

research communications
Synthesis, c][1,2,5]selenadiazol-1-ium chloride
Hirshfeld surface and crystal void analysis of 4-fluorobenzo[aExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, eDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and fDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et
The 6H4FN2Se+·Cl−, contains one planar 4-fluorobenzo[c][1,2,5]selenadiazol-1-ium molecular cation and a chloride anion. In the crystal, intermolecular N—H⋯Cl hydrogen bonds link the 4-fluorobenzo[c][1,2,5]selenadiazol-1-ium molecules, which are arranged in parallel layers along (104), to the chloride anions. The cationic layers, in turn, are stacked along [001]. A Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯Cl/Cl⋯H (22.6%), H⋯F/F⋯H (13.9%), H⋯N/N⋯H (11.9%), H⋯C/C⋯H (10.2%) and H⋯H (7.7%) interactions. The volume of the crystal voids and the percentage of free space were calculated to be 44.80 Å3 and 5.91%, showing that there is no large cavity in the crystal packing.
of the title salt, CCCDC reference: 2424642
1. Chemical context
Replacement of the H atom at the R—H⋯Nu synthon (Nu = nucleophile) with a group 16 element can lead to the formation of a chalcogen bond (ChB), which is a non-covalent interaction between the electron-density-deficient side (so-called σ- or π-hole) of a covalently bonded chalcogen atom (Ch = O, S, Se or Te) and a nucleophilic (Nu) region in the same (intramolecular) or another (intermolecular) molecular entity so that R—Ch⋯Nu [R = Ch, Pn (pnictogen), metal, etc.; Nu = lone pair possessing Ha (halogen), Ch, Pn or metal atom, anion, π-system, radical, etc.] can be formed (Aliyeva et al., 2024). Similarly to hydrogen, halogen or pnictogen bonds, as well as to π-interactions (Abdelhamid et al., 2011
; Gurbanov et al., 2018
), the chalcogen bond is also of importance for the development of new catalysts based on metal complexes, or sensors, molecular switches, etc. Following the concept of resonance-assisted hydrogen bonds (Maharramov et al., 2010
; Mahmudov et al., 2011
), a resonance-assisted chalcogen bond is usually treated as a chalcogen bond strengthened by conjugation in a π-system due to electron (charge) delocalization or favourable rearrangement of charge distribution in the molecular system (Gurbanov et al., 2020
). Like charge-assisted hydrogen bonds (Mac Leod et al., 2012
; Martins et al., 2017
; Mizar et al., 2012
), the Ch⋯Nu bond can be strengthened by using an anion instead of traditional nucleophiles bearing a lone pair, which may lead to charge-assisted chalcogen-bonding (Guseinov et al., 2022
).
In the context given above, we have isolated the charge-assisted and chalcogen-bonded title salt, (C6H4FN2Se)+Cl−, and studied its molecular and crystal structures together with a Hirshfeld surface and crystal voids analysis.
2. Structural commentary
The ). The 4-fluorobenzo[c][1,2,5]selenadiazol-1-ium molecule is almost planar, where the planar A (C1–C6) and B (Se/N1/N2/C1/C2) rings are oriented at a dihedral angle of A/B = 0.64 (6)°. Atom F1 is 0.0063 (18) Å out of the least-squares plane of ring A. All bond lengths and angles in the molecule are normal.
![]() | Figure 1 The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. |
3. Supramolecular features
In the crystal, intermolecular N—H⋯Cl hydrogen bonds link the molecular cations, which are arranged into parallel layers along (104), and chloride ions (Table 1). The cationic layers, in turn, are stacked along [001 (Fig. 2
a). The closest Se⋯Cl separations of 2.883 (2) and 3.030 (2) Å are shorter than the sum of the van der Waals radii (ΣrvdW (Se⋯Cl) = 3.65 Å) and therefore can be considered as charge-assisted chalcogen bonds, which aggregate the title compound into a supramolecular dimer, with the σ-hole angles ∠N1—Se1⋯Cl1 and ∠N1—Se1⋯Cl1 of 171.69 (7)° and 177.19 (7)° (Fig. 2
b). Neither π–π nor C—H⋯π(ring) interactions are observed.
|
![]() | Figure 2 (a) Crystal packing diagram viewed down the a axis with intermolecular N—H⋯Cl hydrogen bonds shown as dashed lines; (b) intermolecular charge-assisted chalcogen bonds shown as dashed blue lines. |
4. Hirshfeld surface analysis
A Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009
) was carried out to visualize the intermolecular interactions in the crystal of the title compound using CrystalExplorer (Spackman et al., 2021
). In the three-dimensional Hirshfeld surface plotted over dnorm (Fig. 3
a), the contact distances equal to the sum of van der Waals radii are shown by the white surfaces, whereas distances shorter and longer than the van der Waals radii are shown in red and blue, respectively (Venkatesan et al., 2016
), where the bright-red spots indicate their roles as the respective donors and/or acceptors. Planar stacking arrangements and the presence of aromatic stacking interactions such as C—H⋯π and π–π interactions are visualized by shape-index. In the HS plotted over shape-index, the C—H⋯π interactions are represented as red π-holes, which are related to the electron ring interactions between the CH groups with the centroid of the aromatic rings of neighbouring molecules. On the other hand, π–π stacking interactions are visualized by the presence of adjacent red and blue triangles. Fig. 3
b clearly suggests that there are neither C—H⋯π nor π–π interactions present.
![]() | Figure 3 (a) View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm and (b) Hirshfeld surface of the title compound plotted over shape-index. |
The overall two-dimensional fingerprint plot, Fig. 4a, and those delineated into H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯H, C⋯Cl/Cl⋯C, Cl⋯Se/Se⋯Cl, F⋯Se/Se⋯F, H⋯Se/Se⋯H, F⋯C/C⋯F, C⋯N/N⋯C, N⋯Se/Se⋯N, C⋯Se/Se⋯C, F⋯Cl/Cl⋯F, N⋯N, C⋯C, Se⋯Se and F⋯N/N⋯F (McKinnon et al., 2007
) are illustrated in Fig. 4
b–s, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯Cl/Cl⋯H (Fig. 4
b), contributing 22.6% to the HS, and viewed as a pair of spikes at de + di = 2.06 Å. The H⋯F/F⋯H (Table 2
and Fig. 4
c) and H⋯N/N⋯H (Fig. 4
d) contacts contribute 13.9% and 11.9%, respectively, to the HS and are viewed as pairs of spikes at de + di = 2.42 Å and de + di = 2.72 Å, respectively. In the absence of C—H⋯π interactions, the H⋯C/C⋯H contacts (Fig. 4
e), contributing 10.2% to the HS, are reflected at de + di = 3.28 Å. The H⋯H interactions (Fig. 4
f) contribute 7.7% to the HS, and are viewed at de = di = 1.22 Å. The C⋯Cl/Cl⋯C contacts (Fig. 4
g) with a 6.3% contribution to the HS, have an arrow-shaped distribution of points, and they are viewed at de = di = 1.84 Å. The pair of spikes of the Cl⋯Se/Se⋯Cl contacts (Fig. 4
h) with 5.4% contribution to the HS are seen at de + di = 3.00 Å. Finally, the F⋯Se/Se⋯F (Fig. 4
i), H⋯Se/Se⋯H (Fig. 4
j), F⋯C/C⋯F (Fig. 4
k), C⋯N/N⋯C (Fig. 4
l), N⋯Se/Se⋯N (Fig. 4
m), C⋯Se/Se⋯C (Fig. 4
n), F⋯Cl/Cl⋯F (Fig. 4
o), N⋯N (Fig. 4
p), C⋯C (Fig. 4
q), Se⋯Se (Fig. 4
r) and F⋯N/N⋯F (Fig. 4
s) contacts with 3.9%, 3.7%, 3.4%, 3.4%, 2.1%, 1.4%, 1.2%, 1.1%, 1.1%, 0.5% ad 0.2% contributions, respectively, to the HS make very small contributions.
|
![]() | Figure 4 The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) H⋯Cl/Cl⋯H, (c) H⋯F/F⋯H, (d) H⋯N/N⋯H, (e) H⋯C/C⋯H, (f) H⋯H, (g) C⋯Cl/Cl⋯C, (h) Cl⋯Se/Se⋯Cl, (i) F⋯Se/Se⋯F, (j) H⋯Se/Se⋯H, (k) F⋯C/C⋯F, (l) C⋯N/N⋯C, (m) N⋯Se/Se⋯N, (n) C⋯Se/Se⋯C, (o) F⋯Cl/Cl⋯F, (p) N⋯N, (q) C⋯C, (r) Se⋯Se and (s) F⋯N/N⋯F interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The HS representations of contact patches plotted onto the surface are shown for the H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H and H⋯C/C⋯H interactions in Fig. 5a–d.
![]() | Figure 5 The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯Cl/Cl⋯H, (b) H⋯F/F⋯H, (c) H⋯N/N⋯H and (d) H⋯C/C⋯H interactions. |
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H and H⋯C/C⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Crystal voids
If the crystal packing does not result in significant voids, then the molecules are tightly packed and the applied external mechanical force may not easily break the crystal. Thus, the strength of the crystal packing is important for determining the response to an applied mechanical force. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011; Irrou et al., 2022
). The volume of the crystal voids (Fig. 6
a,b) and the percentage of free space in the were calculated to be 44.80 Å3 and 5.91%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.
![]() | Figure 6 Graphical views of voids in the crystal packing of the title compound (a) along the a axis and (b) along the b axis. |
6. Database survey
A survey of the Cambridge Structural Database (CSD; version 5.45, update of September 2024; Groom et al., 2016) found two molecules that are similar to the title compound, viz. (rac)-4-methyl-4-nitro-2,1,3-benzoselena-diazol-5(4H)-one, C7H5N3O3Se (CSD refcode JURLAJ; Tian et al., 1993
) and 5-nitro-2,1,3-benzoselenadiazole, C6H3N3O2Se (CSD refcode DOBWUO; Aliyeva et al., 2024
). In contrast to the four-membered Se2Cl2 ring defined through charge-assisted chalcogen bonds in the crystal packing of the title compound, there is an Se2N2 supramolecular synthon with intermolecular chalcogen bonds in JURLAJ and DOBWUO.
7. Synthesis and crystallization
3-Fluorobenzene-1,2-diamine (10 mmol) and selenium dioxide (10 mmol) were dissolved in 25 ml of dichloromethane and stirred for 1 h at ambient temperature, and further refluxed for 1 h. After cooling to room temperature, the solvent was evaporated under reduced pressure to give the reaction product. The title compound was obtained by slow evaporation of a water–acetone (1:3 v:v) solution of the reaction product at pH = 2 (adjusted by addition of HCl), and analysed by single-crystal X-ray analysis, elemental analysis, ESI-MS and NMR measurements. Yield: 87% (based on SeO2), yellow powder soluble in methanol, ethanol and DMSO. Analysis calculated for C6H4ClFN2Se (Mr = 237.53): C, 30.34; H, 1.70; N, 11.79. Found: C, 30.29; H, 1.67; N, 11.76. ESI-MS (positive ion mode), m/z: 238.4 [M + H]+. 1H NMR (CDCl3), δ: 6.77–7.92 (3H, Ar–H). 13C NMR (CDCl3), 110.91, 119.58, 128.96, 151.29, 155.67 and 161.93.
8. Refinement
Crystal data, data collection and structure . The N- and C-bond hydrogen atom positions were calculated geometrically at distances of 0.85 Å and 0.93 Å (for aromatic CH) and refined using a riding model by applying the constraint of Uiso(H) = 1.2Ueq(C, N).
|
Supporting information
CCDC reference: 2424642
https://doi.org/10.1107/S2056989025001379/wm5748sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001379/wm5748Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025001379/wm5748Isup3.cml
C6H4FN2Se+·Cl− | F(000) = 456 |
Mr = 237.52 | Dx = 2.081 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 6.889 (4) Å | Cell parameters from 3456 reflections |
b = 7.250 (5) Å | θ = 3.0–27.8° |
c = 15.183 (10) Å | µ = 5.25 mm−1 |
β = 90.90 (3)° | T = 296 K |
V = 758.2 (9) Å3 | Plate, yellow |
Z = 4 | 0.34 × 0.23 × 0.14 mm |
Bruker APEXII CCD diffractometer | 1528 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.046 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | θmax = 27.9°, θmin = 3.0° |
Tmin = 0.252, Tmax = 0.498 | h = −8→9 |
9806 measured reflections | k = −8→9 |
1768 independent reflections | l = −19→19 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: mixed |
wR(F2) = 0.055 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0085P)2 + 0.4749P] where P = (Fo2 + 2Fc2)/3 |
1768 reflections | (Δ/σ)max = 0.001 |
100 parameters | Δρmax = 0.27 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.22554 (3) | 0.60768 (4) | 0.44282 (2) | 0.03658 (9) | |
Cl1 | 0.10964 (9) | 0.22691 (9) | 0.45729 (5) | 0.04730 (16) | |
F1 | 0.7896 (2) | 0.5196 (3) | 0.29631 (12) | 0.0683 (5) | |
N1 | 0.4403 (3) | 0.5410 (3) | 0.38754 (13) | 0.0369 (4) | |
N2 | 0.2954 (3) | 0.8495 (3) | 0.42793 (13) | 0.0369 (4) | |
H2N | 0.224535 | 0.941205 | 0.440922 | 0.044* | |
C1 | 0.5393 (3) | 0.6891 (4) | 0.36440 (14) | 0.0341 (5) | |
C2 | 0.4619 (3) | 0.8681 (3) | 0.38569 (14) | 0.0345 (5) | |
C3 | 0.5575 (3) | 1.0345 (4) | 0.36309 (16) | 0.0430 (6) | |
H3 | 0.506553 | 1.149204 | 0.377483 | 0.052* | |
C4 | 0.7274 (4) | 1.0179 (5) | 0.31933 (17) | 0.0502 (7) | |
H4 | 0.794289 | 1.124494 | 0.304325 | 0.060* | |
C5 | 0.8070 (4) | 0.8445 (5) | 0.29559 (18) | 0.0521 (7) | |
H5 | 0.922383 | 0.840209 | 0.264667 | 0.063* | |
C6 | 0.7178 (3) | 0.6873 (4) | 0.31723 (16) | 0.0434 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.03476 (13) | 0.02831 (14) | 0.04693 (14) | 0.00279 (9) | 0.00965 (8) | −0.00143 (11) |
Cl1 | 0.0487 (3) | 0.0279 (3) | 0.0659 (4) | 0.0022 (2) | 0.0187 (3) | −0.0004 (3) |
F1 | 0.0536 (9) | 0.0656 (14) | 0.0865 (12) | 0.0207 (9) | 0.0249 (8) | −0.0028 (11) |
N1 | 0.0354 (9) | 0.0326 (12) | 0.0427 (10) | 0.0062 (8) | 0.0051 (8) | −0.0022 (9) |
N2 | 0.0378 (9) | 0.0262 (12) | 0.0469 (11) | 0.0033 (8) | 0.0091 (8) | −0.0032 (9) |
C1 | 0.0312 (10) | 0.0345 (14) | 0.0367 (11) | 0.0027 (9) | 0.0008 (8) | −0.0027 (10) |
C2 | 0.0354 (11) | 0.0332 (14) | 0.0347 (11) | −0.0019 (9) | −0.0008 (8) | −0.0001 (10) |
C3 | 0.0460 (12) | 0.0352 (15) | 0.0477 (13) | −0.0055 (11) | −0.0009 (10) | 0.0023 (12) |
C4 | 0.0463 (13) | 0.053 (2) | 0.0509 (15) | −0.0145 (12) | 0.0026 (11) | 0.0094 (13) |
C5 | 0.0367 (12) | 0.066 (2) | 0.0536 (15) | −0.0020 (12) | 0.0100 (10) | 0.0076 (15) |
C6 | 0.0359 (11) | 0.0482 (18) | 0.0462 (14) | 0.0078 (11) | 0.0066 (10) | −0.0006 (12) |
Se1—N1 | 1.779 (2) | C2—C3 | 1.419 (4) |
Se1—N2 | 1.833 (2) | C3—C4 | 1.360 (4) |
F1—C6 | 1.352 (4) | C3—H3 | 0.9300 |
N1—C1 | 1.322 (3) | C4—C5 | 1.420 (5) |
N2—C2 | 1.330 (3) | C4—H4 | 0.9300 |
N2—H2N | 0.8500 | C5—C6 | 1.339 (4) |
C1—C6 | 1.433 (3) | C5—H5 | 0.9300 |
C1—C2 | 1.442 (4) | ||
N2···Cl1i | 3.056 (3) | F1···N1 | 2.800 (3) |
H2N···Cl1i | 2.23 | H5···F1ii | 2.56 |
N1—Se1—N2 | 88.83 (10) | C4—C3—H3 | 121.7 |
C1—N1—Se1 | 109.94 (18) | C2—C3—H3 | 121.7 |
C2—N2—Se1 | 112.75 (17) | C3—C4—C5 | 122.8 (3) |
C2—N2—H2N | 122.4 | C3—C4—H4 | 118.6 |
Se1—N2—H2N | 124.5 | C5—C4—H4 | 118.6 |
N1—C1—C6 | 125.1 (2) | C6—C5—C4 | 120.7 (2) |
N1—C1—C2 | 118.5 (2) | C6—C5—H5 | 119.6 |
C6—C1—C2 | 116.3 (2) | C4—C5—H5 | 119.6 |
N2—C2—C3 | 127.6 (2) | C5—C6—F1 | 122.5 (2) |
N2—C2—C1 | 110.0 (2) | C5—C6—C1 | 121.1 (3) |
C3—C2—C1 | 122.5 (2) | F1—C6—C1 | 116.5 (3) |
C4—C3—C2 | 116.7 (3) | ||
N2—Se1—N1—C1 | 0.14 (16) | N2—C2—C3—C4 | −179.8 (2) |
N1—Se1—N2—C2 | 0.13 (17) | C1—C2—C3—C4 | 0.4 (3) |
Se1—N1—C1—C6 | −178.75 (19) | C2—C3—C4—C5 | 0.8 (4) |
Se1—N1—C1—C2 | −0.4 (3) | C3—C4—C5—C6 | −1.2 (4) |
Se1—N2—C2—C3 | 179.83 (19) | C4—C5—C6—F1 | −179.6 (2) |
Se1—N2—C2—C1 | −0.3 (2) | C4—C5—C6—C1 | 0.4 (4) |
N1—C1—C2—N2 | 0.5 (3) | N1—C1—C6—C5 | 179.2 (2) |
C6—C1—C2—N2 | 179.0 (2) | C2—C1—C6—C5 | 0.8 (4) |
N1—C1—C2—C3 | −179.7 (2) | N1—C1—C6—F1 | −0.9 (4) |
C6—C1—C2—C3 | −1.2 (3) | C2—C1—C6—F1 | −179.31 (19) |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N···Cl1i | 0.85 | 2.23 | 3.056 (3) | 163 |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
The author's contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.
Funding information
This work has been supported by Baku State University, Azerbaijan Medical University and Khazar University in Azerbaijan. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2020). APEX4 and SAINT. Bruker AXS, Madison, Wisconsin, USA. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837. Web of Science CSD CrossRef CAS Google Scholar
Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194. Web of Science CrossRef CAS Google Scholar
Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898. Web of Science CSD CrossRef Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Irrou, E., Elmachkouri, Y. A., Oubella, A., Ouchtak, H., Dalbouha, S., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 953–960. Web of Science CSD CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23. Web of Science CrossRef CAS Google Scholar
Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. H., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6. CrossRef CAS Google Scholar
Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165. Web of Science CSD CrossRef CAS Google Scholar
Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, W., Grivas, S. & Olsson, K. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 257–261. CrossRef Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.