research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis, DFT and mol­ecular docking studies of 4′-(benz­yl­oxy)-[1,1′-biphen­yl]-3-carb­­oxy­lic acid

crossmark logo

aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnataka, India, bDepartment of Physics, Maharani's Science College for Women (Autonomous) Mysore, Karnataka, 570005, India, cRaman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore, Karnataka, India, and dDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka, 572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 14 January 2025; accepted 5 February 2025; online 11 February 2025)

In the title compound, C20H16O3, intra­molecular C— H⋯O hydrogen bonds are observed. The dihedral angles between the aromatic benzoic acid ring and the two adjacent aromatic rings are 26.09 (4) and 69.93 (8)°, while the dihedral angle between the aromatic rings connected by the C—O—C—C [torsion angle = −175.9 (2)°] link is 89.11 (3)°. In the crystal, inversion dimers linked by pairs of O—H⋯O hydrogen bonds generate R22(8) ring motifs. These dimers are further linked by C—H⋯π inter­actions, forming mol­ecular sheets along (010). The mol­ecular structure was optimized by density functional theory (DFT) at the B3LYP/6–311+ G(d,p) level and the bond lengths, angles and torsion angles were compared with experimental values obtained by X-ray diffraction. The HOMO and LUMO were calculated, the energy gap between them being 4.3337 eV. Further, the inter­molecular inter­actions were qu­anti­fied using Hirshfeld surface analysis and fingerprint plots and energy frameworks were generated. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (39.7%), H⋯C (39.0%) and H⋯O (18.0%) inter­actions. The energy framework calculations reveal that the dispersion energy (Edis= 201.0 kJ mol−1) dominates the other energies. Mol­ecular docking studies were carried out for the title compound as a ligand and the SARS-Covid-2 (PDB ID:8BEC) protein, specifically the Omicron variant, was used as a receptor giving a binding affinity of −7.6 kcal mol−1.

1. Chemical context

The biphenyl moiety forms an important inter­mediary of compounds having profound pharmacological activities (Jain et al., 2017[Jain, Z. J., Gide, P. S. & Kankate, R. S. (2017). Arab. J. Chem. 10, S2051-S2066.]). Biphenyl-derived drugs are found to exhibit anti-cancer, anti-diabetic, anti-inflammatory and various therapeutic activities, and represent a well-known rigid core moiety in pharmacological applications. Biphenyl carb­oxy­lic acid derivatives have been described as a new class of anti-resorptive drugs with potential therapeutic benefits for preventing and treating diseases associated with osteoclast activation such as osteoporosis, cancer-induced bone disease and Paget's disease (Idris et al., 2009[Idris, A. I., Greig, I. R., Bassonga-Landao, E., Ralston, S. H. & van 't Hof, R. J. (2009). Endocrinology, 150, 5-13.]; van't Hof et al., 2004[van't Hof, R. J., Idris, A. I., Ridge, S. A., Dunford, J., Greig, I. R. & Ralston, S. H. (2004). J. Bone Miner. Res. 19, 1651-1660.]) and exhibit anti-hypertensive activity (Sharma et al., 2010[Sharma, M. C., Kohli, D. V. & Sharma, S. (2010). Digest J. Nanomaterials Biostructures, 5, 605-621.]). Biphenyl-2-carb­oxy­lic acid and biphenyl-4-carb­oxy­lic acids exhibit different levels of activity in cell toxicity tests and inhibit the tubulin polymerization process (Mukherjee et al., 2016[Mukherjee, S., Chatterjee, S., Poddar, A., Bhattacharyya, B. & Gupta, S. (2016). J. Taibah Univ. Sci. 10, 839-849.]; Mahale et al., 2014[Mahale, S., Bharate, S. B., Manda, S., Joshi, P., Bharate, S. S., Jenkins, P. R., Vishwakarma, R. A. & Chaudhuri, B. (2014). J. Med. Chem. 57, 9658-9672.]). Hydrazide-hydrazone-containing biphenyl compounds demonstrate potential anti-microbial activity (Deep et al., 2010[Deep, A., Jain, S., Sharma, P. C., Verma, P., Kumar, M. & Dora, C. P. (2010). Synthesis, 182, 183.]). Biphenyl imidazole derivatives exhibit excellent anti­fungal activity (Zhao et al., 2017[Zhao, D., Zhao, S., Zhao, L., Zhang, X., Wei, P., Liu, C., Hao, C., Sun, B., Su, X. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 750-758.]) while benz­yloxy triazole derivatives display moderate-to-excellent anti­bacterial activity (Kaushik et al., 2018[Kaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720-1728.]), The organic nitrate-containing benz­yloxy isonipecotanilide derivatives exhibit strong NO-mediated vasodilatory effects on pre-contracted rat aorta strips (de Candia et al., 2015[Candia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69-80.]), and studies on bez­yloxy oxopyridin benzoate derivatives have revealed that further investigations on these compounds could lead to new compounds that may be considered as anti-malarial or cytotoxic agents (Mohebi et al., 2022[Mohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res. Pharm. Sci. 17, 252-264.]). As part of our studies in this area, our team is working to explore crystal structures of inter­est for biological studies.

[Scheme 1]

2. Structural commentary

The structure of the title compound is shown in Fig. 1[link]. The dihedral angle between the aromatic ring of the benz­yloxy group (C1–C7) and the (C8–C13) ring in the biphenyl carb­oxy­lic acid group is 89.11 (2)°, while the angle between the benz­yloxy group (C1–C7) and the (C14–C19) ring in the biphenyl carb­oxy­lic acid group is 69.93 (8)°. The dihedral angle between the adjacent rings within the biphenyl carb­oxy­lic acid group (C8–C13 and C14–C19) is 26.09 (4)°. The torsion angle within the benz­yloxy moiety (C1—C7—O1—C8) is −175.9 (2)°. Otherwise, the bond distances and angles may be regarded as normal. Intra­molecular C—H⋯O hydrogen bonds occur.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound, showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, weak O3—H3A⋯O2 hydrogen bonding leads to the formation of inversion dimers, which are linked by pairs of O—H⋯O hydrogen bonds generating an R22(8) ring motif (Fig. 2[link], Table 1[link]). The O3—H3A distance of 1.20 (5) Å is quite a large as a result of tensile stress between the dimers. The tensile force between the two dimers can increase the donor–hydrogen distance, obviously weakening the hydrogen bond. In addition, the packing is consolidated by four C—H⋯π inter­actions (Table 1[link], Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C8–C12 rings, respectively,

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O2 0.93 2.48 2.791 (3) 100
C17—H17⋯O3 0.93 2.48 2.767 (4) 98
O3—H3A⋯O2i 1.20 (5) 1.42 (5) 2.617 (3) 175 (4)
C3—H3⋯Cg1ii 0.93 2.88 3.711 (4) 149
C6—H6⋯Cg1iii 0.93 2.77 3.588 (4) 147
C9—H9⋯Cg2iv 0.93 2.86 3.667 (3) 146
C12—H12⋯Cg2v 0.93 2.81 3.629 (3) 147
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{3\over 2}}]; (iv) [x, -y+1, z-{\script{1\over 2}}]; (v) [x, -y, z-{\script{3\over 2}}].
[Figure 2]
Figure 2
Mol­ecular packing of the title compound, showing the O—H⋯O hydrogen bonds that generate inversion dimers with R22(8) ring motifs.
[Figure 3]
Figure 3
Packing of the molecules showing C—H⋯π inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD version 2.0.4, December 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing [1,1′-biphen­yl]-3-carb­oxy­lic acid resulted in eleven matches. Of these, five compounds, CUFYEL (Guo et al., 2024[Guo, X., Li, T., Cao, X. & Zhang, W. (2024). Z. Krist. New Cryst. Struct. 239, 957-959.]), HUJZIY, HUJZOE and HUJZUK (O'Malley et al., 2020[O'Malley, C., Erxleben, A., Kellehan, S. & McArdle, P. (2020). Chem. Commun. 56, 5657-5660.]) and SEBMOF (Barbas et al., 2022[Barbas, R., Font-Bardia, M., Ballesteros, A., Arsequell, G., Prohens, R. & Frontera, A. (2022). CrystEngComm, 24, 3057-3063.]) have dihedral angles between the aromatic rings of the biphenyl carb­oxy­lic acid group ranging from 40.99 (2) to 44.58 (3)°. In three compounds, ILURAL (Hurlock et al., 2021[Hurlock, M. J., Lare, M. F. & Zhang, Q. (2021). Inorg. Chem. 60, 2503-2513.]), QAKHOD (O'Malley et al., 2021[O'Malley, C., Erxleben, A., McArdle, P. & Simmie, J. M. (2021). Cryst. Growth Des. 21, 23-27.] and RADDIN (Doiron et al., 2020[Doiron, J. E., Le, C. A., Bacsa, J., Breton, G. W., Martin, K. L., Aller, S. G. & Turlington, M. (2020). ChemMedChem, 15, 1720-1730.]), one of the dihedral angles lies between 54.71 (3) and 59.70 (6)°. In the title compound, this dihedral angle is 26.09 (4)°. The relatively small dihedral angle may be attributed to the presence of the bulky benz­yloxy group attached to the biphenyl carb­oxy­lic acid group and may also be a result of the tensile force between the two dimers. For mol­ecules containing the benz­yloxy fragment, a search resulted in thirty matches: in all of these, the torsion angle of the linking C—O—C—C unit indicates a conformation close to anti.

5. Synthesis and crystallization

Methyl 4′-(benz­yloxy)-[1,1′-biphen­yl]-3-carboxyl­ate was added in a round-bottom flask containing a solution (5%, 1.25 g of KOH in 25 mL of ethanol) of potassium hydroxide in water and a small excess amount of ethyl alcohol. The whole reaction mixture was refluxed at 373 K for 6 h, cooled and poured into ice-cold hydro­chloric acid. The product 4′-(benz­yloxy)-[1,1′-biphen­yl]-3-carb­oxy­lic acid separated out as a solid, which was filtered and then washed with water to remove excess hydro­chloric acid. Finally, single crystals suitable for X-ray diffraction studies were grown in pure ethanol at room temperature. For the detailed synthesis procedure, see Radhika et al. (2011[Radhika, S., Srinivasa, H. T. & Sadashiva, B. K. (2011). Liq. Cryst. 38, 785-792.]). 1H NMR: (CDCl3, δ): 12 (s, 1H, –COOH), 8.74-8.24 (m, 2H, Ar-H), 7.85–7.78 (m, 4H, Ar-H), 7.48–7.02 (m, 7H, Ar-H), 5.0 (s, 2H, –OCH2–) ppm.

6. Hirshfeld surface analysis

Hirshfeld surface analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed to visualize and qu­antify the inter­molecular inter­actions in the title mol­ecule using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface mapped over dnorm is shown in Fig. 4[link] with colors representing inter­molecular inter­actions on the surface. The red regions are attributed to the O2—H2⋯O3 inter­action. The two-dimensional fingerprint plots indicate that the major contributions to the crystal packing are from H⋯H (39.7%), C⋯H/H⋯C (39%) and O⋯H/H⋯O (18%) as shown in Fig. 5[link]. The net inter­action energies were calculated as Eele = 145.6 kJ mol−1, Epol = 47.3 kJ mol−1, Edis = 201.0 kJ mol−1, Erep = 83.6 kJ mol−1 and total inter­action energy Etot = 308.0 kJ mol−1. The topology of the energy frameworks for the Coulombic, dispersion and total energies are shown in Fig. 6[link]. Higher dispersion energy can affect the reactivity of the mol­ecules, particularly in biological processes such as docking the ligand with a protein. The dispersion energy influences the binding affinity of the ligand by providing an additional attractive force.

[Figure 4]
Figure 4
The Hirshfeld surface of the title compound with the dashed lines indicating the O—H⋯O hydrogen bonds that form inversion dimers.
[Figure 5]
Figure 5
The two-dimensional fingerprint plots of the title mol­ecule showing all inter­actions and those delineated into H⋯H, C⋯H/H⋯C and H⋯O/O⋯H.
[Figure 6]
Figure 6
The energy frameworks for inter­action energies in the title compound, (a) Coulombic energy, (b) dispersion energy, (c) total energy and (d) total energy annotated.

7. DFT Studies

The HOMO–LUMO levels are valuable for understanding the mol­ecule's inter­actions in chemical reactions, electronic transitions, and stability. The mol­ecule was constructed using Gaussview 06 and optimized with the B3LYP/6-311++G(d,p) model in Gaussian 09 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Gaussian Inc., Wallingford CT, USA.]). The optimized structure is illustrated in Fig. 7[link]. The optimized bond lengths, angles and torsion angles were compared with those obtained from SCXRD data (Table 2[link]) and are found to be in good agreement with each other. The tensile force between the two dimers is not taken into the account in the quantum calculations, so there is a common donor–hydrogen distance around the carb­oxy­lic group in the DFT calculations. Fig. 8[link] shows the HOMO and LUMO and their energy gap in the title compound. In the HOMO, electron density is mainly concentrated on the biphenyl rings, with a smaller presence on the oxygen atom in the benz­yloxy group. In the LUMO, the electron density is primarily located on the benzoic acid portion of the biphenyl group. The HOMO and LUMO energies are −6.0814 eV and −1.7466 eV, respectively, resulting in an energy gap (ΔE) of 4.3347 eV. Reactivity descriptors including ionization energy (I)[link], electron affinity (A), electronegativity (χ), chemical hardness (η), chemical potential (μ), electrophilicity index (ω), and chemical softness (S) are presented in Table 3[link]. The electrophilicity index value of 3.534 eV indicates that the mol­ecule exhibits strong electrophilicity.

Table 2
Selected bond lengths, angles and torsion angles (Å, °)

Parameter SCXRD DFT
O1—C8 1.366 (3) 1.36392
O1—C7 1.437 (3) 1.43631
O2—C20 1.241 (3) 1.20944
O3—C20 1.270 (3) 1.35882
C8—O1—C7 117.75 (19) 118.64625
O1—C8—C13 115.7 (2) 115.79634
O1—C8—C9 125.3 (2) 124.91696
C13—C8—C9 119.0 (2) 119.28680
C7—O1—C8—C13 179.0 (2) 179.2209
C7—O1—C8—C9 −0.5 (4) −0.79351
C8—O1—C7—C1 −175.9 (2) −178.9820
O1—C8—C13—C12 −178.5 (2) −179.9223

Table 3
The energy values (eV) of global reactivity descriptors for the title compound

E_HOMO_ −6.0801
E_LUMO_ −1.7464
Energy gap (eV) 4.3337
Ionization Energy (I) 6.0801
Electron affinity (A) 1.7464
Electronegativity (χ) 3.91325
Chemical hardness (η) 2.16685
Chemical softness (S) 0.231 eV−1
Chemical potential (μ) −3.91325
Electrophilicity index (ω) 3.534
[Figure 7]
Figure 7
The optimized structure of the title compound generated using Gaussian 09 at the B3LYP/6–311++G(d,p) level.
[Figure 8]
Figure 8
The HOMO and LUMO mol­ecular orbitals of the title compound.

8. Mol­ecular electrostatic potential

The mol­ecular electrostatic potential surface (MEPS) helps to visualize the electrostatic environment around a mol­ecule and is illustrated for the title compound in Fig. 9[link]. The electron-rich part with a partial negative charge is shown by the combination of red and pale-yellow regions on the MEPS over the oxygen atom of the carb­oxy­lic acid moiety and is an active site for electrophilic attack, which is essential for biological recognition and hydrogen-bonding interactions. The bright-blue region on the MEPS over the hydrogen atom of the carb­oxy­lic acid moiety is an active site for possible nucleophilic attack (Friesner et al., 2006[Friesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). J. Med. Chem. 49, 6177-6196.]).

[Figure 9]
Figure 9
The mol­ecular electrostatic potential surface of the title compound.

9. Mol­ecular docking studies

The docking of a receptor protein, specifically the Omicron variant (PDB ID:8BEC, SARS-COV2-VARIANT), with the synthesized ligand shows a very good binding affinity of −7.6 kcal mol−1. AutoDock Vina (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.]) was used for theoretical calculations and the inter­action was generated by Discovery Studio Visualizer (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.]). A 2D view of the docking inter­actions shows one conventional bond with ACP C:61 and two π-donor hydrogen bonds with GLY C:44 and LEU C:45. The higher dispersion energy influences the ligand to have conformational stability with the protein. The idea of docking of the protein mol­ecules with the centroids of the ligands can be used in structure-based drug design. Modifications in the synthesized ligands by varying functional groups and atoms can easily achieve a very good binding affinity with the target protein. In the title ligand we can see three centroids, of which Cg1 and Cg2 (the centroids of the C1–C6 and C8–C12 rings) play significant role in the inter­molecular inter­actions. Meanwhile these act as anchor points for the ligand, the inter­action with these centroids and GLU C:139, GLU C:46 and ALU C:60 PRO C:234 amino acids forming π–anion and π–donor hydrogen bonds, respectively. In addition to these inter­actions, a few van der Waals inter­actions can be seen around the ligand and unfavorable inter­actions are observed at the –OH group; these are shown in Fig. 10[link].

[Figure 10]
Figure 10
The three-dimensional and two-dimensional views of various inter­actions between the title mol­ecule (ligand) and the receptor protein SARS-Covid-2 (PDB ID:8BEC).

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atom of the hydroxyl group was freely refined. All other H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 4
Experimental details

Crystal data
Chemical formula C20H16O3
Mr 304.33
Crystal system, space group Monoclinic, P2/c
Temperature (K) 299
a, b, c (Å) 31.9237 (13), 7.0199 (3), 6.9184 (3)
β (°) 91.864 (1)
V3) 1549.60 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.31 × 0.27 × 0.18
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.972, 0.983
No. of measured, independent and observed [I > 2σ(I)] reflections 35610, 2760, 2207
Rint 0.072
(sin θ/λ)max−1) 0.597
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.162, 1.13
No. of reflections 2760
No. of parameters 212
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.20
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

3-[4-(Benzyloxy)phenyl]benzoic acid top
Crystal data top
C20H16O3F(000) = 640
Mr = 304.33Dx = 1.304 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 2207 reflections
a = 31.9237 (13) Åθ = 2.0–25.0°
b = 7.0199 (3) ŵ = 0.09 mm1
c = 6.9184 (3) ÅT = 299 K
β = 91.864 (1)°Prism, colourless
V = 1549.60 (11) Å30.31 × 0.27 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
2760 independent reflections
Radiation source: fine-focus sealed tube2207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
Detector resolution: 1.09 pixels mm-1θmax = 25.1°, θmin = 2.6°
φ and Ω scansh = 3838
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 88
Tmin = 0.972, Tmax = 0.983l = 88
35610 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: mixed
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0584P)2 + 1.0677P]
where P = (Fo2 + 2Fc2)/3
2760 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.20 e Å3
0.12 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.82388 (5)0.2450 (3)0.2817 (2)0.0451 (5)
O20.55270 (6)0.2739 (4)0.2404 (3)0.0803 (8)
O30.51314 (6)0.2653 (5)0.4950 (3)0.0951 (10)
C80.78393 (7)0.2524 (3)0.3464 (3)0.0348 (6)
C120.73839 (7)0.1552 (4)0.5975 (3)0.0383 (6)
H120.7347530.0919230.7138670.046*
C130.77746 (8)0.1606 (4)0.5216 (4)0.0388 (6)
H130.7998670.1023650.5873970.047*
C140.66164 (7)0.2393 (3)0.5886 (3)0.0365 (6)
C100.71123 (8)0.3348 (4)0.3318 (4)0.0388 (6)
H100.6889490.3949840.2669400.047*
C110.70391 (7)0.2422 (3)0.5053 (3)0.0348 (6)
C90.75043 (7)0.3408 (4)0.2519 (4)0.0391 (6)
H90.7541920.4038970.1355430.047*
C150.62556 (8)0.2555 (4)0.4737 (4)0.0431 (6)
H150.6280380.2686320.3407890.052*
C160.58606 (8)0.2530 (4)0.5484 (4)0.0451 (7)
C10.87677 (8)0.2945 (4)0.0553 (4)0.0417 (6)
C60.90842 (9)0.4146 (4)0.1193 (4)0.0522 (7)
H60.9018330.5227170.1898220.063*
C190.65636 (9)0.2203 (4)0.7877 (4)0.0468 (7)
H190.6798400.2089840.8701010.056*
C70.83194 (8)0.3350 (4)0.1001 (4)0.0487 (7)
H7A0.8273680.4712700.1089220.058*
H7B0.8133640.2842530.0010310.058*
C170.58190 (9)0.2345 (4)0.7471 (4)0.0540 (8)
H170.5554810.2334110.7998810.065*
C200.54871 (9)0.2661 (5)0.4180 (4)0.0566 (8)
C20.88725 (9)0.1367 (4)0.0504 (4)0.0528 (7)
H20.8663090.0549120.0966130.063*
C180.61711 (9)0.2180 (5)0.8637 (4)0.0566 (8)
H180.6144620.2051110.9965660.068*
C50.94942 (9)0.3774 (5)0.0806 (4)0.0626 (9)
H50.9703800.4597930.1253600.075*
C30.92875 (10)0.0985 (5)0.0889 (5)0.0626 (9)
H30.9355780.0094650.1591010.075*
C40.95967 (9)0.2195 (5)0.0237 (4)0.0617 (9)
H40.9875220.1946070.0501020.074*
H3A0.4838 (16)0.265 (7)0.382 (7)0.155 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0345 (10)0.0588 (12)0.0423 (10)0.0053 (8)0.0067 (7)0.0124 (9)
O20.0398 (12)0.157 (3)0.0447 (13)0.0007 (13)0.0056 (9)0.0059 (14)
O30.0307 (11)0.199 (3)0.0562 (14)0.0012 (15)0.0094 (10)0.0046 (17)
C80.0322 (12)0.0346 (13)0.0379 (13)0.0004 (10)0.0043 (10)0.0009 (11)
C120.0399 (14)0.0415 (14)0.0336 (13)0.0013 (11)0.0038 (10)0.0057 (11)
C130.0373 (14)0.0416 (14)0.0372 (14)0.0057 (11)0.0036 (11)0.0057 (11)
C140.0389 (14)0.0332 (13)0.0378 (13)0.0023 (11)0.0049 (11)0.0026 (11)
C100.0352 (13)0.0431 (15)0.0381 (14)0.0049 (11)0.0009 (10)0.0062 (12)
C110.0365 (13)0.0327 (13)0.0353 (13)0.0019 (11)0.0025 (10)0.0020 (11)
C90.0384 (14)0.0410 (14)0.0383 (14)0.0035 (11)0.0045 (11)0.0079 (12)
C150.0371 (14)0.0558 (17)0.0366 (14)0.0009 (12)0.0059 (11)0.0024 (13)
C160.0390 (14)0.0552 (17)0.0414 (15)0.0005 (12)0.0077 (11)0.0035 (13)
C10.0416 (14)0.0467 (15)0.0371 (14)0.0021 (12)0.0068 (11)0.0070 (12)
C60.0550 (17)0.0605 (18)0.0415 (15)0.0071 (14)0.0090 (13)0.0110 (14)
C190.0480 (16)0.0544 (17)0.0381 (15)0.0021 (13)0.0032 (12)0.0010 (13)
C70.0443 (15)0.0581 (17)0.0442 (16)0.0034 (13)0.0101 (12)0.0178 (14)
C170.0401 (15)0.074 (2)0.0490 (17)0.0001 (14)0.0167 (13)0.0016 (15)
C200.0344 (15)0.085 (2)0.0509 (18)0.0000 (15)0.0084 (12)0.0004 (16)
C20.0525 (17)0.0566 (18)0.0496 (17)0.0112 (14)0.0054 (13)0.0063 (14)
C180.0515 (18)0.081 (2)0.0379 (15)0.0022 (15)0.0094 (13)0.0013 (15)
C50.0447 (17)0.087 (2)0.0561 (19)0.0173 (16)0.0053 (14)0.0050 (18)
C30.066 (2)0.062 (2)0.060 (2)0.0091 (16)0.0209 (16)0.0060 (16)
C40.0433 (17)0.090 (3)0.0530 (18)0.0062 (17)0.0166 (14)0.0098 (18)
Geometric parameters (Å, º) top
O1—C81.366 (3)C16—C201.474 (4)
O1—C71.437 (3)C1—C21.375 (4)
O2—C201.241 (3)C1—C61.378 (4)
O3—C201.270 (3)C1—C71.501 (4)
O3—H3A1.20 (5)C6—C51.370 (4)
C8—C91.382 (3)C6—H60.9300
C8—C131.394 (3)C19—C181.375 (4)
C12—C131.369 (3)C19—H190.9300
C12—C111.395 (3)C7—H7A0.9700
C12—H120.9300C7—H7B0.9700
C13—H130.9300C17—C181.367 (4)
C14—C151.383 (4)C17—H170.9300
C14—C191.400 (3)C2—C31.386 (4)
C14—C111.485 (3)C2—H20.9300
C10—C91.385 (3)C18—H180.9300
C10—C111.391 (3)C5—C41.368 (5)
C10—H100.9300C5—H50.9300
C9—H90.9300C3—C41.368 (4)
C15—C161.378 (3)C3—H30.9300
C15—H150.9300C4—H40.9300
C16—C171.391 (4)
C8—O1—C7117.75 (19)C18—C19—C14121.2 (3)
C20—O3—H3A115 (2)C18—C19—H19119.4
O1—C8—C9125.3 (2)C14—C19—H19119.4
O1—C8—C13115.7 (2)O1—C7—C1107.2 (2)
C9—C8—C13119.0 (2)O1—C7—H7A110.3
C13—C12—C11121.8 (2)C1—C7—H7A110.3
C13—C12—H12119.1O1—C7—H7B110.3
C11—C12—H12119.1C1—C7—H7B110.3
C12—C13—C8120.6 (2)H7A—C7—H7B108.5
C12—C13—H13119.7C18—C17—C16119.2 (2)
C8—C13—H13119.7C18—C17—H17120.4
C15—C14—C19116.7 (2)C16—C17—H17120.4
C15—C14—C11121.8 (2)O2—C20—O3122.5 (3)
C19—C14—C11121.6 (2)O2—C20—O3122.5 (3)
C9—C10—C11122.5 (2)O2—C20—O3122.5 (3)
C9—C10—H10118.7O2—C20—O3122.5 (3)
C11—C10—H10118.7O2—C20—C16120.1 (2)
C10—C11—C12116.6 (2)O2—C20—C16120.1 (2)
C10—C11—C14121.4 (2)O3—C20—C16117.4 (3)
C12—C11—C14122.0 (2)O3—C20—C16117.4 (3)
C8—C9—C10119.5 (2)C1—C2—C3120.6 (3)
C8—C9—H9120.2C1—C2—H2119.7
C10—C9—H9120.2C3—C2—H2119.7
C16—C15—C14122.6 (2)C17—C18—C19121.0 (3)
C16—C15—H15118.7C17—C18—H18119.5
C14—C15—H15118.7C19—C18—H18119.5
C15—C16—C17119.3 (3)C4—C5—C6120.3 (3)
C15—C16—C20120.1 (2)C4—C5—H5119.9
C17—C16—C20120.6 (2)C6—C5—H5119.9
C2—C1—C6118.4 (3)C4—C3—C2120.0 (3)
C2—C1—C7120.8 (3)C4—C3—H3120.0
C6—C1—C7120.8 (3)C2—C3—H3120.0
C5—C6—C1121.1 (3)C3—C4—C5119.6 (3)
C5—C6—H6119.5C3—C4—H4120.2
C1—C6—H6119.5C5—C4—H4120.2
C7—O1—C8—C90.5 (4)C8—O1—C7—C1175.9 (2)
C7—O1—C8—C13179.0 (2)C2—C1—C7—O190.9 (3)
C11—C12—C13—C80.7 (4)C6—C1—C7—O189.1 (3)
O1—C8—C13—C12178.5 (2)C15—C16—C17—C180.4 (5)
C9—C8—C13—C121.0 (4)C20—C16—C17—C18178.4 (3)
C9—C10—C11—C120.4 (4)C15—C16—C20—O22.1 (5)
C9—C10—C11—C14179.5 (2)C17—C16—C20—O2176.8 (3)
C13—C12—C11—C14179.1 (2)C15—C16—C20—O22.1 (5)
C15—C14—C11—C1026.6 (4)C17—C16—C20—O2176.8 (3)
C19—C14—C11—C10153.3 (3)C15—C16—C20—O3179.2 (3)
C15—C14—C11—C12154.4 (3)C17—C16—C20—O31.9 (5)
C19—C14—C11—C1225.7 (4)C15—C16—C20—O3179.2 (3)
O1—C8—C9—C10178.8 (2)C17—C16—C20—O31.9 (5)
C13—C8—C9—C100.6 (4)C6—C1—C2—C31.0 (4)
C11—C10—C9—C80.1 (4)C7—C1—C2—C3179.1 (3)
C19—C14—C15—C160.1 (4)C16—C17—C18—C190.3 (5)
C11—C14—C15—C16180.0 (2)C14—C19—C18—C170.1 (5)
C14—C15—C16—C170.4 (4)C1—C6—C5—C40.3 (5)
C14—C15—C16—C20178.5 (3)C1—C2—C3—C40.9 (5)
C2—C1—C6—C50.7 (4)C2—C3—C4—C50.4 (5)
C7—C1—C6—C5179.3 (3)C6—C5—C4—C30.1 (5)
C11—C14—C19—C18179.9 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C8–C12 rings, respectively,
D—H···AD—HH···AD···AD—H···A
C15—H15···O20.932.482.791 (3)100
C17—H17···O30.932.482.767 (4)98
O3—H3A···O2i1.20 (5)1.42 (5)2.617 (3)175 (4)
C3—H3···Cg1ii0.932.883.711 (4)149
C6—H6···Cg1iii0.932.773.588 (4)147
C9—H9···Cg2iv0.932.863.667 (3)146
C12—H12···Cg2v0.932.813.629 (3)147
Symmetry codes: (i) x+1, y, z+1/2; (ii) x, y, z1/2; (iii) x, y+1, z3/2; (iv) x, y+1, z1/2; (v) x, y, z3/2.
Selected bond lengths, angles) and torsion angles (Å, °) top
ParameterSCXRDDFT
O1—C81.366 (3)1.36392
O1—C71.437 (3)1.43631
O2—C201.241 (3)1.20944
O3—C201.270 (3)1.35882
C8—O1—C7117.75 (19)118.64625
O1—C8—C13115.7 (2)115.79634
O1—C8—C9125.3 (2)124.91696
C13—C8—C9119.0 (2)119.28680
C7—O1—C8—C13179.0 (2)179.2209
C7—O1—C8—C9-0.5 (4)-0.79351
C8—O1—C7—C1-175.9 (2)-178.9820
O1—C8—C13—C12-178.5 (2)-179.9223
The energy values (eV) of global reactivity descriptors for the title compound top
E_HOMO_-6.0801
E_LUMO_-1.7464
Energy gap (eV)4.3337
Ionization Energy (I)6.0801
Electron affinity (A)1.7464
Electronegativity (χ)3.91325
Chemical hardness (η)2.16685
Chemical softness (S)0.231 eV-1
Chemical potential (µ)-3.91325
Electrophilicity index (ω)3.534
 

Acknowledgements

The authors extend their gratitude to Kishore and Shashikanth, SSCU, IISc for their help in collecting SCXRD data.

Funding information

Funding for this research was provided by: Vission Group of Science and Technology (award No. GRD319 to B. S. Palakshamurthy).

References

First citationBarbas, R., Font-Bardia, M., Ballesteros, A., Arsequell, G., Prohens, R. & Frontera, A. (2022). CrystEngComm, 24, 3057–3063.  CrossRef Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.  Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCandia, M. de, Marini, E., Zaetta, G., Cellamare, S., Di Stilo, A. & Altomare, C. D. (2015). Eur. J. Pharm. Sci. 72, 69–80.  Web of Science PubMed Google Scholar
First citationDeep, A., Jain, S., Sharma, P. C., Verma, P., Kumar, M. & Dora, C. P. (2010). Synthesis, 182, 183.  Google Scholar
First citationDoiron, J. E., Le, C. A., Bacsa, J., Breton, G. W., Martin, K. L., Aller, S. G. & Turlington, M. (2020). ChemMedChem, 15, 1720–1730.  CrossRef PubMed Google Scholar
First citationFriesner, R. A., Murphy, R. B., Repasky, M. P., Frye, L. L., Greenwood, J. R., Halgren, T. A., Sanschagrin, P. C. & Mainz, D. T. (2006). J. Med. Chem. 49, 6177–6196.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09. Gaussian Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuo, X., Li, T., Cao, X. & Zhang, W. (2024). Z. Krist. New Cryst. Struct. 239, 957–959.  Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationHurlock, M. J., Lare, M. F. & Zhang, Q. (2021). Inorg. Chem. 60, 2503–2513.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIdris, A. I., Greig, I. R., Bassonga-Landao, E., Ralston, S. H. & van 't Hof, R. J. (2009). Endocrinology, 150, 5–13.  CrossRef PubMed Google Scholar
First citationJain, Z. J., Gide, P. S. & Kankate, R. S. (2017). Arab. J. Chem. 10, S2051–S2066.  CrossRef Google Scholar
First citationKaushik, C. P., Pahwa, A., Kumar, D., Kumar, A., Singh, D., Kumar, K. & Luxmi, R. (2018). J. Heterocycl. Chem. 55, 1720–1728.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahale, S., Bharate, S. B., Manda, S., Joshi, P., Bharate, S. S., Jenkins, P. R., Vishwakarma, R. A. & Chaudhuri, B. (2014). J. Med. Chem. 57, 9658–9672.  CrossRef PubMed Google Scholar
First citationMohebi, M., Fayazi, N., Esmaeili, S., Rostami, M., Bagheri, F., Aliabadi, A., Asadi, P. & Saghaie, L. (2022). Res. Pharm. Sci. 17, 252–264.  CrossRef PubMed Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.  Web of Science CrossRef Google Scholar
First citationMukherjee, S., Chatterjee, S., Poddar, A., Bhattacharyya, B. & Gupta, S. (2016). J. Taibah Univ. Sci. 10, 839–849.  CrossRef Google Scholar
First citationO'Malley, C., Erxleben, A., Kellehan, S. & McArdle, P. (2020). Chem. Commun. 56, 5657–5660.  Google Scholar
First citationO'Malley, C., Erxleben, A., McArdle, P. & Simmie, J. M. (2021). Cryst. Growth Des. 21, 23–27.  Google Scholar
First citationRadhika, S., Srinivasa, H. T. & Sadashiva, B. K. (2011). Liq. Cryst. 38, 785–792.  CrossRef Google Scholar
First citationSharma, M. C., Kohli, D. V. & Sharma, S. (2010). Digest J. Nanomaterials Biostructures, 5, 605–621.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationvan't Hof, R. J., Idris, A. I., Ridge, S. A., Dunford, J., Greig, I. R. & Ralston, S. H. (2004). J. Bone Miner. Res. 19, 1651–1660.  PubMed Google Scholar
First citationZhao, D., Zhao, S., Zhao, L., Zhang, X., Wei, P., Liu, C., Hao, C., Sun, B., Su, X. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 750–758.  CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds