research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, Hirshfeld surface analysis, density function theory calculations and photophysical properties of methyl 4′-[(4-bromobenzo­yl)­­oxy]bi­phenyl-4-carboxyl­ate: a compound with bromine⋯oxygen contacts

crossmark logo

aDepartment of Physics, Government First Grade College, Chikkballapur, Karnataka-562101, India, bDepartment of Physics, ACS College of Engineering, Bangalore, Karnataka-560074, India, cDepartment of Physics, Government First Grade College, Kadur, Karnataka-577548, India, dDepartment of Physics, Government Engineering College, Ramanagara, 562159, Karnataka, India, eRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore, Karnataka, India, and fDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India
*Correspondence e-mail: palaksha.bspm@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 13 January 2025; accepted 21 February 2025; online 28 February 2025)

In the mol­ecular title compound, C21H15BrO4, the dihedral angles between the aromatic bromo-benzene ring and the immediate neighbors (first and second aromatic ring of the biphenyl moiety) are 56.57 (2) and 50.91 (4)°. The dihedral angle between the aromatic rings of the biphenyl fragment is 5.78 (4)°. The torsion angles across the ester groups associated with bromo-benzene and methyl moieties are 178.0 (1) and 176.86 (2)°, respectively, revealing an anti-periplanar conformation in both cases. In the crystal, the packing of the mol­ecules is stabilized by Br⋯O contacts running infinitely along [001]. In addition, the crystal packing is consolidated by various C—H⋯π inter­actions. Hirshfeld surface analysis revealed that the most important contributions to the crystal packing arise from H⋯H (27.1%), C⋯H/H⋯C (39.3%), O⋯H/H⋯O (15.4%) and Br⋯H/H⋯Br (10.6%) contacts. The net inter­action energies for the title compound were computed as Eele = −41.9 kJ mol−1, Epol = −11 kJ mol−1, Edis = −209.7 kJ mol−1 and Erep = 108.9 kJ mol−1, with a total inter­action energy Etot of −167.9 kJ mol−1. The ground-state dipole moment (μg) is calculated as 1.2936 debye and the energy gap between HOMO and LUMO orbitals is 4.5203 eV as calculated with density functional theory using the B3LYP/6–31 G level basis set. The electronic absorption and fluorescence spectra of the compound were recorded and studied in different solvents by varying polarity. These results were used to elucidate the solvatochromic properties, and spectral deviations were studied by the linear solvation energy relationship. Lippert, Bakhshiev, and Bilot–Kawski–Chamma–Viallet equations were used to estimate the ground and excited-state dipole moments (μe). The excited dipole moment is found to be higher than the ground state dipole moment, which indicates that π-electrons are more distributed in polar excited mol­ecules.

1. Chemical context

Mol­ecules derived from biphenyl are found to exhibit liquid-crystal properties because of their linearity, high symmetry and thermal stability (Ranganathan & Ramesh, 2006[Ranganathan, T. & Ramesh, C. (2006). React. Funct. Polym. 66, 1003-1013.]; Imai et al., 2001[Imai, Y., Takeuchi, A., Watanabe, S., Kakimoto, M. A. & Kurosaki, T. (2001). Macromol. Chem. Phys. 202, 26-30.]). The thermotropic liquid crystalline phases containing biphenyl moieties have an ability to form ordered structures so that they have been widely studied in recent decades (Bagheri et al., 2004[Bagheri, M., Didehban, K., Rezvani, Z. & Akbar Entezami, A. (2004). Eur. Polym. J. 40, 865-871.]). The methyl­ene entity that is directly attached to biphenyl mesogens undergoes self-polycondensation, revealing smectic (Sm) A and B phases (Nakata & Watanabe, 1994[Nakata, Y. & Watanabe, J. (1994). J. Mater. Chem. 4, 1699-1703.]). The absence of alkyl chains/highly polar groups at the ends in the mol­ecular structures of liquid crystals induces non-liquid crystal properties (Harish Kumar et al., 2024b[Harish Kumar, M., Santhosh Kumar, S., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024b). Acta Cryst. E80, 1180-1185.]). Rigid cores such as cyclic π- or heterocyclic π-systems are responsible for electro-optical phenomena. For example, biphenyl-4-carboxyl­ate derivatives are found to exhibit liquid-crystal properties, which play an important role in electro-optical phenomena caused by weak electric fields (Mikulko et al., 2006[Mikulko, A., Marzec, M., Wróbel, S. & Dąbrowski, R. (2006). Opto-Electron. Rev. 14, 319-322.]). It is well known that mol­ecules derived from conjugated biphenyl-4-carboxyl­ate exhibit optical non-linear­ity, especially when they have donor and acceptor substituents at each end of the mol­ecular systems. This originates from an efficient intra­molecular charge transfer through a highly polarizable π-electron system. The electro-optical response depends on the structure, sample thickness, birefringence, light absorption, scattering and other factors. Therefore, the results of electro-optical measurements are in most cases arbitrary and, consequently, the absolute values of neither linear nor higher order electro-optical coefficients can be determined (Dardas et al., 2009[Dardas, D., Kuczyński, W., Hoffmann, J., Jeżewski, W., Nowicka, K. & Małecki, J. (2009). Opto-Electron. Rev, 17, 25-29.]). However, the knowledge of linear and non-linear electro-optical coefficients are required to study the material response to an applied electric field. In this scenario it is necessary to look at the dipole moment, which has an influence on the refractive index or polarization changes at high electric field. Keeping this in mind, we made an attempt to synthesize corresponding phases and report here on the crystal structure analysis, solvatochromism response and dipole moment of the title compound, C21H15BrO4, (I)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structure of (I)[link] is shown in Fig. 1[link]. The dihedral angles between the bromo­benzene and the aromatic rings (C8–C13) and (C14–C19) of the biphenyl moiety are 56.57 (2) and 50.91 (4)°, respectively, whereas the dihedral angle between the two aromatic rings of the biphenyl moiety is 5.78 (4)°. The torsion angles involving the biphenyl moiety and the attached ester groups are 178.0 (3)° (C1—C7—O2—C8) and 176.9 (4)° (C17—C20—O4—C21), respectively, making the conformation anti-periplanar in both cases.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], showing displacement ellipsoids at the 50% probability level.

3. Supra­molecular features

The crystal packing is stabilized by a halogen–oxygen (Br⋯O) inter­action C—Br1⋯O3—C with a Br⋯O distance of 3.105 (2) Å, forming infinite chains running parallel to [001] (Fig. 2[link]). The packing is further consolidated by six C—H⋯π inter­actions between aromatic CH groups and the centroids (Cg) of adjacent aromatic rings (Table 1[link]), as illustrated in Fig. 3[link].

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the aromatic rings C1–C6, C8–C13 and C14–C19, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cg1i 0.93 2.82 3.526 (4) 133
C6—H6⋯Cg1ii 0.93 2.83 3.523 (4) 133
C10—H10⋯Cg2iii 0.93 2.83 3.523 (4) 132
C13—H13⋯Cg2iv 0.93 2.87 3.552 (4) 131
C16—H16⋯Cg3iii 0.93 2.92 3.566 (4) 128
C19—H19⋯Cg3iv 0.93 2.99 3.623 (4) 127
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z].
[Figure 2]
Figure 2
The mol­ecular packing of (I)[link]. Dashed lines indicate Br⋯O inter­actions.
[Figure 3]
Figure 3
The mol­ecular packing of (I)[link]. Dashed lines indicate C—H⋯Cg inter­actions.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 5.42, update of November 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing the biphenyl carboxyl­ate fragment resulted in more than thirty matches, with mol­ecular features similar to (I)[link] for compounds with refcodes DEZYUF (Ardeleanu et al., 2018[Ardeleanu, R., Dascălu, A., Shova, S., Nicolescu, A., Roşca, I., Bratanovici, B. I., Lozan, V. & Roman, G. (2018). J. Mol. Struct. 1173, 63-71.]), DOJLIB (Lin et al., 2024[Lin, H., Yang, Y., Diamond, B. G., Yan, T. H., Bakhmutov, V. I., Festus, K. W., Cai, P., Xiao, Z., Leng, M., Afolabi, I., Day, G. S., Fang, L., Hendon, C. H. & Zhou, H. C. (2024). J. Am. Chem. Soc. 146, 1491-1500.]), FIRYEN (Royal & Baudoin, 2019[Royal, T. & Baudoin, O. (2019). Chem. Sci. 10, 2331-2335.]) and VUCFEI (Harish Kumar et al., 2024a[Harish Kumar, M., Vinduvahini, M., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024a). Acta Cryst. E80, 1010-1013.]). In these compounds, the dihedral angle between the aromatic rings of the biphenyl moieties are in the range of 33.07 (3) to 38.14 (5)°. They have simple substituent groups at one end of the biphenyl moiety. Compounds with refcodes COFMET (Cai et al., 2024[Cai, X., Ding, D., Zhao, S., Wen, S., Zhang, G., Bai, P. & Xu, C. (2024). Inorg. Chem. 63, 2313-2321.]), ASUJAB (Lustig et al., 2016[Lustig, W. P., Wang, F., Teat, S. J., Hu, Z., Gong, Q. & Li, J. (2016). Inorg. Chem. 55, 7250-7256.]), CUXCAC (Das et al., 2021[Das, T., Mohar, M. & Bag, A. (2021). Tetrahedron Lett. 65, 152750.]) all have substituents in the biphenyl fragments, with dihedral angles between the aromatic rings of the biphenyl moiety in the range 44.04 (3) to 51.06 (2)°. It is quite characteristic that the dihedral angle between unsubstituted biphenyl rings are around 30 to 45° due to steric hindrance between ortho-hydrogen atoms of each ring. The small value of 5.78 (4)° for the dihedral angle found in the title compound is due to the presence of bulky groups at each end of the mol­ecule and the inter­actions resulting from halogen⋯oxygen contacts at one end of the biphenyl moiety.

5. Hirshfeld surface analysis

Hirshfeld surface analysis was carried out using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to qu­antify the various inter­molecular inter­action present in (I)[link]. Fig. 4[link] illustrates the Hirshfeld surface mapped with dnorm where red spots near the oxygen atom of the surface correspond to the short contacts in the mol­ecule. The Br⋯O contact associated with electrophilic region of the Hirshfeld surface is shown in Fig. 5[link]. The two-dimensional fingerprint plots (Fig. 6[link]) reveal that the major contributions to the crystal packing are from H⋯H/H⋯H (27.1%), C⋯H/H⋯C (39.3%), O⋯H/H⋯O (15.4%) and Br⋯H/H⋯Br (10.6%) contacts.

[Figure 4]
Figure 4
Hirshfeld surface of (I)[link] mapped with dnorm.
[Figure 5]
Figure 5
Hirshfeld surface of (I)[link] mapped with dnorm. The dashed lines indicate Br⋯O inter­actions running parallel [001].
[Figure 6]
Figure 6
Two-dimensional fingerprint plots for (I)[link].

Energy framework calculations were performed using the basis set B3LYP /6-31G(d.p). The net inter­action energies for the title compound are Eele = −41.9 kJ mol−1, Epol = −11 kJ mol−1, Edis = −209.7 kJ mol−1 and Erep = 108.9 kJ mol−1, with a total inter­action energy Etot of −167.9 kJ mol−1, which shows that Edis is the major inter­action. The energy framework showing the electrostatic (coulomb) potential force, the dispersion force and the total energy diagram are shown in Fig. 7[link].

[Figure 7]
Figure 7
Energy frameworks calculated for (I)[link], viewed along [100], showing (a) Coulomb potential force, (b) dispersion force and (c) total energy diagrams. The cylindrical radii are proportional to the relative strength of the corresponding energies (adjusted to a cutoff value of 5 kJ mol−1).

6. Density functional theory (DFT) calculations

DFT calculations were carried out using Gaussian-09W (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02. Gaussian, Inc., Wallingford CT, USA.]), with Gaussian View 5.0 used to generate the optimized structure of (I)[link]. The optimized parameters of the title compound were obtained using the B3LYP/6-311G (d,p) basis set. The dipole moment of the mol­ecule in the gaseous phase was computed to be 1.2936 debye, and is illustrated in Fig. 8[link]. Furthermore, the frontier mol­ecular orbitals HOMO and LUMO of (I)[link] were computed, with energies of HOMO and LUMO of – 6.2450 and −1.7246 eV, respectively (the energy gap ΔE is 4.5203 eV; Fig. 9[link]). The mol­ecular electrostatic potential (MEP) surface of the optimized structure is shown in Fig. 10[link]. The nucleophilic and electrophilic reactive sites of (I)[link] are represented by red and blue regions on the MEP surface. For (I)[link], the red area covers the oxygen atoms of the ester functionality, revealing the sensitivity towards nucleophilic attack. The pale blue area around the aromatic rings indicates weak electrophilic sites.

[Figure 8]
Figure 8
The direction of the dipole moment of (I)[link] in the gaseous phase indicated by the arrow.
[Figure 9]
Figure 9
HOMO and LUMO of (I)[link] with the energy band gap Eg.
[Figure 10]
Figure 10
MEP surface plots of (I)[link]; regions of attractive potential appear in red and those of repulsive potential appear in blue.

7. Photophysical properties

The photophysical properties of (I)[link] were estimated by the solvatochromism method (Reichardt & Welton, 2011[Reichardt, C. & Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons.]). The absorption spectra in different polar liquids were recorded, and intensity maxima observed between 285 and 288 nm (Fig. 11[link]). Since the solvent polarity is susceptible to longer wavelength absorption, the samples were excited at longer wavelength to get emission spectra for calculation of the photophysical parameters. The ground state and experimental excited dipole moments were derived according to Lippert (1957[Lippert, E. (1957). Z. Elektrochem. 61, 962-975.]), Bakhshiev (1964[Bakhshiev, N. G. (1964). Opt. Spektrosc, 16, 821-832.]) and Bilot–Kawski–Chamma–Viallet (Bilot & Kawski, 1963[Bilot, L. & Kawski, A. (1963). Z. Naturforsch. Teil A, 17, 621-627.]; Chamma & Viallet, 1970[Chamma, A. & Viallet, P. (1970). Acad. C. R. Sci. Paris, Ser. C, 270, 1901-1904.]) polarity functions, as detailed in equations (1)[link]–(3)[link][link]. Among these, Bakhshiev and Bilot–Kawski–Chamma–Viallet equations give good results with reduced errors in the calculation. Fig. 12[link] shows [{\buildrel {-} \over \nu}_{a} {\bar{\nu}}-{\buildrel{-} \over\nu} _{f}] versus [ F_{1}(\varepsilon ,n)], [{\buildrel {-} \over \nu}_{a}-{\buildrel{-} \over\nu }_{f}] versus [ F_{2}(\varepsilon ,n)] and ([ {{\buildrel {-} \over \nu}_{a}+{\buildrel{-} \over\nu} _{f}}])/2 versus [ F_{3}(\varepsilon ,n)], resulting in linear graphs with slopes m1, m2 and m3, respectively.

[{\buildrel {-} \over \nu}_{a}-{\buildrel{-} \over\nu} _{f}=m_{1}F_{1}+ constant, \eqno(1)]

[{\buildrel {-} \over \nu}_{a}-{\buildrel{-} \over\nu} _{f}=m_{2}F_{2}+ constant, \eqno(2)]

[{{{\buildrel {-} \over \nu}_{a}+{\buildrel{-} \over\nu} _{f}}\over{2}}= m_{3}F_{3}+ constant. \eqno(3)]

The expressions for the Lippert polarity [[ F_{1}(\varepsilon, n)]] , Bakhshiev polarity [[ F_{2}(\varepsilon, n)]] and Bilot–Kawski–Chamma–Viallet [[ F_{3}(\varepsilon, n)]] polarity functions are given by equations (4)[link]– (6)[link][link]:

[F_{1}(\varepsilon, n)=\left[ {{\varepsilon -1 }\over{2\varepsilon+1 }}-{{{n^{2}-1}}\over{2n^{2}+1}}\right], \eqno(4)]

[F_{2}(\varepsilon, n)={{2n^{2}+1}\over{n^{2}+2}}\left[ {{\varepsilon -1 }\over{\varepsilon+2 }}-{{{n^{2}-1}}\over{n^{2}+2}}\right], \eqno(5)]

[F_{3}(\varepsilon, n)= \left[ {{2n^{2}+1}\over{2(n^{2}+2)}}\left( {{\varepsilon -1 }\over{\varepsilon+2 }}-{{{n^{2}-1}}\over{n^{2}+2}}\right)+{{3(n^{4}-1)}\over{2(n^{2}+2)^{2}}}\right], \eqno(6)]

where [ {\buildrel {-} \over \nu}_{a}] and [ {\buildrel {-} \over \nu}_{f}] are the absorption and fluorescence maxima wavenumbers in cm−1, respectively; [ n] is the refractive index and [ \varepsilon] is the permittivity. The slopes [ m_1], [ m_2], [ m_3] are connected with ground and exited state dipole moments through equations (7)[link]– (9)[link][link]:

[m_{1}={{2(\mu _{e}-\mu _{g})^{2}}\over{hca^{3}_{0}}}, \eqno(7)]

[m_{2}={{2(\mu _{e}-\mu _{g})^{2}}\over{hca^{3}_{0}}}, \eqno(8)]

[m_{3}={{2(\mu ^{2}_{e}-\mu ^{2}_{g})}\over{hca^{3}_{0}}}, \eqno(9)]

where μe and μg are the excited and ground state dipole moments of the solute mol­ecule (h and c are Planck's constant and velocity of light in a vacuum, respectively); a0 is the Onsager cavity radius of the title compound as determined by Suppans's equation a0 = (3M/4πδN)1/3 where δ is the density of the solute mol­ecule, M is mol­ecular weight and N is Avagadro's number.

[\mu _{g}={{\left\vert m_{3}-m_{2} \right\vert}\over{2}} \left({{hca^{3}_{0}}\over{2m_{2}}}\right)^{1/2}, \eqno(10)]

[\mu _{e}={{\left\vert m_{3}+m_{2} \right\vert}\over{2}} \left({{hca^{3}_{0}}\over{2m_{2}}}\right)^{1/2}, \eqno(11)]

[{{\mu_e}\over{\mu_g}}={{\left\vert m_3+m_2 \right\vert}\over{\left\vert m_3-m_2 \right\vert}}. \eqno(12)]

The solvent polarity function values [ F_{1}(\varepsilon, n)], [ F_{2}(\varepsilon, n)], and [ F_{3}(\varepsilon, n)] of various solvents on the band shift data of the title compound is summarized in Table 2[link]. The slopes and inter­cepts of the fitted lines are given in Table 3[link] with good correlation coefficients obtained in all cases. The ground state and excited state dipole moments were estimated by the above equations under assumption that the symmetry of (I)[link] remains unchanged upon electronic transition. The ground and excited dipole moments are found to be parallel according to equations (8)[link] and (9)[link]. This part of the study demonstrates that the title compound is more polar in the excited state than in the ground state for all the solvents. The ratio of the dipole moments can be determined by Stokes shifts in different solvents as functions of ɛ and n. The calculated values for (I)[link] are collated in Table 4[link].

Table 2
Solvatochromic data for (I)[link] (cm−1) with calculated values of F1, F2 and F3

Solvent [ {\buildrel {-} \over \nu}_{a}] [ {\buildrel {-} \over \nu}_{f}] [ {\buildrel {-} \over \nu}_{a}][ {\buildrel {-} \over \nu}_{f}] ([ {\buildrel {-} \over \nu}_{a}] + [ {\buildrel {-} \over \nu}_{f}])/2 F1(ɛ, n) F2(ɛ, n) F1(ɛ, n)
Hexane 35018.66 25278.69 9739.96 30148.68 0.0010 0.0018 0.2540
Methyl formate 34931.50 26829.07 8102.43 30880.29 0.2421 0.6091 0.5383
Benzene 34580.37 28213.51 6366.85 31396.94 0.0045 0.0099 0.3430
THF 34872.48 27029.94 7842.53 30951.21 0.2095 0.5490 0.5511
CCl4 34665.78 25457.60 9208.18 30061.69 0.1434 0.3632 0.4936
Ethyl acetate 35018.66 26970.89 8047.76 30994.78 0.1996 0.4890 0.4979
Acetone 30659.54 28696.87 1962.67 29678.21 0.2841 0.7902 0.6395
Methanol 34872.48 30151.35 4721.12 32511.92 0.3083 0.8545 0.6514
Ethanol 34872.48 24628.11 10244.37 29750.30 0.2888 0.8129 0.6523
Dimethyl formamide 34665.782 25972.67 8693.10 30319.229 0.2757 0.8368 0.7077

Table 3
Statistical treatment of the correlations of solvent spectroscopic shifts of the title compound

Method Slope Inter­cept Correlation coefficient Number of data
Lippert correlation 8054 6928 0.97 5
Bakhshiev correlation 2820 6398 0.97 5
Bilot–Kawaski–Chamma–Viallet correlation 8626 24622 0.82 5

Table 4
Ground and excited states dipole moments of (I)[link] (in debyea)

Mol­ecule Radius a (Å) μgb (D) μgc (D) μed (D) (μe/μg)e (D)
(I) 4.6 1.2936 5.37 10.59 1.97
Notes: (a) 1 debye = 3.33564×10−30 cm = 10–18 esu cm; (b) the theoretical ground state dipole moment was obtained from Gaussian 09; (c) the experimental ground-state dipole moment was calculated according to equation (10)[link]; (d) the experimental excited dipole moment was calculated according to equation (11)[link]; (e) the ratio of excited state and ground state dipole moments was calculated using equation (12)[link].
[Figure 11]
Figure 11
The absorption spectra of (I)[link] recorded in different solvents.
[Figure 12]
Figure 12
The variation of Stokes shift according to the (a) Lippert, (b) Bakshiev and (c) Bilot– Kawski–Chamma–Viallet functions in different solvents.

8. Synthesis and crystallization

4-Bromo­benzoic acid (1 equiv.) was reacted with methyl 4′-hy­droxy-[1,1′-biphen­yl]-4-carboxyl­ate (1 equiv.) in dry chloro­form in the presence of di­cyclo­hexyl­carbodi­imide (1.2 equiv.) and a catalytic qu­antity of dimethyl amino­pyrimidine at room temperature for about 12 h. After completion of the reaction, the mixture was poured into water and extracted into chloro­form. The organic solvent was washed with water (10 ml), dilute acetic acid (10 ml) and dried over sodium sulfate. The crude final product was recrystallized from chloro­form at room temperature.

9. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The structure was refined as a two-component inversion twin. All H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2–1.5Ueq(C).

Table 5
Experimental details

Crystal data
Chemical formula C21H15BrO4
Mr 411.24
Crystal system, space group Orthorhombic, Pna21
Temperature (K) 300
a, b, c (Å) 5.9754 (8), 7.2962 (9), 39.537 (5)
V3) 1723.7 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.41
Crystal size (mm) 0.28 × 0.24 × 0.21
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.152, 0.601
No. of measured, independent and observed [I > 2σ(I)] reflections 41401, 5204, 4189
Rint 0.039
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.072, 1.05
No. of reflections 5204
No. of parameters 236
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.46
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.060 (11)
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Methyl 4'-[(4-bromobenzoyl)oxy]biphenyl-4-carboxylate top
Crystal data top
C21H15BrO4Dx = 1.585 Mg m3
Mr = 411.24Melting point: 460 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 4189 reflections
a = 5.9754 (8) Åθ = 2.8–30.0°
b = 7.2962 (9) ŵ = 2.41 mm1
c = 39.537 (5) ÅT = 300 K
V = 1723.7 (4) Å3Prism, colourless
Z = 40.28 × 0.24 × 0.21 mm
F(000) = 832
Data collection top
Bruker SMART APEXII CCD
diffractometer
5204 independent reflections
Radiation source: fine-focus sealed tube4189 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 1.02 pixels mm-1θmax = 30.6°, θmin = 2.8°
φ and Ω scansh = 88
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1010
Tmin = 0.152, Tmax = 0.601l = 5556
41401 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0182P)2 + 0.6795P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
5204 reflectionsΔρmax = 0.27 e Å3
236 parametersΔρmin = 0.46 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
0.12 constraintsAbsolute structure parameter: 0.060 (11)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.33516 (7)0.54905 (5)0.28015 (2)0.05786 (12)
O20.9870 (4)0.5141 (3)0.44334 (6)0.0385 (5)
O10.6870 (4)0.3799 (4)0.41979 (7)0.0572 (7)
C210.1186 (9)0.5432 (8)0.71793 (12)0.0705 (15)
H21A0.0319180.5891710.7173130.106*
H21B0.1173860.4179420.7253460.106*
H21C0.2058660.6155160.7333460.106*
O40.2160 (5)0.5539 (4)0.68434 (7)0.0606 (8)
C200.4255 (7)0.4952 (5)0.68076 (10)0.0447 (8)
C170.5027 (6)0.5032 (5)0.64515 (8)0.0364 (7)
C180.7117 (6)0.4322 (5)0.63731 (9)0.0414 (8)
H180.8016590.3850700.6544250.050*
C190.7869 (5)0.4308 (5)0.60442 (9)0.0390 (7)
H190.9273590.3821800.5997370.047*
C140.6585 (5)0.5002 (4)0.57790 (8)0.0304 (6)
C110.7408 (5)0.5000 (4)0.54250 (8)0.0296 (6)
C120.9405 (6)0.4156 (5)0.53322 (8)0.0375 (7)
H121.0245100.3565600.5497430.045*
C131.0183 (6)0.4166 (5)0.50024 (8)0.0384 (7)
H131.1529690.3599440.4947940.046*
C80.8942 (5)0.5024 (4)0.47567 (8)0.0327 (6)
C70.8675 (6)0.4483 (4)0.41677 (8)0.0355 (7)
C10.9865 (6)0.4774 (4)0.38438 (8)0.0327 (6)
C60.8794 (6)0.4209 (5)0.35476 (9)0.0370 (8)
H60.7380630.3678920.3559580.044*
C50.9820 (6)0.4433 (5)0.32362 (8)0.0424 (8)
H50.9105960.4060270.3038810.051*
C41.1928 (6)0.5221 (5)0.32236 (8)0.0394 (7)
C100.6189 (6)0.5857 (5)0.51662 (8)0.0384 (7)
H100.4839250.6426000.5217910.046*
C90.6957 (6)0.5876 (5)0.48333 (9)0.0400 (8)
H90.6133480.6457740.4665080.048*
C160.3731 (5)0.5741 (5)0.61941 (9)0.0370 (7)
H160.2335890.6239980.6243160.044*
C150.4492 (5)0.5716 (5)0.58628 (8)0.0368 (7)
H150.3585540.6186260.5692380.044*
C21.1985 (5)0.5553 (4)0.38240 (8)0.0365 (7)
H21.2720070.5912480.4020360.044*
C31.3003 (6)0.5793 (5)0.35129 (9)0.0389 (7)
H31.4407100.6338650.3499210.047*
O30.5380 (5)0.4447 (5)0.70399 (7)0.0732 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0637 (2)0.0753 (2)0.03460 (15)0.00193 (19)0.0122 (2)0.0024 (2)
O20.0385 (12)0.0495 (13)0.0275 (10)0.0062 (10)0.0031 (9)0.0048 (9)
O10.0510 (15)0.0747 (18)0.0459 (15)0.0271 (14)0.0108 (12)0.0129 (14)
C210.069 (3)0.101 (4)0.041 (3)0.004 (3)0.015 (2)0.003 (2)
O40.0532 (16)0.092 (2)0.0369 (15)0.0124 (15)0.0089 (12)0.0039 (14)
C200.050 (2)0.052 (2)0.0323 (16)0.0042 (16)0.0003 (15)0.0007 (14)
C170.0399 (16)0.0391 (17)0.0302 (14)0.0033 (13)0.0020 (13)0.0003 (13)
C180.0397 (17)0.050 (2)0.0351 (16)0.0046 (15)0.0046 (13)0.0008 (15)
C190.0328 (16)0.050 (2)0.0348 (16)0.0074 (14)0.0039 (12)0.0010 (14)
C140.0328 (13)0.0256 (13)0.0329 (15)0.0002 (12)0.0010 (12)0.0009 (11)
C110.0330 (14)0.0247 (12)0.0311 (14)0.0015 (11)0.0005 (12)0.0010 (11)
C120.0387 (16)0.0393 (18)0.0344 (16)0.0076 (14)0.0010 (13)0.0016 (13)
C130.0341 (16)0.0447 (18)0.0365 (17)0.0087 (14)0.0033 (13)0.0019 (13)
C80.0333 (15)0.0322 (15)0.0327 (15)0.0050 (12)0.0044 (12)0.0031 (12)
C70.0390 (17)0.0326 (15)0.0350 (16)0.0014 (13)0.0023 (13)0.0030 (13)
C10.0381 (15)0.0279 (14)0.0322 (15)0.0001 (12)0.0005 (12)0.0015 (12)
C60.0348 (16)0.0366 (16)0.039 (2)0.0028 (12)0.0020 (14)0.0031 (14)
C50.0446 (18)0.0495 (19)0.0329 (17)0.0003 (15)0.0052 (14)0.0044 (14)
C40.0452 (19)0.0421 (17)0.0308 (16)0.0024 (14)0.0037 (13)0.0025 (13)
C100.0381 (16)0.0432 (18)0.0339 (16)0.0130 (14)0.0028 (13)0.0005 (13)
C90.0434 (19)0.0443 (19)0.0323 (15)0.0120 (15)0.0019 (13)0.0055 (13)
C160.0296 (16)0.0448 (19)0.0367 (16)0.0039 (13)0.0019 (12)0.0009 (14)
C150.0353 (15)0.0430 (18)0.0322 (15)0.0051 (14)0.0030 (12)0.0058 (13)
C20.0357 (16)0.0411 (17)0.0327 (15)0.0014 (13)0.0026 (12)0.0019 (13)
C30.0340 (16)0.0447 (18)0.0379 (17)0.0030 (13)0.0047 (13)0.0006 (14)
O30.0623 (19)0.125 (3)0.0323 (14)0.0227 (19)0.0003 (13)0.0077 (16)
Geometric parameters (Å, º) top
Br1—C41.884 (3)C12—C131.384 (4)
O2—O20.000 (4)C12—H120.9300
O2—C71.358 (4)C13—C81.373 (5)
O2—C81.396 (4)C13—H130.9300
O1—C71.195 (4)C8—C91.373 (5)
C21—O41.452 (5)C7—C11.480 (4)
C21—H21A0.9600C1—C21.390 (4)
C21—H21B0.9600C1—C61.397 (5)
C21—H21C0.9600C6—C51.385 (5)
O4—C201.331 (5)C6—H60.9300
C20—O31.196 (5)C5—C41.386 (5)
C20—C171.483 (5)C5—H50.9300
C17—C161.379 (5)C4—C31.376 (5)
C17—C181.387 (5)C10—C91.394 (5)
C18—C191.376 (5)C10—H100.9300
C18—H180.9300C9—H90.9300
C19—C141.394 (4)C16—C151.387 (4)
C19—H190.9300C16—H160.9300
C14—C151.395 (4)C15—H150.9300
C14—C111.484 (4)C2—C31.384 (5)
C11—C121.392 (5)C2—H20.9300
C11—C101.403 (4)C3—H30.9300
C7—O2—C8118.6 (3)C9—C8—O2121.2 (3)
O4—C21—H21A109.5C13—C8—O2117.4 (3)
O4—C21—H21B109.5O1—C7—O2123.0 (3)
H21A—C21—H21B109.5O1—C7—C1125.5 (3)
O4—C21—H21C109.5O2—C7—C1111.5 (3)
H21A—C21—H21C109.5C2—C1—C6119.4 (3)
H21B—C21—H21C109.5C2—C1—C7123.0 (3)
C20—O4—C21117.2 (3)C6—C1—C7117.6 (3)
O3—C20—O4123.1 (4)C5—C6—C1120.5 (3)
O3—C20—C17124.5 (4)C5—C6—H6119.7
O4—C20—C17112.4 (3)C1—C6—H6119.7
C16—C17—C18118.7 (3)C6—C5—C4118.9 (3)
C16—C17—C20122.7 (3)C6—C5—H5120.6
C18—C17—C20118.5 (3)C4—C5—H5120.6
C19—C18—C17120.5 (3)C3—C4—C5121.4 (3)
C19—C18—H18119.7C3—C4—Br1119.6 (3)
C17—C18—H18119.7C5—C4—Br1119.1 (3)
C18—C19—C14121.9 (3)C9—C10—C11121.5 (3)
C18—C19—H19119.0C9—C10—H10119.3
C14—C19—H19119.1C11—C10—H10119.3
C19—C14—C15116.8 (3)C8—C9—C10119.2 (3)
C19—C14—C11121.8 (3)C8—C9—H9120.4
C15—C14—C11121.4 (3)C10—C9—H9120.4
C12—C11—C10116.7 (3)C17—C16—C15120.5 (3)
C12—C11—C14122.2 (3)C17—C16—H16119.7
C10—C11—C14121.1 (3)C15—C16—H16119.7
C13—C12—C11122.3 (3)C16—C15—C14121.6 (3)
C13—C12—H12118.9C16—C15—H15119.2
C11—C12—H12118.9C14—C15—H15119.2
C8—C13—C12119.2 (3)C3—C2—C1120.2 (3)
C8—C13—H13120.4C3—C2—H2119.9
C12—C13—H13120.4C1—C2—H2119.9
C9—C8—C13121.1 (3)C4—C3—C2119.7 (3)
C9—C8—O2121.2 (3)C4—C3—H3120.2
C13—C8—O2117.4 (3)C2—C3—H3120.2
C21—O4—C20—O34.2 (6)O2—C7—C1—C22.7 (4)
C21—O4—C20—C17176.9 (4)O1—C7—C1—C60.2 (5)
O3—C20—C17—C16175.4 (4)O2—C7—C1—C6178.2 (3)
O4—C20—C17—C163.5 (5)O2—C7—C1—C6178.2 (3)
O3—C20—C17—C186.2 (6)C2—C1—C6—C50.5 (5)
O4—C20—C17—C18174.8 (3)C7—C1—C6—C5179.7 (3)
C16—C17—C18—C190.7 (5)C1—C6—C5—C40.2 (5)
C20—C17—C18—C19177.7 (3)C6—C5—C4—C30.5 (5)
C17—C18—C19—C140.2 (5)C6—C5—C4—Br1178.9 (3)
C18—C19—C14—C11179.5 (3)C12—C11—C10—C90.6 (5)
C19—C14—C11—C126.1 (5)C14—C11—C10—C9179.5 (3)
C15—C14—C11—C12174.4 (3)C13—C8—C9—C100.3 (5)
C19—C14—C11—C10174.0 (3)O2—C8—C9—C10174.5 (3)
C15—C14—C11—C105.5 (5)O2—C8—C9—C10174.5 (3)
C10—C11—C12—C130.6 (5)C11—C10—C9—C80.5 (5)
C14—C11—C12—C13179.5 (3)C18—C17—C16—C151.0 (5)
C11—C12—C13—C80.5 (5)C20—C17—C16—C15177.3 (3)
C12—C13—C8—C90.3 (5)C17—C16—C15—C140.8 (5)
C12—C13—C8—O2174.7 (3)C19—C14—C15—C160.3 (5)
C12—C13—C8—O2174.7 (3)C11—C14—C15—C16179.2 (3)
C7—O2—C8—C960.4 (4)C6—C1—C2—C31.1 (5)
C7—O2—C8—C13125.3 (3)C7—C1—C2—C3179.8 (3)
C8—O2—C7—O10.5 (5)C5—C4—C3—C21.1 (5)
C8—O2—C7—C1178.0 (3)Br1—C4—C3—C2178.3 (3)
O1—C7—C1—C2178.9 (3)C1—C2—C3—C41.4 (5)
O2—C7—C1—C22.7 (4)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the aromatic rings C1–C6, C8–C13 and C14–C19, respectively
D—H···AD—HH···AD···AD—H···A
C3—H3···Cg1i0.932.823.526 (4)133
C6—H6···Cg1ii0.932.833.523 (4)133
C10—H10···Cg2iii0.932.833.523 (4)132
C13—H13···Cg2iv0.932.873.552 (4)131
C16—H16···Cg3iii0.932.923.566 (4)128
C19—H19···Cg3iv0.932.993.623 (4)127
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+3/2, z; (iii) x+1/2, y+1/2, z; (iv) x1/2, y+3/2, z.
Salvatochomic data of (I) with calculated values of F1, F2 and F3 top
Solventã~ (cm-1)\vf (cm-1)\va - \vf (cm-1)(\va - \vf)/2 (cm-1)F1F2F3
Hexane35018.6625278.699739.9630148.680.00100.00180.2540
Methyl formate34931.5026829.078102.4330880.290.24210.60910.5383
Benzene34580.3728213.516366.8531396.940.00450.00990.3430
THF34872.4827029.947842.5330951.210.20950.54900.5511
CCl434665.7825457.609208.1830061.690.14340.36320.4936
Ethyl acetate35018.6626970.898047.7630994.780.19960.48900.4979
Acetone30659.5428696.871962.6729678.210.28410.79020.6395
Methanol34872.4830151.354721.1232511.920.30830.85450.6514
Ethanol34872.4824628.1110244.3729750.300.28880.81290.6523
Dimethyl formamide34665.78225972.678693.1030319.2290.27570.83680.7077
Statistical treatment of the correlations of solvent spectroscopic shifts of the title compound top
MethodSlopeInterceptCorrelation coefficientNumber of data
Lippert correlation805469280.975
Bakhshiev correlation282063980.975
Bilot–Kawaski–Chamma–Viallet correlation8626246220.825
Ground and excited states dipole moments of (I) (in Debye) top
Molecule (Å) (D) (D) (D)
(I)4.61.29365.3710.591.97
Notes: (a) 1 Debye = 3.33564×10–30 cm = 10-18 esu cm; (b) the theoretical ground state dipole moment was obtained from Gaussian 09; (c) the experimental ground-state dipole moment was calculated according to equation (10); (d) the experimental excited dipole moment was calculated according to equation 11); (e) the ratio of excited state and ground state dipole moments was calculated using equation (12).
 

Acknowledgements

The authors thank the Vision Group on Science and Technology, Government of Karnataka, for the award of a major project under the CISEE scheme (reference No. VGST/ CISEE/GRD-319/2014–15) to carry out this work at the Department of PG Studies and Research in Physics, UCS, Tumkur University.

Funding information

Funding for this research was provided by: Vision Group on Science and Technology, Government of Karnataka (grant No. VGST/ CISEE/GRD-319/2014–15 to Palakshamurthy B. S).

References

First citationArdeleanu, R., Dascălu, A., Shova, S., Nicolescu, A., Roşca, I., Bratanovici, B. I., Lozan, V. & Roman, G. (2018). J. Mol. Struct. 1173, 63–71.  CSD CrossRef CAS Google Scholar
First citationBagheri, M., Didehban, K., Rezvani, Z. & Akbar Entezami, A. (2004). Eur. Polym. J. 40, 865–871.  CrossRef CAS Google Scholar
First citationBakhshiev, N. G. (1964). Opt. Spektrosc, 16, 821–832.  CAS Google Scholar
First citationBilot, L. & Kawski, A. (1963). Z. Naturforsch. Teil A, 17, 621–627.  CrossRef Google Scholar
First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, X., Ding, D., Zhao, S., Wen, S., Zhang, G., Bai, P. & Xu, C. (2024). Inorg. Chem. 63, 2313–2321.  CSD CrossRef CAS PubMed Google Scholar
First citationChamma, A. & Viallet, P. (1970). Acad. C. R. Sci. Paris, Ser. C, 270, 1901–1904.  Google Scholar
First citationDardas, D., Kuczyński, W., Hoffmann, J., Jeżewski, W., Nowicka, K. & Małecki, J. (2009). Opto-Electron. Rev, 17, 25–29.  CAS Google Scholar
First citationDas, T., Mohar, M. & Bag, A. (2021). Tetrahedron Lett. 65, 152750.  CSD CrossRef Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian 09W, Revision A. 02. Gaussian, Inc., Wallingford CT, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarish Kumar, M., Santhosh Kumar, S., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024b). Acta Cryst. E80, 1180–1185.  CSD CrossRef IUCr Journals Google Scholar
First citationHarish Kumar, M., Vinduvahini, M., Devarajegowda, H. C., Srinivasa, H. T. & Palakshamurthy, B. S. (2024a). Acta Cryst. E80, 1010–1013.  CSD CrossRef IUCr Journals Google Scholar
First citationImai, Y., Takeuchi, A., Watanabe, S., Kakimoto, M. A. & Kurosaki, T. (2001). Macromol. Chem. Phys. 202, 26–30.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLin, H., Yang, Y., Diamond, B. G., Yan, T. H., Bakhmutov, V. I., Festus, K. W., Cai, P., Xiao, Z., Leng, M., Afolabi, I., Day, G. S., Fang, L., Hendon, C. H. & Zhou, H. C. (2024). J. Am. Chem. Soc. 146, 1491–1500.  CSD CrossRef CAS PubMed Google Scholar
First citationLippert, E. (1957). Z. Elektrochem. 61, 962–975.  CAS Google Scholar
First citationLustig, W. P., Wang, F., Teat, S. J., Hu, Z., Gong, Q. & Li, J. (2016). Inorg. Chem. 55, 7250–7256.  CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMikulko, A., Marzec, M., Wróbel, S. & Dąbrowski, R. (2006). Opto-Electron. Rev. 14, 319–322.  CAS Google Scholar
First citationNakata, Y. & Watanabe, J. (1994). J. Mater. Chem. 4, 1699–1703.  CrossRef CAS Google Scholar
First citationRanganathan, T. & Ramesh, C. (2006). React. Funct. Polym. 66, 1003–1013.  CrossRef CAS Google Scholar
First citationReichardt, C. & Welton, T. (2011). Solvents and solvent effects in organic chemistry. John Wiley & Sons.  Google Scholar
First citationRoyal, T. & Baudoin, O. (2019). Chem. Sci. 10, 2331–2335.  CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds