research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface, DFT, mol­ecular docking of 1-[(6-tert-butyl-2-oxo-2H-chromen-4-yl)meth­yl]-4,4-di­methyl­piperidine-2,6-dione and cytotoxic effects on breast cancer (MDA-MB 231), human alveolar basal epithelial (A549) cell lines

crossmark logo

aDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore, 570005, Karnataka, India, bDr. B. R. Ambedkar Medical College, Gandhi nagar, Kadugondanahalli, Bangalore-560045, Karnataka, India, and cDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 11 February 2025; accepted 19 February 2025; online 25 February 2025)

The title compound, C21H25NO4, was synthesized by SN2 reaction of bromo­methyl coumarin with 4,4-di­methyl­piperidine-2,6-dione. The mol­ecule crystalizes in the monoclinic system with space group C2/c. The coumarin unit is almost planar with a dihedral angle between the aromatic rings of 0.81 (2)° and an r.m.s deviation of 0.042 Å. The piperidine ring adopts a chair conformation with the two methyl groups, one methyl group occupying an axial position and the other an equatorial position, exhibiting maximum stability. In the crystal, C—H⋯O inter­actions lead to the formation of head-to-head dimers with an R22(8)graph-set motif and R21(9) and R22(10) ring motifs along [001] and [100]. ππ inter­actions [centroid–centroid distances = 3.885 (2) and 3.744 (2) Å] are also observed. A Hirshfeld surface analysis was carried out, with the two-dimensional fingerprint plots indicating that the major contributions to the crystal packing are from H⋯H(57%), O⋯H(29.3%) and C⋯H(8.1%) inter­actions. The energy framework calculations reveal that dispersion energy (Edis= −267.7 kJ mol−1) dominates the other energies. The mol­ecular structure was optimized by density functional theory calculations using the B3LYP/6–311+G(d,p) basis set. The HOMO and LOMO orbitals were generated to determine the energy gap, which is 4.245 eV. Mol­ecular docking studies were carried out for the title mol­ecule as ligand and a protein as receptor giving binding affinities of −9.5 kcal mol−1 for PDB ID: 5HG8 and −8.2 kcal mol−1 for PDB ID:6 NLV. The compound was further subjected to biological studies against human cancer cell lines, namely cryopreserved triple negative human breast adenocarcinoma cells (MDA-MB-231cells) and adenocarcinomic human alveolar basal epithelial cells (A549 cells) giving IC50values of 11.57 and 9.34 µM, respectively. The cytotoxicity results showed a good safety profile against HEK293 cell lines.

1. Chemical context

Coumarin and its derivatives are considered to be significant heterocyclic compounds. These compounds possess structural features that offer several types of biological and pharmaceutical effects such as vasodilation, nitrate-coumarin derivatives in particular being considered to be potent mol­ecules for the inhibition of the vasodilator effect (Matos et al., 2022[Matos, M. J., Uriarte, E., Seoane, N., Picos, A., Gil-Longo, J. & Campos-Toimil, M. (2022). ChemMedChem, 17, e202200476.]). The combination of coumarin and 7-hy­droxy­coumarin plays significant role in the inhibition of the growth of a number of malignant cells of murine and human origin, and hence they are considered to be good anti-tumor, immunomodulation agents (Stefanova et al., 2007[Stefanova, T. H., Nikolova, N. J., Toshkova, R. A. & Neychev, H. O. (2007). J. Exp. Ther. Oncol. 6, 107-115.]). Pyrimidino-coumarin derivatives have been found to exhibit platelet anti-aggregatory activity as well as being anti­thrombotic agents, which are being developed as commercial drug mol­ecules (Ramsis et al., 2023[Ramsis, T. M., Ebrahim, M. A. & Fayed, E. A. (2023). Med. Chem. Res. 32, 2269-2278.]). Much research effort has been made to derive coumarin from herbal products, naturally derived coumarin being found to exhibit neuro-protective (Wang et al., 2012[Wang, C., Pei, A., Chen, J., Yu, H., Sun, M. L., Liu, C. F. & Xu, X. (2012). J. Neurochem. 121, 1007-1013.]) and anti-ageing properties, which makes coumarin widely used in the cosmetic industry (Costa et al., 2022[Costa, E. F., Magalhães, W. V. & Di Stasi, L. C. (2022). Molecules, 27, 7518.]). Coumarin is available in several chemical subgroups that possess significant pharmacological and toxicological properties and plays an important role with regard to cardiovascular health in humans and wound healing (Najmanova et al., 2015[Najmanová, I., Doseděl, M., Hrdina, R., Anzenbacher, P., Filipský, T., Říha, M. & Mladěnka, P. (2015). Curr. Top. Med. Chem. 15, 830-849.]; Afshar et al., 2020[Afshar, M., Hassanzadeh-Taheri, M., Zardast, M. & Honarmand, M. (2020). Iranian Journal of Dermatology, 23(2), 56-63.]). Keeping all these factors in mind, our team synthesized the title 6-tert-butyl-2H-chromen-substituted mol­ecule and studied its crystal structure, along with its cytotoxic effects on breast cancer (MDA-MB 231) and human alveolar basal epithelial (A549) cell lines and performed mol­ecular docking studies, which are reported herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, (I)[link], is shown in Fig. 1[link]. The coumarin (ten-membered ring system) is almost planar with a dihedral angle 0.81 (2)° between the aromatic rings and an r.m.s deviation of 0.042 Å. The piperidine ring mol­ecule adopts a half-chair conformation. The six-membered N1/C15–C19 ring has a total puckering amplitude (Q) of 0.4646 (17)Å and exhibits a half-chair conformation. The pseudo rotation (θ) and the relative phase (φ) angles are 53.8 (2) and 181.3 (3)°, respectively. The two methyl groups are attached to atom C17, one occupying an axial position and the other an equatorial position. The dihedral angle between the mean planes of the coumarin ring system and the piperidine ring is 83.07 (6)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, C2—H2⋯O2 and C14—H14A⋯O3 interactions (Fig. 2[link]a,b, Table 1[link]) leads to the formation of head-to-head dimers with an R22(8) graph-set motif and R21(9) and R22(10) ring motifs (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) along [001] and [100] , respectively. The C16—H16A⋯O2 inter­action connects the mol­ecules in the [010] direction. The mol­ecular packing is further consolidated by ππ stacking [centroid–centroid distances Cg1⋯Cg1 = 3.885 (2) and Cg1⋯Cg3 = 3.738 (2) Å, where Cg1 and Cg3 are the centroids of the C1–C3/O1/C4/C9 and C4–C9 rings, respectively] as shown in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H16A⋯O2i 0.97 2.41 3.1800 (19) 136
C14—H14A⋯O3ii 0.97 2.49 3.3898 (18) 155
C2—H2⋯O2i 0.93 2.50 3.3687 (18) 155
C14—H14A⋯O3 0.97 2.40 2.6915 (19) 97
C14—H14B⋯O4 0.97 2.34 2.698 (2) 101
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [-x+1, y, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link] with C—H⋯O inter­actions depicted by dashed lines, (a) showing the R22(8), R21(9) synthon and (b) showing the R22(10) synthon.
[Figure 3]
Figure 3
The mol­ecular packing of (I)[link] showing the ππ stacking.

4. Hirshfeld surface analysis

CrystalExplorer17.5 (Turner et al., 2017[Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.]) was used to perform a Hirshfeld surface (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) analysis to qu­antify the various inter­molecular inter­actions of the title mol­ecule. The Hirshfeld surface mapped over the normalized contact distance dnorm is shown in Fig. 4[link]a. Contacts with distances equal to the sum of the van der Waals radii are indicated in white, while those with shorter or longer distances are represented in red and blue, respectively. The shape-index detects even minor variations in surface shape. It shows the electron-density surface surrounding mol­ecular inter­actions. The very small range of light colours on the surface signifies a weaker and longer inter­action other than hydrogen bonds. The presence of red and blue triangles on the surface of the shape index is evidence of ππ inter­actions, as shown in Fig. 4[link]b. Fig. 5[link] shows the Hirshfeld surface where hydrogen-bonding inter­actions with neighbouring mol­ecules occur at the red spots. The fingerprint plots in Fig. 6[link] indicate that the major contributions to the crystal structure are from H⋯H (57.0%), O⋯H/H⋯O (29.3%) and C⋯H/H⋯C (8.1%) contacts. The characteristic spikes in the O⋯H/H⋯O plot indicate the presence of hydrogen bonds listed in Table 1[link]. The net inter­action energies are Eele =−267.7 kJ mol−1, Epol = −43.6 kJmol−1, Edis = −267.7 kJ mol−1, Erep = 170.2 kJ mol−1 and total inter­action energy Etot = 128.8 kJ mol−1. The topology of the energy frameworks related to (a) Coulombic energy, (b) dispersion energy and (c) total energy inter­actions viewed along a-axis is shown in Fig. 7[link], where the total energy annotated (d) is also shown.

[Figure 4]
Figure 4
The Hirshfeld surface of the title mol­ecule mapped over (a) dnorm and (b) shape-index.
[Figure 5]
Figure 5
The Hirshfeld surface mapped over dnorm showing the C—H⋯O inter­actions generating R22(8), and R22(10) synthons.
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for the title compound, showing all inter­actions, and delineated into H⋯H, C⋯H/H⋯C and H⋯O/O⋯H inter­actions.
[Figure 7]
Figure 7
Energy frameworks calculated for the title compound, showing (a) Coulomb force, (b) dispersion force and (c), (d) total energy diagrams. The cylindrical radii are proportional to the relative strength of the corresponding energies; they were adjusted to a cutoff value of 5 kJ mol−1.

5. Density functional studies

DFT studies were performed in the gas phase at the B3LYP/6-311+ G(d,p) level using Gaussian 09W (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09., Revision A1. Gaussian, Inc., Wallingford CT, USA.]). GaussView 5.0 was used to generate the optimized structure of the mol­ecule shown in Fig. 8[link]. The optimized bond parameters obtained are in good agreement with those obtained from SCXRD analysis (Table 2[link]). The small deviations observed may be attributed to the fact that theoretical calculations were performed in the gas phase whereas the SCXRD measurements are made in the solid state. The frontier mol­ecular orbitals HOMO and LUMO generated using DFT calculations are −6.59 eV and −2.06 eV, respectively. The energy gap is 4.5366 eV (Fig. 9[link]). The reactivity descriptors calculated from the energy gap value, viz. ionization energy (I), electron affinity (A), electronegativity (χ), chemical hardness (η), chemical potential (μ), electrophilicity index (ω) and chemical softness (S) are 6.59, 2.06, 4.325, 2.65, −4.325, 4.129 eV and 0.221 eV−1, respectively. The electrophilicity index value indicates the mol­ecule exhibits strong electrophilicity.

Table 2
Selected bond lengths, angles and torsion angles (Å, °)

Parameter SCXRD DFT
O1—C3 1.3732 (18) 1.3885
O1—C4 1.3798 (17) 1.3885
O3—C19 1.2176 (18) 1.2121
O4—C15 1.212 (2) 1.212
N1—C14 1.4627 (18) 1.466
C3—O1—C4 121.19 (12) 122.13
C19—N1—C15 124.25 (12) 120.5
O1—C3—C2 117.62 (13) 116.10
C21—C17—C20 109.87 (13) 109.41
C15—N1—C14—C1 −93.71 (16) −92.45
C19—N1—C15—O4 −178.11 (15) −177.35
[Figure 8]
Figure 8
The DFT=optimized structure of the title compound.
[Figure 9]
Figure 9
HOMO and LUMO of compound (I)[link] with the energy band gap.

The MEP surface of the optimized structure of the title compound is depicted in Fig. 10[link]. Nucleophilic reactive sites of the mol­ecule are represented by red regions on the MEP surface. In the MEP surface for the title compound, the red around the oxygen atom of the coumarin fragment shows it is an active site for nucleophilic inter­actions.

[Figure 10]
Figure 10
MEP plots of the title compound; regions of attractive potential appear in red and those of repulsive potential appear in blue.

6. Mol­ecular docking

The lung cancer epidermal growth factor receptor (EGFR; PDBID: 5HG8) and breast cancer carbonic anhydrase IX (CAIX; PDBID: 6NLV) proteins were selected as receptors with the title compound as a ligand. AutoDock Vina (Morris et al., 2009[Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.]) was used to carry out the docking studies in both cases. Good binding affinity scores of −9.5 and −8.2 kcal mol−1, respectively, were obtained for the lung and breast cancer receptors respectively. The inter­action as generated by Discovery Studio Visualizer (Biovia, 2017[Biovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.]) for EGFR and the title ligand is shown in Fig. 11[link]. It clearly illustrates that there are two πσ inter­actions between the centroid Cg1 with the amino acid LEU A:718 and Cg3 with the amino acid LEU A:844. Cg3 acts as an anchor point for the amino acids LEU A:718, LEU A:844, ALA A:743 and VAL A:726, forming π–alkyl inter­actions. In addition there are three alkyl bonds and twelve van der Waals inter­actions between the ligand and the amino acid residues of the protein.

[Figure 11]
Figure 11
A three-dimensional view of the lung cancer epidermal growth factor receptor (EGFR) (PDBID: 5HG8) protein and two-dimensional view of the mol­ecular inter­actions between the ligand and amino acid residues.

The inter­actions generated between the breast cancer carbonic anhydrase IX protein and the title ligand is shown in Fig. 12[link]. There are two conventional hydrogen bonds with amino acids ASN A:11 and TYR A:7 and the oxygen atoms of the piperidine and coumarin fragments. Cg1 and Cg3 act as anchor points for the PHE A:231 and TYR A:7 amino acids, forming ππ stacking inter­actions. Hydrogen bonding is observed with with amino acid HIS A:64 and the ligand is also enclosed by nine van der Waals inter­actions. Hence, the title mol­ecule can be considered as a potential candidate for lung cancer and breast cancer applications. The efficiency of the ligand was tested practically by carrying out biological studies as detailed below.

[Figure 12]
Figure 12
A three-dimensional view of the breast cancer carbonic anhydrase IX (CAIX)(PDBID:6 NLV) protein and two-dimensional view of the mol­ecular inter­actions between the ligand and amino acid residues.

7. Biological studies

The anti-cancer activity of the title compound was evaluated against two human cancer cell lines, A-549 (human lung carcinoma) and MDAMB-231 (human adenocarcinoma mammary gland), by MTT assay (Zheng et al., 2012[Zheng, S. Y., Li, Y., Jiang, D., Zhao, J. & Ge, J. F. (2012). Mol. Med. Rep. 5, 822-826.]; Takla et al., 2023[Takla, F. N., Bayoumi, W. A., El-Messery, S. M. & Nasr, M. N. (2023). Sci. Rep. 13, 13370.]). The title compound inhibited cell proliferation with IC50 values of 9.34 µM and 11.57 µM, respectively, as compared values for the standard drug doxorubicin IC50 = 5.13 and 4.82 µM, respectively. The concentration-effect curves of for the title compound against A-549 and MDA-MB-231 cell lines are shown in Fig. 13[link].

[Figure 13]
Figure 13
The concentration-effect curves of active compound (I)[link] in A-549 and MDA-MB-231 cell lines.

Furthermore, in order to check the safety profile, the title compound was tested for cytotoxicity on HEK293 cell lines (Yadagiri et al., 2014[Yadagiri, B., Holagunda, U. D., Bantu, R., Nagarapu, L., Kumar, C. G., Pombala, S. & Sridhar, B. (2014). Eur. J. Med. Chem. 79, 260-265.]). In the case of the A549 and MDA-MB-231cancer cell lines, it showed a good safety profile on HEK293 with selectivity indices (SI) of 7.97 and 6.45, respectively. The results for anti­cancer activity against cell lines A-549 and MDA-MB-231are shown in Table 3[link]. Overall it was found that the compound exhibited low toxicity against the HEK293 cell line with an IC50 value of 71.03 µM. These data will help in further optimization of conjugates of the title compound to obtain more potent and safer anti-cancer agents with enhanced properties.

Table 3
Experimental details of cytotoxicity (IC50) against cell lines A-549 and MDA-MB-231 (μM)

Product/Cell lines Title compound Doxorubicin
A-549 9.34±0.68 5.13±0.41
MDA-MB-231 11.57±0.54 4.82±0.38
HEK293 71.03 86.47
SI for A-549 7.97 16.85
SI for MDA-MB-231 6.45 18.71

8. Database survey

A search in the Cambridge Crystallographic Database (CSD version 2.0.4 of December 2019; Groom et al.. 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing the butyl-2-oxo-chromene fragment resulted in one match. EFUVUY (He et al., 2014[He, X., Chen, Y. Y., Shi, J. B., Tang, W. J., Pan, Z. X., Dong, Z. Q., Song, B. A., Li, J. & Liu, X. H. (2014). Bioorg. Med. Chem. 22, 3732-3738.]) is very similar compared to the title compound with a dihedral angle of 0.17° between the aromatic rings of the ten-membered oxo-chromene fragment. A search for mol­ecules containing the butyl-2H-chromene moiety resulted in another hit, viz. FABCEU (Duong et al., 2020[Duong, T. H., Carroll, T. S., Bejan, D. S. & Valente, E. J. (2020). J. Chem. Crystallogr. 50, 387-399.]), which is similar to the title compound in having a dihedral angle of 1.24° between the aromatic rings of the ten-membered oxo-chromene fragments. In general, the ten-membered ring system is nearly planar. A search for mol­ecules containing the oxo-2H-chromene moiety gave more than thirty hits. Among these, AFOQET (Abou et al., 2013[Abou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081-o1082.]), AGAREH (Bibila Mayaya Bisseyou et al., 2013[Bibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125-o1126.]) and AYOXAO (Abou et al., 2011[Abou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269-o2270.]) have simple substitutions at the ortho position of the aromatic ring of the oxo-2H-chromene, the torsion angles at the linked substitution being 175.56, 180.0 and −175.3°, respectively. In the title compound, the comparable angle is −93.71 (16)°.

9. Synthesis and crystallization

The title mol­ecule was synthesized using an SN2 reaction of bromo­methyl coumarin with 4,4-di­methyl­piperidine-2,6-dione.

9.1. Synthesis of ethyl 4-bromo­acetyl acetate

Ethyl aceto­acetate (i) (0.38mol) was mixed with dry ether (60 ml), stirred for 10 minutes, after that, the reaction mixture was cooled to 273–278 K. Maintaining that temperature, liquid bromine (20.5 ml, 0.38mol) was slowly added to the reaction mixture, and stirring continued at room temperature for 24 h. The reaction mixture was then decomposed into crushed ice, the ether layer was separated, washed with distilled water and dried over anhydrous calcium chloride to obtain the product ethyl 4-bromo­aceto­acetate (ii).

9.2. Synthesis of 4-bromo­methyl-6-tert-butyl-2H-chromen-2-one

Ethyl 4-bromo­aceto­acetate (0.1 M) and 4-tert-butyl­phenol (0.1 M) were taken in a round-bottom flask and cooled to 273–278 K. Concentrated sulfuric acid (35 ml) was added slowly, maintaining the temperature at 273–278 K. The solution was then stirred for 24 h at room temperature. A deep-red solution was formed at the end of the reaction, and then it was poured into the crushed ice. The precipitate of 4-bromo­methyl-6-tert-butyl-2H-chromen-2-one (iii) was filtered and washed with water and ethanol.

9.3. Synthetic procedure to prepare the title compound (I)

4-Bromo­methyl-6-tert-butyl-2H-chromen-2-one (iii) (0.001 mol) and 4,4-di­methyl­piperidine-2,6-dione (iv) (0.001 mol) and 5 ml of dry acetone were taken in a round-bottom flask. Then 0.003 mol of K2CO3 were added and the reaction mixture was refluxed at 328–338 K for 10 h. Formation of the compound was monitored by TLC. After completion of the reaction, it was poured onto crushed ice, and the product was washed with water to remove excess K2CO3 and dried to obtain the title compound at room temperature. Fine crystals were obtained by the slow evaporation technique using DMF as a solvent.

1-[(6-tert-butyl-2-oxo-2H-chromen-4-yl)meth­yl]-4,4-di­meth­yl­piperidine-2,6-dione: Off-white solid; m.p. 546–547 K; Yield: 2.71 g (82.37%). 1H NMR (400 MHz, CDCl3, δ ppm): 1.15 (s, 6H, –CH3), 1.34 (s, 9H, –CH3), 2.64 (s, 4H, –CH2), 5.16 (s, 2H, –CH2), 5.95 (s, 1H, –CH), 7.24–7.28 (m, 2H, Ar-H), 7.57–7.60 (m, 1H, Ar-H); 13C NMR (100 MHz, CDCl3, δ ppm): 28.07, 29.46, 31.47, 34.83, 39.33, 46.27, 111.95, 116.97, 117.21, 119.82, 129.88, 147.53, 149.95, 151.65, 160.91, 171.70; GC-MS: 355 [M]+. Micro elemental analysis calculated for C21H25NO4 (Mr 355.43) C, 70.96; H, 7.09; N, 3.94; O, 18.01%, found C, 70.99; H, 7.11; N, 3.97%.

[Scheme 2]

10. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 4
Experimental details

Crystal data
Chemical formula C21H25NO4
Mr 355.42
Crystal system, space group Monoclinic, C2/c
Temperature (K) 296
a, b, c (Å) 17.9534 (7), 15.8109 (7), 14.6429 (6)
β (°) 113.189 (2)
V3) 3820.7 (3)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.23 × 0.21 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.980, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 22459, 3365, 2922
Rint 0.042
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.06
No. of reflections 3365
No. of parameters 240
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.32
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

1-[(6-tert-Butyl-2-oxo-2H-chromen-4-yl)methyl]-4,4-dimethylpiperidine-2,6-dione top
Crystal data top
C21H25NO4F(000) = 1520
Mr = 355.42Dx = 1.236 Mg m3
Monoclinic, C2/cMelting point: 546 K
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 17.9534 (7) ÅCell parameters from 2922 reflections
b = 15.8109 (7) Åθ = 2.6–26.0°
c = 14.6429 (6) ŵ = 0.09 mm1
β = 113.189 (2)°T = 296 K
V = 3820.7 (3) Å3BLOCK, colourless
Z = 80.23 × 0.21 × 0.17 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3365 independent reflections
Radiation source: fine-focus sealed tube2922 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 0.97 pixels mm-1θmax = 25.0°, θmin = 2.6°
φ and Ω scansh = 2121
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.980, Tmax = 0.985l = 1717
22459 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 4.1402P]
where P = (Fo2 + 2Fc2)/3
3365 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38958 (6)0.85989 (6)0.21647 (8)0.0234 (3)
O20.30944 (7)0.84959 (7)0.05798 (8)0.0290 (3)
O30.42605 (6)0.53779 (7)0.10830 (8)0.0286 (3)
O40.22270 (8)0.55466 (9)0.21639 (10)0.0441 (4)
N10.32502 (7)0.54449 (8)0.16368 (9)0.0203 (3)
C100.56284 (9)0.71989 (10)0.60161 (11)0.0240 (3)
C30.34437 (9)0.81208 (10)0.13520 (11)0.0219 (3)
C20.34194 (9)0.72165 (9)0.14891 (11)0.0212 (3)
H20.3120720.6882420.0944920.025*
C10.38126 (8)0.68406 (9)0.23737 (11)0.0191 (3)
C80.47121 (8)0.70433 (10)0.41872 (10)0.0202 (3)
H80.4706390.6464170.4295320.024*
C70.51444 (9)0.75663 (10)0.49805 (11)0.0211 (3)
C60.51574 (9)0.84311 (10)0.47904 (11)0.0253 (4)
H60.5450960.8791910.5309180.030*
C50.47458 (9)0.87654 (10)0.38523 (12)0.0250 (3)
H50.4764910.9342700.3741670.030*
C40.43057 (8)0.82311 (9)0.30815 (11)0.0194 (3)
C90.42829 (8)0.73610 (9)0.32264 (10)0.0183 (3)
C110.57278 (15)0.78452 (14)0.68234 (14)0.0559 (6)
H11A0.6054480.8306880.6767210.084*
H11B0.5986800.7583920.7463230.084*
H11C0.5204890.8053300.6749960.084*
C130.52054 (17)0.64368 (17)0.62166 (15)0.0770 (10)
H13A0.4655090.6581100.6095320.115*
H13B0.5481670.6264270.6896030.115*
H13C0.5211160.5981510.5785620.115*
C120.64529 (13)0.69548 (19)0.60640 (15)0.0654 (8)
H12A0.6397230.6524310.5579060.098*
H12B0.6775320.6742760.6715000.098*
H12C0.6712420.7441630.5928510.098*
C140.37878 (9)0.58983 (9)0.25218 (11)0.0233 (3)
H14A0.4331760.5673300.2721700.028*
H14B0.3611620.5793670.3058510.028*
C190.35637 (9)0.52013 (9)0.09426 (11)0.0205 (3)
C180.30041 (9)0.47477 (10)0.00280 (11)0.0227 (3)
H18A0.3323100.4369470.0195850.027*
H18B0.2754260.5161280.0492780.027*
C170.23360 (9)0.42360 (9)0.01691 (11)0.0236 (3)
C160.19056 (9)0.48305 (10)0.06247 (12)0.0256 (4)
H16A0.1601690.5243150.0127290.031*
H16B0.1519600.4504020.0792270.031*
C150.24523 (10)0.52923 (10)0.15344 (12)0.0256 (4)
C210.17368 (11)0.39218 (11)0.08396 (12)0.0349 (4)
H21A0.1504300.4396910.1264790.052*
H21B0.1314740.3603110.0751420.052*
H21C0.2014730.3567850.1136210.052*
C200.26966 (11)0.34836 (10)0.08600 (13)0.0341 (4)
H20A0.2972800.3119000.0571530.051*
H20B0.2270070.3174980.0950090.051*
H20C0.3073180.3684980.1491720.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0257 (6)0.0192 (5)0.0227 (6)0.0010 (4)0.0068 (4)0.0010 (4)
O20.0283 (6)0.0266 (6)0.0249 (6)0.0007 (5)0.0028 (5)0.0079 (5)
O30.0210 (6)0.0304 (6)0.0330 (6)0.0012 (5)0.0090 (5)0.0052 (5)
O40.0452 (8)0.0524 (8)0.0468 (8)0.0083 (6)0.0309 (7)0.0176 (7)
N10.0227 (7)0.0174 (6)0.0184 (6)0.0005 (5)0.0053 (5)0.0029 (5)
C100.0241 (8)0.0306 (9)0.0170 (7)0.0053 (6)0.0078 (6)0.0037 (6)
C30.0174 (7)0.0251 (8)0.0217 (8)0.0000 (6)0.0060 (6)0.0003 (6)
C20.0191 (7)0.0222 (8)0.0196 (7)0.0004 (6)0.0048 (6)0.0021 (6)
C10.0172 (7)0.0205 (8)0.0193 (7)0.0008 (6)0.0071 (6)0.0019 (6)
C80.0209 (7)0.0203 (7)0.0196 (8)0.0006 (6)0.0083 (6)0.0023 (6)
C70.0188 (7)0.0268 (8)0.0200 (8)0.0036 (6)0.0101 (6)0.0037 (6)
C60.0265 (8)0.0279 (8)0.0227 (8)0.0094 (7)0.0111 (6)0.0096 (7)
C50.0294 (8)0.0195 (7)0.0284 (8)0.0055 (6)0.0139 (7)0.0045 (6)
C40.0181 (7)0.0220 (8)0.0197 (7)0.0004 (6)0.0089 (6)0.0001 (6)
C90.0165 (7)0.0202 (7)0.0192 (7)0.0005 (6)0.0081 (6)0.0027 (6)
C110.0780 (16)0.0566 (14)0.0200 (9)0.0206 (12)0.0053 (9)0.0056 (9)
C130.0956 (19)0.0824 (18)0.0232 (10)0.0579 (16)0.0085 (11)0.0168 (11)
C120.0478 (12)0.119 (2)0.0345 (11)0.0451 (14)0.0214 (10)0.0339 (13)
C140.0276 (8)0.0202 (8)0.0162 (7)0.0003 (6)0.0024 (6)0.0016 (6)
C190.0217 (8)0.0159 (7)0.0221 (8)0.0034 (6)0.0067 (6)0.0023 (6)
C180.0248 (8)0.0224 (8)0.0196 (8)0.0006 (6)0.0075 (6)0.0027 (6)
C170.0275 (8)0.0191 (7)0.0192 (8)0.0042 (6)0.0039 (6)0.0008 (6)
C160.0223 (8)0.0257 (8)0.0278 (8)0.0049 (6)0.0086 (7)0.0017 (7)
C150.0288 (8)0.0216 (8)0.0281 (8)0.0005 (6)0.0131 (7)0.0001 (6)
C210.0381 (10)0.0325 (9)0.0251 (9)0.0118 (8)0.0029 (7)0.0031 (7)
C200.0481 (11)0.0196 (8)0.0270 (9)0.0041 (7)0.0065 (8)0.0007 (7)
Geometric parameters (Å, º) top
O1—C31.3732 (18)C11—H11B0.9600
O1—C41.3798 (17)C11—H11C0.9600
O2—C31.2104 (18)C13—H13A0.9600
O3—C191.2176 (18)C13—H13B0.9600
O4—C151.212 (2)C13—H13C0.9600
N1—C191.396 (2)C12—H12A0.9600
N1—C151.401 (2)C12—H12B0.9600
N1—C141.4627 (18)C12—H12C0.9600
C10—C121.505 (2)C14—H14A0.9700
C10—C131.513 (3)C14—H14B0.9700
C10—C111.519 (2)C19—C181.503 (2)
C10—C71.534 (2)C18—C171.527 (2)
C3—C21.447 (2)C18—H18A0.9700
C2—C11.345 (2)C18—H18B0.9700
C2—H20.9300C17—C161.527 (2)
C1—C91.456 (2)C17—C211.528 (2)
C1—C141.509 (2)C17—C201.530 (2)
C8—C71.388 (2)C16—C151.497 (2)
C8—C91.404 (2)C16—H16A0.9700
C8—H80.9300C16—H16B0.9700
C7—C61.397 (2)C21—H21A0.9600
C6—C51.383 (2)C21—H21B0.9600
C6—H60.9300C21—H21C0.9600
C5—C41.382 (2)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C4—C91.395 (2)C20—H20C0.9600
C11—H11A0.9600
C3—O1—C4121.19 (12)H12A—C12—H12B109.5
C19—N1—C15124.25 (12)C10—C12—H12C109.5
C19—N1—C14117.76 (12)H12A—C12—H12C109.5
C15—N1—C14117.99 (12)H12B—C12—H12C109.5
C12—C10—C13110.3 (2)N1—C14—C1113.77 (12)
C12—C10—C11108.92 (17)N1—C14—H14A108.8
C13—C10—C11107.38 (18)C1—C14—H14A108.8
C12—C10—C7107.88 (13)N1—C14—H14B108.8
C13—C10—C7111.17 (13)C1—C14—H14B108.8
C11—C10—C7111.20 (14)H14A—C14—H14B107.7
O2—C3—O1116.87 (14)O3—C19—N1119.72 (14)
O2—C3—C2125.52 (14)O3—C19—N1119.72 (14)
O1—C3—C2117.62 (13)O3—C19—C18122.81 (14)
C1—C2—C3122.49 (14)O3—C19—C18122.81 (14)
C1—C2—H2118.8N1—C19—C18117.44 (13)
C3—C2—H2118.8C19—C18—C17114.68 (12)
C2—C1—C9118.92 (14)C19—C18—H18A108.6
C2—C1—C14122.73 (13)C17—C18—H18A108.6
C9—C1—C14118.35 (12)C19—C18—H18B108.6
C7—C8—C9122.06 (14)C17—C18—H18B108.6
C7—C8—H8119.0H18A—C18—H18B107.6
C9—C8—H8119.0C18—C17—C16107.02 (12)
C8—C7—C6117.65 (14)C18—C17—C21109.46 (13)
C8—C7—C10120.93 (13)C16—C17—C21109.73 (13)
C6—C7—C10121.33 (13)C18—C17—C20110.55 (13)
C5—C6—C7121.83 (14)C16—C17—C20110.17 (13)
C5—C6—H6119.1C21—C17—C20109.87 (13)
C7—C6—H6119.1C15—C16—C17114.94 (13)
C4—C5—C6119.18 (14)C15—C16—H16A108.5
C4—C5—H5120.4C17—C16—H16A108.5
C6—C5—H5120.4C15—C16—H16B108.5
O1—C4—C5116.83 (13)C17—C16—H16B108.5
O1—C4—C9121.83 (13)H16A—C16—H16B107.5
C5—C4—C9121.34 (14)O4—C15—N1119.66 (15)
C4—C9—C8117.90 (13)O4—C15—N1119.66 (15)
C4—C9—C1117.95 (13)O4—C15—C16122.71 (15)
C8—C9—C1124.15 (13)O4—C15—C16122.71 (15)
C10—C11—H11A109.5N1—C15—C16117.62 (13)
C10—C11—H11B109.5C17—C21—H21A109.5
H11A—C11—H11B109.5C17—C21—H21B109.5
C10—C11—H11C109.5H21A—C21—H21B109.5
H11A—C11—H11C109.5C17—C21—H21C109.5
H11B—C11—H11C109.5H21A—C21—H21C109.5
C10—C13—H13A109.5H21B—C21—H21C109.5
C10—C13—H13B109.5C17—C20—H20A109.5
H13A—C13—H13B109.5C17—C20—H20B109.5
C10—C13—H13C109.5H20A—C20—H20B109.5
H13A—C13—H13C109.5C17—C20—H20C109.5
H13B—C13—H13C109.5H20A—C20—H20C109.5
C10—C12—H12A109.5H20B—C20—H20C109.5
C10—C12—H12B109.5
C4—O1—C3—O2178.97 (13)C15—N1—C14—C193.71 (16)
C4—O1—C3—C20.63 (19)C2—C1—C14—N14.4 (2)
O2—C3—C2—C1178.90 (14)C9—C1—C14—N1175.64 (12)
O1—C3—C2—C10.7 (2)O3—O3—C19—N10.00 (3)
C3—C2—C1—C90.2 (2)O3—O3—C19—C180.00 (4)
C3—C2—C1—C14179.84 (14)C15—N1—C19—O3178.33 (14)
C9—C8—C7—C61.5 (2)C14—N1—C19—O30.9 (2)
C9—C8—C7—C10178.19 (13)C15—N1—C19—O3178.33 (14)
C12—C10—C7—C886.1 (2)C14—N1—C19—O30.9 (2)
C13—C10—C7—C834.9 (2)C15—N1—C19—C180.1 (2)
C11—C10—C7—C8154.54 (16)C14—N1—C19—C18179.08 (12)
C12—C10—C7—C690.5 (2)O3—C19—C18—C17153.26 (14)
C13—C10—C7—C6148.46 (19)O3—C19—C18—C17153.26 (14)
C11—C10—C7—C628.9 (2)N1—C19—C18—C1728.58 (18)
C8—C7—C6—C51.1 (2)C19—C18—C17—C1652.45 (16)
C10—C7—C6—C5177.77 (13)C19—C18—C17—C21171.31 (13)
C7—C6—C5—C40.3 (2)C19—C18—C17—C2067.54 (17)
C3—O1—C4—C5179.81 (13)C18—C17—C16—C1551.80 (17)
C3—O1—C4—C90.2 (2)C21—C17—C16—C15170.48 (13)
C6—C5—C4—O1178.96 (13)C20—C17—C16—C1568.43 (17)
C6—C5—C4—C91.4 (2)O4—O4—C15—N10.0 (2)
O1—C4—C9—C8179.38 (12)O4—O4—C15—C160.00 (13)
C5—C4—C9—C81.0 (2)C19—N1—C15—O4178.11 (15)
O1—C4—C9—C10.3 (2)C14—N1—C15—O41.1 (2)
C5—C4—C9—C1179.32 (13)C19—N1—C15—O4178.11 (15)
C7—C8—C9—C40.5 (2)C14—N1—C15—O41.1 (2)
C7—C8—C9—C1179.19 (13)C19—N1—C15—C160.6 (2)
C2—C1—C9—C40.3 (2)C14—N1—C15—C16179.80 (12)
C14—C1—C9—C4179.69 (13)C17—C16—C15—O4154.14 (16)
C2—C1—C9—C8179.38 (14)C17—C16—C15—O4154.14 (16)
C14—C1—C9—C80.6 (2)C17—C16—C15—N127.2 (2)
C19—N1—C14—C185.53 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16—H16A···O2i0.972.413.1800 (19)136
C14—H14A···O3ii0.972.493.3898 (18)155
C2—H2···O2i0.932.503.3687 (18)155
C14—H14A···O30.972.402.6915 (19)97
C14—H14B···O40.972.342.698 (2)101
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x+1, y, z+1/2.
Selected bond lengths, angles and torsion angles (Å, °) top
ParameterSCXRDDFT
O1—C31.3732 (18)1.3885
O1—C41.3798 (17)1.3885
O3—C191.2176 (18)1.2121
O4—C151.212 (2)1.212
N1—C141.4627 (18)1.466
C3—O1—C4121.19 (12)122.13
C19—N1—C15124.25 (12)120.5
O1—C3—C2117.62 (13)116.10
C21—C17—C20109.87 (13)109.41
C15—N1—C14—C1-93.71 (16)-92.45
C19—N1—C15—O4-178.11 (15)-177.35
Experimental details of cytotoxicity (IC50) against cell lines A-549 and MDA-MB-231 (µM) top
Product/Cell linesTitle compoundDoxorubicin
A-5499.34±0.685.13±0.41
MDA-MB-23111.57±0.544.82±0.38
HEK29371.0386.47
SI for A-5497.9716.85
SI for MDA-MB-2316.4518.71
The energy values of the global reactivity descriptors for the title compound top
E_homo (eV)-6.59
E_lumo (eV)-2.06
Energy gap =(E_lumo)-(E_homo) (eV)4.53
Ionisation Energy(I) (eV)6.59
Electron Affinity(A)(eV)2.06
Electronegativity(χ)(eV)4.325
Chemical Hardness(η)(eV)2.265
Chemical Softness(S) (eV)-10.221
Chemical Potential(µ) (eV)-4.325
Electrophilicity Index(ω) (eV)4.129

Acknowledgements

The authors acknowledge the CISEE and are thankful to BSPMs lab for use of their computing facilities. MSK is grateful to the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur.

Funding information

Funding for this research was provided by: Vission Group of Science and Technology (award No. GRD319. to Palakshamurthy BS).

References

First citationAbou, A., Djandé, A., Kakou-Yao, R., Saba, A. & Tenon, A. J. (2013). Acta Cryst. E69, o1081–o1082.  CSD CrossRef IUCr Journals Google Scholar
First citationAbou, A., Djandé, A., Sessouma, B., Saba, A. & Kakou-Yao, R. (2011). Acta Cryst. E67, o2269–o2270.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAfshar, M., Hassanzadeh-Taheri, M., Zardast, M. & Honarmand, M. (2020). Iranian Journal of Dermatology, 23(2), 56–63.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBibila Mayaya Bisseyou, Y., Abou, A., Djandé, A., Danger, G. & Kakou-Yao, R. (2013). Acta Cryst. E69, o1125–o1126.  CSD CrossRef IUCr Journals Google Scholar
First citationBiovia (2017). Discovery Studio Visualizer. Biovia, San Diego, CA, USA.  Google Scholar
First citationBruker (2014). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, E. F., Magalhães, W. V. & Di Stasi, L. C. (2022). Molecules, 27, 7518.  CrossRef PubMed Google Scholar
First citationDuong, T. H., Carroll, T. S., Bejan, D. S. & Valente, E. J. (2020). J. Chem. Crystallogr. 50, 387–399.  CSD CrossRef CAS Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, V., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. C., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09., Revision A1. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHe, X., Chen, Y. Y., Shi, J. B., Tang, W. J., Pan, Z. X., Dong, Z. Q., Song, B. A., Li, J. & Liu, X. H. (2014). Bioorg. Med. Chem. 22, 3732–3738.  CSD CrossRef CAS PubMed Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatos, M. J., Uriarte, E., Seoane, N., Picos, A., Gil–Longo, J. & Campos–Toimil, M. (2022). ChemMedChem, 17, e202200476.  CrossRef PubMed Google Scholar
First citationMorris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. & Olson, A. J. (2009). J. Comput. Chem. 30, 27852791.  Web of Science CrossRef Google Scholar
First citationNajmanová, I., Doseděl, M., Hrdina, R., Anzenbacher, P., Filipský, T., Říha, M. & Mladěnka, P. (2015). Curr. Top. Med. Chem. 15, 830–849.  PubMed Google Scholar
First citationRamsis, T. M., Ebrahim, M. A. & Fayed, E. A. (2023). Med. Chem. Res. 32, 2269–2278.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationStefanova, T. H., Nikolova, N. J., Toshkova, R. A. & Neychev, H. O. (2007). J. Exp. Ther. Oncol. 6, 107–115.  PubMed CAS Google Scholar
First citationTakla, F. N., Bayoumi, W. A., El-Messery, S. M. & Nasr, M. N. (2023). Sci. Rep. 13, 13370.  CrossRef PubMed Google Scholar
First citationTurner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17.5. University of Western Australia. http://hirshfeldsurface.net.  Google Scholar
First citationWang, C., Pei, A., Chen, J., Yu, H., Sun, M. L., Liu, C. F. & Xu, X. (2012). J. Neurochem. 121, 1007–1013.  CrossRef CAS PubMed Google Scholar
First citationYadagiri, B., Holagunda, U. D., Bantu, R., Nagarapu, L., Kumar, C. G., Pombala, S. & Sridhar, B. (2014). Eur. J. Med. Chem. 79, 260–265.  CSD CrossRef CAS PubMed Google Scholar
First citationZheng, S. Y., Li, Y., Jiang, D., Zhao, J. & Ge, J. F. (2012). Mol. Med. Rep. 5, 822–826.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds