research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld-surface analysis of the pesticide etoxazole

crossmark logo

aDepartment of Physical Sciences, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru-560 035, India, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru-570 006, India, and cDepartment of Chemistry, University of Kentucky, Lexington, KY, 40506-0055, USA
*Correspondence e-mail: yathirajan@hotmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 7 February 2025; accepted 10 February 2025; online 18 February 2025)

Etoxazole (C21H23F2NO2), systematic name 4-(4-tert-butyl-2-eth­oxy­phen­yl)-2-(2,6-di­fluoro­phen­yl)-4,5-di­hydro-1,3-oxazole, is a fluorinated insecticide and acaricide that inhibits chitin biosynthesis, disrupting insect development by preventing proper exoskeleton formation. Widely used in agriculture since 1998, it is readily absorbed by plant tissues and translocates within leaves. Metabolic studies have identified several oxidative degradation products, while toxicol­ogical assessments have examined potential effects, including oxidative stress. This study presents a detailed crystallographic and Hirshfeld surface analysis of etoxazole. The mol­ecule consists of a central di­hydro-oxazole ring flanked by 2,6-di­fluoro­phenyl and 4-tert-butyl-2-eth­oxy­phenyl groups, each twisted relative to the oxazole core. The di­hydro-oxazole ring is nearly planar, with the substituted phenyl rings forming dihedral angles of 44.20 (4)° and 47.87 (4)° with the mean plane of the di­hydro-oxazole. The eth­oxy group exhibits a dihedral angle of 15.04 (11)° to the tert-butyl­phenyl ring, while the tert-butyl group itself shows minor torsional disorder [major:minor occupancies are 0.760 (6):0.240 (6)]. The mol­ecular packing is dominated by van der Waals-type inter­actions, though weak C—H⋯F and C—H⋯O inter­actions lead to pleated layers parallel to the ab plane, which further stack along the c-axis direction. A Hirshfeld surface analysis confirms the prevalence of van der Waals inter­actions in crystal stabilization.

1. Chemical context

Etoxazole is a fluorinated insecticide and acaricide that has been widely utilized in agriculture since its introduction in 1998 (Park et al., 2020[Park, W., Lim, W., Park, S., Whang, K.-Y. & Song, G. (2020). Environ. Pollut. 257, 113480.]). As a member of the oxazoline class, it disrupts insect development by inhibiting chitin biosynthesis, a mechanism that prevents the proper formation of the exo­skeleton. Etoxazole is readily absorbed by plant tissues, where it undergoes limited translocation within leaves. Its effectiveness and chemical properties have been extensively studied, with comprehensive reviews available on the biological activities of oxazole derivatives (Kakkar & Narasimhan, 2019[Kakkar, S. & Narasimhan, B. (2019). BMC Chem. 13, 16.]) and their synthetic methodologies (Joshi et al., 2023[Joshi, S., Mehra, M., Singh, R. & Kakkar, S. (2023). Egypt. J. Basic Appl. Sci, 10, 218-239.]). Concerns regarding its potential toxic effects, including oxidative stress, have also been explored in recent toxicol­ogical assessments (Macar et al., 2022[Macar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K. & Yalçın, E. (2022). Sci. Rep. 12, 20453.]). Metabolic studies have identified several degradation products of etoxazole, which arise primarily through oxidative transformations. These metabolites have been detected in environmental and biological systems using high-resolution analytical techniques (Sun et al., 2019[Sun, D., Wang, Y., Zhang, Q. & Pang, J. (2019). Chemosphere, 226, 782-790.]). Among these, oxidation at the oxazole ring leads to the formation of its metabolite ‘R13’ (APVMA, 2024[APVMA (2024). Australian Pesticide and Veterinary Medicines Authority pp, 17-18.]; Mohan Kumar et al., 2024[Mohan Kumar, T. M., Bhaskar, B. L., Priyanka, P., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2024). Acta Cryst. E80, 1270-1273.]). Previous structural studies have examined various insecticidal compounds, including phenyl­pyrazole derivatives (Priyanka et al., 2022[Priyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084-1088.]; Vinaya et al., 2023[Vinaya, Basavaraju, Y. B., Srinivasa, G. R., Shreenivas, M. T., Yathirajan, H. S. & Parkin, S. (2023). Acta Cryst. E79, 54-59.]), inter­mediates involved in anthranilamide synthesis (Lei et al., 2009[Lei, D., Yang, H., Li, B. & Kang, Z. (2009). Acta Cryst. E65, o54.]), and other oxazole-containing insecticides such as ethyl 3-(4-chloro­phen­yl)-5-[(E)-2-(di­methyl­amino)­ethen­yl]-1,2-oxa­zole-4-carboxyl­ate (Efimov et al., 2015[Efimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.]). Additionally, the crystal structure of fipronil, another important insecticide, has been reported (Park et al., 2017[Park, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472-1474.]). Recognizing the significance of etoxazole in pest management, this study provides a detailed crystallographic analysis and Hirshfeld surface investigation of its mol­ecular and crystal structure. Understanding its conformation and inter­molecular inter­actions offers valuable insights into its stability, physicochemical behaviour, and potential reactivity.

[Scheme 1]

2. Structural commentary

The crystal structure of etoxazole is monoclinic, space group type P21/n. The mol­ecule (Fig. 1[link]) is comprised of three rings: a 4,5-di­hydro-1,3-oxazole heterocycle with a 2,6-di-fluoro­phenyl group attached to C1 (between N1 and O1 of the oxazole) and a 4-tert-butyl-2-eth­oxy­phenyl group bonded to C3, adjacent to N1 on the opposite side from C1. The di­hydro-oxazole ring is only very slightly puckered; its r.m.s. deviation from planarity is 0.0514 Å with a maximum deviation of 0.0695 (6) Å at C2. All bond lengths and angles are within normal ranges.

[Figure 1]
Figure 1
An ellipsoid plot (50% probability) of etoxazole. For the sake of clarity, only the major component of disorder for the tert-butyl group is shown. Hydrogen atoms are drawn as small arbitrary circles.

The mol­ecular conformation is a consequence of the twist of each substituted phenyl ring to the central heterocyclic ring. The dihedral angles between the mean plane of the di­hydro-oxazole ring and the attached di-fluoro­phenyl (atoms C16–C21) and 4-tert-butyl-2-eth­oxy­phenyl (atoms C4–C9) are 44.20 (4)° and 47.87 (4)°, respectively, and by the torsion angles C5—C4—C3—N1 = 6.09 (14)° and C5—C4—C3—C2 = 124.39 (11)°. The orientation of the eth­oxy group (O2—C10—C11) relative to the 4-tert-butyl­phenyl ring gives a dihedral angle of 15.04 (11)° and torsion C8—C9—O2—C10 = −17.70 (14)°. Lastly, the tert-butyl group is torsionally disordered over two positions with refined occupancy factors of 0.760 (6) and 0.240 (6). The angular deviation of minor to major components is 23.0 (3)°, calculated as the weighted mean of the differences between torsion angles of the form C6—C7—C12—C13,14,15 and C6—C7—C12—C13′,14′,15′.

3. Supra­molecular features

There are no strong hydrogen bonds in the crystal structure of etoxazole. Suggestions for ‘potential hydrogen bonds’ provided by SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and by Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), however, flag two close contacts: C10—H10A⋯F1i [dD-A =- 3.5211 (13) Å; symmetry code: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]] and C20—H20⋯O2ii [d(DA) = 3.4766 (13) Å; symmetry code: (ii) x + 1, y, z] (Table 1[link]), which together weakly link the mol­ecules into diperiodic pleated layers parallel to the ab plane (Fig. 2[link]). There are no ππ stacking inter­actions, but there are several C—H⋯π contacts: C19—H19⋯Cg(C4–C9)iii [d(H⋯A) = 3.5301 Å; symmetry code: (iii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]] connects 21-screw related mol­ecules; pairs of mutual contacts between mol­ecules of the form C14—H14ACg(C16–C21)iv [d(DA) = 2.9092 Å; symmetry code: (iv) −x + 1, −y + 1, −z + 1) combine to form inversion-related pairs; lastly, the methyl group at C11 of the tert-butyl ligand closely abuts an inversion-related di­fluoro­phenyl ring C11—H11A,B,CCgv [d(DA) = 3.1319, 3.2496, 3.4314 Å for H11A, H11B, H11C, respectively; symmetry code: (v) −x + 1, −y + 1, −z + 2]. In combination, these contacts (Fig. 3[link]) stack the pleated layers along the c-axis direction, giving rise to the overall 3D structure.

Table 1
Close contacts (Å, °) in crystalline etoxazole

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯F1i 0.99 2.57 3.5211 (13) 162.1
C20—H20⋯O2ii 0.95 2.60 3.4766 (13) 153.9
C—H⋯centroida        
C19—H19⋯Cg(C4–C9)iii     3.5301  
C14—H14ACg(C16–C21)iv     2.9092  
C11—H11ACgv     3.1319  
C11—H11BCgv     3.2496  
C11—H11CCgv     3.4314  
Symmetry codes: (i) −x + [{1\over 2}], y + [{1\over 2}], −z + [{3\over 2}]; (ii) x + 1, y, z; (iii) −x + [{3\over 2}], y − [{1\over 2}], −z + [{3\over 2}]; (iv) −x + 1, −y + 1, −z + 1; (v) −x + 1, −y + 1, −z + 2.
[Figure 2]
Figure 2
A partial packing plot viewed normal to the ab-plane, showing weak C—H⋯F and C—H⋯O contacts that connect the mol­ecules into pleated layers.
[Figure 3]
Figure 3
A partial packing plot viewed down the a-axis showing weak C—H⋯π inter­actions that connect pleated layers of mol­ecules (Fig. 2[link]) to generate the full three-dimensional structure.

A Hirshfeld surface analysis (minor disorder component excluded) using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) indicates that almost all (98.6%) inter­molecular contacts involve hydrogen, with the vast majority being H⋯H (49.2%) and C⋯H (23.3%) contacts. Thus, van der Waals inter­actions are particularly prominent in the crystal structure. The full set of inter­molecular inter­actions are summarized as Hirshfeld surface contact fingerprint plots in Fig. 4[link].

[Figure 4]
Figure 4
Two-dimensional fingerprint plots qu­anti­fying the various atom–atom contact coverages present in the crystal packing: (a) H⋯H = 49.2%; (b) C⋯H = 23.3%; (c) F⋯H = 15.7%; (d) O⋯H = 6.9%; (e) N⋯H = 3.4%; (f) F⋯F = 1.4%

4. Database survey

Given the structural similarity between etoxazole and its R13 metabolite, a previous database survey (CSD v5.45, with updates as of March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) conducted for the R13 metabolite (Mohan Kumar et al., 2024[Mohan Kumar, T. M., Bhaskar, B. L., Priyanka, P., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2024). Acta Cryst. E80, 1270-1273.]) is also applicable to etoxazole itself. That search used a mol­ecular fragment consisting of the three-ring backbone, with the fluorine, eth­oxy, and tert-butyl substituents removed, and the oxazole ring’s double bonds set to ‘any type of bond’ in order to capture both oxazole and di­hydro-oxazole variants; the search generated 336 hits. A similar search retaining both fluorine atoms returned only two matches: DOGMEV (Roque et al., 2023[Roque, J. B., Shimozono, A. M., Pabst, T. P., Hierlmeier, G., Peterson, P. O. & Chirik, P. J. (2023). Science, 382, 1165-1170.]) and LIYZUS (Saha et al., 2023[Saha, A., Sen, C., Guin, S., Das, C., Maiti, D., Sen, S. & Maiti, D. (2023). Angew. Chem. Int. Ed. 62, e202308916.]). As of version 5.46 of the CSD (Nov. 2024), the R13 metabolite is also included in the database as UGUQUM (Mohan Kumar et al., 2024[Mohan Kumar, T. M., Bhaskar, B. L., Priyanka, P., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2024). Acta Cryst. E80, 1270-1273.]).

5. Synthesis and crystallization

The sample of etoxazole was provided as a gift by Honeychem Pharma Research, India. It was purified by column chromatography and recrystallized from hexane by slow evaporation to obtain clear colourless crystals (m.p.: 375 K).

6. Refinement

Crystal data, data collection, and structure refinement details are provided in Table 2[link]. All full occupancy and major disorder component hydrogens were present in difference-Fourier maps, but were subsequently included in the refinement using riding models, with constrained distances of 0.95 Å (R2CH), 0.99 Å (R2CH2) and 0.98 Å (RCH3). Uiso(H) parameters were set to either 1.2Ueq or 1.5Ueq (RCH3 only) of the attached carbon. Two-component torsional disorder of the tert-butyl group was handled as separate PARTs [major:minor = 0.760 (6):0.240 (6)] with EADP constraints and SAME geometry restraints included to ensure stable refinement.

Table 2
Experimental details

Crystal data
Chemical formula C21H23F2NO2
Mr 359.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 10.2254 (2), 12.2767 (3), 14.7404 (3)
β (°) 93.726 (1)
V3) 1846.51 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.30 × 0.29 × 0.24
 
Data collection
Diffractometer Bruker D8 Venture dual source
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.913, 0.971
No. of measured, independent and observed [I > 2σ(I)] reflections 36219, 4232, 3810
Rint 0.028
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.07
No. of reflections 4232
No. of parameters 249
No. of restraints 6
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.17
Computer programs: APEX5 (Bruker-AXS, 2023[Bruker-AXS (2023). APEX5 Bruker-AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELX (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-(4-tert-Butyl-2-ethoxyphenyl)-2-(2,6-difluorophenyl)-4,5-dihydro-1,3-oxazole top
Crystal data top
C21H23F2NO2F(000) = 760
Mr = 359.40Dx = 1.293 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2254 (2) ÅCell parameters from 9926 reflections
b = 12.2767 (3) Åθ = 2.4–27.6°
c = 14.7404 (3) ŵ = 0.10 mm1
β = 93.726 (1)°T = 100 K
V = 1846.51 (7) Å3Solvent-rounded block, colourless
Z = 40.30 × 0.29 × 0.24 mm
Data collection top
Bruker D8 Venture dual source
diffractometer
4232 independent reflections
Radiation source: microsource3810 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.028
φ and ω scansθmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1312
Tmin = 0.913, Tmax = 0.971k = 1515
36219 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.077H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.7589P]
where P = (Fo2 + 2Fc2)/3
4232 reflections(Δ/σ)max = 0.001
249 parametersΔρmax = 0.27 e Å3
6 restraintsΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F10.65801 (6)0.16709 (5)0.81007 (5)0.02591 (15)
F20.84932 (6)0.51354 (5)0.84668 (5)0.02856 (16)
O10.59310 (7)0.46735 (6)0.88831 (5)0.02189 (17)
O20.20619 (7)0.56908 (6)0.80997 (5)0.01919 (16)
N10.52318 (8)0.36866 (7)0.76447 (6)0.01943 (18)
C10.61498 (10)0.39273 (8)0.82283 (6)0.01647 (19)
C20.46203 (10)0.50925 (9)0.86463 (7)0.0203 (2)
H2A0.4656800.5851200.8421920.024*
H2B0.4074310.5070000.9176570.024*
C30.40756 (10)0.43176 (8)0.78894 (7)0.0178 (2)
H30.3437410.3808190.8152300.021*
C40.34021 (9)0.48827 (8)0.70751 (7)0.01653 (19)
C50.37576 (10)0.47310 (8)0.61912 (7)0.0193 (2)
H50.4446990.4240520.6078370.023*
C60.31205 (10)0.52859 (9)0.54676 (7)0.0202 (2)
H60.3385740.5168940.4869530.024*
C70.21004 (10)0.60102 (8)0.56022 (7)0.0169 (2)
C80.17276 (9)0.61556 (8)0.64910 (6)0.01590 (19)
H80.1030400.6638510.6603410.019*
C90.23699 (9)0.55986 (8)0.72109 (6)0.01566 (19)
C100.12969 (10)0.66135 (9)0.83472 (7)0.0217 (2)
H10A0.0395940.6562400.8061040.026*
H10B0.1699560.7297870.8145190.026*
C110.12720 (12)0.65932 (10)0.93669 (7)0.0291 (3)
H11A0.0774300.7220420.9568940.044*
H11B0.2170770.6627150.9640050.044*
H11C0.0854710.5918750.9555570.044*
C120.14577 (10)0.66574 (9)0.48019 (7)0.0206 (2)
C130.0172 (2)0.7215 (2)0.50405 (16)0.0310 (5)0.760 (6)
H13A0.0364590.7771220.5507030.047*0.760 (6)
H13B0.0423030.6669850.5271430.047*0.760 (6)
H13C0.0243260.7558040.4494670.047*0.760 (6)
C140.1107 (3)0.5888 (2)0.39926 (14)0.0369 (6)0.760 (6)
H14A0.0687430.6306960.3488060.055*0.760 (6)
H14B0.0504520.5322750.4180340.055*0.760 (6)
H14C0.1907850.5546690.3796130.055*0.760 (6)
C150.2408 (2)0.7526 (2)0.4503 (2)0.0432 (7)0.760 (6)
H15A0.2629250.8022280.5011040.065*0.760 (6)
H15B0.1997010.7938320.3991450.065*0.760 (6)
H15C0.3208080.7175750.4315300.065*0.760 (6)
C13'0.0046 (8)0.6850 (7)0.4909 (6)0.0310 (5)0.240 (6)
H13D0.0064520.7204570.5494690.047*0.240 (6)
H13E0.0310720.7320770.4415750.047*0.240 (6)
H13F0.0421640.6152820.4886750.047*0.240 (6)
C14'0.1623 (10)0.6123 (7)0.3918 (5)0.0369 (6)0.240 (6)
H14D0.2556690.5994930.3846740.055*0.240 (6)
H14E0.1155260.5425480.3895990.055*0.240 (6)
H14F0.1266180.6593430.3424990.055*0.240 (6)
C15'0.2199 (9)0.7761 (7)0.4833 (7)0.0432 (7)0.240 (6)
H15D0.2091560.8117940.5417820.065*0.240 (6)
H15E0.3132380.7632490.4760380.065*0.240 (6)
H15F0.1841200.8230220.4338860.065*0.240 (6)
C160.74702 (9)0.34330 (8)0.82783 (6)0.0171 (2)
C170.76462 (10)0.23134 (9)0.81993 (7)0.0193 (2)
C180.88612 (10)0.18259 (9)0.82380 (7)0.0235 (2)
H180.8941970.1057840.8186170.028*
C190.9963 (1)0.24799 (10)0.83543 (7)0.0240 (2)
H191.0808420.2155920.8381750.029*
C200.9849 (1)0.36007 (10)0.84310 (7)0.0225 (2)
H201.0605050.4049700.8504610.027*
C210.86114 (10)0.40459 (9)0.83979 (7)0.0195 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0192 (3)0.0200 (3)0.0382 (4)0.0005 (2)0.0007 (3)0.0033 (3)
F20.0228 (3)0.0206 (3)0.0420 (4)0.0021 (3)0.0004 (3)0.0023 (3)
O10.0189 (4)0.0261 (4)0.0202 (4)0.0054 (3)0.0027 (3)0.0046 (3)
O20.0205 (4)0.0233 (4)0.0140 (3)0.0068 (3)0.0029 (3)0.0019 (3)
N10.0176 (4)0.0184 (4)0.0219 (4)0.0032 (3)0.0019 (3)0.0002 (3)
C10.0177 (5)0.0158 (5)0.0160 (4)0.0004 (4)0.0015 (4)0.0016 (4)
C20.0182 (5)0.0225 (5)0.0200 (5)0.0051 (4)0.0018 (4)0.0006 (4)
C30.0156 (5)0.0173 (5)0.0205 (5)0.0015 (4)0.0004 (4)0.0005 (4)
C40.0148 (4)0.0173 (5)0.0172 (5)0.0007 (4)0.0011 (4)0.0001 (4)
C50.0173 (5)0.0205 (5)0.0200 (5)0.0024 (4)0.0011 (4)0.0032 (4)
C60.0212 (5)0.0243 (5)0.0152 (5)0.0001 (4)0.0024 (4)0.0021 (4)
C70.0172 (5)0.0172 (5)0.0160 (5)0.0034 (4)0.0013 (4)0.0007 (4)
C80.0136 (4)0.0164 (5)0.0176 (5)0.0001 (4)0.0005 (3)0.0002 (4)
C90.0150 (4)0.0174 (5)0.0146 (4)0.0018 (4)0.0013 (3)0.0006 (4)
C100.0229 (5)0.0235 (5)0.0191 (5)0.0074 (4)0.0035 (4)0.0002 (4)
C110.0345 (6)0.0349 (6)0.0184 (5)0.0077 (5)0.0050 (4)0.0024 (5)
C120.0227 (5)0.0229 (5)0.0161 (5)0.0010 (4)0.0002 (4)0.0035 (4)
C130.0370 (9)0.0374 (15)0.0184 (9)0.0178 (11)0.0005 (7)0.0035 (9)
C140.0525 (17)0.0355 (11)0.0205 (7)0.0085 (11)0.0136 (10)0.0036 (7)
C150.0380 (11)0.0437 (13)0.0466 (17)0.0104 (9)0.0072 (10)0.0282 (12)
C13'0.0370 (9)0.0374 (15)0.0184 (9)0.0178 (11)0.0005 (7)0.0035 (9)
C14'0.0525 (17)0.0355 (11)0.0205 (7)0.0085 (11)0.0136 (10)0.0036 (7)
C15'0.0380 (11)0.0437 (13)0.0466 (17)0.0104 (9)0.0072 (10)0.0282 (12)
C160.0160 (5)0.0215 (5)0.0135 (4)0.0018 (4)0.0002 (3)0.0014 (4)
C170.0165 (5)0.0227 (5)0.0185 (5)0.0001 (4)0.0003 (4)0.0006 (4)
C180.0228 (5)0.0238 (5)0.0239 (5)0.0064 (4)0.0010 (4)0.0005 (4)
C190.0169 (5)0.0348 (6)0.0203 (5)0.0078 (4)0.0009 (4)0.0012 (4)
C200.0163 (5)0.0320 (6)0.0191 (5)0.0016 (4)0.0004 (4)0.0021 (4)
C210.0210 (5)0.0199 (5)0.0174 (5)0.0008 (4)0.0005 (4)0.0023 (4)
Geometric parameters (Å, º) top
F1—C171.3458 (12)C12—C151.527 (2)
F2—C211.3475 (12)C12—C131.543 (2)
O1—C11.3598 (12)C12—C141.545 (2)
O1—C21.4566 (12)C12—C15'1.552 (8)
O2—C91.3719 (11)C13—H13A0.9800
O2—C101.4370 (12)C13—H13B0.9800
N1—C11.2663 (13)C13—H13C0.9800
N1—C31.4775 (12)C14—H14A0.9800
C1—C161.4777 (13)C14—H14B0.9800
C2—C31.5425 (14)C14—H14C0.9800
C2—H2A0.9900C15—H15A0.9800
C2—H2B0.9900C15—H15B0.9800
C3—C41.5128 (13)C15—H15C0.9800
C3—H31.0000C13'—H13D0.9800
C4—C51.3878 (14)C13'—H13E0.9800
C4—C91.3979 (13)C13'—H13F0.9800
C5—C61.3913 (14)C14'—H14D0.9800
C5—H50.9500C14'—H14E0.9800
C6—C71.3946 (14)C14'—H14F0.9800
C6—H60.9500C15'—H15D0.9800
C7—C81.3994 (13)C15'—H15E0.9800
C7—C121.5343 (14)C15'—H15F0.9800
C8—C91.3910 (13)C16—C211.3900 (14)
C8—H80.9500C16—C171.3921 (14)
C10—C111.5051 (14)C17—C181.3768 (14)
C10—H10A0.9900C18—C191.3850 (16)
C10—H10B0.9900C18—H180.9500
C11—H11A0.9800C19—C201.3861 (16)
C11—H11B0.9800C19—H190.9500
C11—H11C0.9800C20—C211.3764 (14)
C12—C14'1.479 (7)C20—H200.9500
C12—C13'1.482 (8)
C1—O1—C2105.02 (7)C14'—C12—C15'109.3 (4)
C9—O2—C10118.04 (8)C13'—C12—C15'109.6 (5)
C1—N1—C3106.35 (8)C7—C12—C15'104.2 (3)
N1—C1—O1119.37 (9)C12—C13—H13A109.5
N1—C1—C16124.93 (9)C12—C13—H13B109.5
O1—C1—C16115.68 (8)H13A—C13—H13B109.5
O1—C2—C3103.82 (8)C12—C13—H13C109.5
O1—C2—H2A111.0H13A—C13—H13C109.5
C3—C2—H2A111.0H13B—C13—H13C109.5
O1—C2—H2B111.0C12—C14—H14A109.5
C3—C2—H2B111.0C12—C14—H14B109.5
H2A—C2—H2B109.0H14A—C14—H14B109.5
N1—C3—C4112.14 (8)C12—C14—H14C109.5
N1—C3—C2104.05 (8)H14A—C14—H14C109.5
C4—C3—C2114.55 (8)H14B—C14—H14C109.5
N1—C3—H3108.6C12—C15—H15A109.5
C4—C3—H3108.6C12—C15—H15B109.5
C2—C3—H3108.6H15A—C15—H15B109.5
C5—C4—C9117.71 (9)C12—C15—H15C109.5
C5—C4—C3123.36 (9)H15A—C15—H15C109.5
C9—C4—C3118.93 (8)H15B—C15—H15C109.5
C4—C5—C6121.06 (9)C12—C13'—H13D109.5
C4—C5—H5119.5C12—C13'—H13E109.5
C6—C5—H5119.5H13D—C13'—H13E109.5
C5—C6—C7121.36 (9)C12—C13'—H13F109.5
C5—C6—H6119.3H13D—C13'—H13F109.5
C7—C6—H6119.3H13E—C13'—H13F109.5
C6—C7—C8117.80 (9)C12—C14'—H14D109.5
C6—C7—C12120.52 (9)C12—C14'—H14E109.5
C8—C7—C12121.64 (9)H14D—C14'—H14E109.5
C9—C8—C7120.51 (9)C12—C14'—H14F109.5
C9—C8—H8119.7H14D—C14'—H14F109.5
C7—C8—H8119.7H14E—C14'—H14F109.5
O2—C9—C8124.17 (9)C12—C15'—H15D109.5
O2—C9—C4114.27 (8)C12—C15'—H15E109.5
C8—C9—C4121.56 (9)H15D—C15'—H15E109.5
O2—C10—C11106.58 (8)C12—C15'—H15F109.5
O2—C10—H10A110.4H15D—C15'—H15F109.5
C11—C10—H10A110.4H15E—C15'—H15F109.5
O2—C10—H10B110.4C21—C16—C17115.66 (9)
C11—C10—H10B110.4C21—C16—C1122.74 (9)
H10A—C10—H10B108.6C17—C16—C1121.60 (9)
C10—C11—H11A109.5F1—C17—C18118.17 (9)
C10—C11—H11B109.5F1—C17—C16118.65 (9)
H11A—C11—H11B109.5C18—C17—C16123.16 (10)
C10—C11—H11C109.5C17—C18—C19118.53 (10)
H11A—C11—H11C109.5C17—C18—H18120.7
H11B—C11—H11C109.5C19—C18—H18120.7
C14'—C12—C13'109.4 (4)C18—C19—C20120.89 (10)
C14'—C12—C7112.3 (3)C18—C19—H19119.6
C13'—C12—C7111.9 (4)C20—C19—H19119.6
C15—C12—C7109.55 (12)C21—C20—C19118.25 (10)
C15—C12—C13108.88 (14)C21—C20—H20120.9
C7—C12—C13112.54 (11)C19—C20—H20120.9
C15—C12—C14108.92 (14)F2—C21—C20118.57 (9)
C7—C12—C14110.08 (11)F2—C21—C16117.92 (9)
C13—C12—C14106.79 (13)C20—C21—C16123.5 (1)
C3—N1—C1—O12.09 (12)C8—C7—C12—C14'159.2 (4)
C3—N1—C1—C16176.16 (9)C6—C7—C12—C13'147.0 (4)
C2—O1—C1—N15.81 (12)C8—C7—C12—C13'35.6 (4)
C2—O1—C1—C16175.78 (8)C6—C7—C12—C1571.21 (19)
C1—O1—C2—C310.39 (10)C8—C7—C12—C15106.10 (18)
C1—N1—C3—C4132.90 (9)C6—C7—C12—C13167.52 (15)
C1—N1—C3—C28.55 (10)C8—C7—C12—C1315.16 (18)
O1—C2—C3—N111.53 (10)C6—C7—C12—C1448.53 (18)
O1—C2—C3—C4134.32 (8)C8—C7—C12—C14134.15 (16)
N1—C3—C4—C56.09 (14)C6—C7—C12—C15'94.6 (4)
C2—C3—C4—C5124.39 (11)C8—C7—C12—C15'82.7 (4)
N1—C3—C4—C9173.72 (8)N1—C1—C16—C21134.33 (11)
C2—C3—C4—C955.42 (12)O1—C1—C16—C2147.36 (13)
C9—C4—C5—C60.95 (15)N1—C1—C16—C1745.09 (15)
C3—C4—C5—C6178.86 (9)O1—C1—C16—C17133.22 (10)
C4—C5—C6—C70.24 (16)C21—C16—C17—F1178.67 (9)
C5—C6—C7—C80.54 (15)C1—C16—C17—F11.88 (14)
C5—C6—C7—C12176.88 (9)C21—C16—C17—C180.21 (15)
C6—C7—C8—C90.59 (14)C1—C16—C17—C18179.67 (9)
C12—C7—C8—C9176.80 (9)F1—C17—C18—C19178.97 (9)
C10—O2—C9—C817.70 (14)C16—C17—C18—C190.50 (16)
C10—O2—C9—C4162.47 (9)C17—C18—C19—C200.06 (16)
C7—C8—C9—O2179.68 (9)C18—C19—C20—C210.64 (16)
C7—C8—C9—C40.14 (15)C19—C20—C21—F2179.62 (9)
C5—C4—C9—O2178.92 (9)C19—C20—C21—C160.97 (16)
C3—C4—C9—O21.26 (13)C17—C16—C21—F2179.21 (9)
C5—C4—C9—C80.91 (15)C1—C16—C21—F20.24 (14)
C3—C4—C9—C8178.91 (9)C17—C16—C21—C200.55 (15)
C9—O2—C10—C11172.14 (9)C1—C16—C21—C20178.90 (9)
C6—C7—C12—C14'23.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F1i0.992.573.5211 (13)162
C20—H20···O2ii0.952.603.4766 (13)154
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y, z.
Close contacts (Å, °) in crystalline etoxazole top
D—H···AD—HH···AD···AD—H···A
C10—H10A···F1i0.992.573.5211 (13)162.1
C20—H20···O2ii0.952.603.4766 (13)153.9
C—H···centroida
C19—H19···Cg(C4–C9)iii3.5301
C14—H14A···Cg(C16–C21)iv2.9092
C11—H11A···Cgv3.1319
C11—H11B···Cgv3.2496
C11—H11C···Cgv3.4314
Symmetry codes: (i) -x + 1/2, y + 1/2, -z + 3/2; (ii) x + 1, y, z; (iii) -x + 3/2, y - 1/2, -z + 3/2; (iv) -x + 1, -y + 1, -z + 1; (v) -x + 1, -y + 1, -z + 2.
 

Acknowledgements

The authors thank Honeychem Pharma Research Pvt. Ltd., Peenya Industrial Area, Bengaluru-560 058, India for a pure sample of etoxazole as a gift.

References

First citationAPVMA (2024). Australian Pesticide and Veterinary Medicines Authority pp, 17–18.  Google Scholar
First citationBruker-AXS (2023). APEX5 Bruker-AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfimov, I., Slepukhin, P. & Bakulev, V. (2015). Acta Cryst. E71, o1028.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJoshi, S., Mehra, M., Singh, R. & Kakkar, S. (2023). Egypt. J. Basic Appl. Sci, 10, 218–239.  Google Scholar
First citationKakkar, S. & Narasimhan, B. (2019). BMC Chem. 13, 16.  Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLei, D., Yang, H., Li, B. & Kang, Z. (2009). Acta Cryst. E65, o54.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacar, O., Kalefetoğlu Macar, T., Çavuşoğlu, K. & Yalçın, E. (2022). Sci. Rep. 12, 20453.  Web of Science CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohan Kumar, T. M., Bhaskar, B. L., Priyanka, P., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2024). Acta Cryst. E80, 1270–1273.  CrossRef IUCr Journals Google Scholar
First citationPark, H., Kim, J., Kwon, E. & Kim, T. H. (2017). Acta Cryst. E73, 1472–1474.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPark, W., Lim, W., Park, S., Whang, K.-Y. & Song, G. (2020). Environ. Pollut. 257, 113480.  Web of Science CrossRef PubMed Google Scholar
First citationPriyanka, P., Jayanna, B. K., Sunil Kumar, Y. C., Shreenivas, M. T., Srinivasa, G. R., Divakara, T. R., Yathirajan, H. S. & Parkin, S. (2022). Acta Cryst. E78, 1084–1088.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRoque, J. B., Shimozono, A. M., Pabst, T. P., Hierlmeier, G., Peterson, P. O. & Chirik, P. J. (2023). Science, 382, 1165–1170.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSaha, A., Sen, C., Guin, S., Das, C., Maiti, D., Sen, S. & Maiti, D. (2023). Angew. Chem. Int. Ed. 62, e202308916.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, D., Wang, Y., Zhang, Q. & Pang, J. (2019). Chemosphere, 226, 782–790.  CrossRef CAS PubMed Google Scholar
First citationVinaya, Basavaraju, Y. B., Srinivasa, G. R., Shreenivas, M. T., Yathirajan, H. S. & Parkin, S. (2023). Acta Cryst. E79, 54–59.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds