

research communications
Synthesis, structural characterization, Hirshfeld surface analysis and QTAIM analysis of 3-(4-cyanothiophen-3-yl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride
aPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russia, bKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119071 Moscow, Russia, cInstitute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia, dDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev Street 120, Baku AZ0101, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and gResearch Institute of Chemistry, Peoples' Friendship University of Russia, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np
The title compound, C11H6N3SSe+·Cl−, produced by the reaction between 3,4-dicyanothiophene and 2-pyridylselenyl chloride was isolated as a salt that crystallizes in the triclinic P1. Notable features include strong chalcogen interactions (Se⋯Cl and Se⋯S), as revealed through Hirshfeld surface analysis, which also highlights significant contributions from N⋯H/H⋯N, C⋯H/H⋯C and H⋯H contacts in the crystal packing. Supramolecular interactions were further analysed using density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) at the ωB97XD/6–311++G** level of theory.
Keywords: crystal structure; chalcogen-hydrogen bonding; 1,2,4-selenodiazole; Hirshfeld surface analysis.
CCDC reference: 2300276
1. Chemical context
Recently, we discovered that 2-pyridylselenyl reagents undergo et al., 2021). The presence of two σ-holes on the selenium atom imparts a unique property to 1,2,4-selenadiazoles, allowing them to form supramolecular dimers via four-centre Se2N2 chalcogen bonds (Grudova et al., 2022
). Additionally, we explored their cycloaddition reactions with various nucleophilic molecules, demonstrating the versatility of 2-pyridylselenenyl reagents (Artemjev et al., 2022
, 2024
; Sapronov et al., 2022
, 2024
). In this report, we describe the structure of 3-(4-cyanothiophen-3-yl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride, which was obtained from the reaction between 3,4-dicyanothiophene and 2-pyridylselenenyl.
2. Structural commentary
As shown in Fig. 1, the nine-membered ring system (Se1/N1/N2/C1–C6) of the cation is essentially planar [the maximum deviation is 0.034 (2) Å for C6] and makes an angle of 47.40 (9)° with the least-squares plane of the thiophene ring (S1/C7–C10). The intramolecular interaction between the Cl− anion and the Se1 and (C2)H2 atoms of the cation forms an S(5) ring motif and thus the title molecule has a stable conformation. The Se1—C1 and Se1—N2 bond lengths are 1.865 (2) and 1.8511 (19) Å, respectively. The lengths of the single C6—N1 bond and the double C6—N2 bond are 1.426 (3) and 1.283 (3) Å, respectively. The bond length and angle values are comparable to those of similar compounds (see Database survey section).
![]() | Figure 1 Molecular structure of 3-(4-cyanothiophen-3-yl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride. Displacement ellipsoids are drawn at the 50% probability level. |
3. Supramolecular features
In the crystal, pairs of cations are linked by C10—H10⋯N3 hydrogen bonds, thus forming a dimeric R22(10) ring motif (Table 1; Fig. 2
; Bernstein et al., 1995
). These dimers are connected by pairs of C2—H2⋯N3 hydrogen bonds, forming inversion dimers with R22(18) ring motifs, which lead to the formation of ribbons propagating along the c-axis direction (Table 1
). There are π–π stacking interactions between the rings of the bicyclic ring systems of two adjacent cations [Fig. 3
; Cg1⋯Cg3i = 3.964 (2) Å, slippage = 1.955 Å; Cg3⋯Cg1i = 3.964 (2) Å, slippage = 1.851 Å; symmetry code: (i) −x + 1, −y + 1, −z + 1; Cg1 and Cg3 are the centroids of the Se1/N2/C6/N1/C1 and N1/C1–C5 rings, respectively], as well as between two thiophene groups (Fig. 3
). The distance between the centroids (Cg2 and Cg2iv) of the thiophene rings (S1/C7–C10) is 3.849 (2) Å [slippage = 1.831 Å; symmetry code: (iv) −x, −y, −z]. These π–π stacking interactions between thiophene rings form ribbons along the [110] direction. Overall, the crystal is consolidated by this three-dimensional network formed by π-π stacking interactions and intermolecular C—H⋯N interactions.
|
![]() | Figure 2 A partial packing diagram showing the C—H⋯N and C—H⋯Cl hydrogen bonds (dashed lines). H atoms not involved in these interactions have been omitted for clarity. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, y − 1, z; (iii) −x + 1, −y, −z. |
![]() | Figure 3 Crystal packing showing the π-π- stacking interactions between adjacent cations (dashed lines). |
4. Hirshfeld surface analysis
In order to quantify the intermolecular interactions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots (Fig. 4
). The most important interatomic contact is N⋯H/H⋯N as it makes the highest contribution to the crystal packing (22.2%, Fig. 4
b). The other major contributors are the Cl⋯H/H⋯Cl (13.4%, Fig. 4
c), C⋯H/H⋯C (12.4%, Fig. 4
d) and H⋯H (11.3%, Fig. 4
e) interactions. Other, smaller contributions (Table 2
) are made by Se⋯C/C⋯Se (6.9%, Fig. 4
f), Cl⋯C/C⋯Cl (5.3%), S⋯H/H⋯S (4.8%), S⋯N/N⋯S (4.4%), C⋯C (3.7%), Se⋯S/S⋯Se (3.6%), S⋯C/C⋯S (3.1%), Se⋯H/H⋯Se (2.4%), Cl⋯N/N⋯Cl (2.3%), C⋯N/N⋯C (2.2%), S⋯S (1.0%), Se⋯N/N⋯Se (0.9%) and Se⋯Cl/Cl⋯Se (0.1%) interactions.
|
![]() | Figure 4 The two-dimensional fingerprint plots, showing (a) all interactions, and those delineated into (b) N⋯H/H⋯N, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) H⋯H and (f) Se⋯C/C⋯Se interactions; de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively. |
5. QTAIM analysis
Inspection of the crystallographic data reveals the presence of Se⋯Cl and Se⋯S chalcogen bonds as being the most non-trivial non-covalent interactions. To better understand the nature and approximately quantify the strength of these intermolecular contacts, DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis) were carried out at the ωB97XD/6-311++G** level of theory. Results of the QTAIM analysis for chalcogen bonds Se⋯Cl and Se⋯S are summarized in Table 3; the contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces, visualization of the electron localization function (ELF) and reduced density gradient (RDG) analyses for these non-covalent contacts are shown in Fig. 5
.
|
![]() | Figure 5 Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, centre panel) and reduced density gradient (RDG, right panel) analyses for chalcogen bonds Se⋯Cl and Se⋯S. Bond critical points (3, −1) are shown in blue, nuclear critical points (3, −3) in pale brown and ring critical points (3, +1) in orange. Bond paths are shown as pale-brown lines, length are in Å, and the colour scale for the ELF and RDG maps is presented in a.u. |
The QTAIM analysis of the model supramolecular associate demonstrates the presence of bond critical points (3, −1) for chalcogen bonds Se⋯Cl and Se⋯S (Table 3 and Fig. 5
). The low magnitude of the electron density, the positive values of the Laplacian of electron density, very close to zero values of energy density, magnitudes of the electron localization function in these bond critical points (3, −1) and the estimated strengths for appropriate short contacts are typical for chalcogen bonds (Khrustalev et al., 2021
; Mikherdov et al., 2016
, 2018
). The balance between the Lagrangian G(r) and density V(r) in bond critical points (3, −1) for chalcogen bonds Se⋯Cl and Se⋯S reveals that Se⋯S contacts are purely non-covalent, whereas Se⋯Cl contacts have small covalent contribution, (Espinosa et al., 2002
) and the sign of λ2 allows these chalcogen bonds to be designated as bonding (attractive, λ2 < 0) interactions (Johnson et al., 2010
; Contreras-García et al., 2011
).
6. Database survey
A search in the Cambridge Structural Database (CSD, Version 5.43, update of September 2022; Groom et al., 2016) gave only 17 hits for 1,2,4-selenodiazolium salts. The most relevant salts are EHAPUC (Temesgen et al., 2024
), BEYHEW, BEYHIA, BEYHOG, BEYHUM, BEYJAU, BEYJEY, BEYJIC, BEYJOI and BEYJUO (Sapronov et al., 2022
). The molecules of EHAPUC are packed in layers parallel to the ac plane. Each row of 1,2,4-selenodiazolium salts in the layer is located antiparallel to the adjacent one. In addition to Se⋯Cl contacts, the anions form C—H⋯Cl contacts that link the cations and anions both within the layers and between them. BEYHEW, BEYHIA, BEYHOG, BEYHUM, BEYJAU, BEYJEY, BEYJIC, BEYJOI and BEYJUO promote the formation of self-assembled dimers with the recurrent Se2N2 supramolecular motif. The dimers are further consolidated by two symmetry-equivalent selenium–arene chalcogen-bond interactions.
7. Synthesis and crystallization
2-Pyridylselenyl chloride was synthesized by a published method (Artemjev et al., 2023; Khrustalev et al., 2021
). A solution of PhICl2 (26 mg, 96 µmol) in CH2Cl2 (2 mL) was added to a solution of 2,2′-dipyridyldiselenide (30 mg, 96 µmol) and thiophene-3,4-dicarbonitrile (13 mg, 96 µmol) in CH2Cl2 (2 mL), and the reaction mixture was left without stirring at room temperature for 12 h. After that, the solution was decanted to leave a yellow precipitate. The solid was washed with Et2O (3 × 1 mL) and dried under vacuum. Yield: 40 mg (65%). 1H NMR (700 MHz, D2O) δ 9.43 (d, J = 6.8 Hz, 1H), 8.91 (d, J = 8.7 Hz, 1H), 8.67 (d, J = 3.0 Hz, 1H), 8.48–8.45 (m, 1H), 8.39 (d, J = 3.0 Hz, 1H), 8.01 (dd, J = 7.7, 6.5 Hz, 1H). 13C NMR (176 MHz, D2O) δ 168.4, 149.7, 141.0, 140.0, 136.8, 133.4, 127.5, 126.0, 123.3, 114.0, 110.6.
8. Refinement
Crystal data, data collection and structure . The hydrogen atoms were placed in calculated positions and refined as riding models with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(O), 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups]. The remaining positive and negative residual electron densities are both located near the selenium atom.
|
Supporting information
CCDC reference: 2300276
https://doi.org/10.1107/S205698902500115X/tx2093sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902500115X/tx2093Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S205698902500115X/tx2093Isup3.cml
C11H6N3SSe+·Cl− | Z = 2 |
Mr = 326.66 | F(000) = 320 |
Triclinic, P1 | Dx = 1.830 Mg m−3 |
a = 7.142 (3) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.824 (4) Å | Cell parameters from 5323 reflections |
c = 10.255 (5) Å | θ = 2.4–32.5° |
α = 101.566 (13)° | µ = 3.55 mm−1 |
β = 107.022 (14)° | T = 100 K |
γ = 97.55 (1)° | Block, colourless |
V = 592.8 (5) Å3 | 0.60 × 0.40 × 0.10 mm |
Bruker D8 Venture diffractometer | 3934 independent reflections |
Radiation source: sealed X-ray tube | 3411 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.035 |
Detector resolution: 5.6 pixels mm-1 | θmax = 32.4°, θmin = 2.2° |
ω scans | h = −10→8 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→12 |
Tmin = 0.470, Tmax = 0.746 | l = −15→14 |
7083 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.081 | w = 1/[σ2(Fo2) + (0.0221P)2 + 0.1631P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.001 |
3934 reflections | Δρmax = 1.22 e Å−3 |
154 parameters | Δρmin = −0.74 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.19350 (3) | 0.53066 (2) | 0.38485 (2) | 0.01314 (6) | |
S1 | 0.06346 (8) | −0.22986 (6) | 0.13180 (6) | 0.02063 (12) | |
N1 | 0.2726 (2) | 0.27311 (19) | 0.46985 (18) | 0.0114 (3) | |
N2 | 0.1683 (3) | 0.3416 (2) | 0.25768 (19) | 0.0151 (3) | |
N3 | 0.4496 (3) | 0.2362 (2) | 0.0365 (2) | 0.0213 (4) | |
C1 | 0.2707 (3) | 0.4265 (2) | 0.5271 (2) | 0.0117 (3) | |
C2 | 0.3256 (3) | 0.4828 (2) | 0.6731 (2) | 0.0143 (4) | |
H2 | 0.323858 | 0.589089 | 0.713832 | 0.017* | |
C3 | 0.3824 (3) | 0.3817 (3) | 0.7575 (2) | 0.0163 (4) | |
H3 | 0.419393 | 0.418052 | 0.856995 | 0.020* | |
C4 | 0.3855 (3) | 0.2246 (2) | 0.6958 (2) | 0.0148 (4) | |
H4 | 0.425057 | 0.154979 | 0.753641 | 0.018* | |
C5 | 0.3317 (3) | 0.1726 (2) | 0.5530 (2) | 0.0144 (4) | |
H5 | 0.335128 | 0.067141 | 0.511177 | 0.017* | |
C6 | 0.2087 (3) | 0.2315 (2) | 0.3197 (2) | 0.0139 (4) | |
C7 | 0.1862 (3) | 0.0675 (2) | 0.2395 (2) | 0.0144 (4) | |
C8 | 0.0845 (3) | −0.0641 (3) | 0.2593 (2) | 0.0186 (4) | |
H8 | 0.032150 | −0.063504 | 0.334549 | 0.022* | |
C9 | 0.2484 (3) | 0.0300 (2) | 0.1180 (2) | 0.0148 (4) | |
C10 | 0.1904 (3) | −0.1269 (3) | 0.0492 (2) | 0.0191 (4) | |
H10 | 0.217413 | −0.172478 | −0.033747 | 0.023* | |
C11 | 0.3608 (3) | 0.1445 (3) | 0.0728 (2) | 0.0176 (4) | |
Cl1 | 0.22732 (8) | 0.81017 (6) | 0.59166 (6) | 0.02006 (11) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.01299 (10) | 0.01398 (11) | 0.01459 (10) | 0.00329 (7) | 0.00538 (8) | 0.00667 (7) |
S1 | 0.0196 (3) | 0.0153 (2) | 0.0223 (3) | 0.0013 (2) | 0.0030 (2) | 0.0015 (2) |
N1 | 0.0108 (7) | 0.0118 (8) | 0.0116 (8) | 0.0006 (6) | 0.0042 (6) | 0.0031 (6) |
N2 | 0.0143 (8) | 0.0171 (8) | 0.0139 (8) | 0.0031 (6) | 0.0044 (7) | 0.0045 (7) |
N3 | 0.0198 (9) | 0.0275 (10) | 0.0181 (9) | 0.0049 (8) | 0.0082 (8) | 0.0057 (8) |
C1 | 0.0108 (9) | 0.0123 (9) | 0.0132 (9) | 0.0022 (7) | 0.0051 (7) | 0.0038 (7) |
C2 | 0.0144 (9) | 0.0138 (9) | 0.0149 (9) | 0.0016 (7) | 0.0053 (8) | 0.0038 (7) |
C3 | 0.0152 (10) | 0.0191 (10) | 0.0149 (10) | 0.0015 (8) | 0.0047 (8) | 0.0063 (8) |
C4 | 0.0142 (9) | 0.0156 (9) | 0.0144 (9) | 0.0012 (7) | 0.0036 (8) | 0.0063 (8) |
C5 | 0.0135 (9) | 0.0114 (9) | 0.0188 (10) | 0.0017 (7) | 0.0052 (8) | 0.0058 (7) |
C6 | 0.0128 (9) | 0.0159 (9) | 0.0129 (9) | 0.0011 (7) | 0.0051 (7) | 0.0032 (7) |
C7 | 0.0134 (9) | 0.0161 (9) | 0.0122 (9) | 0.0024 (7) | 0.0027 (7) | 0.0029 (7) |
C8 | 0.0197 (10) | 0.0177 (10) | 0.0166 (10) | 0.0000 (8) | 0.0057 (8) | 0.0030 (8) |
C9 | 0.0123 (9) | 0.0180 (10) | 0.0131 (9) | 0.0045 (7) | 0.0031 (7) | 0.0027 (7) |
C10 | 0.0148 (10) | 0.0239 (11) | 0.0167 (10) | 0.0056 (8) | 0.0039 (8) | 0.0013 (8) |
C11 | 0.0171 (10) | 0.0232 (11) | 0.0122 (9) | 0.0064 (8) | 0.0048 (8) | 0.0022 (8) |
Cl1 | 0.0238 (3) | 0.0131 (2) | 0.0243 (3) | 0.00350 (19) | 0.0087 (2) | 0.0060 (2) |
Se1—N2 | 1.8511 (19) | C3—C4 | 1.410 (3) |
Se1—C1 | 1.865 (2) | C3—H3 | 0.9500 |
S1—C10 | 1.705 (2) | C4—C5 | 1.362 (3) |
S1—C8 | 1.712 (2) | C4—H4 | 0.9500 |
N1—C1 | 1.366 (3) | C5—H5 | 0.9500 |
N1—C5 | 1.372 (3) | C6—C7 | 1.477 (3) |
N1—C6 | 1.426 (3) | C7—C8 | 1.370 (3) |
N2—C6 | 1.283 (3) | C7—C9 | 1.434 (3) |
N3—C11 | 1.148 (3) | C8—H8 | 0.9500 |
C1—C2 | 1.397 (3) | C9—C10 | 1.368 (3) |
C2—C3 | 1.381 (3) | C9—C11 | 1.440 (3) |
C2—H2 | 0.9500 | C10—H10 | 0.9500 |
N2—Se1—C1 | 87.24 (9) | C4—C5—H5 | 120.1 |
C10—S1—C8 | 92.64 (11) | N1—C5—H5 | 120.1 |
C1—N1—C5 | 121.45 (18) | N2—C6—N1 | 117.21 (19) |
C1—N1—C6 | 113.64 (17) | N2—C6—C7 | 121.7 (2) |
C5—N1—C6 | 124.91 (18) | N1—C6—C7 | 121.10 (18) |
C6—N2—Se1 | 111.81 (15) | C8—C7—C9 | 111.61 (19) |
N1—C1—C2 | 119.91 (19) | C8—C7—C6 | 125.30 (19) |
N1—C1—Se1 | 110.02 (15) | C9—C7—C6 | 122.64 (18) |
C2—C1—Se1 | 130.06 (16) | C7—C8—S1 | 111.62 (17) |
C3—C2—C1 | 119.0 (2) | C7—C8—H8 | 124.2 |
C3—C2—H2 | 120.5 | S1—C8—H8 | 124.2 |
C1—C2—H2 | 120.5 | C10—C9—C7 | 112.93 (19) |
C2—C3—C4 | 119.9 (2) | C10—C9—C11 | 123.21 (19) |
C2—C3—H3 | 120.0 | C7—C9—C11 | 123.85 (19) |
C4—C3—H3 | 120.0 | C9—C10—S1 | 111.19 (17) |
C5—C4—C3 | 119.9 (2) | C9—C10—H10 | 124.4 |
C5—C4—H4 | 120.0 | S1—C10—H10 | 124.4 |
C3—C4—H4 | 120.0 | N3—C11—C9 | 179.7 (3) |
C4—C5—N1 | 119.78 (19) | ||
C1—Se1—N2—C6 | 1.08 (15) | C5—N1—C6—N2 | −176.41 (18) |
C5—N1—C1—C2 | −1.5 (3) | C1—N1—C6—C7 | −175.22 (17) |
C6—N1—C1—C2 | 178.63 (17) | C5—N1—C6—C7 | 4.9 (3) |
C5—N1—C1—Se1 | 177.54 (14) | N2—C6—C7—C8 | −129.2 (2) |
C6—N1—C1—Se1 | −2.4 (2) | N1—C6—C7—C8 | 49.5 (3) |
N2—Se1—C1—N1 | 0.80 (14) | N2—C6—C7—C9 | 42.5 (3) |
N2—Se1—C1—C2 | 179.7 (2) | N1—C6—C7—C9 | −138.8 (2) |
N1—C1—C2—C3 | 0.5 (3) | C9—C7—C8—S1 | −0.5 (2) |
Se1—C1—C2—C3 | −178.32 (15) | C6—C7—C8—S1 | 172.03 (17) |
C1—C2—C3—C4 | 0.4 (3) | C10—S1—C8—C7 | 0.06 (18) |
C2—C3—C4—C5 | −0.2 (3) | C8—C7—C9—C10 | 0.7 (3) |
C3—C4—C5—N1 | −0.7 (3) | C6—C7—C9—C10 | −171.97 (19) |
C1—N1—C5—C4 | 1.6 (3) | C8—C7—C9—C11 | −179.0 (2) |
C6—N1—C5—C4 | −178.50 (18) | C6—C7—C9—C11 | 8.3 (3) |
Se1—N2—C6—N1 | −2.7 (2) | C7—C9—C10—S1 | −0.7 (2) |
Se1—N2—C6—C7 | 175.96 (15) | C11—C9—C10—S1 | 179.05 (17) |
C1—N1—C6—N2 | 3.5 (3) | C8—S1—C10—C9 | 0.37 (18) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···Cl1 | 0.95 | 2.58 | 3.270 (3) | 129 |
C2—H2···N3i | 0.95 | 2.62 | 3.285 (3) | 127 |
C5—H5···Cl1ii | 0.95 | 2.66 | 3.316 (3) | 127 |
C10—H10···N3iii | 0.95 | 2.52 | 3.154 (4) | 124 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, y−1, z; (iii) −x+1, −y, −z. |
Contact | Distance | Symmetry operation |
H2···Cl1 | 2.58 | x, y, z |
Se1···S1 | 3.66 | x, 1+y, z |
C2···Se1 | 3.56 | -x, 1-y, 1-z |
H2···N3 | 2.62 | 1-x, 1-y, 1-z |
S1···Se1 | 3.66 | x, -1+y, z |
C10···C9 | 3.41 | -x, -y, -z |
N1···Cl1 | 3.39 | -x, 1-y, 1-z |
N3···H3 | 2.66 | x, y, -1+z |
H10···N3 | 2.52 | 1-x, -y, -z |
H5···Cl1 | 2.66 | x, -1+y, z |
H8···C4 | 3.03 | -x, -y, 1-z |
H4···C10 | 2.97 | 1-x, -y, 1-z |
ρ(r) = density of all electrons, ∇2ρ(r) = Laplacian of electron density, λ2 = eigenvalue, [Hb] = energy density, V(r) = potential energy density, G(r) = Lagrangian kinetic energy, ELF (a.u.) = electron localization function and Eint = estimated strength for these interactions (kcal mol-1) |
Contacta | Se···Cl, 2.843 Å, 78% vdW sum | Se···S, 3.656 Å, 99% vdW sum |
ρ(r) | 0.030 | 0.006 |
∇2ρ(r) | 0.067 | 0.020 |
λ2 | -0.030 | -0.006 |
Hb | -0.001 | 0.001 |
V(r) | -0.019 | -0.003 |
G(r) | 0.018 | 0.004 |
ELF | 0.178 | 0.024 |
Eint | 6.0 | 0.9 |
Note: (a) The van der Waals (vdW) radii for S, Se, and Cl atoms are 1.80, 1.90, and 1.75 Å, respectively (Bondi, 1966). |
Acknowledgements
This work was performed under the support of the Russian Science Foundation (award No. 2273–10007). The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAS, EAD, ASK and ASN; X-ray analysis, VNK and MA; writing (review and editing of the manuscript) MMG, MA and AB; funding acquisition, NQS, EVD and MRK; supervision, NQS and AGT.
References
Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018–2023. Web of Science CSD CrossRef CAS Google Scholar
Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372. Web of Science CSD CrossRef PubMed Google Scholar
Artemjev, A. A., Sapronov, A. A., Kubasov, A. S., Peregudov, A. S., Novikov, A. S., Egorov, A. R., Khrustalev, V. N., Borisov, A. V., Matsulevich, Z. V., Shikhaliyev, N. G., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2024). Int. J. Mol. Sci. 25, 12798. CrossRef PubMed Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bondi, A. (1966). J. Phys. Chem. 70, 3006–3007. CrossRef CAS Web of Science Google Scholar
Bruker (2019). SAINT. Bruker Nano Inc. Madison, Wisconsin, USA. Google Scholar
Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632. Web of Science PubMed Google Scholar
Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542. Web of Science CrossRef CAS Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022). Cryst. Growth Des. 22, 313–322. CrossRef Google Scholar
Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506. Web of Science CrossRef CAS PubMed Google Scholar
Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689–10691. Web of Science CSD CrossRef CAS PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129–14137. Web of Science CSD CrossRef PubMed Google Scholar
Mikherdov, A. S., Novikov, A. S., Kinzhalov, M. A., Zolotarev, A. A. & Boyarskiy, V. P. (2018). Crystals, 8, 112. CrossRef Google Scholar
Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973. Web of Science CSD CrossRef PubMed Google Scholar
Sapronov, A. A., Khrustalev, V. N., Chusova, O. G., Kubasov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2024). Inorg. Chem. 63, 13924–13937. CrossRef PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Temesgen, A. W., Sapronov, A. A., Kubasov, A. S., Novikov, A. S., Le, T. A. & Tskhovrebov, A. G. (2024). Acta Cryst. E80, 247–251. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.