research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, structural characterization, Hirshfeld surface analysis and QTAIM analysis of 3-(4-cyano­thio­phen-3-yl)-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ium chloride

crossmark logo

aPeoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, Moscow, 117198, Russia, bKurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky Prosp. 31, 119071 Moscow, Russia, cInstitute of Chemistry, Saint Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint Petersburg, Russia, dDepartment of Chemical Engineering, Baku Engineering University, Hasan Aliyev Street 120, Baku AZ0101, Azerbaijan, eDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Türkiye, fDepartment of Chemistry, M.M.A.M.C (Tribhuvan University) Biratnagar, Nepal, and gResearch Institute of Chemistry, Peoples' Friendship University of Russia, Miklukho-Maklaya St., 6, Moscow 117198, Russian Federation
*Correspondence e-mail: ajaya.bhattarai@mmamc.tu.edu.np

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 31 January 2025; accepted 8 February 2025; online 14 February 2025)

The title compound, C11H6N3SSe+·Cl, produced by the reaction between 3,4-di­cyano­thio­phene and 2-pyridyl­selenyl chloride was isolated as a salt that crystallizes in the triclinic space group P1. Notable features include strong chalcogen inter­actions (Se⋯Cl and Se⋯S), as revealed through Hirshfeld surface analysis, which also highlights significant contributions from N⋯H/H⋯N, C⋯H/H⋯C and H⋯H contacts in the crystal packing. Supra­molecular inter­actions were further analysed using density functional theory (DFT) and quantum theory of atoms in mol­ecules (QTAIM) at the ωB97XD/6–311++G** level of theory.

1. Chemical context

Recently, we discovered that 2-pyridyl­selenyl reagents undergo cyclization with unactivated nitriles under mild conditions, enabling the synthesis of previously unknown 1,2,4-selena­diazo­les (Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]). The presence of two σ-holes on the selenium atom imparts a unique property to 1,2,4-selena­diazo­les, allowing them to form supra­molecular dimers via four-centre Se2N2 chalcogen bonds (Grudova et al., 2022[Grudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022). Cryst. Growth Des. 22, 313-322.]). Additionally, we explored their cyclo­addition reactions with various nucleophilic mol­ecules, demonstrating the versatility of 2-pyridyl­selenenyl reagents (Artemjev et al., 2022[Artemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.], 2024[Artemjev, A. A., Sapronov, A. A., Kubasov, A. S., Peregudov, A. S., Novikov, A. S., Egorov, A. R., Khrustalev, V. N., Borisov, A. V., Matsulevich, Z. V., Shikhaliyev, N. G., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2024). Int. J. Mol. Sci. 25, 12798.]; Sapronov et al., 2022[Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973.], 2024[Sapronov, A. A., Khrustalev, V. N., Chusova, O. G., Kubasov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2024). Inorg. Chem. 63, 13924-13937.]). In this report, we describe the structure of 3-(4-cyano­thio­phen-3-yl)-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ium chloride, which was obtained from the reaction between 3,4-di­cyano­thio­phene and 2-pyridyl­selenenyl.

[Scheme 1]

2. Structural commentary

As shown in Fig. 1[link], the nine-membered ring system (Se1/N1/N2/C1–C6) of the cation is essentially planar [the maximum deviation is 0.034 (2) Å for C6] and makes an angle of 47.40 (9)° with the least-squares plane of the thio­phene ring (S1/C7–C10). The intra­molecular inter­action between the Cl anion and the Se1 and (C2)H2 atoms of the cation forms an S(5) ring motif and thus the title mol­ecule has a stable conformation. The Se1—C1 and Se1—N2 bond lengths are 1.865 (2) and 1.8511 (19) Å, respectively. The lengths of the single C6—N1 bond and the double C6—N2 bond are 1.426 (3) and 1.283 (3) Å, respectively. The bond length and angle values are comparable to those of similar compounds (see Database survey section).

[Figure 1]
Figure 1
Mol­ecular structure of 3-(4-cyano­thio­phen-3-yl)-[1,2,4]selena­diazolo[4,5-a]pyridin-4-ium chloride. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, pairs of cations are linked by C10—H10⋯N3 hydrogen bonds, thus forming a dimeric R22(10) ring motif (Table 1[link]; Fig. 2[link]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These dimers are connected by pairs of C2—H2⋯N3 hydrogen bonds, forming inversion dimers with R22(18) ring motifs, which lead to the formation of ribbons propagating along the c-axis direction (Table 1[link]). There are ππ stacking inter­actions between the rings of the bicyclic ring systems of two adjacent cations [Fig. 3[link]; Cg1⋯Cg3i = 3.964 (2) Å, slippage = 1.955 Å; Cg3⋯Cg1i = 3.964 (2) Å, slippage = 1.851 Å; symmetry code: (i) −x + 1, −y + 1, −z + 1; Cg1 and Cg3 are the centroids of the Se1/N2/C6/N1/C1 and N1/C1–C5 rings, respectively], as well as between two thio­phene groups (Fig. 3[link]). The distance between the centroids (Cg2 and Cg2iv) of the thio­phene rings (S1/C7–C10) is 3.849 (2) Å [slippage = 1.831 Å; symmetry code: (iv) −x, −y, −z]. These ππ stacking inter­actions between thio­phene rings form ribbons along the [110] direction. Overall, the crystal is consolidated by this three-dimensional network formed by π-π stacking inter­actions and inter­molecular C—H⋯N inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1 0.95 2.58 3.270 (3) 129
C2—H2⋯N3i 0.95 2.62 3.285 (3) 127
C5—H5⋯Cl1ii 0.95 2.66 3.316 (3) 127
C10—H10⋯N3iii 0.95 2.52 3.154 (4) 124
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x, y-1, z]; (iii) [-x+1, -y, -z].
[Figure 2]
Figure 2
A partial packing diagram showing the C—H⋯N and C—H⋯Cl hydrogen bonds (dashed lines). H atoms not involved in these inter­actions have been omitted for clarity. Symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) x, y − 1, z; (iii) −x + 1, −y, −z.
[Figure 3]
Figure 3
Crystal packing showing the π-π- stacking inter­actions between adjacent cations (dashed lines).

4. Hirshfeld surface analysis

In order to qu­antify the inter­molecular inter­actions in the crystal, Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) was used to generate Hirshfeld surfaces and two-dimensional fingerprint plots (Fig. 4[link]). The most important inter­atomic contact is N⋯H/H⋯N as it makes the highest contribution to the crystal packing (22.2%, Fig. 4[link]b). The other major contributors are the Cl⋯H/H⋯Cl (13.4%, Fig. 4[link]c), C⋯H/H⋯C (12.4%, Fig. 4[link]d) and H⋯H (11.3%, Fig. 4[link]e) inter­actions. Other, smaller contributions (Table 2[link]) are made by Se⋯C/C⋯Se (6.9%, Fig. 4[link]f), Cl⋯C/C⋯Cl (5.3%), S⋯H/H⋯S (4.8%), S⋯N/N⋯S (4.4%), C⋯C (3.7%), Se⋯S/S⋯Se (3.6%), S⋯C/C⋯S (3.1%), Se⋯H/H⋯Se (2.4%), Cl⋯N/N⋯Cl (2.3%), C⋯N/N⋯C (2.2%), S⋯S (1.0%), Se⋯N/N⋯Se (0.9%) and Se⋯Cl/Cl⋯Se (0.1%) inter­actions.

Table 2
Inter­atomic contacts (Å)

Contact Distance Symmetry operation
H2⋯Cl1 2.58 x, y, z
Se1⋯S1 3.66 x, 1 + y, z
C2⋯Se1 3.56 x, 1 − y, 1 − z
H2⋯N3 2.62 1 − x, 1 − y, 1 − z
S1⋯Se1 3.66 x, −1 + y, z
C10⋯C9 3.41 x, −y, −z
N1⋯Cl1 3.39 x, 1 − y, 1 − z
N3⋯H3 2.66 x, y, −1 + z
H10⋯N3 2.52 1 − x, −y, −z
H5⋯Cl1 2.66 x, −1 + y, z
H8⋯C4 3.03 x, −y, 1 − z
H4⋯C10 2.97 1 − x, −y, 1 − z
[Figure 4]
Figure 4
The two-dimensional fingerprint plots, showing (a) all inter­actions, and those delineated into (b) N⋯H/H⋯N, (c) Cl⋯H/H⋯Cl, (d) C⋯H/H⋯C, (e) H⋯H and (f) Se⋯C/C⋯Se inter­actions; de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively.

5. QTAIM analysis

Inspection of the crystallographic data reveals the presence of Se⋯Cl and Se⋯S chalcogen bonds as being the most non-trivial non-covalent inter­actions. To better understand the nature and approximately qu­antify the strength of these inter­molecular contacts, DFT calculations followed by topological analysis of the electron density distribution (QTAIM analysis) were carried out at the ωB97XD/6-311++G** level of theory. Results of the QTAIM analysis for chalcogen bonds Se⋯Cl and Se⋯S are summarized in Table 3[link]; the contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces, visualization of the electron localization function (ELF) and reduced density gradient (RDG) analyses for these non-covalent contacts are shown in Fig. 5[link].

Table 3
Values of QTAIM parameters at the bond-critical points (3, −1), corresponding to chalcogen bonds Se⋯Cl and Se⋯S in the X-ray structure

ρ(r) = density of all electrons, ∇2ρ(r) = Laplacian of electron density, λ2 = eigenvalue, [Hb] = energy density, V(r) = potential energy density, G(r) = Lagrangian kinetic energy, ELF (a.u.) = electron localization function and Eint = estimated strength for these inter­actions (kcal mol−1)

Contacta Se⋯Cl, 2.843 Å, 78% vdW sum Se⋯S, 3.656 Å, 99% vdW sum
ρ(r) 0.030 0.006
2ρ(r) 0.067 0.020
λ2 −0.030 −0.006
Hb −0.001 0.001
V(r) −0.019 −0.003
G(r) 0.018 0.004
ELF 0.178 0.024
Eint 6.0 0.9
Note: (a) The van der Waals (vdW) radii for S, Se, and Cl atoms are 1.80, 1.90, and 1.75 Å, respectively (Bondi, 1966[Bondi, A. (1966). J. Phys. Chem. 70, 3006-3007.]).
[Figure 5]
Figure 5
Contour line diagram of the Laplacian of electron density distribution ∇2ρ(r), bond paths, and selected zero-flux surfaces (left panel), visualization of electron localization function (ELF, centre panel) and reduced density gradient (RDG, right panel) analyses for chalcogen bonds Se⋯Cl and Se⋯S. Bond critical points (3, −1) are shown in blue, nuclear critical points (3, −3) in pale brown and ring critical points (3, +1) in orange. Bond paths are shown as pale-brown lines, length are in Å, and the colour scale for the ELF and RDG maps is presented in a.u.

The QTAIM analysis of the model supra­molecular associate demonstrates the presence of bond critical points (3, −1) for chalcogen bonds Se⋯Cl and Se⋯S (Table 3[link] and Fig. 5[link]). The low magnitude of the electron density, the positive values of the Laplacian of electron density, very close to zero values of energy density, magnitudes of the electron localization function in these bond critical points (3, −1) and the estimated strengths for appropriate short contacts are typical for chalcogen bonds (Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]; Mikherdov et al., 2016[Mikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129-14137.], 2018[Mikherdov, A. S., Novikov, A. S., Kinzhalov, M. A., Zolotarev, A. A. & Boyarskiy, V. P. (2018). Crystals, 8, 112.]). The balance between the Lagrangian kinetic energy G(r) and potential energy density V(r) in bond critical points (3, −1) for chalcogen bonds Se⋯Cl and Se⋯S reveals that Se⋯S contacts are purely non-covalent, whereas Se⋯Cl contacts have small covalent contribution, (Espinosa et al., 2002[Espinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529-5542.]) and the sign of λ2 allows these chalcogen bonds to be designated as bonding (attractive, λ2 < 0) inter­actions (Johnson et al., 2010[Johnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498-6506.]; Contreras-García et al., 2011[Contreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625-632.]).

6. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of September 2022; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave only 17 hits for 1,2,4-seleno­diazo­lium salts. The most relevant salts are EHAPUC (Temesgen et al., 2024[Temesgen, A. W., Sapronov, A. A., Kubasov, A. S., Novikov, A. S., Le, T. A. & Tskhovrebov, A. G. (2024). Acta Cryst. E80, 247-251.]), BEYHEW, BEYHIA, BEYHOG, BEYHUM, BEYJAU, BEYJEY, BEYJIC, BEYJOI and BEYJUO (Sapronov et al., 2022[Sapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973.]). The mol­ecules of EHAPUC are packed in layers parallel to the ac plane. Each row of 1,2,4-seleno­diazo­lium salts in the layer is located anti­parallel to the adjacent one. In addition to Se⋯Cl contacts, the anions form C—H⋯Cl contacts that link the cations and anions both within the layers and between them. BEYHEW, BEYHIA, BEYHOG, BEYHUM, BEYJAU, BEYJEY, BEYJIC, BEYJOI and BEYJUO promote the formation of self-assembled dimers with the recurrent Se2N2 supra­molecular motif. The dimers are further consolidated by two symmetry-equivalent selenium–arene chalcogen-bond inter­actions.

7. Synthesis and crystallization

2-Pyridyl­selenyl chloride was synthesized by a published method (Artemjev et al., 2023[Artemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018-2023.]; Khrustalev et al., 2021[Khrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689-10691.]). A solution of PhICl2 (26 mg, 96 µmol) in CH2Cl2 (2 mL) was added to a solution of 2,2′-di­pyridyl­diselenide (30 mg, 96 µmol) and thio­phene-3,4-dicarbo­nitrile (13 mg, 96 µmol) in CH2Cl2 (2 mL), and the reaction mixture was left without stirring at room temperature for 12 h. After that, the solution was deca­nted to leave a yellow precipitate. The solid was washed with Et2O (3 × 1 mL) and dried under vacuum. Yield: 40 mg (65%). 1H NMR (700 MHz, D2O) δ 9.43 (d, J = 6.8 Hz, 1H), 8.91 (d, J = 8.7 Hz, 1H), 8.67 (d, J = 3.0 Hz, 1H), 8.48–8.45 (m, 1H), 8.39 (d, J = 3.0 Hz, 1H), 8.01 (dd, J = 7.7, 6.5 Hz, 1H). 13C NMR (176 MHz, D2O) δ 168.4, 149.7, 141.0, 140.0, 136.8, 133.4, 127.5, 126.0, 123.3, 114.0, 110.6.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The hydrogen atoms were placed in calculated positions and refined as riding models with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(O), 1.5Ueq(C) for the CH3-groups and 1.2Ueq(C) for the other groups]. The remaining positive and negative residual electron densities are both located near the selenium atom.

Table 4
Experimental details

Crystal data
Chemical formula C11H6N3SSe+·Cl
Mr 326.66
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.142 (3), 8.824 (4), 10.255 (5)
α, β, γ (°) 101.566 (13), 107.022 (14), 97.55 (1)
V3) 592.8 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.55
Crystal size (mm) 0.60 × 0.40 × 0.10
 
Data collection
Diffractometer Bruker D8 Venture
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.470, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 7083, 3934, 3411
Rint 0.035
(sin θ/λ)max−1) 0.755
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.081, 1.05
No. of reflections 3934
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.22, −0.74
Computer programs: SAINT (Bruker, 2019[Bruker (2019). SAINT. Bruker Nano Inc. Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

Supporting information


Computing details top

3-(4-Cyanothiophen-3-yl)-[1,2,4]selenadiazolo[4,5-a]pyridin-4-ium chloride top
Crystal data top
C11H6N3SSe+·ClZ = 2
Mr = 326.66F(000) = 320
Triclinic, P1Dx = 1.830 Mg m3
a = 7.142 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.824 (4) ÅCell parameters from 5323 reflections
c = 10.255 (5) Åθ = 2.4–32.5°
α = 101.566 (13)°µ = 3.55 mm1
β = 107.022 (14)°T = 100 K
γ = 97.55 (1)°Block, colourless
V = 592.8 (5) Å30.60 × 0.40 × 0.10 mm
Data collection top
Bruker D8 Venture
diffractometer
3934 independent reflections
Radiation source: sealed X-ray tube3411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 5.6 pixels mm-1θmax = 32.4°, θmin = 2.2°
ω scansh = 108
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1212
Tmin = 0.470, Tmax = 0.746l = 1514
7083 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0221P)2 + 0.1631P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3934 reflectionsΔρmax = 1.22 e Å3
154 parametersΔρmin = 0.74 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.19350 (3)0.53066 (2)0.38485 (2)0.01314 (6)
S10.06346 (8)0.22986 (6)0.13180 (6)0.02063 (12)
N10.2726 (2)0.27311 (19)0.46985 (18)0.0114 (3)
N20.1683 (3)0.3416 (2)0.25768 (19)0.0151 (3)
N30.4496 (3)0.2362 (2)0.0365 (2)0.0213 (4)
C10.2707 (3)0.4265 (2)0.5271 (2)0.0117 (3)
C20.3256 (3)0.4828 (2)0.6731 (2)0.0143 (4)
H20.3238580.5890890.7138320.017*
C30.3824 (3)0.3817 (3)0.7575 (2)0.0163 (4)
H30.4193930.4180520.8569950.020*
C40.3855 (3)0.2246 (2)0.6958 (2)0.0148 (4)
H40.4250570.1549790.7536410.018*
C50.3317 (3)0.1726 (2)0.5530 (2)0.0144 (4)
H50.3351280.0671410.5111770.017*
C60.2087 (3)0.2315 (2)0.3197 (2)0.0139 (4)
C70.1862 (3)0.0675 (2)0.2395 (2)0.0144 (4)
C80.0845 (3)0.0641 (3)0.2593 (2)0.0186 (4)
H80.0321500.0635040.3345490.022*
C90.2484 (3)0.0300 (2)0.1180 (2)0.0148 (4)
C100.1904 (3)0.1269 (3)0.0492 (2)0.0191 (4)
H100.2174130.1724780.0337470.023*
C110.3608 (3)0.1445 (3)0.0728 (2)0.0176 (4)
Cl10.22732 (8)0.81017 (6)0.59166 (6)0.02006 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01299 (10)0.01398 (11)0.01459 (10)0.00329 (7)0.00538 (8)0.00667 (7)
S10.0196 (3)0.0153 (2)0.0223 (3)0.0013 (2)0.0030 (2)0.0015 (2)
N10.0108 (7)0.0118 (8)0.0116 (8)0.0006 (6)0.0042 (6)0.0031 (6)
N20.0143 (8)0.0171 (8)0.0139 (8)0.0031 (6)0.0044 (7)0.0045 (7)
N30.0198 (9)0.0275 (10)0.0181 (9)0.0049 (8)0.0082 (8)0.0057 (8)
C10.0108 (9)0.0123 (9)0.0132 (9)0.0022 (7)0.0051 (7)0.0038 (7)
C20.0144 (9)0.0138 (9)0.0149 (9)0.0016 (7)0.0053 (8)0.0038 (7)
C30.0152 (10)0.0191 (10)0.0149 (10)0.0015 (8)0.0047 (8)0.0063 (8)
C40.0142 (9)0.0156 (9)0.0144 (9)0.0012 (7)0.0036 (8)0.0063 (8)
C50.0135 (9)0.0114 (9)0.0188 (10)0.0017 (7)0.0052 (8)0.0058 (7)
C60.0128 (9)0.0159 (9)0.0129 (9)0.0011 (7)0.0051 (7)0.0032 (7)
C70.0134 (9)0.0161 (9)0.0122 (9)0.0024 (7)0.0027 (7)0.0029 (7)
C80.0197 (10)0.0177 (10)0.0166 (10)0.0000 (8)0.0057 (8)0.0030 (8)
C90.0123 (9)0.0180 (10)0.0131 (9)0.0045 (7)0.0031 (7)0.0027 (7)
C100.0148 (10)0.0239 (11)0.0167 (10)0.0056 (8)0.0039 (8)0.0013 (8)
C110.0171 (10)0.0232 (11)0.0122 (9)0.0064 (8)0.0048 (8)0.0022 (8)
Cl10.0238 (3)0.0131 (2)0.0243 (3)0.00350 (19)0.0087 (2)0.0060 (2)
Geometric parameters (Å, º) top
Se1—N21.8511 (19)C3—C41.410 (3)
Se1—C11.865 (2)C3—H30.9500
S1—C101.705 (2)C4—C51.362 (3)
S1—C81.712 (2)C4—H40.9500
N1—C11.366 (3)C5—H50.9500
N1—C51.372 (3)C6—C71.477 (3)
N1—C61.426 (3)C7—C81.370 (3)
N2—C61.283 (3)C7—C91.434 (3)
N3—C111.148 (3)C8—H80.9500
C1—C21.397 (3)C9—C101.368 (3)
C2—C31.381 (3)C9—C111.440 (3)
C2—H20.9500C10—H100.9500
N2—Se1—C187.24 (9)C4—C5—H5120.1
C10—S1—C892.64 (11)N1—C5—H5120.1
C1—N1—C5121.45 (18)N2—C6—N1117.21 (19)
C1—N1—C6113.64 (17)N2—C6—C7121.7 (2)
C5—N1—C6124.91 (18)N1—C6—C7121.10 (18)
C6—N2—Se1111.81 (15)C8—C7—C9111.61 (19)
N1—C1—C2119.91 (19)C8—C7—C6125.30 (19)
N1—C1—Se1110.02 (15)C9—C7—C6122.64 (18)
C2—C1—Se1130.06 (16)C7—C8—S1111.62 (17)
C3—C2—C1119.0 (2)C7—C8—H8124.2
C3—C2—H2120.5S1—C8—H8124.2
C1—C2—H2120.5C10—C9—C7112.93 (19)
C2—C3—C4119.9 (2)C10—C9—C11123.21 (19)
C2—C3—H3120.0C7—C9—C11123.85 (19)
C4—C3—H3120.0C9—C10—S1111.19 (17)
C5—C4—C3119.9 (2)C9—C10—H10124.4
C5—C4—H4120.0S1—C10—H10124.4
C3—C4—H4120.0N3—C11—C9179.7 (3)
C4—C5—N1119.78 (19)
C1—Se1—N2—C61.08 (15)C5—N1—C6—N2176.41 (18)
C5—N1—C1—C21.5 (3)C1—N1—C6—C7175.22 (17)
C6—N1—C1—C2178.63 (17)C5—N1—C6—C74.9 (3)
C5—N1—C1—Se1177.54 (14)N2—C6—C7—C8129.2 (2)
C6—N1—C1—Se12.4 (2)N1—C6—C7—C849.5 (3)
N2—Se1—C1—N10.80 (14)N2—C6—C7—C942.5 (3)
N2—Se1—C1—C2179.7 (2)N1—C6—C7—C9138.8 (2)
N1—C1—C2—C30.5 (3)C9—C7—C8—S10.5 (2)
Se1—C1—C2—C3178.32 (15)C6—C7—C8—S1172.03 (17)
C1—C2—C3—C40.4 (3)C10—S1—C8—C70.06 (18)
C2—C3—C4—C50.2 (3)C8—C7—C9—C100.7 (3)
C3—C4—C5—N10.7 (3)C6—C7—C9—C10171.97 (19)
C1—N1—C5—C41.6 (3)C8—C7—C9—C11179.0 (2)
C6—N1—C5—C4178.50 (18)C6—C7—C9—C118.3 (3)
Se1—N2—C6—N12.7 (2)C7—C9—C10—S10.7 (2)
Se1—N2—C6—C7175.96 (15)C11—C9—C10—S1179.05 (17)
C1—N1—C6—N23.5 (3)C8—S1—C10—C90.37 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl10.952.583.270 (3)129
C2—H2···N3i0.952.623.285 (3)127
C5—H5···Cl1ii0.952.663.316 (3)127
C10—H10···N3iii0.952.523.154 (4)124
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z.
Interatomic contacts (Å) top
ContactDistanceSymmetry operation
H2···Cl12.58x, y, z
Se1···S13.66x, 1+y, z
C2···Se13.56-x, 1-y, 1-z
H2···N32.621-x, 1-y, 1-z
S1···Se13.66x, -1+y, z
C10···C93.41-x, -y, -z
N1···Cl13.39-x, 1-y, 1-z
N3···H32.66x, y, -1+z
H10···N32.521-x, -y, -z
H5···Cl12.66x, -1+y, z
H8···C43.03-x, -y, 1-z
H4···C102.971-x, -y, 1-z
Values of QTAIM parameters at the bond-critical points (3, -1), corresponding to chalcogen bonds Se···Cl and Se···S in the X-ray structure top
ρ(r) = density of all electrons, ∇2ρ(r) = Laplacian of electron density, λ2 = eigenvalue, [Hb] = energy density, V(r) = potential energy density, G(r) = Lagrangian kinetic energy, ELF (a.u.) = electron localization function and Eint = estimated strength for these interactions (kcal mol-1)
ContactaSe···Cl, 2.843 Å, 78% vdW sumSe···S, 3.656 Å, 99% vdW sum
ρ(r)0.0300.006
2ρ(r)0.0670.020
λ2-0.030-0.006
Hb-0.0010.001
V(r)-0.019-0.003
G(r)0.0180.004
ELF0.1780.024
Eint6.00.9
Note: (a) The van der Waals (vdW) radii for S, Se, and Cl atoms are 1.80, 1.90, and 1.75 Å, respectively (Bondi, 1966).
 

Acknowledgements

This work was performed under the support of the Russian Science Foundation (award No. 2273–10007). The author's contributions are as follows. Conceptualization, NQS, MA and AB; synthesis, AAS, EAD, ASK and ASN; X-ray analysis, VNK and MA; writing (review and editing of the manuscript) MMG, MA and AB; funding acquisition, NQS, EVD and MRK; supervision, NQS and AGT.

References

First citationArtemjev, A. A., Kubasov, A. S., Zaytsev, V. P., Borisov, A. V., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2023). Cryst. Growth Des. 23, 2018–2023.  Web of Science CSD CrossRef CAS Google Scholar
First citationArtemjev, A. A., Novikov, A. P., Burkin, G. M., Sapronov, A. A., Kubasov, A. S., Nenajdenko, V. G., Khrustalev, V. N., Borisov, A. V., Kirichuk, A. A., Kritchenkov, A. S., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 6372.  Web of Science CSD CrossRef PubMed Google Scholar
First citationArtemjev, A. A., Sapronov, A. A., Kubasov, A. S., Peregudov, A. S., Novikov, A. S., Egorov, A. R., Khrustalev, V. N., Borisov, A. V., Matsulevich, Z. V., Shikhaliyev, N. G., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2024). Int. J. Mol. Sci. 25, 12798.  CrossRef PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBondi, A. (1966). J. Phys. Chem. 70, 3006–3007.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2019). SAINT. Bruker Nano Inc. Madison, Wisconsin, USA.  Google Scholar
First citationContreras-García, J., Johnson, E. R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D. N. & Yang, W. (2011). J. Chem. Theory Comput. 7, 625–632.  Web of Science PubMed Google Scholar
First citationEspinosa, E., Alkorta, I., Elguero, J. & Molins, E. (2002). J. Chem. Phys. 117, 5529–5542.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrudova, M. V., Khrustalev, V. N., Kubasov, A. S., Strashnov, P. V., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Kritchenkov, A. S., Grishina, M. M., Artemjev, A. A., Buslov, I. V., Osmanov, V. K., Nenajdenko, V. G., Trung, N. Q., Borisov, A. V. & Tskhovrebov, A. G. (2022). Cryst. Growth Des. 22, 313–322.  CrossRef Google Scholar
First citationJohnson, E. R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A. J. & Yang, W. (2010). J. Am. Chem. Soc. 132, 6498–6506.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKhrustalev, V. N., Grishina, M. M., Matsulevich, Z. V., Lukiyanova, J. M., Borisova, G. N., Osmanov, V. K., Novikov, A. S., Kirichuk, A. A., Borisov, A. V., Solari, E. & Tskhovrebov, A. G. (2021). Dalton Trans. 50, 10689–10691.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMikherdov, A. S., Kinzhalov, M. A., Novikov, A. S., Boyarskiy, V. P., Boyarskaya, I. A., Dar'in, D. V., Starova, G. L. & Kukushkin, V. Yu. (2016). J. Am. Chem. Soc. 138, 14129–14137.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMikherdov, A. S., Novikov, A. S., Kinzhalov, M. A., Zolotarev, A. A. & Boyarskiy, V. P. (2018). Crystals, 8, 112.  CrossRef Google Scholar
First citationSapronov, A. A., Artemjev, A. A., Burkin, G. M., Khrustalev, V. N., Kubasov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A., Kritchenkov, A. S. & Tskhovrebov, A. G. (2022). Int. J. Mol. Sci. 23, 14973.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSapronov, A. A., Khrustalev, V. N., Chusova, O. G., Kubasov, A. S., Kritchenkov, A. S., Nenajdenko, V. G., Gomila, R. M., Frontera, A. & Tskhovrebov, A. G. (2024). Inorg. Chem. 63, 13924–13937.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTemesgen, A. W., Sapronov, A. A., Kubasov, A. S., Novikov, A. S., Le, T. A. & Tskhovrebov, A. G. (2024). Acta Cryst. E80, 247–251.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds