research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

CuBr2 complexes with 3,5-disubstituted pyridine ligands

crossmark logo

aDept. of Physics, Clark University, 950 Main St., Worcester, MA 01610, USA, bDept. of Chemistry, University of Virginia, McCormack Rdl., Charlottesville, VA 22904, USA, and cCarlson School of Chemistry and Biochemistry, Clark University, 950 Main St., Worcester, MA 01610, USA
*Correspondence e-mail: mturnbull@clarku.edu

Edited by M. Weil, Vienna University of Technology, Austria (Received 30 January 2025; accepted 13 February 2025; online 18 February 2025)

Reaction of copper(II) bromide with 3,5-di­chloro­pyridine (3,5-Cl2py) or 3,5-di­methyl­pyridine (3,5-Me2py) led to the isolation of the coordination polymers catena-poly[[bis­(3,5-di­chloro­pyridine)­copper(II)]-di-μ-bromido], [CuBr2(C5H3Cl2N)2]n or [CuBr2(3,5-Cl2py)2]n (1), and catena-poly[[bis­(3,5-di­methyl­pyridine)­copper(II)]-di-μ-bromido], [CuBr2(C7H9N)2]n or [CuBr2(3,5-Me2py)2]n (2), respectively. The structures are characterized by bibromide-bridged chains [d(av.)Cu⋯Cu = 3.93 (9) Å]. In 1, the chains are linked perpendicular to the a axis by non-classical hydrogen bonds and halogen bonds, while in 2, only non-classical hydrogen bonds are observed.

1. Chemical context

The introduction of random features in a structure may have significant and unique effects on the physical properties of materials. As such, attempts have been made to introduce randomness into the structures of solids by chemists and physicists through modification of the crystal structure (Anderson, 1958[Anderson, P. W. (1958). Phys. Rev. 109, 1492-1505.]; Mackenzie, 1964[Mackenzie, J. K. (1964). Acta Metall. 12, 223-225.]) with particular inter­est in its applications for quantum information (Khrennikov, 2016[Khrennikov, A. (2016). Int. J. Quantum Information, 14, 16400091-27.]; Feng et al., 2025[Feng, C., Liang, Y., Sun, J., Wang, R., Sun, H. & Dong, H. (2025). Phys. Chem. Chem. Phys. https://doi.org/10.1039/d4cp03879g.]) and band theory (Coey et al., 2005[Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. (2005). Nat. Mater. 4, 173-179.]; Murugesan et al., 2025[Murugesan, V. S., Raj, M. R., Lee, H. B. & Kumar, N. (2025). Electrochim. Acta, 509, 1453151-7.]). Specific to the field of magnetism, the effects of randomness on valence-bond solids (Kimchi et al., 2018[Kimchi, I., Nahum, A. & Senthil, T. (2018). Phys. Rev. X, 8, 0310281-34.]) and spin glasses (Toulouse, 1986[Toulouse, G. (1986). In Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, edited M. Mezard, G. Parisi & M. Virasoro, Vol. 9, pp. 99-103. Singapore: World Scientific Publishers.]) have been areas of focus.

[Scheme 1]

We have been studying the mechanism of magnetic superexchange for some time through the production of families of complexes of transition metal ions, in particular those containing substituted pyridine species as ligands (Graci et al., 2024a[Graci, M. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2024a). J. Coord. Chem. 77, 2307-2318.],b[Graci, M. R., Dickie, D. A., Landee, C. P. & Turnbull, M. M. (2024b). J. Coord. Chem. 77, 1457-1478.]; Monroe et al., 2024[Monroe, J. C., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2024). Polyhedron, 263, 1171911-10.]; Atkinson et al., 2024[Atkinson, E. C., Bedford, C. P., Le, T.-M., Macek, L. O., Walsh, C., Dickie, D. A. & Turnbull, M. M. (2024). Polyhedron, 260, 1171021-9.]) or charge-balancing cations (Graci et al., 2024a[Graci, M. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2024a). J. Coord. Chem. 77, 2307-2318.]; Bellesis et al., 2024[Bellesis, A. G., Villani-Gale, A. J., Dickie, D. A., Jasinski, J. P., Landee, C. P., Wikaira, J. L., Willett, R. D. & Turnbull, M. M. (2024). J. Coord. Chem. 77, 1437-1456.]). In the hope of introducing randomness into such compounds, we have examined systems where we hoped that structurally similar compounds with subtly different ligands would allow the production of solid solutions of low-dimensional coordin­ation polymers. One such possible paring included CuII bibromide-bridged chains with ancillary pyridine ligands of different, but similar, substitution. Here we report the preparation and structures of the CuBr2L2 complexes with L = 3,5-di­chloro­pyridine (1) or 3,5-di­methyl­pyridine (2).

2. Structural commentary

The asymmetric unit of [CuBr2(3,5-Cl2py)2]n (1) [3,5-Cl2py = 3,5-di­chloro­pyridine) is composed of one 3,5-Cl2py mol­ecule, one bromide ion and one CuII ion, which is located on an inversion center rendering all trans-bonds 180° as required by symmetry. The mol­ecular unit is shown in Fig. 1[link]. Selected bond lengths and angles are provided in Table 1[link]. The coordination environment around the CuII ion is nearly square-planar [∠Br1—Cu1—N1 = 89.66 (10)°]. The copper coordination sphere is planar, also as required by symmetry, and the plane of the pyridine ring (mean deviation of constituent atoms = 0.0086 Å) is inclined by 58.1 (1)° relative to that plane. The chlorine atoms are displaced slightly (∼0.05 Å) to opposite faces of the pyridine ring.

Table 1
Selected geometric parameters (Å, °) for 1[link]

Cu1—N1 2.039 (3) Cu1—Br1 2.4246 (4)
       
N1—Cu1—Br1 89.66 (10)    
[Figure 1]
Figure 1
The mol­ecular unit of 1 showing displacement ellipsoids at the 50% probability level (hydrogen atoms are shown as spheres of arbitrary size). Only the asymmetric unit and Cu coordination sphere are labeled. [Symmetry code: (A) 1 − x, 1 − y, 2 − z.]

[CuBr2(3,5-Me2py)2]n (2) [3,5-Me2py = 3,5-dimthyl­pyridine) is structurally very similar to 1, with one 3,5-Me2py mol­ecule, one bromide ion and one CuII ion comprising the asymmetric unit (Fig. 2[link]). Selected bond lengths and angles are provided in Table 2[link]. The coordination environment around the CuII ion is again nearly square-planar [∠Br1—Cu1—N1 = 90.27 (12)°]with the plane of the pyridine ring (mean deviation of the constituent atoms = 0.0095 Å) inclined by 60.8 (1)° relative to the Cu coordination plane. The carbon atoms of the methyl groups are displaced slightly to opposite faces of the plane of the pyridine ring (C7, ∼0.02 Å; C8, ∼0.01 Å).

Table 2
Selected geometric parameters (Å, °) for 2[link]

Cu1—N1 2.007 (4) Cu1—Br1 2.4350 (5)
       
N1—Cu1—Br1 90.27 (12)    
[Figure 2]
Figure 2
The mol­ecular unit of 2 showing displacement ellipsoids at the 50% probability level (hydrogen atoms are shown as spheres of arbitrary size). Only the asymmetric unit and Cu coordination sphere are labeled. [Symmetry code: (A) 1 − x, 1 − y, 2 − z.]

3. Supra­molecular features

Mol­ecules of 1 are linked into chains parallel to the a axis via non-symmetrically bridging bromide ions (Fig. 3[link]). Each bromide ion exhibits a long Br1⋯Cu1A contact of 3.031 (5) Å with a corresponding Cu1—Br1⋯Cu1A angle of 89.6 (2)° and a Br1—Cu1⋯Br1C angle of 90.4 (2) (supplementary as required by symmetry; symmetry codes refer to Fig. 3[link]). The chains are further stabilized by weak, non-classical hydrogen bonds between the hydrogen atoms ortho to the pyridine nitro­gen atoms and bromide ions of adjacent mol­ecules in the chain (Table 3[link]). Inter­chain inter­actions occur via non-classical hydrogen bonds (Table 3[link], Fig. 4[link]) between the C4—H4 group and a bromide ion of a neighboring chain related by a 21-screw axis. Additional inter­chain stabilization is provided by Type II halogen bonds between chlorine atoms of adjacent chains [dCl3⋯Cl5A = 3.601 (3) Å, ∠C3—Cl3⋯Cl5B = 104.6 (2)°, ∠Cl3⋯Cl5B—C5B = 151.0 (2)°].

Table 3
Hydrogen-bond geometry (Å, °) for 1[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br1i 0.95 2.83 3.472 (4) 126
C4—H4⋯Br1ii 0.95 2.86 3.622 (4) 138
C6—H6⋯Br1iii 0.95 2.82 3.441 (4) 124
Symmetry codes: (i) [x+1, y, z]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x, -y+1, -z+2].
[Figure 3]
Figure 3
The chain structure of 1 viewed parallel to the bc face diagonal (a axis horizontal). [Symmetry codes: (A) x − 1, y, z; (C) −x, 1 − y, 2 − z.]
[Figure 4]
Figure 4
The crystal structure of 1 viewed parallel to the a axis (chain axis). Dashed lines represent hydrogen bonds.

Compound 2 is structurally similar to 1. The semi-coordinate bridging bromide ions make contacts of 3.213 (5) Å between unit-cell translated mol­ecules, again parallel to the a axis. These are significantly longer (∼0.2 Å) than observed in 1 as a result of the larger methyl substituents. The corresponding angles are ∠Cu1—Br1⋯Cu1A = 88.8 (2)° and ∠Br1—Cu1⋯Br1C = 91.2 (2)°, showing a larger deviation from 90° compared with 1. Further intra­chain stabilization is again provided via non-classical hydrogen bonds (Table 4[link]). Unsurprisingly, again the bulk of the methyl groups forces increased separations and an equivalent non-classical hydrogen bond between C4—H4 and a neighboring chain bromide ion becomes significantly weaker [d = 3.742 (5) Å] compared to 1, although the overall inter­chain geometry is maintained. The absence of the chlorine atoms, and hence the halogen bonds, is likely also partially responsible for the increased separation between chains. The structurally similar nature of the asymmetric units is clearly seen in the overlay of the two structures (Fig. 5[link]).

Table 4
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Br1i 0.95 3.12 3.406 (5) 100
C6—H6⋯Br1ii 0.95 2.83 3.515 (5) 130
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-1, y, z].
[Figure 5]
Figure 5
An overlay of the asymmetric units of 1 (solid bonds) and 2 (dashed bonds). The overlay was created using the best fit of the species Cu1, Br1 and N1 from the two structures.

The structure of 2 has previously been reported based on film data (Ooijen et al., 1979[Ooijen, J. A. C. van, Reedijk, J., Sonneveld, E. J. & Visser, J. W. (1979). Transition Met. Chem. 4, 305-307.]) with a reliability factor R = 13.0 at 295 K. In the prior study, the positions of hydrogen atoms were not included in the final refinement. The Cu—Br and Cu—N bond lengths and Cu⋯Br contact distances are all somewhat longer (3.286 Å) as would be expected at the higher temperature. The reported Br—Cu—N angle deviates slightly more from 90° (∼0.6 °) while the Cu—Br⋯Cu bridging angle is significantly closer to 90° (89.96°) compared to the refined crystal structure model of 2.

Regretably, attempts to prepare crystals with mixed 3,5-di­chloro­pyridine and 3,5-di­methyl­pyridine were unsuccessful in spite of the structurally similar nature of the individual complexes.

4. Database survey

A significant number of complexes of the general formula CuX2(s-py)2 has been reported (where s-py represents a substituted pyridine ligand) based upon a survey of the Cambridge Structure Database (CSD, version 5.46, update November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). With s = H, both the chloride and bromide complexes are known (Morosin, 1975[Morosin, B. (1975). Acta Cryst. B31, 632-634.]). Those compounds and compounds with substituents in the 4-position tend to form bi-bridged chains similar to 1 and 2 with substituents including alkyl groups (Laing & Carr, 1971[Laing, M. & Carr, G. (1971). J. Chem. Soc. A, pp. 1141.]; Marsh et al., 1981[Marsh, W. E., Valente, E. J. & Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49-53.]; Matshwele et al., 2022[Matshwele, J. T. P., Nareetsile, F., Tebogo, M., Mazimba, O., Masita, F. P., Julius, L., Jongman, M. & Odisitse, S. (2022). Polyhedron, 226, 1160851-15.]), alk­oxy groups (Gungor, 2021[Gungor, E. (2021). CSD Communication (CCDC 989579). CCDC, Cambridge, England.]), halogens (Vitorica-Yrezabel et al., 2011[Vitorica-Yrezabal, I. J., Sullivan, R. A., Purver, S. L., Curfs, C., Tang, C. C. & Brammer, L. (2011). CrystEngComm, 13, 3189-3196.]) and carboxyl­ate derivatives (Fellows & Prior, 2017[Fellows, S. M. & Prior, T. J. (2017). Cryst. Growth Des. 17, 106-116.]; Ahadi et al., 2015[Ahadi, E., Hosseini-Monfared, H. & Mayer, P. (2015). Acta Cryst. E71, m112-m113.]; Zhang et al., 1997[Zhang, W., Jeitler, J. R., Turnbull, M. M., Landee, C. P., Wei, M. & Willett, R. D. (1997). Inorg. Chim. Acta, 256, 183-198.]; Hearne et al., 2019[Hearne, N., Turnbull, M. M., Landee, C. P., van der Merwe, E. M. & Rademeyer, M. (2019). CrystEngComm, 21, 1910-1927.]; Heine et al., 2020a[Heine, M., Fink, L. & Schmidt, M. U. (2020a). CSD Communication (CCDC 1956113). CCDC, Cambridge, England.]; Ma et al., 2010[Ma, Z., Han, S., Kravtsov, V. Ch. & Moulton, B. (2010). Inorg. Chim. Acta, 363, 387-394.]). The same is generally true for substituents in the 3/5 positions (with or without a substituent also in the 4-position), with substituents such as hy­droxy (Segedin et al., 2008[Segedin, P., Dolnicar, U., Cuskic, M., Jaglicic, Z., Golobic, A. & Kozlevcar, B. (2008). Acta Chim. Slov. 55, 992-998.]), amino (Lah & Leban, 2005[Lah, N. & Leban, I. (2005). Acta Cryst. E61, m1708-m1710.]), alkyl (Bondarenko et al., 2021[Bondarenko, M. A., Novikov, A. N., Korolkov, I. V., Sokolov, M. N. & Adonin, S. A. (2021). Inorg. Chim. Acta, 524, 1204361-7.]; Awwadi, 2013[Awwadi, F. F. (2013). Acta Cryst. E69, m116.]), aryl (Richardson et al., 2018[Richardson, A. D., Zirkman, T. J., Kebede, M. T., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2018). Polyhedron, 147, 106-119.]), halogens (Awwadi et al., 2006[Awwadi, F. F., Willett, R. D., Haddad, S. F. & Twamley, B. (2006). Cryst. Growth Des. 6, 1833-1838.], 2011[Awwadi, F., Willett, R. D. & Twamley, B. (2011). Cryst. Growth Des. 11, 5316-5323.]; Mínguez Espallargas et al., 2006[Mínguez Espallargas, G., Brammer, L., van de Streek, J., Shankland, K., Florence, A. J. & Adams, H. (2006). J. Am. Chem. Soc. 128, 9584-9585.]; Puttreddy et al., 2018[Puttreddy, R., von Essen, C., Peuronen, A., Lahtinen, M. & Rissanen, K. (2018). CrystEngComm, 20, 1954-1959.]) and carboxyl­ate derivatives (Fellows & Prior, 2017[Fellows, S. M. & Prior, T. J. (2017). Cryst. Growth Des. 17, 106-116.]; Chen et al., 2011[Chen, W.-T., Luo, Z.-G., Xu, Y.-P., Luo, Q.-Y. & Liu, J.-H. (2011). J. Chem. Res. 35, 253-256.]). However, this can be disrupted by the presence of substituents that can coordinate to the open coordination sites at the CuII ion (Li et al., 2004[Li, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533-m1535.]; Zhang et al., 2004[Zhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, m599-m600.]), which may result in polymorphs (Heine et al., 2020b[Heine, M., Fink, L. & Schmidt, M. U. (2020b). CSD Communication (CCDC 1974905). CCDC, Cambridge, England.]). Bulky substituents in the 2-position may result in the formation of dimers (Forman et al., 2015[Forman, R. L., Gale, A. J., Landee, C. P., Turnbull, M. M. & Wikaira, J. L. (2015). Polyhedron, 89, 76-84.]; Huynh et al., 2023[Huynh, N. V., Li, L., Landee, C. P., Dawe, L. N., Dickie, D. A., Turnbull, M. M. & Wikaira, J. L. (2023). Polyhedron, 243, 1165621-11.]; Herringer et al., 2011[Herringer, S. N., Turnbull, M. M., Landee, C. P. & Wikaira, J. L. (2011). Dalton Trans. 40, 4242-4252.]) rather than extended chains, or simply isolated complexes (Lennartson et al., 2007[Lennartson, A., Hedström, A. & Håkansson, M. (2007). Acta Cryst. E63, m123-m125.]; Vural & İdil, 2019[Vural, H. & İdil, O. (2019). J. Mol. Struct. 1177, 242-248.]; Aguirrechu-Comerón et al., 2015[Aguirrechu-Comerón, A., Pasán, J., González-Platas, J., Ferrando-Soria, J. & Hernández-Molina, R. (2015). J. Struct. Chem. 56, 1563-1571.]). The effects of multiple substituents has been recently described (Dubois et al., 2018[Dubois, R. J., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2018). J. Coord. Chem. 71, 3534-3553.], 2019[Dubois, R. J., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2019). J. Coord. Chem. 72, 1785-1809.]).

5. Synthesis and crystallization

Compound 1: CuBr2 (0.221 g, 0.99 mmol) and 3,5-di­chloro­pyridine (0.298 g, 2.01 mmol) were dissolved in 25 ml of aceto­nitrile, covered with parafilm with a few holes introduced and left to crystallize at room temperature. After ∼3 weeks, green needles were isolated by filtration, washed quickly with cold aceto­nitrile and allowed to air-dry to give 0.189 g (37%).

Compound 2: CuBr2 (0.225 g, 1.01 mmol) and 3,5-di­methyl­pyridine (0.221 g, 2.06 mmol) were dissolved in 20 ml of aceto­nitrile with gentle warming, covered with parafilm with a few holes introduced and left to crystallize at room temperature. After ∼3 weeks, green needles were isolated by filtration, washed quickly with cold aceto­nitrile and allowed to air-dry to give 0.146 g (33%).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. Hydrogen atoms bonded to carbon atoms were placed geometrically and refined with a riding model with Uiso(H) = 1.2(C). The crystal of 2 under investigation was a four-component twin with refined fractional volume contributions of 0.5063, 0.4350, 0.0381 and 0.0206.

Table 5
Experimental details

  1 2
Crystal data
Chemical formula [CuBr2(C5H3Cl2N)2] [CuBr2(C7H9N)2]
Mr 519.33 437.66
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 120 100
a, b, c (Å) 3.86683 (17), 14.1943 (6), 13.7347 (6) 3.9901 (2), 14.2902 (9), 13.8338 (8)
β (°) 91.453 (4) 93.638 (2)
V3) 753.62 (5) 787.20 (8)
Z 2 2
Radiation type Cu Kα Mo Kα
μ (mm−1) 14.67 6.45
Crystal size (mm) 0.20 × 0.04 × 0.04 0.46 × 0.03 × 0.03
 
Data collection
Diffractometer SuperNova, Dual, Cu at zero, Atlas Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Agilent Technologies, 2011[Agilent Technologies (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.] Multi-scan (TWINABS; Sheldrick, 2012[Sheldrick, G. M. (2012). TWINABS. Bruker, Madison, Wisconsin, USA.])
Tmin, Tmax 0.531, 1.000 0.650, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8288, 1513, 1406 3775, 3775, 3425
Rint 0.052 0.058
(sin θ/λ)max−1) 0.623 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.05 0.044, 0.087, 1.05
No. of reflections 1513 3775
No. of parameters 88 91
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.15, −0.85 0.69, −0.64
Computer programs: CrysAlis PRO (Agilent Technologies, 2011[Agilent Technologies (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), APEX4 and SAINT (Bruker, 2022[Bruker (2022). APEX4 and SAINT. Madison, Wisconsin, USA]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

catena-Poly[[bis(3,5-dichloropyridine)copper(II)]-di-µ-bromido] (1) top
Crystal data top
[CuBr2(C5H3Cl2N)2]F(000) = 494
Mr = 519.33Dx = 2.289 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 3.86683 (17) ÅCell parameters from 4275 reflections
b = 14.1943 (6) Åθ = 3.1–73.6°
c = 13.7347 (6) ŵ = 14.67 mm1
β = 91.453 (4)°T = 120 K
V = 753.62 (5) Å3Rod, green
Z = 20.20 × 0.04 × 0.04 mm
Data collection top
SuperNova, Dual, Cu at zero, Atlas
diffractometer
1513 independent reflections
Radiation source: SuperNova (Cu) X-ray Source1406 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 10.6501 pixels mm-1θmax = 73.8°, θmin = 4.5°
ω scansh = 44
Absorption correction: multi-scan
(CrysAlisPro; Agilent Technologies, 2011
k = 1717
Tmin = 0.531, Tmax = 1.000l = 1617
8288 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0663P)2 + 1.7392P]
where P = (Fo2 + 2Fc2)/3
1513 reflections(Δ/σ)max = 0.001
88 parametersΔρmax = 1.15 e Å3
0 restraintsΔρmin = 0.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000001.0000000.0193 (2)
Br10.10173 (9)0.59337 (3)0.90079 (3)0.01846 (17)
N10.4871 (9)0.3973 (2)0.8962 (3)0.0201 (7)
C20.5726 (10)0.4173 (3)0.8042 (3)0.0200 (8)
H20.6428630.4794060.7882000.024*
C30.5596 (10)0.3483 (3)0.7321 (3)0.0207 (8)
Cl30.6854 (3)0.37701 (8)0.61594 (7)0.0291 (3)
C40.4493 (11)0.2585 (3)0.7523 (3)0.0223 (8)
H40.4353020.2113950.7032910.027*
C50.3592 (10)0.2398 (3)0.8477 (3)0.0206 (8)
Cl50.2163 (3)0.12924 (7)0.87993 (7)0.0275 (2)
C60.3861 (10)0.3095 (3)0.9187 (3)0.0209 (8)
H60.3323060.2948330.9841000.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0232 (4)0.0167 (4)0.0179 (4)0.0033 (3)0.0022 (3)0.0031 (3)
Br10.0173 (3)0.0187 (3)0.0194 (3)0.00076 (13)0.00064 (16)0.00106 (13)
N10.0199 (17)0.0185 (16)0.0220 (17)0.0025 (12)0.0007 (13)0.0013 (12)
C20.0199 (19)0.0204 (19)0.0197 (19)0.0002 (14)0.0007 (14)0.0011 (14)
C30.0199 (19)0.0241 (19)0.0184 (18)0.0007 (15)0.0032 (14)0.0022 (14)
Cl30.0386 (6)0.0286 (5)0.0204 (5)0.0038 (4)0.0073 (4)0.0028 (4)
C40.026 (2)0.0204 (19)0.0207 (19)0.0015 (16)0.0001 (15)0.0038 (15)
C50.0196 (18)0.0190 (18)0.023 (2)0.0016 (15)0.0009 (14)0.0013 (15)
Cl50.0346 (5)0.0199 (5)0.0281 (5)0.0047 (4)0.0021 (4)0.0015 (4)
C60.0198 (18)0.0193 (19)0.0237 (19)0.0030 (15)0.0004 (15)0.0009 (15)
Geometric parameters (Å, º) top
Cu1—N1i2.039 (3)C3—C41.373 (6)
Cu1—N12.039 (3)C3—Cl31.729 (4)
Cu1—Br12.4246 (4)C4—C51.390 (6)
Cu1—Br1i2.4246 (4)C4—H40.9500
N1—C21.344 (5)C5—C61.391 (6)
N1—C61.344 (5)C5—Cl51.725 (4)
C2—C31.394 (6)C6—H60.9500
C2—H20.9500
N1i—Cu1—N1180.0C4—C3—C2120.9 (4)
N1i—Cu1—Br190.34 (10)C4—C3—Cl3120.1 (3)
N1—Cu1—Br189.66 (10)C2—C3—Cl3119.0 (3)
N1i—Cu1—Br1i89.66 (10)C3—C4—C5117.0 (4)
N1—Cu1—Br1i90.34 (10)C3—C4—H4121.5
Br1—Cu1—Br1i179.999 (15)C5—C4—H4121.5
C2—N1—C6119.5 (3)C4—C5—C6120.6 (4)
C2—N1—Cu1120.2 (3)C4—C5—Cl5120.3 (3)
C6—N1—Cu1120.2 (3)C6—C5—Cl5119.1 (3)
N1—C2—C3120.9 (4)N1—C6—C5121.0 (4)
N1—C2—H2119.5N1—C6—H6119.5
C3—C2—H2119.5C5—C6—H6119.5
C6—N1—C2—C30.3 (6)C3—C4—C5—C60.9 (6)
Cu1—N1—C2—C3178.9 (3)C3—C4—C5—Cl5179.8 (3)
N1—C2—C3—C41.9 (6)C2—N1—C6—C51.9 (6)
N1—C2—C3—Cl3178.0 (3)Cu1—N1—C6—C5176.7 (3)
C2—C3—C4—C51.3 (6)C4—C5—C6—N12.5 (6)
Cl3—C3—C4—C5178.7 (3)Cl5—C5—C6—N1178.2 (3)
Symmetry code: (i) x+1, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br1ii0.952.833.472 (4)126
C4—H4···Br1iii0.952.863.622 (4)138
C6—H6···Br1iv0.952.823.441 (4)124
Symmetry codes: (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x, y+1, z+2.
catena-Poly[[bis(3,5-dimethylpyridine)copper(II)]-di-µ-bromido] (2) top
Crystal data top
[CuBr2(C7H9N)2]F(000) = 430
Mr = 437.66Dx = 1.846 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.9901 (2) ÅCell parameters from 3415 reflections
b = 14.2902 (9) Åθ = 2.9–28.2°
c = 13.8338 (8) ŵ = 6.45 mm1
β = 93.638 (2)°T = 100 K
V = 787.20 (8) Å3Needle, green
Z = 20.46 × 0.03 × 0.03 mm
Data collection top
Bruker APEXII CCD
diffractometer
3425 reflections with I > 2σ(I)
φ and ω scansRint = 0.058
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2012)
θmax = 28.3°, θmin = 2.9°
Tmin = 0.650, Tmax = 0.746h = 55
3775 measured reflectionsk = 019
3775 independent reflectionsl = 018
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0241P)2 + 1.7185P]
where P = (Fo2 + 2Fc2)/3
3775 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 4-component twin.

Rint = 0.0762 for all 26103 observations and Rint = 0.0577 for all 8044 observations with I > 3sigma(I). Rint is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions. 2022 corrected reflections were written to file a HKLF 4-type file. Reflections were merged according to point-group 2/m. Minimum and maximum apparent transmission: 0.649678 0.745686. Additional spherical absorption correction were applied with µ*r = 0.2000. The HKLF 5 dataset was constructed from all observations involving domain 1. 10695 corrected reflections written to HKLF 5-type file. Reflections were merged according to point-group 2/m. Single reflections that also occurred in composites were omitted. Minimum and maximum apparent transmission: 0.649545 0.745686. Additional spherical absorption correction applied with µ*r = 0.2000

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.5000000.5000000.5000000.0159 (2)
Br10.88458 (12)0.40484 (3)0.60226 (4)0.01099 (12)
N10.4753 (11)0.3991 (3)0.3989 (3)0.0148 (8)
C20.5684 (13)0.4157 (4)0.3100 (4)0.0151 (11)
H20.6443190.4767020.2952660.018*
C30.5605 (13)0.3482 (4)0.2376 (4)0.0134 (11)
C40.4344 (13)0.2605 (4)0.2590 (4)0.0144 (10)
H40.4191150.2130340.2107880.017*
C50.3306 (13)0.2424 (4)0.3513 (4)0.0147 (11)
C60.3613 (13)0.3133 (4)0.4192 (4)0.0148 (10)
H60.2989620.3008200.4830490.018*
C70.6748 (16)0.3708 (4)0.1379 (4)0.0210 (12)
H7A0.6514030.3150850.0966820.025*
H7B0.5363130.4214640.1090480.025*
H7C0.9105140.3904530.1433580.025*
C80.1978 (15)0.1474 (4)0.3771 (4)0.0205 (12)
H8A0.1941680.1065600.3201590.025*
H8B0.3433550.1200630.4293970.025*
H8C0.0304470.1539810.3985250.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0231 (4)0.0114 (4)0.0122 (4)0.0079 (4)0.0074 (4)0.0055 (3)
Br10.01092 (18)0.0107 (2)0.0112 (2)0.0017 (2)0.00078 (16)0.0002 (2)
N10.0191 (19)0.012 (2)0.013 (2)0.0028 (18)0.0045 (18)0.0028 (16)
C20.016 (2)0.012 (2)0.016 (2)0.002 (2)0.003 (2)0.003 (2)
C30.014 (3)0.015 (2)0.011 (2)0.003 (2)0.001 (2)0.002 (2)
C40.012 (2)0.014 (2)0.017 (3)0.002 (2)0.004 (2)0.0072 (19)
C50.013 (3)0.014 (2)0.017 (3)0.002 (2)0.000 (2)0.004 (2)
C60.014 (2)0.016 (2)0.014 (2)0.001 (2)0.000 (2)0.001 (2)
C70.023 (3)0.022 (3)0.019 (3)0.001 (2)0.005 (2)0.001 (2)
C80.020 (3)0.020 (3)0.022 (3)0.005 (2)0.001 (2)0.001 (2)
Geometric parameters (Å, º) top
Cu1—N12.007 (4)C4—H40.9500
Cu1—N1i2.007 (4)C5—C61.382 (7)
Cu1—Br12.4350 (5)C5—C81.507 (7)
Cu1—Br1i2.4350 (5)C6—H60.9500
N1—C21.328 (7)C7—H7A0.9800
N1—C61.343 (7)C7—H7B0.9800
C2—C31.389 (7)C7—H7C0.9800
C2—H20.9500C8—H8A0.9800
C3—C41.390 (7)C8—H8B0.9800
C3—C71.515 (7)C8—H8C0.9800
C4—C51.391 (8)
N1—Cu1—N1i180.0 (2)C6—C5—C4117.9 (5)
N1—Cu1—Br190.27 (12)C6—C5—C8121.1 (5)
N1i—Cu1—Br189.73 (12)C4—C5—C8121.0 (5)
N1—Cu1—Br1i89.73 (12)N1—C6—C5123.0 (5)
N1i—Cu1—Br1i90.27 (12)N1—C6—H6118.5
Br1—Cu1—Br1i180.0C5—C6—H6118.5
C2—N1—C6118.3 (4)C3—C7—H7A109.5
C2—N1—Cu1120.9 (4)C3—C7—H7B109.5
C6—N1—Cu1120.9 (3)H7A—C7—H7B109.5
N1—C2—C3123.3 (5)C3—C7—H7C109.5
N1—C2—H2118.3H7A—C7—H7C109.5
C3—C2—H2118.3H7B—C7—H7C109.5
C2—C3—C4117.6 (5)C5—C8—H8A109.5
C2—C3—C7121.0 (5)C5—C8—H8B109.5
C4—C3—C7121.3 (5)H8A—C8—H8B109.5
C3—C4—C5119.8 (4)C5—C8—H8C109.5
C3—C4—H4120.1H8A—C8—H8C109.5
C5—C4—H4120.1H8B—C8—H8C109.5
C6—N1—C2—C31.4 (8)C3—C4—C5—C60.7 (8)
Cu1—N1—C2—C3179.2 (4)C3—C4—C5—C8179.1 (5)
N1—C2—C3—C42.9 (8)C2—N1—C6—C51.3 (8)
N1—C2—C3—C7179.1 (5)Cu1—N1—C6—C5178.1 (4)
C2—C3—C4—C51.7 (8)C4—C5—C6—N12.3 (8)
C7—C3—C4—C5179.8 (5)C8—C5—C6—N1179.3 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Br1i0.953.123.406 (5)100
C6—H6···Br1ii0.952.833.515 (5)130
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Funding information

Funding for Open Access publication by the Gustaf H. Carlson Fund is gratefully acknowledged.

References

First citationAgilent Technologies (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAguirrechu-Comerón, A., Pasán, J., González-Platas, J., Ferrando-Soria, J. & Hernández-Molina, R. (2015). J. Struct. Chem. 56, 1563–1571.  Google Scholar
First citationAhadi, E., Hosseini-Monfared, H. & Mayer, P. (2015). Acta Cryst. E71, m112–m113.  CrossRef IUCr Journals Google Scholar
First citationAnderson, P. W. (1958). Phys. Rev. 109, 1492–1505.  CrossRef CAS Google Scholar
First citationAtkinson, E. C., Bedford, C. P., Le, T.-M., Macek, L. O., Walsh, C., Dickie, D. A. & Turnbull, M. M. (2024). Polyhedron, 260, 1171021-9.  CrossRef Google Scholar
First citationAwwadi, F., Willett, R. D. & Twamley, B. (2011). Cryst. Growth Des. 11, 5316–5323.  Web of Science CSD CrossRef CAS Google Scholar
First citationAwwadi, F. F. (2013). Acta Cryst. E69, m116.  CSD CrossRef IUCr Journals Google Scholar
First citationAwwadi, F. F., Willett, R. D., Haddad, S. F. & Twamley, B. (2006). Cryst. Growth Des. 6, 1833–1838.  Web of Science CSD CrossRef CAS Google Scholar
First citationBellesis, A. G., Villani-Gale, A. J., Dickie, D. A., Jasinski, J. P., Landee, C. P., Wikaira, J. L., Willett, R. D. & Turnbull, M. M. (2024). J. Coord. Chem. 77, 1437–1456.  CrossRef CAS Google Scholar
First citationBondarenko, M. A., Novikov, A. N., Korolkov, I. V., Sokolov, M. N. & Adonin, S. A. (2021). Inorg. Chim. Acta, 524, 1204361-7.  CrossRef Google Scholar
First citationBruker (2022). APEX4 and SAINT. Madison, Wisconsin, USA  Google Scholar
First citationChen, W.-T., Luo, Z.-G., Xu, Y.-P., Luo, Q.-Y. & Liu, J.-H. (2011). J. Chem. Res. 35, 253–256.  CrossRef CAS Google Scholar
First citationCoey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. (2005). Nat. Mater. 4, 173–179.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDubois, R. J., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2018). J. Coord. Chem. 71, 3534–3553.  CrossRef CAS Google Scholar
First citationDubois, R. J., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2019). J. Coord. Chem. 72, 1785–1809.  CrossRef CAS Google Scholar
First citationFellows, S. M. & Prior, T. J. (2017). Cryst. Growth Des. 17, 106–116.  CrossRef CAS Google Scholar
First citationFeng, C., Liang, Y., Sun, J., Wang, R., Sun, H. & Dong, H. (2025). Phys. Chem. Chem. Phys. https://doi.org/10.1039/d4cp03879g.  Google Scholar
First citationForman, R. L., Gale, A. J., Landee, C. P., Turnbull, M. M. & Wikaira, J. L. (2015). Polyhedron, 89, 76–84.  CrossRef CAS Google Scholar
First citationGraci, M. R., Dickie, D. A., Landee, C. P. & Turnbull, M. M. (2024b). J. Coord. Chem. 77, 1457–1478.  CrossRef CAS Google Scholar
First citationGraci, M. R., Landee, C. P., Dickie, D. A. & Turnbull, M. M. (2024a). J. Coord. Chem. 77, 2307–2318.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGungor, E. (2021). CSD Communication (CCDC 989579). CCDC, Cambridge, England.  Google Scholar
First citationHearne, N., Turnbull, M. M., Landee, C. P., van der Merwe, E. M. & Rademeyer, M. (2019). CrystEngComm, 21, 1910–1927.  CrossRef CAS Google Scholar
First citationHeine, M., Fink, L. & Schmidt, M. U. (2020a). CSD Communication (CCDC 1956113). CCDC, Cambridge, England.  Google Scholar
First citationHeine, M., Fink, L. & Schmidt, M. U. (2020b). CSD Communication (CCDC 1974905). CCDC, Cambridge, England.  Google Scholar
First citationHerringer, S. N., Turnbull, M. M., Landee, C. P. & Wikaira, J. L. (2011). Dalton Trans. 40, 4242–4252.  CrossRef CAS PubMed Google Scholar
First citationHuynh, N. V., Li, L., Landee, C. P., Dawe, L. N., Dickie, D. A., Turnbull, M. M. & Wikaira, J. L. (2023). Polyhedron, 243, 1165621-11.  CrossRef Google Scholar
First citationKhrennikov, A. (2016). Int. J. Quantum Information, 14, 16400091-27.  CrossRef Google Scholar
First citationKimchi, I., Nahum, A. & Senthil, T. (2018). Phys. Rev. X, 8, 0310281-34.  Google Scholar
First citationLah, N. & Leban, I. (2005). Acta Cryst. E61, m1708–m1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaing, M. & Carr, G. (1971). J. Chem. Soc. A, pp. 1141.  Google Scholar
First citationLennartson, A., Hedström, A. & Håkansson, M. (2007). Acta Cryst. E63, m123–m125.  CrossRef IUCr Journals Google Scholar
First citationLi, X.-H., Wu, H.-Y. & Hu, J.-G. (2004). Acta Cryst. E60, m1533–m1535.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMa, Z., Han, S., Kravtsov, V. Ch. & Moulton, B. (2010). Inorg. Chim. Acta, 363, 387–394.  CrossRef CAS Google Scholar
First citationMackenzie, J. K. (1964). Acta Metall. 12, 223–225.  CrossRef CAS Web of Science Google Scholar
First citationMarsh, W. E., Valente, E. J. & Hodgson, D. J. (1981). Inorg. Chim. Acta, 51, 49–53.  CSD CrossRef CAS Web of Science Google Scholar
First citationMatshwele, J. T. P., Nareetsile, F., Tebogo, M., Mazimba, O., Masita, F. P., Julius, L., Jongman, M. & Odisitse, S. (2022). Polyhedron, 226, 1160851-15.  CrossRef Google Scholar
First citationMínguez Espallargas, G., Brammer, L., van de Streek, J., Shankland, K., Florence, A. J. & Adams, H. (2006). J. Am. Chem. Soc. 128, 9584–9585.  Web of Science PubMed Google Scholar
First citationMonroe, J. C., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2024). Polyhedron, 263, 1171911-10.  CrossRef Google Scholar
First citationMorosin, B. (1975). Acta Cryst. B31, 632–634.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMurugesan, V. S., Raj, M. R., Lee, H. B. & Kumar, N. (2025). Electrochim. Acta, 509, 1453151-7.  CrossRef Google Scholar
First citationOoijen, J. A. C. van, Reedijk, J., Sonneveld, E. J. & Visser, J. W. (1979). Transition Met. Chem. 4, 305–307.  Google Scholar
First citationPuttreddy, R., von Essen, C., Peuronen, A., Lahtinen, M. & Rissanen, K. (2018). CrystEngComm, 20, 1954–1959.  Web of Science CSD CrossRef CAS Google Scholar
First citationRichardson, A. D., Zirkman, T. J., Kebede, M. T., Landee, C. P., Rademeyer, M. & Turnbull, M. M. (2018). Polyhedron, 147, 106–119.  CrossRef CAS Google Scholar
First citationSegedin, P., Dolnicar, U., Cuskic, M., Jaglicic, Z., Golobic, A. & Kozlevcar, B. (2008). Acta Chim. Slov. 55, 992–998.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2012). TWINABS. Bruker, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationToulouse, G. (1986). In Spin Glass Theory and Beyond. World Scientific Lecture Notes in Physics, edited M. Mezard, G. Parisi & M. Virasoro, Vol. 9, pp. 99–103. Singapore: World Scientific Publishers.  Google Scholar
First citationVitorica-Yrezabal, I. J., Sullivan, R. A., Purver, S. L., Curfs, C., Tang, C. C. & Brammer, L. (2011). CrystEngComm, 13, 3189–3196.  CAS Google Scholar
First citationVural, H. & İdil, O. (2019). J. Mol. Struct. 1177, 242–248.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, J., Kang, Y., Wen, Y.-H., Li, Z.-J., Qin, Y.-Y. & Yao, Y.-G. (2004). Acta Cryst. E60, m599–m600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Jeitler, J. R., Turnbull, M. M., Landee, C. P., Wei, M. & Willett, R. D. (1997). Inorg. Chim. Acta, 256, 183–198.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds