

research communications
and Hirshfeld-surface analysis of the pesticide etoxazole
aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com
Etoxazole (C21H23F2NO2), 4-(4-tert-butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)-4,5-dihydro-1,3-oxazole, is a fluorinated insecticide and acaricide that inhibits chitin biosynthesis, disrupting insect development by preventing proper exoskeleton formation. Widely used in agriculture since 1998, it is readily absorbed by plant tissues and translocates within leaves. Metabolic studies have identified several oxidative degradation products, while toxicological assessments have examined potential effects, including oxidative stress. This study presents a detailed crystallographic and Hirshfeld surface analysis of etoxazole. The molecule consists of a central dihydro-oxazole ring flanked by 2,6-difluorophenyl and 4-tert-butyl-2-ethoxyphenyl groups, each twisted relative to the oxazole core. The dihydro-oxazole ring is nearly planar, with the substituted phenyl rings forming dihedral angles of 44.20 (4)° and 47.87 (4)° with the mean plane of the dihydro-oxazole. The ethoxy group exhibits a dihedral angle of 15.04 (11)° to the tert-butylphenyl ring, while the tert-butyl group itself shows minor torsional disorder [major:minor occupancies are 0.760 (6):0.240 (6)]. The molecular packing is dominated by van der Waals-type interactions, though weak C—H⋯F and C—H⋯O interactions lead to pleated layers parallel to the ab plane, which further stack along the c-axis direction. A Hirshfeld surface analysis confirms the prevalence of van der Waals interactions in crystal stabilization.
Keywords: etoxazole; insecticide; acaricide; Hirshfeld-surface analysis; crystal structure.
CCDC reference: 2422554
1. Chemical context
Etoxazole is a fluorinated insecticide and acaricide that has been widely utilized in agriculture since its introduction in 1998 (Park et al., 2020). As a member of the oxazoline class, it disrupts insect development by inhibiting chitin biosynthesis, a mechanism that prevents the proper formation of the exoskeleton. Etoxazole is readily absorbed by plant tissues, where it undergoes limited translocation within leaves. Its effectiveness and chemical properties have been extensively studied, with comprehensive reviews available on the biological activities of oxazole derivatives (Kakkar & Narasimhan, 2019
) and their synthetic methodologies (Joshi et al., 2023
). Concerns regarding its potential toxic effects, including oxidative stress, have also been explored in recent toxicological assessments (Macar et al., 2022
). Metabolic studies have identified several degradation products of etoxazole, which arise primarily through oxidative transformations. These metabolites have been detected in environmental and biological systems using high-resolution analytical techniques (Sun et al., 2019
). Among these, oxidation at the oxazole ring leads to the formation of its metabolite ‘R13’ (APVMA, 2024
; Mohan Kumar et al., 2024
). Previous structural studies have examined various insecticidal compounds, including phenylpyrazole derivatives (Priyanka et al., 2022
; Vinaya et al., 2023
), intermediates involved in anthranilamide synthesis (Lei et al., 2009
), and other oxazole-containing insecticides such as ethyl 3-(4-chlorophenyl)-5-[(E)-2-(dimethylamino)ethenyl]-1,2-oxazole-4-carboxylate (Efimov et al., 2015
). Additionally, the of fipronil, another important insecticide, has been reported (Park et al., 2017
). Recognizing the significance of etoxazole in pest management, this study provides a detailed crystallographic analysis and Hirshfeld surface investigation of its molecular and Understanding its conformation and intermolecular interactions offers valuable insights into its stability, physicochemical behaviour, and potential reactivity.
2. Structural commentary
The P21/n. The molecule (Fig. 1) is comprised of three rings: a 4,5-dihydro-1,3-oxazole heterocycle with a 2,6-di-fluorophenyl group attached to C1 (between N1 and O1 of the oxazole) and a 4-tert-butyl-2-ethoxyphenyl group bonded to C3, adjacent to N1 on the opposite side from C1. The dihydro-oxazole ring is only very slightly puckered; its r.m.s. deviation from planarity is 0.0514 Å with a maximum deviation of 0.0695 (6) Å at C2. All bond lengths and angles are within normal ranges.
![]() | Figure 1 An ellipsoid plot (50% probability) of etoxazole. For the sake of clarity, only the major component of disorder for the tert-butyl group is shown. Hydrogen atoms are drawn as small arbitrary circles. |
The molecular conformation is a consequence of the twist of each substituted phenyl ring to the central heterocyclic ring. The dihedral angles between the mean plane of the dihydro-oxazole ring and the attached di-fluorophenyl (atoms C16–C21) and 4-tert-butyl-2-ethoxyphenyl (atoms C4–C9) are 44.20 (4)° and 47.87 (4)°, respectively, and by the torsion angles C5—C4—C3—N1 = 6.09 (14)° and C5—C4—C3—C2 = 124.39 (11)°. The orientation of the ethoxy group (O2—C10—C11) relative to the 4-tert-butylphenyl ring gives a dihedral angle of 15.04 (11)° and torsion C8—C9—O2—C10 = −17.70 (14)°. Lastly, the tert-butyl group is torsionally disordered over two positions with refined occupancy factors of 0.760 (6) and 0.240 (6). The angular deviation of minor to major components is 23.0 (3)°, calculated as the of the differences between torsion angles of the form C6—C7—C12—C13,14,15 and C6—C7—C12—C13′,14′,15′.
3. Supramolecular features
There are no strong hydrogen bonds in the SHELXL (Sheldrick, 2015b) and by Mercury (Macrae et al., 2020
), however, flag two close contacts: C10—H10A⋯F1i [dD-A =- 3.5211 (13) Å; symmetry code: (i) −x +
, y +
, −z +
] and C20—H20⋯O2ii [d(D⋯A) = 3.4766 (13) Å; symmetry code: (ii) x + 1, y, z] (Table 1
), which together weakly link the molecules into diperiodic pleated layers parallel to the ab plane (Fig. 2
). There are no π–π stacking interactions, but there are several C—H⋯π contacts: C19—H19⋯Cg(C4–C9)iii [d(H⋯A) = 3.5301 Å; symmetry code: (iii) −x +
, y −
, −z +
] connects 21-screw related molecules; pairs of mutual contacts between molecules of the form C14—H14A⋯Cg(C16–C21)iv [d(D⋯A) = 2.9092 Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1) combine to form inversion-related pairs; lastly, the methyl group at C11 of the tert-butyl ligand closely abuts an inversion-related difluorophenyl ring C11—H11A,B,C⋯Cgv [d(D⋯A) = 3.1319, 3.2496, 3.4314 Å for H11A, H11B, H11C, respectively; symmetry code: (v) −x + 1, −y + 1, −z + 2]. In combination, these contacts (Fig. 3
) stack the pleated layers along the c-axis direction, giving rise to the overall 3D structure.
|
![]() | Figure 2 A partial packing plot viewed normal to the ab-plane, showing weak C—H⋯F and C—H⋯O contacts that connect the molecules into pleated layers. |
![]() | Figure 3 A partial packing plot viewed down the a-axis showing weak C—H⋯π interactions that connect pleated layers of molecules (Fig. 2 ![]() |
A Hirshfeld surface analysis (minor disorder component excluded) using CrystalExplorer (Spackman et al., 2021) indicates that almost all (98.6%) intermolecular contacts involve hydrogen, with the vast majority being H⋯H (49.2%) and C⋯H (23.3%) contacts. Thus, van der Waals interactions are particularly prominent in the The full set of intermolecular interactions are summarized as Hirshfeld surface contact fingerprint plots in Fig. 4
.
![]() | Figure 4 Two-dimensional fingerprint plots quantifying the various atom–atom contact coverages present in the crystal packing: (a) H⋯H = 49.2%; (b) C⋯H = 23.3%; (c) F⋯H = 15.7%; (d) O⋯H = 6.9%; (e) N⋯H = 3.4%; (f) F⋯F = 1.4% |
4. Database survey
Given the structural similarity between etoxazole and its R13 metabolite, a previous database survey (CSD v5.45, with updates as of March 2024; Groom et al., 2016) conducted for the R13 metabolite (Mohan Kumar et al., 2024
) is also applicable to etoxazole itself. That search used a molecular fragment consisting of the three-ring backbone, with the fluorine, ethoxy, and tert-butyl substituents removed, and the oxazole ring’s double bonds set to ‘any type of bond’ in order to capture both oxazole and dihydro-oxazole variants; the search generated 336 hits. A similar search retaining both fluorine atoms returned only two matches: DOGMEV (Roque et al., 2023
) and LIYZUS (Saha et al., 2023
). As of version 5.46 of the CSD (Nov. 2024), the R13 metabolite is also included in the database as UGUQUM (Mohan Kumar et al., 2024
).
5. Synthesis and crystallization
The sample of etoxazole was provided as a gift by Honeychem Pharma Research, India. It was purified by
and recrystallized from hexane by slow evaporation to obtain clear colourless crystals (m.p.: 375 K).6. Refinement
Crystal data, data collection, and structure . All full occupancy and major disorder component hydrogens were present in difference-Fourier maps, but were subsequently included in the using riding models, with constrained distances of 0.95 Å (R2CH), 0.99 Å (R2CH2) and 0.98 Å (RCH3). Uiso(H) parameters were set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached carbon. Two-component torsional disorder of the tert-butyl group was handled as separate PARTs [major:minor = 0.760 (6):0.240 (6)] with EADP constraints and SAME geometry restraints included to ensure stable refinement.
|
Supporting information
CCDC reference: 2422554
https://doi.org/10.1107/S2056989025001173/nx2020sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001173/nx2020Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025001173/nx2020Isup3.cml
C21H23F2NO2 | F(000) = 760 |
Mr = 359.40 | Dx = 1.293 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2254 (2) Å | Cell parameters from 9926 reflections |
b = 12.2767 (3) Å | θ = 2.4–27.6° |
c = 14.7404 (3) Å | µ = 0.10 mm−1 |
β = 93.726 (1)° | T = 100 K |
V = 1846.51 (7) Å3 | Solvent-rounded block, colourless |
Z = 4 | 0.30 × 0.29 × 0.24 mm |
Bruker D8 Venture dual source diffractometer | 4232 independent reflections |
Radiation source: microsource | 3810 reflections with I > 2σ(I) |
Detector resolution: 7.41 pixels mm-1 | Rint = 0.028 |
φ and ω scans | θmax = 27.6°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −13→12 |
Tmin = 0.913, Tmax = 0.971 | k = −15→15 |
36219 measured reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.077 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0229P)2 + 0.7589P] where P = (Fo2 + 2Fc2)/3 |
4232 reflections | (Δ/σ)max = 0.001 |
249 parameters | Δρmax = 0.27 e Å−3 |
6 restraints | Δρmin = −0.17 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
F1 | 0.65801 (6) | 0.16709 (5) | 0.81007 (5) | 0.02591 (15) | |
F2 | 0.84932 (6) | 0.51354 (5) | 0.84668 (5) | 0.02856 (16) | |
O1 | 0.59310 (7) | 0.46735 (6) | 0.88831 (5) | 0.02189 (17) | |
O2 | 0.20619 (7) | 0.56908 (6) | 0.80997 (5) | 0.01919 (16) | |
N1 | 0.52318 (8) | 0.36866 (7) | 0.76447 (6) | 0.01943 (18) | |
C1 | 0.61498 (10) | 0.39273 (8) | 0.82283 (6) | 0.01647 (19) | |
C2 | 0.46203 (10) | 0.50925 (9) | 0.86463 (7) | 0.0203 (2) | |
H2A | 0.465680 | 0.585120 | 0.842192 | 0.024* | |
H2B | 0.407431 | 0.507000 | 0.917657 | 0.024* | |
C3 | 0.40756 (10) | 0.43176 (8) | 0.78894 (7) | 0.0178 (2) | |
H3 | 0.343741 | 0.380819 | 0.815230 | 0.021* | |
C4 | 0.34021 (9) | 0.48827 (8) | 0.70751 (7) | 0.01653 (19) | |
C5 | 0.37576 (10) | 0.47310 (8) | 0.61912 (7) | 0.0193 (2) | |
H5 | 0.444699 | 0.424052 | 0.607837 | 0.023* | |
C6 | 0.31205 (10) | 0.52859 (9) | 0.54676 (7) | 0.0202 (2) | |
H6 | 0.338574 | 0.516894 | 0.486953 | 0.024* | |
C7 | 0.21004 (10) | 0.60102 (8) | 0.56022 (7) | 0.0169 (2) | |
C8 | 0.17276 (9) | 0.61556 (8) | 0.64910 (6) | 0.01590 (19) | |
H8 | 0.103040 | 0.663851 | 0.660341 | 0.019* | |
C9 | 0.23699 (9) | 0.55986 (8) | 0.72109 (6) | 0.01566 (19) | |
C10 | 0.12969 (10) | 0.66135 (9) | 0.83472 (7) | 0.0217 (2) | |
H10A | 0.039594 | 0.656240 | 0.806104 | 0.026* | |
H10B | 0.169956 | 0.729787 | 0.814519 | 0.026* | |
C11 | 0.12720 (12) | 0.65932 (10) | 0.93669 (7) | 0.0291 (3) | |
H11A | 0.077430 | 0.722042 | 0.956894 | 0.044* | |
H11B | 0.217077 | 0.662715 | 0.964005 | 0.044* | |
H11C | 0.085471 | 0.591875 | 0.955557 | 0.044* | |
C12 | 0.14577 (10) | 0.66574 (9) | 0.48019 (7) | 0.0206 (2) | |
C13 | 0.0172 (2) | 0.7215 (2) | 0.50405 (16) | 0.0310 (5) | 0.760 (6) |
H13A | 0.036459 | 0.777122 | 0.550703 | 0.047* | 0.760 (6) |
H13B | −0.042303 | 0.666985 | 0.527143 | 0.047* | 0.760 (6) |
H13C | −0.024326 | 0.755804 | 0.449467 | 0.047* | 0.760 (6) |
C14 | 0.1107 (3) | 0.5888 (2) | 0.39926 (14) | 0.0369 (6) | 0.760 (6) |
H14A | 0.068743 | 0.630696 | 0.348806 | 0.055* | 0.760 (6) |
H14B | 0.050452 | 0.532275 | 0.418034 | 0.055* | 0.760 (6) |
H14C | 0.190785 | 0.554669 | 0.379613 | 0.055* | 0.760 (6) |
C15 | 0.2408 (2) | 0.7526 (2) | 0.4503 (2) | 0.0432 (7) | 0.760 (6) |
H15A | 0.262925 | 0.802228 | 0.501104 | 0.065* | 0.760 (6) |
H15B | 0.199701 | 0.793832 | 0.399145 | 0.065* | 0.760 (6) |
H15C | 0.320808 | 0.717575 | 0.431530 | 0.065* | 0.760 (6) |
C13' | 0.0046 (8) | 0.6850 (7) | 0.4909 (6) | 0.0310 (5) | 0.240 (6) |
H13D | −0.006452 | 0.720457 | 0.549469 | 0.047* | 0.240 (6) |
H13E | −0.031072 | 0.732077 | 0.441575 | 0.047* | 0.240 (6) |
H13F | −0.042164 | 0.615282 | 0.488675 | 0.047* | 0.240 (6) |
C14' | 0.1623 (10) | 0.6123 (7) | 0.3918 (5) | 0.0369 (6) | 0.240 (6) |
H14D | 0.255669 | 0.599493 | 0.384674 | 0.055* | 0.240 (6) |
H14E | 0.115526 | 0.542548 | 0.389599 | 0.055* | 0.240 (6) |
H14F | 0.126618 | 0.659343 | 0.342499 | 0.055* | 0.240 (6) |
C15' | 0.2199 (9) | 0.7761 (7) | 0.4833 (7) | 0.0432 (7) | 0.240 (6) |
H15D | 0.209156 | 0.811794 | 0.541782 | 0.065* | 0.240 (6) |
H15E | 0.313238 | 0.763249 | 0.476038 | 0.065* | 0.240 (6) |
H15F | 0.184120 | 0.823022 | 0.433886 | 0.065* | 0.240 (6) |
C16 | 0.74702 (9) | 0.34330 (8) | 0.82783 (6) | 0.0171 (2) | |
C17 | 0.76462 (10) | 0.23134 (9) | 0.81993 (7) | 0.0193 (2) | |
C18 | 0.88612 (10) | 0.18259 (9) | 0.82380 (7) | 0.0235 (2) | |
H18 | 0.894197 | 0.105784 | 0.818617 | 0.028* | |
C19 | 0.9963 (1) | 0.24799 (10) | 0.83543 (7) | 0.0240 (2) | |
H19 | 1.080842 | 0.215592 | 0.838175 | 0.029* | |
C20 | 0.9849 (1) | 0.36007 (10) | 0.84310 (7) | 0.0225 (2) | |
H20 | 1.060505 | 0.404970 | 0.850461 | 0.027* | |
C21 | 0.86114 (10) | 0.40459 (9) | 0.83979 (7) | 0.0195 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0192 (3) | 0.0200 (3) | 0.0382 (4) | −0.0005 (2) | −0.0007 (3) | −0.0033 (3) |
F2 | 0.0228 (3) | 0.0206 (3) | 0.0420 (4) | −0.0021 (3) | 0.0004 (3) | 0.0023 (3) |
O1 | 0.0189 (4) | 0.0261 (4) | 0.0202 (4) | 0.0054 (3) | −0.0027 (3) | −0.0046 (3) |
O2 | 0.0205 (4) | 0.0233 (4) | 0.0140 (3) | 0.0068 (3) | 0.0029 (3) | 0.0019 (3) |
N1 | 0.0176 (4) | 0.0184 (4) | 0.0219 (4) | 0.0032 (3) | −0.0019 (3) | −0.0002 (3) |
C1 | 0.0177 (5) | 0.0158 (5) | 0.0160 (4) | 0.0004 (4) | 0.0015 (4) | 0.0016 (4) |
C2 | 0.0182 (5) | 0.0225 (5) | 0.0200 (5) | 0.0051 (4) | −0.0018 (4) | −0.0006 (4) |
C3 | 0.0156 (5) | 0.0173 (5) | 0.0205 (5) | 0.0015 (4) | 0.0004 (4) | 0.0005 (4) |
C4 | 0.0148 (4) | 0.0173 (5) | 0.0172 (5) | −0.0007 (4) | −0.0011 (4) | −0.0001 (4) |
C5 | 0.0173 (5) | 0.0205 (5) | 0.0200 (5) | 0.0024 (4) | 0.0011 (4) | −0.0032 (4) |
C6 | 0.0212 (5) | 0.0243 (5) | 0.0152 (5) | −0.0001 (4) | 0.0024 (4) | −0.0021 (4) |
C7 | 0.0172 (5) | 0.0172 (5) | 0.0160 (5) | −0.0034 (4) | −0.0013 (4) | 0.0007 (4) |
C8 | 0.0136 (4) | 0.0164 (5) | 0.0176 (5) | −0.0001 (4) | 0.0005 (3) | −0.0002 (4) |
C9 | 0.0150 (4) | 0.0174 (5) | 0.0146 (4) | −0.0018 (4) | 0.0013 (3) | −0.0006 (4) |
C10 | 0.0229 (5) | 0.0235 (5) | 0.0191 (5) | 0.0074 (4) | 0.0035 (4) | −0.0002 (4) |
C11 | 0.0345 (6) | 0.0349 (6) | 0.0184 (5) | 0.0077 (5) | 0.0050 (4) | −0.0024 (5) |
C12 | 0.0227 (5) | 0.0229 (5) | 0.0161 (5) | 0.0010 (4) | −0.0002 (4) | 0.0035 (4) |
C13 | 0.0370 (9) | 0.0374 (15) | 0.0184 (9) | 0.0178 (11) | −0.0005 (7) | 0.0035 (9) |
C14 | 0.0525 (17) | 0.0355 (11) | 0.0205 (7) | 0.0085 (11) | −0.0136 (10) | −0.0036 (7) |
C15 | 0.0380 (11) | 0.0437 (13) | 0.0466 (17) | −0.0104 (9) | −0.0072 (10) | 0.0282 (12) |
C13' | 0.0370 (9) | 0.0374 (15) | 0.0184 (9) | 0.0178 (11) | −0.0005 (7) | 0.0035 (9) |
C14' | 0.0525 (17) | 0.0355 (11) | 0.0205 (7) | 0.0085 (11) | −0.0136 (10) | −0.0036 (7) |
C15' | 0.0380 (11) | 0.0437 (13) | 0.0466 (17) | −0.0104 (9) | −0.0072 (10) | 0.0282 (12) |
C16 | 0.0160 (5) | 0.0215 (5) | 0.0135 (4) | 0.0018 (4) | −0.0002 (3) | 0.0014 (4) |
C17 | 0.0165 (5) | 0.0227 (5) | 0.0185 (5) | 0.0001 (4) | −0.0003 (4) | −0.0006 (4) |
C18 | 0.0228 (5) | 0.0238 (5) | 0.0239 (5) | 0.0064 (4) | 0.0010 (4) | −0.0005 (4) |
C19 | 0.0169 (5) | 0.0348 (6) | 0.0203 (5) | 0.0078 (4) | 0.0009 (4) | 0.0012 (4) |
C20 | 0.0163 (5) | 0.0320 (6) | 0.0191 (5) | −0.0016 (4) | 0.0004 (4) | 0.0021 (4) |
C21 | 0.0210 (5) | 0.0199 (5) | 0.0174 (5) | 0.0008 (4) | 0.0005 (4) | 0.0023 (4) |
F1—C17 | 1.3458 (12) | C12—C15 | 1.527 (2) |
F2—C21 | 1.3475 (12) | C12—C13 | 1.543 (2) |
O1—C1 | 1.3598 (12) | C12—C14 | 1.545 (2) |
O1—C2 | 1.4566 (12) | C12—C15' | 1.552 (8) |
O2—C9 | 1.3719 (11) | C13—H13A | 0.9800 |
O2—C10 | 1.4370 (12) | C13—H13B | 0.9800 |
N1—C1 | 1.2663 (13) | C13—H13C | 0.9800 |
N1—C3 | 1.4775 (12) | C14—H14A | 0.9800 |
C1—C16 | 1.4777 (13) | C14—H14B | 0.9800 |
C2—C3 | 1.5425 (14) | C14—H14C | 0.9800 |
C2—H2A | 0.9900 | C15—H15A | 0.9800 |
C2—H2B | 0.9900 | C15—H15B | 0.9800 |
C3—C4 | 1.5128 (13) | C15—H15C | 0.9800 |
C3—H3 | 1.0000 | C13'—H13D | 0.9800 |
C4—C5 | 1.3878 (14) | C13'—H13E | 0.9800 |
C4—C9 | 1.3979 (13) | C13'—H13F | 0.9800 |
C5—C6 | 1.3913 (14) | C14'—H14D | 0.9800 |
C5—H5 | 0.9500 | C14'—H14E | 0.9800 |
C6—C7 | 1.3946 (14) | C14'—H14F | 0.9800 |
C6—H6 | 0.9500 | C15'—H15D | 0.9800 |
C7—C8 | 1.3994 (13) | C15'—H15E | 0.9800 |
C7—C12 | 1.5343 (14) | C15'—H15F | 0.9800 |
C8—C9 | 1.3910 (13) | C16—C21 | 1.3900 (14) |
C8—H8 | 0.9500 | C16—C17 | 1.3921 (14) |
C10—C11 | 1.5051 (14) | C17—C18 | 1.3768 (14) |
C10—H10A | 0.9900 | C18—C19 | 1.3850 (16) |
C10—H10B | 0.9900 | C18—H18 | 0.9500 |
C11—H11A | 0.9800 | C19—C20 | 1.3861 (16) |
C11—H11B | 0.9800 | C19—H19 | 0.9500 |
C11—H11C | 0.9800 | C20—C21 | 1.3764 (14) |
C12—C14' | 1.479 (7) | C20—H20 | 0.9500 |
C12—C13' | 1.482 (8) | ||
C1—O1—C2 | 105.02 (7) | C14'—C12—C15' | 109.3 (4) |
C9—O2—C10 | 118.04 (8) | C13'—C12—C15' | 109.6 (5) |
C1—N1—C3 | 106.35 (8) | C7—C12—C15' | 104.2 (3) |
N1—C1—O1 | 119.37 (9) | C12—C13—H13A | 109.5 |
N1—C1—C16 | 124.93 (9) | C12—C13—H13B | 109.5 |
O1—C1—C16 | 115.68 (8) | H13A—C13—H13B | 109.5 |
O1—C2—C3 | 103.82 (8) | C12—C13—H13C | 109.5 |
O1—C2—H2A | 111.0 | H13A—C13—H13C | 109.5 |
C3—C2—H2A | 111.0 | H13B—C13—H13C | 109.5 |
O1—C2—H2B | 111.0 | C12—C14—H14A | 109.5 |
C3—C2—H2B | 111.0 | C12—C14—H14B | 109.5 |
H2A—C2—H2B | 109.0 | H14A—C14—H14B | 109.5 |
N1—C3—C4 | 112.14 (8) | C12—C14—H14C | 109.5 |
N1—C3—C2 | 104.05 (8) | H14A—C14—H14C | 109.5 |
C4—C3—C2 | 114.55 (8) | H14B—C14—H14C | 109.5 |
N1—C3—H3 | 108.6 | C12—C15—H15A | 109.5 |
C4—C3—H3 | 108.6 | C12—C15—H15B | 109.5 |
C2—C3—H3 | 108.6 | H15A—C15—H15B | 109.5 |
C5—C4—C9 | 117.71 (9) | C12—C15—H15C | 109.5 |
C5—C4—C3 | 123.36 (9) | H15A—C15—H15C | 109.5 |
C9—C4—C3 | 118.93 (8) | H15B—C15—H15C | 109.5 |
C4—C5—C6 | 121.06 (9) | C12—C13'—H13D | 109.5 |
C4—C5—H5 | 119.5 | C12—C13'—H13E | 109.5 |
C6—C5—H5 | 119.5 | H13D—C13'—H13E | 109.5 |
C5—C6—C7 | 121.36 (9) | C12—C13'—H13F | 109.5 |
C5—C6—H6 | 119.3 | H13D—C13'—H13F | 109.5 |
C7—C6—H6 | 119.3 | H13E—C13'—H13F | 109.5 |
C6—C7—C8 | 117.80 (9) | C12—C14'—H14D | 109.5 |
C6—C7—C12 | 120.52 (9) | C12—C14'—H14E | 109.5 |
C8—C7—C12 | 121.64 (9) | H14D—C14'—H14E | 109.5 |
C9—C8—C7 | 120.51 (9) | C12—C14'—H14F | 109.5 |
C9—C8—H8 | 119.7 | H14D—C14'—H14F | 109.5 |
C7—C8—H8 | 119.7 | H14E—C14'—H14F | 109.5 |
O2—C9—C8 | 124.17 (9) | C12—C15'—H15D | 109.5 |
O2—C9—C4 | 114.27 (8) | C12—C15'—H15E | 109.5 |
C8—C9—C4 | 121.56 (9) | H15D—C15'—H15E | 109.5 |
O2—C10—C11 | 106.58 (8) | C12—C15'—H15F | 109.5 |
O2—C10—H10A | 110.4 | H15D—C15'—H15F | 109.5 |
C11—C10—H10A | 110.4 | H15E—C15'—H15F | 109.5 |
O2—C10—H10B | 110.4 | C21—C16—C17 | 115.66 (9) |
C11—C10—H10B | 110.4 | C21—C16—C1 | 122.74 (9) |
H10A—C10—H10B | 108.6 | C17—C16—C1 | 121.60 (9) |
C10—C11—H11A | 109.5 | F1—C17—C18 | 118.17 (9) |
C10—C11—H11B | 109.5 | F1—C17—C16 | 118.65 (9) |
H11A—C11—H11B | 109.5 | C18—C17—C16 | 123.16 (10) |
C10—C11—H11C | 109.5 | C17—C18—C19 | 118.53 (10) |
H11A—C11—H11C | 109.5 | C17—C18—H18 | 120.7 |
H11B—C11—H11C | 109.5 | C19—C18—H18 | 120.7 |
C14'—C12—C13' | 109.4 (4) | C18—C19—C20 | 120.89 (10) |
C14'—C12—C7 | 112.3 (3) | C18—C19—H19 | 119.6 |
C13'—C12—C7 | 111.9 (4) | C20—C19—H19 | 119.6 |
C15—C12—C7 | 109.55 (12) | C21—C20—C19 | 118.25 (10) |
C15—C12—C13 | 108.88 (14) | C21—C20—H20 | 120.9 |
C7—C12—C13 | 112.54 (11) | C19—C20—H20 | 120.9 |
C15—C12—C14 | 108.92 (14) | F2—C21—C20 | 118.57 (9) |
C7—C12—C14 | 110.08 (11) | F2—C21—C16 | 117.92 (9) |
C13—C12—C14 | 106.79 (13) | C20—C21—C16 | 123.5 (1) |
C3—N1—C1—O1 | −2.09 (12) | C8—C7—C12—C14' | −159.2 (4) |
C3—N1—C1—C16 | 176.16 (9) | C6—C7—C12—C13' | 147.0 (4) |
C2—O1—C1—N1 | −5.81 (12) | C8—C7—C12—C13' | −35.6 (4) |
C2—O1—C1—C16 | 175.78 (8) | C6—C7—C12—C15 | −71.21 (19) |
C1—O1—C2—C3 | 10.39 (10) | C8—C7—C12—C15 | 106.10 (18) |
C1—N1—C3—C4 | 132.90 (9) | C6—C7—C12—C13 | 167.52 (15) |
C1—N1—C3—C2 | 8.55 (10) | C8—C7—C12—C13 | −15.16 (18) |
O1—C2—C3—N1 | −11.53 (10) | C6—C7—C12—C14 | 48.53 (18) |
O1—C2—C3—C4 | −134.32 (8) | C8—C7—C12—C14 | −134.15 (16) |
N1—C3—C4—C5 | 6.09 (14) | C6—C7—C12—C15' | −94.6 (4) |
C2—C3—C4—C5 | 124.39 (11) | C8—C7—C12—C15' | 82.7 (4) |
N1—C3—C4—C9 | −173.72 (8) | N1—C1—C16—C21 | 134.33 (11) |
C2—C3—C4—C9 | −55.42 (12) | O1—C1—C16—C21 | −47.36 (13) |
C9—C4—C5—C6 | 0.95 (15) | N1—C1—C16—C17 | −45.09 (15) |
C3—C4—C5—C6 | −178.86 (9) | O1—C1—C16—C17 | 133.22 (10) |
C4—C5—C6—C7 | −0.24 (16) | C21—C16—C17—F1 | 178.67 (9) |
C5—C6—C7—C8 | −0.54 (15) | C1—C16—C17—F1 | −1.88 (14) |
C5—C6—C7—C12 | 176.88 (9) | C21—C16—C17—C18 | 0.21 (15) |
C6—C7—C8—C9 | 0.59 (14) | C1—C16—C17—C18 | 179.67 (9) |
C12—C7—C8—C9 | −176.80 (9) | F1—C17—C18—C19 | −178.97 (9) |
C10—O2—C9—C8 | −17.70 (14) | C16—C17—C18—C19 | −0.50 (16) |
C10—O2—C9—C4 | 162.47 (9) | C17—C18—C19—C20 | 0.06 (16) |
C7—C8—C9—O2 | −179.68 (9) | C18—C19—C20—C21 | 0.64 (16) |
C7—C8—C9—C4 | 0.14 (15) | C19—C20—C21—F2 | −179.62 (9) |
C5—C4—C9—O2 | 178.92 (9) | C19—C20—C21—C16 | −0.97 (16) |
C3—C4—C9—O2 | −1.26 (13) | C17—C16—C21—F2 | 179.21 (9) |
C5—C4—C9—C8 | −0.91 (15) | C1—C16—C21—F2 | −0.24 (14) |
C3—C4—C9—C8 | 178.91 (9) | C17—C16—C21—C20 | 0.55 (15) |
C9—O2—C10—C11 | −172.14 (9) | C1—C16—C21—C20 | −178.90 (9) |
C6—C7—C12—C14' | 23.5 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···F1i | 0.99 | 2.57 | 3.5211 (13) | 162 |
C20—H20···O2ii | 0.95 | 2.60 | 3.4766 (13) | 154 |
Symmetry codes: (i) −x+1/2, y+1/2, −z+3/2; (ii) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10A···F1i | 0.99 | 2.57 | 3.5211 (13) | 162.1 |
C20—H20···O2ii | 0.95 | 2.60 | 3.4766 (13) | 153.9 |
C—H···centroida | ||||
C19—H19···Cg(C4–C9)iii | 3.5301 | |||
C14—H14A···Cg(C16–C21)iv | 2.9092 | |||
C11—H11A···Cgv | 3.1319 | |||
C11—H11B···Cgv | 3.2496 | |||
C11—H11C···Cgv | 3.4314 |
Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 3/2; (ii) x + 1, y, z; (iii) -x + 3/2, y - 1/2, -z + 3/2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 2. |
Acknowledgements
The authors thank Honeychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India for a pure sample of etoxazole as a gift.
References
APVMA (2024). Australian Pesticide and Veterinary Medicines Authority pp, 17–18. Google Scholar
Bruker-AXS (2023). APEX5 Bruker-AXS Inc., Madison, Wisconsin, USA. Google Scholar
Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Joshi, S., Mehra, M., Singh, R. & Kakkar, S. (2023). Egypt. J. Basic Appl. Sci, 10, 218–239. Google Scholar
Kakkar, S. & Narasimhan, B. (2019). BMC Chem. 13, 16. Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lei, D., Yang, H., Li, B. & Kang, Z. (2009). Acta Cryst. E65, o54. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K. & Yalçın, E. (2022). Sci. Rep. 12, 20453. Web of Science CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohan Kumar, T. M., Bhaskar, B. L., Priyanka, P., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2024). Acta Cryst. E80, 1270–1273. CrossRef IUCr Journals Google Scholar
Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472–1474. Web of Science CSD CrossRef IUCr Journals Google Scholar
Park, W., Lim, W., Park, S., Whang, K.-Y. & Song, G. (2020). Environ. Pollut. 257, 113480. Web of Science CrossRef PubMed Google Scholar
Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088. Web of Science CSD CrossRef IUCr Journals Google Scholar
Roque, J. B., Shimozono, A. M., Pabst, T. P., Hierlmeier, G., Peterson, P. O. & Chirik, P. J. (2023). Science, 382, 1165–1170. Web of Science CSD CrossRef CAS PubMed Google Scholar
Saha, A., Sen, C., Guin, S., Das, C., Maiti, D., Sen, S. & Maiti, D. (2023). Angew. Chem. Int. Ed. 62, e202308916. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, D., Wang, Y., Zhang, Q. & Pang, J. (2019). Chemosphere, 226, 782–790. CrossRef CAS PubMed Google Scholar
Vinaya, Basavaraju, Y. B., Srinivasa, G. R., Shreenivas, M. T., Yathirajan, H. S. & Parkin, S. (2023). Acta Cryst. E79, 54–59. Web of Science CSD CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.