research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, Hirshfeld surface and crystal void analysis of 4-fluoro­benzo[c][1,2,5]selena­diazol-1-ium chloride

crossmark logo

aExcellence Center, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, dAzerbaijan Medical University, Scientific Research Centre (SRC), A. Kasumzade Str. 14, AZ 1022 Baku, Azerbaijan, eDepartment of Chemistry and Chemical Engineering, Khazar University, Mahzati Str. 41, AZ 1096 Baku, Azerbaijan, and fDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by M. Weil, Vienna University of Technology, Austria (Received 6 January 2025; accepted 14 February 2025; online 20 February 2025)

The asymmetric unit of the title salt, C6H4FN2Se+·Cl, contains one planar 4-fluoro­benzo[c][1,2,5]selena­diazol-1-ium mol­ecular cation and a chloride anion. In the crystal, inter­molecular N—H⋯Cl hydrogen bonds link the 4-fluoro­benzo[c][1,2,5]selena­diazol-1-ium mol­ecules, which are arranged in parallel layers along (104), to the chloride anions. The cationic layers, in turn, are stacked along [001]. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯Cl/Cl⋯H (22.6%), H⋯F/F⋯H (13.9%), H⋯N/N⋯H (11.9%), H⋯C/C⋯H (10.2%) and H⋯H (7.7%) inter­actions. The volume of the crystal voids and the percentage of free space were calculated to be 44.80 Å3 and 5.91%, showing that there is no large cavity in the crystal packing.

1. Chemical context

Replacement of the H atom at the R—H⋯Nu synthon (Nu = nucleophile) with a group 16 element can lead to the formation of a chalcogen bond (ChB), which is a non-covalent inter­action between the electron-density-deficient side (so-called σ- or π-hole) of a covalently bonded chalcogen atom (Ch = O, S, Se or Te) and a nucleophilic (Nu) region in the same (intra­molecular) or another (inter­molecular) mol­ecular entity so that R—Ch⋯Nu [R = Ch, Pn (pnictogen), metal, etc.; Nu = lone pair possessing Ha (halogen), Ch, Pn or metal atom, anion, π-system, radical, etc.] can be formed (Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]). Similarly to hydrogen, halogen or pnictogen bonds, as well as to π-inter­actions (Abdelhamid et al., 2011[Abdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.]; Gurbanov et al., 2018[Gurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190-194.]), the chalcogen bond is also of importance for the development of new catalysts based on metal complexes, or sensors, mol­ecular switches, etc. Following the concept of resonance-assisted hydrogen bonds (Maharramov et al., 2010[Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. H., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1-6.]; Mahmudov et al., 2011[Mahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159-165.]), a resonance-assisted chalcogen bond is usually treated as a chalcogen bond strengthened by conjugation in a π-system due to electron (charge) delocalization or favourable rearrangement of charge distribution in the mol­ecular system (Gurbanov et al., 2020[Gurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833-14837.]). Like charge-assisted hydrogen bonds (Mac Leod et al., 2012[Mac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439-440, 15-23.]; Martins et al., 2017[Martins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076-4086.]; Mizar et al., 2012[Mizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305-2313.]), the Ch⋯Nu bond can be strengthened by using an anion instead of traditional nucleophiles bearing a lone pair, which may lead to charge-assisted chalcogen-bonding (Guseinov et al., 2022[Guseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.]).

[Scheme 1]

In the context given above, we have isolated the charge-assisted and chalcogen-bonded title salt, (C6H4FN2Se)+Cl, and studied its mol­ecular and crystal structures together with a Hirshfeld surface and crystal voids analysis.

2. Structural commentary

The asymmetric unit of the title compound contains one 4-fluoro­benzo[c][1,2,5]selena­diazol-1-ium cationic mol­ecule and a chloride anion (Fig. 1[link]). The 4-fluoro­benzo[c][1,2,5]selena­diazol-1-ium mol­ecule is almost planar, where the planar A (C1–C6) and B (Se/N1/N2/C1/C2) rings are oriented at a dihedral angle of A/B = 0.64 (6)°. Atom F1 is 0.0063 (18) Å out of the least-squares plane of ring A. All bond lengths and angles in the mol­ecule are normal.

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

In the crystal, inter­molecular N—H⋯Cl hydrogen bonds link the mol­ecular cations, which are arranged into parallel layers along (104), and chloride ions (Table 1[link]). The cationic layers, in turn, are stacked along [001 (Fig. 2[link]a). The closest Se⋯Cl separations of 2.883 (2) and 3.030 (2) Å are shorter than the sum of the van der Waals radii (ΣrvdW (Se⋯Cl) = 3.65 Å) and therefore can be considered as charge-assisted chalcogen bonds, which aggregate the title compound into a supra­molecular dimer, with the σ-hole angles ∠N1—Se1⋯Cl1 and ∠N1—Se1⋯Cl1 of 171.69 (7)° and 177.19 (7)° (Fig. 2[link]b). Neither ππ nor C—H⋯π(ring) inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯Cl1i 0.85 2.23 3.056 (3) 163
Symmetry code: (i) [x, y+1, z].
[Figure 2]
Figure 2
(a) Crystal packing diagram viewed down the a axis with inter­molecular N—H⋯Cl hydrogen bonds shown as dashed lines; (b) inter­molecular charge-assisted chalcogen bonds shown as dashed blue lines.

4. Hirshfeld surface analysis

A Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out to visualize the inter­molecular inter­actions in the crystal of the title compound using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the three-dimensional Hirshfeld surface plotted over dnorm (Fig. 3[link]a), the contact distances equal to the sum of van der Waals radii are shown by the white surfaces, whereas distances shorter and longer than the van der Waals radii are shown in red and blue, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]), where the bright-red spots indicate their roles as the respective donors and/or acceptors. Planar stacking arrangements and the presence of aromatic stacking inter­actions such as C—H⋯π and ππ inter­actions are visualized by shape-index. In the HS plotted over shape-index, the C—H⋯π inter­actions are represented as red π-holes, which are related to the electron ring inter­actions between the CH groups with the centroid of the aromatic rings of neighbouring mol­ecules. On the other hand, ππ stacking inter­actions are visualized by the presence of adjacent red and blue triangles. Fig. 3[link]b clearly suggests that there are neither C—H⋯π nor ππ inter­actions present.

[Figure 3]
Figure 3
(a) View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm and (b) Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 4[link]a, and those delineated into H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H, H⋯C/C⋯H, H⋯H, C⋯Cl/Cl⋯C, Cl⋯Se/Se⋯Cl, F⋯Se/Se⋯F, H⋯Se/Se⋯H, F⋯C/C⋯F, C⋯N/N⋯C, N⋯Se/Se⋯N, C⋯Se/Se⋯C, F⋯Cl/Cl⋯F, N⋯N, C⋯C, Se⋯Se and F⋯N/N⋯F (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 4[link]b–s, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯Cl/Cl⋯H (Fig. 4[link]b), contributing 22.6% to the HS, and viewed as a pair of spikes at de + di = 2.06 Å. The H⋯F/F⋯H (Table 2[link] and Fig. 4[link]c) and H⋯N/N⋯H (Fig. 4[link]d) contacts contribute 13.9% and 11.9%, respectively, to the HS and are viewed as pairs of spikes at de + di = 2.42 Å and de + di = 2.72 Å, respectively. In the absence of C—H⋯π inter­actions, the H⋯C/C⋯H contacts (Fig. 4[link]e), contributing 10.2% to the HS, are reflected at de + di = 3.28 Å. The H⋯H inter­actions (Fig. 4[link]f) contribute 7.7% to the HS, and are viewed at de = di = 1.22 Å. The C⋯Cl/Cl⋯C contacts (Fig. 4[link]g) with a 6.3% contribution to the HS, have an arrow-shaped distribution of points, and they are viewed at de = di = 1.84 Å. The pair of spikes of the Cl⋯Se/Se⋯Cl contacts (Fig. 4[link]h) with 5.4% contribution to the HS are seen at de + di = 3.00 Å. Finally, the F⋯Se/Se⋯F (Fig. 4[link]i), H⋯Se/Se⋯H (Fig. 4[link]j), F⋯C/C⋯F (Fig. 4[link]k), C⋯N/N⋯C (Fig. 4[link]l), N⋯Se/Se⋯N (Fig. 4[link]m), C⋯Se/Se⋯C (Fig. 4[link]n), F⋯Cl/Cl⋯F (Fig. 4[link]o), N⋯N (Fig. 4[link]p), C⋯C (Fig. 4[link]q), Se⋯Se (Fig. 4[link]r) and F⋯N/N⋯F (Fig. 4[link]s) contacts with 3.9%, 3.7%, 3.4%, 3.4%, 2.1%, 1.4%, 1.2%, 1.1%, 1.1%, 0.5% ad 0.2% contributions, respectively, to the HS make very small contributions.

Table 2
Selected interatomic distances (Å)

N2⋯Cl1i 3.056 (3) F1⋯N1 2.800 (3)
H2N⋯Cl1i 2.23 H5⋯F1ii 2.56
Symmetry codes: (i) [x, y+1, z]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and delineated into (b) H⋯Cl/Cl⋯H, (c) H⋯F/F⋯H, (d) H⋯N/N⋯H, (e) H⋯C/C⋯H, (f) H⋯H, (g) C⋯Cl/Cl⋯C, (h) Cl⋯Se/Se⋯Cl, (i) F⋯Se/Se⋯F, (j) H⋯Se/Se⋯H, (k) F⋯C/C⋯F, (l) C⋯N/N⋯C, (m) N⋯Se/Se⋯N, (n) C⋯Se/Se⋯C, (o) F⋯Cl/Cl⋯F, (p) N⋯N, (q) C⋯C, (r) Se⋯Se and (s) F⋯N/N⋯F inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The HS representations of contact patches plotted onto the surface are shown for the H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H and H⋯C/C⋯H inter­actions in Fig. 5[link]a–d.

[Figure 5]
Figure 5
The Hirshfeld surface representations with the function dnorm plotted onto the surface for (a) H⋯Cl/Cl⋯H, (b) H⋯F/F⋯H, (c) H⋯N/N⋯H and (d) H⋯C/C⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯Cl/Cl⋯H, H⋯F/F⋯H, H⋯N/N⋯H and H⋯C/C⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Crystal voids

If the crystal packing does not result in significant voids, then the mol­ecules are tightly packed and the applied external mechanical force may not easily break the crystal. Thus, the strength of the crystal packing is important for determining the response to an applied mechanical force. To check the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]; Irrou et al., 2022[Irrou, E., Elmachkouri, Y. A., Oubella, A., Ouchtak, H., Dalbouha, S., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 953-960.]). The volume of the crystal voids (Fig. 6[link]a,b) and the percentage of free space in the unit cell were calculated to be 44.80 Å3 and 5.91%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 6]
Figure 6
Graphical views of voids in the crystal packing of the title compound (a) along the a axis and (b) along the b axis.

6. Database survey

A survey of the Cambridge Structural Database (CSD; version 5.45, update of September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found two mol­ecules that are similar to the title compound, viz. (rac)-4-methyl-4-nitro-2,1,3-benzoselena-diazol-5(4H)-one, C7H5N3O3Se (CSD refcode JURLAJ; Tian et al., 1993[Tian, W., Grivas, S. & Olsson, K. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 257-261.]) and 5-nitro-2,1,3-benzoselena­diazole, C6H3N3O2Se (CSD refcode DOBWUO; Aliyeva et al., 2024[Aliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781-791.]). In contrast to the four-membered Se2Cl2 ring defined through charge-assisted chalcogen bonds in the crystal packing of the title compound, there is an Se2N2 supra­molecular synthon with inter­molecular chalcogen bonds in JURLAJ and DOBWUO.

7. Synthesis and crystallization

3-Fluoro­benzene-1,2-di­amine (10 mmol) and selenium dioxide (10 mmol) were dissolved in 25 ml of di­chloro­methane and stirred for 1 h at ambient temperature, and further refluxed for 1 h. After cooling to room temperature, the solvent was evaporated under reduced pressure to give the reaction product. The title compound was obtained by slow evaporation of a water–acetone (1:3 v:v) solution of the reaction product at pH = 2 (adjusted by addition of HCl), and analysed by single-crystal X-ray analysis, elemental analysis, ESI-MS and NMR measurements. Yield: 87% (based on SeO2), yellow powder soluble in methanol, ethanol and DMSO. Analysis calculated for C6H4ClFN2Se (Mr = 237.53): C, 30.34; H, 1.70; N, 11.79. Found: C, 30.29; H, 1.67; N, 11.76. ESI-MS (positive ion mode), m/z: 238.4 [M + H]+. 1H NMR (CDCl3), δ: 6.77–7.92 (3H, Ar–H). 13C NMR (CDCl3), 110.91, 119.58, 128.96, 151.29, 155.67 and 161.93.

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The N- and C-bond hydrogen atom positions were calculated geometrically at distances of 0.85 Å and 0.93 Å (for aromatic CH) and refined using a riding model by applying the constraint of Uiso(H) = 1.2Ueq(C, N).

Table 3
Experimental details

Crystal data
Chemical formula C6H4FN2Se+·Cl
Mr 237.52
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.889 (4), 7.250 (5), 15.183 (10)
β (°) 90.90 (3)
V3) 758.2 (9)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.25
Crystal size (mm) 0.34 × 0.23 × 0.14
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.252, 0.498
No. of measured, independent and observed [I > 2σ(I)] reflections 9806, 1768, 1528
Rint 0.046
(sin θ/λ)max−1) 0.658
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.055, 1.07
No. of reflections 1768
No. of parameters 100
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.41
Computer programs: APEX4 and SAINT (Bruker, 2020[Bruker (2020). APEX4 and SAINT. Bruker AXS, Madison, Wisconsin, USA.]), SHELXT2019/1 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Fluorobenzo[c][1,2,5]selenadiazol-1-ium chloride top
Crystal data top
C6H4FN2Se+·ClF(000) = 456
Mr = 237.52Dx = 2.081 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.889 (4) ÅCell parameters from 3456 reflections
b = 7.250 (5) Åθ = 3.0–27.8°
c = 15.183 (10) ŵ = 5.25 mm1
β = 90.90 (3)°T = 296 K
V = 758.2 (9) Å3Plate, yellow
Z = 40.34 × 0.23 × 0.14 mm
Data collection top
Bruker APEXII CCD
diffractometer
1528 reflections with I > 2σ(I)
φ and ω scansRint = 0.046
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
θmax = 27.9°, θmin = 3.0°
Tmin = 0.252, Tmax = 0.498h = 89
9806 measured reflectionsk = 89
1768 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: mixed
wR(F2) = 0.055H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0085P)2 + 0.4749P]
where P = (Fo2 + 2Fc2)/3
1768 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.41 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.22554 (3)0.60768 (4)0.44282 (2)0.03658 (9)
Cl10.10964 (9)0.22691 (9)0.45729 (5)0.04730 (16)
F10.7896 (2)0.5196 (3)0.29631 (12)0.0683 (5)
N10.4403 (3)0.5410 (3)0.38754 (13)0.0369 (4)
N20.2954 (3)0.8495 (3)0.42793 (13)0.0369 (4)
H2N0.2245350.9412050.4409220.044*
C10.5393 (3)0.6891 (4)0.36440 (14)0.0341 (5)
C20.4619 (3)0.8681 (3)0.38569 (14)0.0345 (5)
C30.5575 (3)1.0345 (4)0.36309 (16)0.0430 (6)
H30.5065531.1492040.3774830.052*
C40.7274 (4)1.0179 (5)0.31933 (17)0.0502 (7)
H40.7942891.1244940.3043250.060*
C50.8070 (4)0.8445 (5)0.29559 (18)0.0521 (7)
H50.9223830.8402090.2646670.063*
C60.7178 (3)0.6873 (4)0.31723 (16)0.0434 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.03476 (13)0.02831 (14)0.04693 (14)0.00279 (9)0.00965 (8)0.00143 (11)
Cl10.0487 (3)0.0279 (3)0.0659 (4)0.0022 (2)0.0187 (3)0.0004 (3)
F10.0536 (9)0.0656 (14)0.0865 (12)0.0207 (9)0.0249 (8)0.0028 (11)
N10.0354 (9)0.0326 (12)0.0427 (10)0.0062 (8)0.0051 (8)0.0022 (9)
N20.0378 (9)0.0262 (12)0.0469 (11)0.0033 (8)0.0091 (8)0.0032 (9)
C10.0312 (10)0.0345 (14)0.0367 (11)0.0027 (9)0.0008 (8)0.0027 (10)
C20.0354 (11)0.0332 (14)0.0347 (11)0.0019 (9)0.0008 (8)0.0001 (10)
C30.0460 (12)0.0352 (15)0.0477 (13)0.0055 (11)0.0009 (10)0.0023 (12)
C40.0463 (13)0.053 (2)0.0509 (15)0.0145 (12)0.0026 (11)0.0094 (13)
C50.0367 (12)0.066 (2)0.0536 (15)0.0020 (12)0.0100 (10)0.0076 (15)
C60.0359 (11)0.0482 (18)0.0462 (14)0.0078 (11)0.0066 (10)0.0006 (12)
Geometric parameters (Å, º) top
Se1—N11.779 (2)C2—C31.419 (4)
Se1—N21.833 (2)C3—C41.360 (4)
F1—C61.352 (4)C3—H30.9300
N1—C11.322 (3)C4—C51.420 (5)
N2—C21.330 (3)C4—H40.9300
N2—H2N0.8500C5—C61.339 (4)
C1—C61.433 (3)C5—H50.9300
C1—C21.442 (4)
N2···Cl1i3.056 (3)F1···N12.800 (3)
H2N···Cl1i2.23H5···F1ii2.56
N1—Se1—N288.83 (10)C4—C3—H3121.7
C1—N1—Se1109.94 (18)C2—C3—H3121.7
C2—N2—Se1112.75 (17)C3—C4—C5122.8 (3)
C2—N2—H2N122.4C3—C4—H4118.6
Se1—N2—H2N124.5C5—C4—H4118.6
N1—C1—C6125.1 (2)C6—C5—C4120.7 (2)
N1—C1—C2118.5 (2)C6—C5—H5119.6
C6—C1—C2116.3 (2)C4—C5—H5119.6
N2—C2—C3127.6 (2)C5—C6—F1122.5 (2)
N2—C2—C1110.0 (2)C5—C6—C1121.1 (3)
C3—C2—C1122.5 (2)F1—C6—C1116.5 (3)
C4—C3—C2116.7 (3)
N2—Se1—N1—C10.14 (16)N2—C2—C3—C4179.8 (2)
N1—Se1—N2—C20.13 (17)C1—C2—C3—C40.4 (3)
Se1—N1—C1—C6178.75 (19)C2—C3—C4—C50.8 (4)
Se1—N1—C1—C20.4 (3)C3—C4—C5—C61.2 (4)
Se1—N2—C2—C3179.83 (19)C4—C5—C6—F1179.6 (2)
Se1—N2—C2—C10.3 (2)C4—C5—C6—C10.4 (4)
N1—C1—C2—N20.5 (3)N1—C1—C6—C5179.2 (2)
C6—C1—C2—N2179.0 (2)C2—C1—C6—C50.8 (4)
N1—C1—C2—C3179.7 (2)N1—C1—C6—F10.9 (4)
C6—C1—C2—C31.2 (3)C2—C1—C6—F1179.31 (19)
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cl1i0.852.233.056 (3)163
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The author's contributions are as follows. Conceptualization, AVG, TH and ANB; synthesis, AVG and GZM; X-ray analysis, AVG; writing (review and editing of the manuscript) AVG and TH; funding acquisition, AVG, GZM, KIH and TAJ; supervision, AVG, TH and ANB.

Funding information

This work has been supported by Baku State University, Azerbaijan Medical University and Khazar University in Azerbaijan. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAbdelhamid, A. A., Mohamed, S. K., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, o744.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAliyeva, V. A., Gurbanov, A. V., Guedes da Silva, M. F. C., Gomila, R. M., Frontera, A., Mahmudov, K. T. & Pombeiro, A. J. L. (2024). Cryst. Growth Des. 24, 781–791.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2020). APEX4 and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGurbanov, A. V., Kuznetsov, M. L., Mahmudov, K. T., Pombeiro, A. J. L. & Resnati, G. (2020). Chem. A Eur. J. 26, 14833–14837.  Web of Science CSD CrossRef CAS Google Scholar
First citationGurbanov, A. V., Maharramov, A. M., Zubkov, F. I., Saifutdinov, A. M. & Guseinov, F. I. (2018). Aust. J. Chem. 71, 190–194.  Web of Science CrossRef CAS Google Scholar
First citationGuseinov, F. I., Malinnikov, V. M., Lialin, K. N., Kobrakov, K. I., Shuvalova, E. V., Nelyubina, Y. V., Ugrak, B. I., Kustov, L. M. & Mahmudov, K. T. (2022). Dyes Pigments, 197, 109898.  Web of Science CSD CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationIrrou, E., Elmachkouri, Y. A., Oubella, A., Ouchtak, H., Dalbouha, S., Mague, J. T., Hökelek, T., El Ghayati, L., Sebbar, N. K. & Taha, M. L. (2022). Acta Cryst. E78, 953–960.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMac Leod, T. C. O., Kopylovich, M. N., Guedes da Silva, M. F. C., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Appl. Catal. Gen. 439–440, 15–23.  Web of Science CrossRef CAS Google Scholar
First citationMaharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Pashaev, F. H., Gasanov, A. G., Azimova, S. I., Askerov, R. K., Kurbanov, A. V. & Mahmudov, K. T. (2010). Dyes Pigments, 85, 1–6.  CrossRef CAS Google Scholar
First citationMahmudov, K. T., Maharramov, A. M., Aliyeva, R. A., Aliyev, I. A., Askerov, R. K., Batmaz, R., Kopylovich, M. N. & Pombeiro, A. J. L. (2011). J. Photochem. Photobiol. Chem. 219, 159–165.  Web of Science CSD CrossRef CAS Google Scholar
First citationMartins, N. M. R., Anbu, S., Mahmudov, K. T., Ravishankaran, R., Guedes da Silva, M. F. C., Martins, L. M. D. R. S., Karande, A. A. & Pombeiro, A. J. L. (2017). New J. Chem. 41, 4076–4086.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMizar, A., Guedes da Silva, M. F. C., Kopylovich, M. N., Mukherjee, S., Mahmudov, K. T. & Pombeiro, A. J. L. (2012). Eur. J. Inorg. Chem. pp. 2305–2313.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, W., Grivas, S. & Olsson, K. (1993). J. Chem. Soc. Perkin Trans. 1, pp. 257–261.  CrossRef Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds