurmoo, M., Kumagai, H., Green, M. A., Lovett, B. W., Blundell, S. J., Ardavan, A. & Singleton, J. (2001). J. Solid State Chem. 159, 343–351.  Web of Science CSD CrossRef CAS Google Scholar
First citationKurmoo, M., Kumagai, H., Hughes, S. M. & Kepert, C. J. (2003). Inorg. Chem. 42, 6709–6722.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMahmoud, M. E., Moussa, Z., Prakasam, T., Li, L., Abiad, M. G., Patra, D. & Hmadeh, M. (2020). J. Solid State Chem. 281, 121031.  CrossRef Google Scholar
First citationMaurice, R., Verma, P., Zadrozny, J. M., Luo, S. J., Borycz, J., Long, J. R., Truhlar, D. G. & Gagliardi, L. (2013). Inorg. Chem. 52, 9379–9389.  CrossRef CAS PubMed Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.  Web of Science CrossRef CAS Google Scholar
First citationOgihara, N., Hasegawa, M., Kumagai, H., Mikita, R. & Nagasako, N. (2023). Nat. Commun. 14, 1–14.  CrossRef PubMed Google Scholar
First citationOgihara, N., Hasegawa, M., Kumagai, H. & Nozaki, H. (2021). ACS Nano, 15, 2719–2729.  CrossRef CAS PubMed Google Scholar
First citationOgihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K. & Ohba, N. (2014). Angew. Chem. Int. Ed. 53, 11467–11472.  Web of Science CrossRef CAS Google Scholar
First citationQueen, W. L., Hudson, M. R., Bloch, E. D., Mason, J. A., Gonzalez, M. I., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R. & Brown, C. M. (2014). Chem. Sci. 5, 4569–4581.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWakita, K. (2001). Yadokari-XG. Software for Crystal Structure Analyses. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari  Google Scholar
First citationYasuda, T. & Ogihara, N. (2014). Chem. Commun. 50, 11565–11567.  Web of Science CrossRef CAS Google Scholar
First citationYeon, J. S., Lee, W. R., Kim, N. W., Jo, H., Lee, H., Song, J. H., Lim, K. S., Kang, D. W., Seo, J. G., Moon, D., Wiers, B. & Hong, C. S. (2015). J. Mater. Chem. A, 3, 19177–19185.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds