research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 1,1′,1′′-[(2-bromo­eth­­oxy)methane­tri­yl]tri­benzene and 1,1′,1′′-[(2-iodoeth­­oxy)methane­tri­yl]tri­benzene

crossmark logo

aInstitut für Anorganische und Analytische Chemie, Corrensstr. 28/30, 48149 Münster, Germany
*Correspondence e-mail: hebenbro@uni-muenster.de

Edited by D. R. Manke, University of Massachusetts Dartmouth, USA (Received 16 December 2024; accepted 6 February 2025; online 14 February 2025)

The present study reports on the mol­ecular structures and syntheses of 1,1′,1′′-[(2-bromo­eth­oxy)methane­tri­yl]tri­benzene, C21H19BrO, and 1,1′,1′′-[(2-iodo­eth­oxy)methane­tri­yl]tri­benzene, C21H19IO. Both compounds crystallized from a saturated solution in THF by slow vapour diffusion of n-hexane in the monoclinic space group P21/c. While the two independent mol­ecules in the asymmetric unit of 1,1′,1′′-[(2-iodo­eth­oxy)methane­tri­yl]tri­benzene show no close contacts to other mol­ecules, in the structure of 1,1′,1′′-[(2-bromo­eth­oxy)methane­tri­yl]tri­benzene the mol­ecules inter­act with each other via C—H⋯π contacts.

1. Chemical context

2-Haloethyl trityl ethers are bifunctional compounds that combine halogen reactivity with trityl ether protection for controlled synthesis. Alkyl halides, as a class of versatile inter­mediates in organic chemistry, facilitate the formation of a broad array of carbon–carbon bonds and functional group transformations. The polarized carbon–halogen bond facilitates substitution and elimination reactions, with the extent of reactivity being influenced by factors such as the halogen type, the alkyl group, and the reaction conditions. Consequently, these compounds are valuable in diverse synthetic reactions. Alkyl halides with a trityl ether group are widely employed as alkyl­ating agents in biomedical chemistry for drug development (Gunosewoyo et al., 2013[Gunosewoyo, H., Midzak, A., Gaisina, I. N., Sabath, E., Fedolak, A., Hanania, T., Brunner, D., Papadopoulos, V. & Kozikowski, A. P. J. (2013). J. Med. Chem. 56, 5115-5129.]; Wagner et al., 2009[Wagner, J., von Matt, P., Sedrani, R., Albert, R., Cooke, N., Ehrhardt, C., Geiser, M., Rummel, G., Stark, W., Strauss, A., Cowan-Jacob, S. W., Beerli, C., Weckbecker, G., Evenou, J.-P., Zenke, G. & Cottens, S. J. (2009). J. Med. Chem. 52, 6193-6196.]; Sureshan et al., 2001[Sureshan, K. M., Shashidhar, M. S. & Varma, A. J. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2298-2302.]; Smits, 2006[Smits, H. (2006). Studies towards the Total Synthesis of (-)-Kendomycin, PhD Dissertation, Oregon State University, Corvallis, OR.]). For instance, 1,1′,1′′-[(2-bromo­eth­oxy)methane­tri­yl]tri­benzene has been used in the development of selective inhibitors for serine/threonine kinases (Gunosewoyo et al., 2013[Gunosewoyo, H., Midzak, A., Gaisina, I. N., Sabath, E., Fedolak, A., Hanania, T., Brunner, D., Papadopoulos, V. & Kozikowski, A. P. J. (2013). J. Med. Chem. 56, 5115-5129.]; Wagner et al., 2009[Wagner, J., von Matt, P., Sedrani, R., Albert, R., Cooke, N., Ehrhardt, C., Geiser, M., Rummel, G., Stark, W., Strauss, A., Cowan-Jacob, S. W., Beerli, C., Weckbecker, G., Evenou, J.-P., Zenke, G. & Cottens, S. J. (2009). J. Med. Chem. 52, 6193-6196.]). 1,1′,1′′-[(2-Iodo­eth­oxy)methane­tri­yl]tri­benzene was employed as an alkyl­ating agent in the research conducted for the total synthesis of (–)-kendomycin (Smits, 2006[Smits, H. (2006). Studies towards the Total Synthesis of (-)-Kendomycin, PhD Dissertation, Oregon State University, Corvallis, OR.]). The trityl protecting group provides selective protection under basic conditions and can be readily cleaved under mild acidic conditions. The trityl group and its derivatives, such as dimeth­oxy trityl (DMT), are commonly used in the synthesis of nucleotides and peptides, where they serve as a protecting group for hydroxyl or amino groups, enabling selective reactions without inter­ference (Reese, 2005[Reese, C. B. (2005). Org. Biomol. Chem. 3, 3851-3868.]; Stelakatos et al., 1959[Stelakatos, G. C., Theodoropoulos, D. M. & Zervas, L. (1959). J. Am. Chem. Soc. 81, 2884-2887.]). In conclusion, the versatility of these ethers renders them indispensable tools in synthetic chemistry, enabling precise control over reactivity and facilitating the synthesis of complex mol­ecules. In the present work we report on the preparation conditions and crystal structures of 1,1′,1′′-[(2-bromo­eth­oxy)methane­tri­yl]tri­benzene (1) and 1,1′,1′′-[(2-iodo­eth­oxy)methane­tri­yl]tri­benzene (2).

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes in the monoclinic space group P21/c and comprises two independent mol­ecules in the asymmetric unit (Fig. 1[link]). The C—Br distances of both mol­ecules are identical [1.960 (2) Å and 1.959 (2) Å], and fall within the range observed for comparable bromo­ethanol ether derivatives (1.921–1.942 Å, see Database survey). Nevertheless, the torsion angles of the alkyl chains (O-C-C-Br) display minor discrepancies [–65.16 (17) and −59.94 (17)°]. In general, the two mol­ecules of the asymmetric unit of compound 1 exhibit a comparable structural configuration, as evidenced by the superimposed structure (Fig. 2[link]). The structural properties of compound 2 are analogous to those of compound 1, with the mol­ecule crystallizing in the monoclinic space group P21/c and comprising two independent mol­ecules in the asymmetric unit (Fig. 3[link]). The C—I distances of both mol­ecules are identical [2.1555 (18) and 2.1533 (18) Å] and fall within the range of comparable iodo­ethanol ether derivatives (2.112–2.154 Å, see Database survey). Similarly, the torsion angles of the alkyl chains (O—C—C—I) exhibit slight differences, but comparable absolute values to those observed in compound 1 [−63.50 (15) and −58.47 (15)°]. However, the superimposed structure of the mol­ecules in the asymmetric unit of compound 2 (Fig. 4[link]) illustrates a comparable structural configuration. No discernible intra­molecular inter­actions are evident in either compound 1 or compound 2.

[Figure 1]
Figure 1
Asymmetric unit of the solid-state structure of compound 1 with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are omitted for clarity.
[Figure 2]
Figure 2
An overlay of the two independent mol­ecules in the asymmetric unit of the structure of compound 1 (r.m.s. deviation for non-hydrogen atoms: 0.284 Å).
[Figure 3]
Figure 3
Asymmetric unit of the solid-state structure of compound 2 with the atom-labelling scheme. Displacement ellipsoids are shown at the 50% probability level and H atoms are omitted for clarity.
[Figure 4]
Figure 4
An overlay of the two independent mol­ecules in the asymmetric unit of the structure of compound 2 (r.m.s. deviation for non-hydrogen atoms: 0.181 Å).

3. Supra­molecular features

The structural configuration of compound 2 does not exhibit any notable inter­molecular inter­actions. Conversely, one of the mol­ecules present within the asymmetric unit of compound 1 engages in inter­molecular inter­actions with another mol­ecule situated outside of the asymmetric unit. The mol­ecule forms a dimer-like structure (Fig. 5[link]) with a symmetry-equivalent mol­ecule, in which a proton from the alkyl chain (H15A) has a very short contact to a phenyl ring (C8–C13) of the trityl unit of the other mol­ecule. The shortest distance is observed to the carbon atom C12 (2.78 Å). The distance of the hydrogen atom to the centroid of the aromatic compound (C8–C13) is 3.37 Å, or 2.69 Å to the ring plane. This distance to the ring plane thus falls within the typical range (2.75±0.10 Å) for C—H⋯π contacts of hydrogen atoms on sp3-hybridized carbon atoms and aromatic systems (Nishio, 2011[Nishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873-13900.]).

[Figure 5]
Figure 5
Partial packing diagram of compound 1 with highlighted C—H⋯π inter­actions of the proton H15A and the π-system of an adjacent phenyl ring of another mol­ecule. Displacement ellipsoids are shown at the 50% probability level, except for H15A and H15A′, which are shown at an arbitrary radius, and H atoms, except for H15A and H15A′, are omitted for clarity. Symmetry code: (') 2 − x, −y, 1 − z.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.45, update June 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for trityl-protected 2-halo­ethanol derivatives gave two hits (CSD refcodes ZANNOR and ZANNUX; Ho et al., 1995[Ho, O. C., Soundararajan, R., Lu, J., Matteson, D. S., Wang, Z., Chen, X., Wei, M. & Willett, R. D. (1995). Organometallics, 14, 2855-2860.]). It should be noted, however, that these derivatives differ from the title compounds in that they are boronic acid ester derivatives. A database survey for halo­ethanol ether derivatives with an unsubstituted alkyl chain yielded five entries for bromo derivatives [CSD refcodes TASYOF (Wang et al., 2022[Wang, X., Chen, Z., Yin, J. & Liu, S. H. (2022). Chin. Chem. Lett. 33, 2522-2526.]), KUPJIP (Farràs et al., 2010[Farràs, P., Teixidor, F., Sillanpää, R. & Viñas, C. (2010). Dalton Trans. 39, 1716-1718.]), RANGOF (Karpus et al., 2015[Karpus, A., Daran, J.-C., Voitenko, Z. & Manoury, E. (2015). Fr. Ukr. J. Chem. 3, 131-139.]), TOFJIH (Jakobsmeier et al., 1996[Jakobsmeier, L., Krossing, I., Nöth, H. & Schmidt, M. J. H. (1996). Z. Naturforsch. B, 51, 1117-1126.]), XUHSAW (Gierszewski et al., 2015[Gierszewski, M., Falkowski, M., Sobotta, L., Stolarska, M., Popenda, L., Lijewski, S., Wicher, B., Burdzinski, G., Karolczak, J., Jurga, S., Gdaniec, M., Tykarska, E., Sikorski, M., Mielcarek, J. & Goslinski, T. (2015). J. Photochem. Photobiol. Chem. 307-308, 54-67.])] and five entries for iodo derivatives [COZXIB (Wang et al., 2019[Wang, X.-Y., Hu, Y.-X., Yang, X.-F., Yin, J., Chen, Z. & Liu, S. H. (2019). Org. Lett. 21, 9945-9949.]), KUPJOV (Farràs et al., 2010[Farràs, P., Teixidor, F., Sillanpää, R. & Viñas, C. (2010). Dalton Trans. 39, 1716-1718.]), SUKFEL (Pruitt et al., 2015[Pruitt, D. G., Baumann, S. M., Place, G. J., Oyeamalu, A. N., Sinn, E. & Jelliss, P. A. (2015). J. Organomet. Chem. 798, 60-69.]), XODPAK (Zhang et al., 2019[Zhang, X., Kakde, B. N., Guo, R., Yadav, S., Gu, Y. & Li, A. (2019). Angew. Chem. Int. Ed. 58, 6053-6058.]), ZOFQIW (Cox et al., 2014[Cox, D. J., Singh, G. P., Watson, A. J. A. & Fairbank, A. J. (2014). Eur. J. Org. Chem. pp. 4624-4642.])]. The structural characteristics of the entries on the halo­ethanol ether derivatives with an unsubstituted alkyl chain were used in the discussion of the structural features of compounds 1 and 2.

5. Synthesis and crystallization

General Considerations: All reagents were purchased from commercial suppliers and used without further purification. Di­chloro­methane was dried using calcium hydride and distilled before use. Reactions of the air-sensitive compounds were carried out under an inert argon atmosphere using the Schlenk line technique. NMR spectra were recorded on Bruker Avance(III) 400 and Avance(Neo) 400 instruments. NMR spectra were referenced to residual solvent peaks (CD2Cl2). Mass spectra were recorded on Bruker impact II. The single-crystal X-ray diffraction (SC-XRD) data were collected on Bruker D8 Venture diffractometer with Photon III CMOS detector with Mo Kα radiation (λ = 0.71073 Å) from a microfocus source (IμS).

Synthesis overview: Compound 1 was synthesized starting from bromo­ethanol. The alcohol group was protected under alkaline conditions using trityl chloride and the synthesis was conducted in accordance with the published conditions (Sureshan et al., 2001[Sureshan, K. M., Shashidhar, M. S. & Varma, A. J. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2298-2302.]). Trityl ether 1 was then converted to the iodinated derivative 2 in a Finkelstein reaction based on the reaction conditions of similar compounds published in the literature (Meguellati et al., 2010[Meguellati, K., Koripelly, G. & Ladame, S. (2010). Angew. Chem. Int. Ed. 49, 2738-2742.]). (TEA: tri­ethyl­amine; DCM: di­chloro­methane).

Synthesis of compound 1: 2-Bromo­ethanol (1.00 mL, 14.11 mmol) and anhydrous tri­ethyl­amine (5.60 mL) were dissolved in anhydrous di­chloro­methane (30 mL) and then chloro­tri­phenyl­methane (4.32 g, 15.49 mmol) was added. The mixture was stirred at room temperature for 16 h. A saturated solution of NaHCO3 (30 mL) was added, the mixture extracted with ethyl acetate (3 × 20 mL) and the combined organic phases were dried with MgSO4. The solvent was removed under reduced pressure and the crude product was purified by column chromatography (petroleum ether:ethyl acetate, 15:1 to 10:1, Rf = 0.9). Compound 1 was obtained as a white solid (5.17 g, 14.08 mmol, 99%). 1H NMR (400 MHz, CD2Cl2, 300 K, ppm): δ 7.51–7.45 (m, 6H), 7.37–7.30 (m, 6H), 7.30–7.25 (m, 3H), 1.46–1.42 (m, 4H). 13C{1H} NMR (100 MHz, CD2Cl2, 300 K, ppm): δ 129.01, 128.30, 127.58, 87.28, 64.23, 31.76. ESI-ESI-MS(+): m/z = 391.0513 ([M+Na]+, calculated: 391.0517 m/z). Single crystals of 1 suitable for X-ray diffraction were obtained by diffusion of n-hexane into a solution of compound 1 in THF at room temperature.

Synthesis of compound 2: Compound 1 (0.20 g, 0.54 mmol) was dissolved in acetone (20 mL) and potassium iodide (0.45 g, 2.72 mmol) was added. The suspension was refluxed at 338 K for 4 d and then the solution was filtered. Di­chloro­methane (50 mL) was added to the solution and the organic phase washed with water (2 × 20 mL). The organic phase was dried with MgSO4 and the solvent was removed under reduced pressure. Compound 2 was obtained as an off-white solid (0.15 g, 0.37 mmol, 69%). 1H NMR (400 MHz, CD2Cl2, 300 K, ppm): δ 7.48–7.45 (m, 6H), 7.35–7.30 (m, 6H), 7.29–7.24 (m, 3H), 3.38 (t, 3JHH= 6.5 Hz, 2H), 3.22–3.16 (t, 3JHH= 6.5 Hz, 2H). 13C{1H} NMR(100 MHz, CD2Cl2, 300 K, ppm): δ 144.39, 129.01, 128.29, 127.57, 87.32, 64.82, 4.20. ESI-MS(+): m/z = 437.0373 ([M+Na]+, calculated: 437.0378 m/z). Single crystals of 2 suitable for X-ray diffraction were obtained by diffusion of n-hexane into a solution of compound 2 in THF at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. Hydrogen atoms were placed in ideal calculated positions and refined using a riding model.

Table 1
Experimental details

  1 2
Crystal data
Chemical formula C21H19BrO C21H19IO
Mr 367.27 414.26
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c
Temperature (K) 150 120
a, b, c (Å) 19.2056 (5), 10.5517 (3), 17.4704 (5) 19.3500 (6), 10.5936 (3), 17.5475 (6)
β (°) 107.512 (1) 105.945 (1)
V3) 3376.32 (16) 3458.60 (19)
Z 8 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.44 1.85
Crystal size (mm) 0.75 × 0.40 × 0.27 0.59 × 0.25 × 0.20
 
Data collection
Diffractometer Bruker D8 Venture with Photon III CMOS detector Bruker D8 Venture with Photon III CMOS detector
Absorption correction Empirical (using intensity measurements) (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]) Empirical (using intensity measurements) (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.016, 0.050 0.506, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 58221, 7760, 6794 47654, 7929, 7577
Rint 0.041 0.028
(sin θ/λ)max−1) 0.650 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.088, 1.05 0.020, 0.054, 1.10
No. of reflections 7760 7929
No. of parameters 415 415
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.50, −0.70 0.56, −0.68
Computer programs: APEX4 and SAINT-Plus (Bruker, 2021[Bruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

1,1',1''-[(2-Bromoethoxy)methanetriyl]tribenzene (1) top
Crystal data top
C21H19BrOF(000) = 1504
Mr = 367.27Dx = 1.445 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.2056 (5) ÅCell parameters from 9414 reflections
b = 10.5517 (3) Åθ = 2.2–27.5°
c = 17.4704 (5) ŵ = 2.44 mm1
β = 107.512 (1)°T = 150 K
V = 3376.32 (16) Å3Block, colourless
Z = 80.75 × 0.40 × 0.27 mm
Data collection top
Bruker D8 Venture with Photon III CMOS detector
diffractometer
6794 reflections with I > 2σ(I)
Radiation source: microfocus sourceRint = 0.041
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Krause et al., 2015)
h = 2424
Tmin = 0.016, Tmax = 0.050k = 1313
58221 measured reflectionsl = 2222
7760 independent reflections
Refinement top
Refinement on F2Primary atom site location: intrinsic phasing
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0435P)2 + 1.5246P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.004
7760 reflectionsΔρmax = 0.50 e Å3
415 parametersΔρmin = 0.70 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33236 (2)0.28194 (2)0.33521 (2)0.04960 (8)
Br21.16003 (2)0.25401 (2)0.44727 (2)0.03928 (7)
O11.00339 (7)0.29832 (11)0.46140 (7)0.0279 (3)
O20.49226 (7)0.21218 (12)0.44788 (7)0.0272 (2)
C10.89339 (10)0.26796 (17)0.49948 (11)0.0284 (4)
C20.88895 (10)0.15444 (18)0.53838 (11)0.0331 (4)
H20.9026320.0776180.5184340.040*
C30.86481 (11)0.1514 (2)0.60603 (12)0.0394 (4)
H30.8624340.0729970.6318520.047*
C40.84427 (12)0.2624 (2)0.63572 (12)0.0405 (5)
H40.8276090.2604540.6816930.049*
C50.84826 (12)0.3758 (2)0.59787 (12)0.0400 (4)
H50.8339270.4521900.6176720.048*
C60.87324 (10)0.37888 (18)0.53061 (11)0.0333 (4)
H60.8765380.4577570.5057160.040*
C70.92638 (9)0.27394 (16)0.42979 (11)0.0265 (3)
C80.91188 (10)0.15403 (16)0.37754 (10)0.0273 (3)
C90.96503 (10)0.10559 (18)0.34649 (11)0.0316 (4)
H91.0114420.1455210.3590730.038*
C100.95098 (11)0.00075 (19)0.29718 (11)0.0364 (4)
H100.9884670.0346320.2780580.044*
C110.88319 (12)0.05745 (18)0.27579 (11)0.0377 (4)
H110.8738630.1297180.2417800.045*
C120.82873 (11)0.00842 (18)0.30417 (12)0.0366 (4)
H120.7814820.0455550.2883780.044*
C130.84332 (10)0.09562 (18)0.35601 (11)0.0324 (4)
H130.8063280.1270130.3768510.039*
C141.04580 (10)0.21427 (17)0.52082 (11)0.0304 (4)
H14A1.0408000.1263380.5001100.036*
H14B1.0292770.2168890.5692880.036*
C151.12392 (11)0.25704 (18)0.54086 (12)0.0341 (4)
H15A1.1548530.2011860.5830530.041*
H15B1.1280660.3442860.5626190.041*
C160.89722 (9)0.38741 (16)0.37363 (10)0.0261 (3)
C170.82250 (10)0.40218 (18)0.33765 (11)0.0336 (4)
H170.7894640.3443060.3498610.040*
C180.79561 (11)0.50073 (19)0.28398 (12)0.0368 (4)
H180.7444730.5092880.2595660.044*
C190.84292 (11)0.58624 (18)0.26602 (11)0.0344 (4)
H190.8246440.6530050.2289380.041*
C200.91707 (11)0.57351 (18)0.30261 (11)0.0347 (4)
H200.9498290.6329180.2913120.042*
C210.94430 (10)0.47447 (17)0.35589 (11)0.0309 (4)
H210.9954760.4664360.3802610.037*
C220.59569 (10)0.24168 (17)0.56667 (11)0.0282 (4)
C230.62123 (10)0.34940 (19)0.61183 (11)0.0340 (4)
H230.6256140.4265830.5856540.041*
C240.64060 (12)0.3453 (2)0.69562 (12)0.0426 (5)
H240.6585980.4193840.7260020.051*
C250.63375 (12)0.2345 (2)0.73439 (13)0.0457 (5)
H250.6469990.2319140.7913220.055*
C260.60734 (12)0.1265 (2)0.68961 (12)0.0434 (5)
H260.6019480.0500450.7159800.052*
C270.58876 (10)0.1299 (2)0.60636 (11)0.0357 (4)
H270.5711750.0553740.5762150.043*
C280.56932 (9)0.23937 (16)0.47479 (10)0.0255 (3)
C290.58624 (10)0.36120 (16)0.43556 (10)0.0267 (3)
C300.53171 (10)0.42653 (17)0.37837 (10)0.0304 (4)
H300.4828600.3964090.3639790.036*
C310.54788 (11)0.53525 (18)0.34211 (11)0.0348 (4)
H310.5098700.5797660.3041120.042*
C320.61897 (12)0.57911 (18)0.36096 (11)0.0362 (4)
H320.6299880.6533060.3360480.043*
C330.67381 (11)0.51347 (18)0.41659 (12)0.0373 (4)
H330.7228750.5420850.4292470.045*
C340.65768 (10)0.40633 (18)0.45394 (11)0.0326 (4)
H340.6957720.3630430.4925870.039*
C350.44738 (10)0.27958 (18)0.48586 (11)0.0304 (4)
H35A0.4510850.3719070.4777730.036*
H35B0.4632520.2621410.5442460.036*
C360.37030 (10)0.23595 (18)0.44889 (12)0.0343 (4)
H36A0.3388830.2741870.4784180.041*
H36B0.3681640.1427330.4542280.041*
C370.60424 (9)0.12823 (16)0.44312 (10)0.0262 (3)
C380.67771 (10)0.09807 (17)0.47801 (12)0.0322 (4)
H380.7061600.1455490.5227020.039*
C390.70961 (10)0.00044 (17)0.44813 (13)0.0360 (4)
H390.7598600.0192860.4719610.043*
C400.66824 (11)0.07205 (17)0.38322 (13)0.0373 (4)
H400.6900750.1399790.3630630.045*
C410.59619 (11)0.04395 (19)0.34883 (12)0.0370 (4)
H410.5676940.0932700.3050930.044*
C420.56409 (10)0.05703 (17)0.37762 (11)0.0311 (4)
H420.5142850.0773000.3521650.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03491 (12)0.05928 (15)0.04485 (13)0.00747 (9)0.00275 (9)0.00187 (10)
Br20.02986 (11)0.04413 (12)0.04559 (12)0.00347 (8)0.01397 (9)0.00213 (8)
O10.0231 (6)0.0277 (6)0.0309 (6)0.0003 (5)0.0051 (5)0.0044 (5)
O20.0213 (6)0.0303 (6)0.0309 (6)0.0005 (5)0.0094 (5)0.0034 (5)
C10.0243 (8)0.0308 (9)0.0290 (8)0.0011 (7)0.0063 (7)0.0014 (7)
C20.0333 (10)0.0317 (9)0.0352 (9)0.0015 (7)0.0117 (8)0.0056 (7)
C30.0377 (11)0.0445 (11)0.0357 (10)0.0026 (9)0.0107 (8)0.0097 (8)
C40.0374 (11)0.0564 (13)0.0290 (9)0.0030 (9)0.0122 (8)0.0006 (8)
C50.0439 (11)0.0449 (11)0.0323 (9)0.0009 (9)0.0130 (9)0.0066 (8)
C60.0359 (10)0.0327 (9)0.0311 (9)0.0010 (7)0.0096 (8)0.0017 (7)
C70.0230 (8)0.0258 (8)0.0297 (8)0.0006 (6)0.0066 (7)0.0027 (6)
C80.0295 (9)0.0252 (8)0.0263 (8)0.0005 (7)0.0071 (7)0.0039 (6)
C90.0281 (9)0.0336 (9)0.0338 (9)0.0004 (7)0.0105 (7)0.0008 (7)
C100.0423 (11)0.0355 (10)0.0339 (9)0.0047 (8)0.0152 (8)0.0006 (8)
C110.0516 (12)0.0280 (9)0.0314 (9)0.0027 (8)0.0091 (9)0.0010 (7)
C120.0359 (10)0.0305 (9)0.0410 (10)0.0053 (8)0.0083 (8)0.0039 (8)
C130.0293 (9)0.0309 (9)0.0374 (9)0.0016 (7)0.0106 (8)0.0030 (7)
C140.0271 (9)0.0304 (9)0.0313 (9)0.0028 (7)0.0053 (7)0.0054 (7)
C150.0296 (10)0.0368 (10)0.0326 (9)0.0006 (7)0.0045 (8)0.0050 (7)
C160.0262 (8)0.0263 (8)0.0260 (8)0.0014 (6)0.0080 (7)0.0004 (6)
C170.0279 (9)0.0309 (9)0.0397 (10)0.0030 (7)0.0069 (8)0.0033 (8)
C180.0288 (9)0.0361 (10)0.0401 (10)0.0042 (7)0.0025 (8)0.0045 (8)
C190.0418 (11)0.0298 (9)0.0305 (9)0.0074 (8)0.0090 (8)0.0048 (7)
C200.0370 (10)0.0304 (9)0.0402 (10)0.0016 (7)0.0169 (8)0.0066 (8)
C210.0266 (9)0.0315 (9)0.0360 (9)0.0013 (7)0.0114 (7)0.0036 (7)
C220.0213 (8)0.0356 (9)0.0272 (8)0.0022 (6)0.0066 (7)0.0011 (7)
C230.0320 (10)0.0375 (10)0.0320 (9)0.0032 (8)0.0086 (8)0.0027 (8)
C240.0356 (11)0.0586 (13)0.0311 (9)0.0024 (9)0.0064 (8)0.0091 (9)
C250.0318 (11)0.0767 (16)0.0275 (9)0.0089 (10)0.0073 (8)0.0049 (10)
C260.0357 (11)0.0578 (13)0.0375 (10)0.0031 (9)0.0122 (9)0.0152 (9)
C270.0318 (10)0.0413 (10)0.0344 (9)0.0005 (8)0.0106 (8)0.0052 (8)
C280.0210 (8)0.0288 (8)0.0270 (8)0.0010 (6)0.0076 (7)0.0014 (6)
C290.0283 (9)0.0264 (8)0.0267 (8)0.0002 (7)0.0104 (7)0.0018 (6)
C300.0283 (9)0.0336 (9)0.0290 (8)0.0009 (7)0.0082 (7)0.0008 (7)
C310.0425 (11)0.0326 (9)0.0301 (9)0.0035 (8)0.0122 (8)0.0017 (7)
C320.0499 (12)0.0269 (9)0.0371 (10)0.0031 (8)0.0212 (9)0.0007 (7)
C330.0369 (10)0.0346 (10)0.0435 (11)0.0091 (8)0.0166 (9)0.0073 (8)
C340.0279 (9)0.0321 (9)0.0375 (9)0.0019 (7)0.0097 (8)0.0031 (7)
C350.0253 (9)0.0352 (9)0.0315 (9)0.0027 (7)0.0100 (7)0.0017 (7)
C360.0248 (9)0.0384 (10)0.0413 (10)0.0011 (7)0.0124 (8)0.0028 (8)
C370.0242 (8)0.0273 (8)0.0293 (8)0.0013 (6)0.0114 (7)0.0012 (6)
C380.0269 (9)0.0293 (9)0.0398 (10)0.0021 (7)0.0093 (8)0.0015 (7)
C390.0268 (9)0.0294 (9)0.0542 (12)0.0016 (7)0.0158 (9)0.0041 (8)
C400.0450 (11)0.0242 (8)0.0525 (11)0.0026 (8)0.0294 (10)0.0002 (8)
C410.0425 (11)0.0338 (10)0.0373 (10)0.0057 (8)0.0158 (9)0.0053 (8)
C420.0294 (9)0.0319 (9)0.0323 (9)0.0006 (7)0.0094 (7)0.0013 (7)
Geometric parameters (Å, º) top
Br1—C361.960 (2)C20—C211.393 (2)
Br2—C151.959 (2)C20—H200.9500
O1—C141.421 (2)C21—H210.9500
O1—C71.438 (2)C22—C231.386 (3)
O2—C351.426 (2)C22—C271.395 (3)
O2—C281.441 (2)C22—C281.531 (2)
C1—C21.392 (2)C23—C241.398 (3)
C1—C61.394 (3)C23—H230.9500
C1—C71.534 (3)C24—C251.377 (3)
C2—C31.394 (3)C24—H240.9500
C2—H20.9500C25—C261.389 (3)
C3—C41.385 (3)C25—H250.9500
C3—H30.9500C26—C271.390 (3)
C4—C51.381 (3)C26—H260.9500
C4—H40.9500C27—H270.9500
C5—C61.397 (3)C28—C371.534 (2)
C5—H50.9500C28—C291.537 (2)
C6—H60.9500C29—C301.393 (2)
C7—C81.536 (2)C29—C341.395 (2)
C7—C161.543 (2)C30—C311.390 (3)
C8—C91.390 (2)C30—H300.9500
C8—C131.399 (2)C31—C321.384 (3)
C9—C101.391 (3)C31—H310.9500
C9—H90.9500C32—C331.385 (3)
C10—C111.378 (3)C32—H320.9500
C10—H100.9500C33—C341.386 (3)
C11—C121.385 (3)C33—H330.9500
C11—H110.9500C34—H340.9500
C12—C131.397 (3)C35—C361.498 (3)
C12—H120.9500C35—H35A0.9900
C13—H130.9500C35—H35B0.9900
C14—C151.504 (3)C36—H36A0.9900
C14—H14A0.9900C36—H36B0.9900
C14—H14B0.9900C37—C421.392 (2)
C15—H15A0.9900C37—C381.395 (2)
C15—H15B0.9900C38—C391.386 (3)
C16—C211.388 (2)C38—H380.9500
C16—C171.391 (2)C39—C401.395 (3)
C17—C181.391 (3)C39—H390.9500
C17—H170.9500C40—C411.365 (3)
C18—C191.382 (3)C40—H400.9500
C18—H180.9500C41—C421.398 (3)
C19—C201.381 (3)C41—H410.9500
C19—H190.9500C42—H420.9500
C14—O1—C7117.79 (13)C20—C21—H21119.8
C35—O2—C28117.02 (13)C23—C22—C27118.75 (17)
C2—C1—C6117.85 (17)C23—C22—C28123.94 (16)
C2—C1—C7121.56 (16)C27—C22—C28117.18 (16)
C6—C1—C7120.32 (16)C22—C23—C24120.5 (2)
C1—C2—C3121.23 (19)C22—C23—H23119.8
C1—C2—H2119.4C24—C23—H23119.8
C3—C2—H2119.4C25—C24—C23120.4 (2)
C4—C3—C2120.20 (19)C25—C24—H24119.8
C4—C3—H3119.9C23—C24—H24119.8
C2—C3—H3119.9C24—C25—C26119.48 (19)
C5—C4—C3119.36 (19)C24—C25—H25120.3
C5—C4—H4120.3C26—C25—H25120.3
C3—C4—H4120.3C25—C26—C27120.2 (2)
C4—C5—C6120.38 (19)C25—C26—H26119.9
C4—C5—H5119.8C27—C26—H26119.9
C6—C5—H5119.8C26—C27—C22120.6 (2)
C1—C6—C5120.98 (18)C26—C27—H27119.7
C1—C6—H6119.5C22—C27—H27119.7
C5—C6—H6119.5O2—C28—C22109.18 (14)
O1—C7—C1108.99 (14)O2—C28—C37104.34 (13)
O1—C7—C8110.93 (14)C22—C28—C37110.34 (14)
C1—C7—C8113.18 (14)O2—C28—C29110.82 (14)
O1—C7—C16103.89 (13)C22—C28—C29113.99 (14)
C1—C7—C16112.29 (14)C37—C28—C29107.73 (14)
C8—C7—C16107.17 (14)C30—C29—C34118.11 (17)
C9—C8—C13118.40 (17)C30—C29—C28121.30 (16)
C9—C8—C7120.79 (16)C34—C29—C28120.53 (16)
C13—C8—C7120.69 (16)C31—C30—C29120.82 (18)
C8—C9—C10120.68 (18)C31—C30—H30119.6
C8—C9—H9119.7C29—C30—H30119.6
C10—C9—H9119.7C32—C31—C30120.47 (18)
C11—C10—C9120.63 (18)C32—C31—H31119.8
C11—C10—H10119.7C30—C31—H31119.8
C9—C10—H10119.7C31—C32—C33119.16 (17)
C10—C11—C12119.61 (18)C31—C32—H32120.4
C10—C11—H11120.2C33—C32—H32120.4
C12—C11—H11120.2C32—C33—C34120.51 (18)
C11—C12—C13119.99 (18)C32—C33—H33119.7
C11—C12—H12120.0C34—C33—H33119.7
C13—C12—H12120.0C33—C34—C29120.90 (18)
C12—C13—C8120.62 (18)C33—C34—H34119.5
C12—C13—H13119.7C29—C34—H34119.5
C8—C13—H13119.7O2—C35—C36107.66 (15)
O1—C14—C15107.17 (14)O2—C35—H35A110.2
O1—C14—H14A110.3C36—C35—H35A110.2
C15—C14—H14A110.3O2—C35—H35B110.2
O1—C14—H14B110.3C36—C35—H35B110.2
C15—C14—H14B110.3H35A—C35—H35B108.5
H14A—C14—H14B108.5C35—C36—Br1112.24 (13)
C14—C15—Br2112.32 (13)C35—C36—H36A109.2
C14—C15—H15A109.1Br1—C36—H36A109.2
Br2—C15—H15A109.1C35—C36—H36B109.2
C14—C15—H15B109.1Br1—C36—H36B109.2
Br2—C15—H15B109.1H36A—C36—H36B107.9
H15A—C15—H15B107.9C42—C37—C38118.25 (16)
C21—C16—C17118.54 (16)C42—C37—C28120.99 (15)
C21—C16—C7121.30 (15)C38—C37—C28120.74 (15)
C17—C16—C7120.14 (15)C39—C38—C37120.68 (18)
C18—C17—C16120.76 (17)C39—C38—H38119.7
C18—C17—H17119.6C37—C38—H38119.7
C16—C17—H17119.6C38—C39—C40120.28 (18)
C19—C18—C17120.32 (18)C38—C39—H39119.9
C19—C18—H18119.8C40—C39—H39119.9
C17—C18—H18119.8C41—C40—C39119.61 (17)
C20—C19—C18119.24 (17)C41—C40—H40120.2
C20—C19—H19120.4C39—C40—H40120.2
C18—C19—H19120.4C40—C41—C42120.36 (18)
C19—C20—C21120.67 (18)C40—C41—H41119.8
C19—C20—H20119.7C42—C41—H41119.8
C21—C20—H20119.7C37—C42—C41120.79 (17)
C16—C21—C20120.47 (17)C37—C42—H42119.6
C16—C21—H21119.8C41—C42—H42119.6
C6—C1—C2—C30.3 (3)C27—C22—C23—C240.9 (3)
C7—C1—C2—C3174.35 (18)C28—C22—C23—C24176.48 (18)
C1—C2—C3—C40.3 (3)C22—C23—C24—C250.8 (3)
C2—C3—C4—C50.3 (3)C23—C24—C25—C260.1 (3)
C3—C4—C5—C60.5 (3)C24—C25—C26—C270.7 (3)
C2—C1—C6—C51.0 (3)C25—C26—C27—C220.6 (3)
C7—C1—C6—C5175.15 (17)C23—C22—C27—C260.2 (3)
C4—C5—C6—C11.1 (3)C28—C22—C27—C26176.10 (18)
C14—O1—C7—C155.44 (19)C35—O2—C28—C2245.52 (19)
C14—O1—C7—C869.83 (18)C35—O2—C28—C37163.48 (14)
C14—O1—C7—C16175.32 (14)C35—O2—C28—C2980.84 (17)
C2—C1—C7—O190.2 (2)C23—C22—C28—O2113.98 (19)
C6—C1—C7—O183.7 (2)C27—C22—C28—O261.7 (2)
C2—C1—C7—C833.7 (2)C23—C22—C28—C37131.90 (18)
C6—C1—C7—C8152.38 (16)C27—C22—C28—C3752.4 (2)
C2—C1—C7—C16155.23 (17)C23—C22—C28—C2910.5 (2)
C6—C1—C7—C1630.9 (2)C27—C22—C28—C29173.80 (16)
O1—C7—C8—C918.9 (2)O2—C28—C29—C303.6 (2)
C1—C7—C8—C9141.83 (16)C22—C28—C29—C30127.28 (17)
C16—C7—C8—C993.83 (19)C37—C28—C29—C30109.92 (18)
O1—C7—C8—C13165.05 (15)O2—C28—C29—C34179.16 (15)
C1—C7—C8—C1342.2 (2)C22—C28—C29—C3455.5 (2)
C16—C7—C8—C1382.17 (19)C37—C28—C29—C3467.3 (2)
C13—C8—C9—C101.9 (3)C34—C29—C30—C311.5 (3)
C7—C8—C9—C10178.02 (16)C28—C29—C30—C31178.72 (16)
C8—C9—C10—C112.4 (3)C29—C30—C31—C321.4 (3)
C9—C10—C11—C120.4 (3)C30—C31—C32—C330.2 (3)
C10—C11—C12—C131.8 (3)C31—C32—C33—C341.0 (3)
C11—C12—C13—C82.3 (3)C32—C33—C34—C291.0 (3)
C9—C8—C13—C120.4 (3)C30—C29—C34—C330.3 (3)
C7—C8—C13—C12175.74 (16)C28—C29—C34—C33177.56 (17)
C7—O1—C14—C15177.63 (15)C28—O2—C35—C36179.74 (14)
O1—C14—C15—Br259.94 (17)O2—C35—C36—Br165.16 (17)
O1—C7—C16—C218.0 (2)O2—C28—C37—C4223.1 (2)
C1—C7—C16—C21125.59 (18)C22—C28—C37—C42140.26 (16)
C8—C7—C16—C21109.53 (18)C29—C28—C37—C4294.72 (18)
O1—C7—C16—C17173.98 (15)O2—C28—C37—C38158.60 (15)
C1—C7—C16—C1756.4 (2)C22—C28—C37—C3841.5 (2)
C8—C7—C16—C1768.5 (2)C29—C28—C37—C3883.57 (19)
C21—C16—C17—C181.1 (3)C42—C37—C38—C390.1 (3)
C7—C16—C17—C18177.01 (17)C28—C37—C38—C39178.46 (17)
C16—C17—C18—C190.5 (3)C37—C38—C39—C400.9 (3)
C17—C18—C19—C200.7 (3)C38—C39—C40—C410.5 (3)
C18—C19—C20—C211.2 (3)C39—C40—C41—C420.9 (3)
C17—C16—C21—C200.6 (3)C38—C37—C42—C411.5 (3)
C7—C16—C21—C20177.49 (16)C28—C37—C42—C41179.83 (16)
C19—C20—C21—C160.6 (3)C40—C41—C42—C371.9 (3)
1,1',1''-[(2-Iodoethoxy)methanetriyl]tribenzene (2) top
Crystal data top
C21H19IOF(000) = 1648
Mr = 414.26Dx = 1.591 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.3500 (6) ÅCell parameters from 9904 reflections
b = 10.5936 (3) Åθ = 2.2–27.5°
c = 17.5475 (6) ŵ = 1.85 mm1
β = 105.945 (1)°T = 120 K
V = 3458.60 (19) Å3Block, colourless
Z = 80.59 × 0.25 × 0.20 mm
Data collection top
Bruker D8 Venture with Photon III CMOS detector
diffractometer
7577 reflections with I > 2σ(I)
Radiation source: microfocus sourceRint = 0.028
φ and ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: empirical (using intensity measurements)
(SADABS; Krause et al., 2015)
h = 2525
Tmin = 0.506, Tmax = 0.746k = 1313
47654 measured reflectionsl = 2222
7929 independent reflections
Refinement top
Refinement on F2Primary atom site location: intrinsic phasing
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0207P)2 + 2.7021P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.010
7929 reflectionsΔρmax = 0.56 e Å3
415 parametersΔρmin = 0.68 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.16435 (2)0.25441 (2)0.44732 (2)0.02017 (4)
I20.32992 (2)0.27263 (2)0.33986 (2)0.02538 (4)
O11.00147 (6)0.29359 (11)0.46228 (7)0.0143 (2)
O20.49458 (6)0.21182 (11)0.45316 (6)0.0135 (2)
C10.89117 (9)0.26274 (15)0.49969 (10)0.0146 (3)
C20.88197 (9)0.14767 (16)0.53452 (10)0.0184 (3)
H20.8929670.0712110.5120810.022*
C30.85693 (10)0.14342 (18)0.60166 (10)0.0226 (4)
H30.8513440.0643060.6247550.027*
C40.84011 (11)0.25365 (18)0.63498 (11)0.0250 (4)
H40.8227190.2505730.6805830.030*
C50.84896 (11)0.36882 (18)0.60098 (11)0.0257 (4)
H50.8373540.4449350.6233150.031*
C60.87475 (10)0.37331 (17)0.53432 (10)0.0198 (3)
H60.8812540.4527280.5121140.024*
C70.92551 (9)0.27031 (14)0.43093 (10)0.0130 (3)
C80.89840 (8)0.38360 (15)0.37612 (9)0.0139 (3)
C90.82481 (9)0.40409 (16)0.34476 (10)0.0193 (3)
H90.7914880.3507780.3600980.023*
C100.79970 (9)0.50165 (17)0.29133 (10)0.0214 (3)
H100.7494570.5134960.2696660.026*
C110.84765 (10)0.58170 (16)0.26953 (10)0.0206 (3)
H110.8305080.6484660.2330910.025*
C120.92086 (10)0.56340 (17)0.30142 (10)0.0212 (3)
H120.9540700.6184380.2872440.025*
C130.94595 (9)0.46448 (16)0.35423 (10)0.0188 (3)
H130.9962280.4523740.3754540.023*
C141.04082 (9)0.21454 (16)0.52401 (10)0.0168 (3)
H14A1.0377470.1256180.5060240.020*
H14B1.0212820.2203090.5704450.020*
C151.11793 (9)0.25909 (17)0.54577 (10)0.0192 (3)
H15A1.1469040.2051030.5888530.023*
H15B1.1201370.3465540.5661790.023*
C160.91233 (9)0.15102 (15)0.37874 (9)0.0146 (3)
C170.96702 (9)0.09650 (16)0.35284 (10)0.0184 (3)
H171.0139700.1316610.3687370.022*
C180.95380 (10)0.00968 (17)0.30358 (10)0.0215 (3)
H180.9920590.0477140.2876410.026*
C190.88532 (10)0.05946 (17)0.27802 (10)0.0226 (4)
H190.8763360.1314440.2444520.027*
C200.82975 (10)0.00354 (17)0.30175 (10)0.0224 (4)
H200.7823170.0360270.2832060.027*
C210.84316 (9)0.09963 (16)0.35245 (10)0.0188 (3)
H210.8050150.1357690.3695090.023*
C220.59861 (9)0.23780 (15)0.56595 (10)0.0148 (3)
C230.62049 (9)0.34627 (17)0.61073 (10)0.0196 (3)
H230.6225610.4243610.5848300.024*
C240.63943 (10)0.3414 (2)0.69344 (11)0.0261 (4)
H240.6547850.4159790.7234070.031*
C250.63596 (10)0.2287 (2)0.73188 (11)0.0271 (4)
H250.6487460.2256470.7881350.033*
C260.61367 (10)0.12002 (19)0.68781 (11)0.0253 (4)
H260.6110830.0423510.7139500.030*
C270.59519 (9)0.12458 (17)0.60578 (10)0.0199 (3)
H270.5799730.0496880.5761420.024*
C280.57091 (8)0.23694 (14)0.47546 (10)0.0127 (3)
C290.58691 (9)0.35892 (15)0.43583 (9)0.0142 (3)
C300.53330 (9)0.42041 (16)0.37868 (10)0.0172 (3)
H300.4855930.3884670.3651120.021*
C310.54885 (10)0.52858 (16)0.34105 (10)0.0207 (3)
H310.5115420.5709120.3030420.025*
C320.61843 (10)0.57428 (16)0.35894 (11)0.0229 (4)
H320.6290990.6475880.3331120.027*
C330.67259 (10)0.51230 (17)0.41492 (11)0.0224 (4)
H330.7205320.5428990.4269900.027*
C340.65709 (9)0.40608 (16)0.45326 (10)0.0187 (3)
H340.6944750.3648330.4917760.022*
C350.45254 (9)0.28117 (16)0.49365 (10)0.0161 (3)
H35A0.4551050.3725600.4829550.019*
H35B0.4707270.2673440.5515210.019*
C360.37629 (9)0.23547 (16)0.46408 (10)0.0180 (3)
H36A0.3467910.2772770.4947380.022*
H36B0.3750410.1434620.4734780.022*
C370.60309 (8)0.12667 (15)0.44019 (9)0.0137 (3)
C380.67628 (9)0.09875 (16)0.46852 (10)0.0175 (3)
H380.7057610.1469190.5107400.021*
C390.70616 (9)0.00127 (16)0.43544 (11)0.0194 (3)
H390.7560810.0162590.4547770.023*
C400.66371 (10)0.07091 (16)0.37429 (11)0.0204 (3)
H400.6843400.1378890.3519470.024*
C410.59110 (10)0.04451 (16)0.34613 (10)0.0207 (3)
H410.5615970.0942810.3047890.025*
C420.56118 (9)0.05473 (16)0.37821 (10)0.0175 (3)
H420.5115480.0736120.3575490.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.01599 (6)0.02242 (6)0.02299 (7)0.00106 (4)0.00688 (5)0.00018 (4)
I20.01860 (6)0.03365 (7)0.02017 (6)0.00402 (5)0.00091 (5)0.00040 (5)
O10.0110 (5)0.0158 (5)0.0151 (5)0.0004 (4)0.0017 (4)0.0032 (4)
O20.0101 (5)0.0170 (5)0.0140 (5)0.0006 (4)0.0043 (4)0.0024 (4)
C10.0117 (7)0.0179 (8)0.0138 (7)0.0003 (6)0.0025 (6)0.0011 (6)
C20.0194 (8)0.0183 (8)0.0178 (8)0.0009 (6)0.0056 (7)0.0025 (6)
C30.0230 (9)0.0267 (9)0.0189 (8)0.0014 (7)0.0072 (7)0.0055 (7)
C40.0262 (10)0.0352 (11)0.0156 (8)0.0009 (7)0.0091 (8)0.0005 (7)
C50.0341 (10)0.0256 (9)0.0196 (8)0.0000 (8)0.0112 (8)0.0051 (7)
C60.0254 (9)0.0185 (8)0.0163 (8)0.0011 (7)0.0069 (7)0.0007 (6)
C70.0122 (7)0.0128 (7)0.0137 (7)0.0002 (5)0.0033 (6)0.0007 (5)
C80.0153 (7)0.0147 (7)0.0115 (7)0.0013 (6)0.0032 (6)0.0003 (6)
C90.0160 (8)0.0181 (8)0.0226 (8)0.0014 (6)0.0033 (7)0.0017 (6)
C100.0176 (8)0.0208 (8)0.0218 (8)0.0031 (6)0.0012 (7)0.0006 (7)
C110.0286 (9)0.0179 (8)0.0152 (8)0.0063 (7)0.0057 (7)0.0035 (6)
C120.0244 (9)0.0198 (8)0.0229 (9)0.0012 (7)0.0122 (7)0.0047 (7)
C130.0174 (8)0.0198 (8)0.0211 (8)0.0026 (6)0.0084 (7)0.0042 (6)
C140.0152 (8)0.0189 (8)0.0150 (8)0.0013 (6)0.0019 (6)0.0043 (6)
C150.0149 (8)0.0264 (9)0.0146 (8)0.0009 (6)0.0011 (7)0.0025 (6)
C160.0173 (8)0.0139 (7)0.0121 (7)0.0007 (6)0.0033 (6)0.0021 (6)
C170.0186 (8)0.0201 (8)0.0175 (8)0.0015 (6)0.0069 (7)0.0007 (6)
C180.0275 (9)0.0211 (9)0.0190 (8)0.0025 (7)0.0114 (7)0.0015 (7)
C190.0359 (10)0.0170 (8)0.0148 (8)0.0040 (7)0.0069 (7)0.0010 (6)
C200.0233 (9)0.0213 (9)0.0205 (8)0.0057 (7)0.0027 (7)0.0009 (7)
C210.0173 (8)0.0178 (8)0.0211 (8)0.0018 (6)0.0053 (7)0.0014 (6)
C220.0106 (7)0.0204 (8)0.0137 (7)0.0017 (6)0.0038 (6)0.0003 (6)
C230.0188 (8)0.0223 (8)0.0168 (8)0.0005 (6)0.0034 (7)0.0028 (6)
C240.0214 (9)0.0371 (11)0.0179 (8)0.0002 (8)0.0025 (7)0.0078 (7)
C250.0199 (9)0.0476 (12)0.0131 (8)0.0045 (8)0.0033 (7)0.0004 (7)
C260.0234 (9)0.0335 (10)0.0201 (9)0.0031 (7)0.0076 (7)0.0087 (7)
C270.0190 (8)0.0217 (8)0.0192 (8)0.0000 (6)0.0056 (7)0.0022 (6)
C280.0093 (7)0.0152 (7)0.0134 (7)0.0006 (5)0.0029 (6)0.0010 (5)
C290.0163 (7)0.0144 (7)0.0137 (7)0.0015 (6)0.0070 (6)0.0022 (6)
C300.0176 (8)0.0194 (8)0.0154 (7)0.0018 (6)0.0059 (6)0.0014 (6)
C310.0287 (9)0.0184 (8)0.0161 (8)0.0019 (7)0.0080 (7)0.0011 (6)
C320.0352 (10)0.0159 (8)0.0219 (8)0.0049 (7)0.0154 (8)0.0025 (6)
C330.0239 (9)0.0204 (8)0.0260 (9)0.0083 (7)0.0121 (8)0.0072 (7)
C340.0165 (8)0.0187 (8)0.0216 (8)0.0024 (6)0.0062 (7)0.0034 (6)
C350.0136 (7)0.0205 (8)0.0150 (7)0.0018 (6)0.0051 (6)0.0020 (6)
C360.0143 (8)0.0224 (8)0.0187 (8)0.0002 (6)0.0066 (7)0.0005 (6)
C370.0147 (7)0.0135 (7)0.0146 (7)0.0002 (6)0.0071 (6)0.0014 (6)
C380.0146 (8)0.0175 (8)0.0203 (8)0.0020 (6)0.0048 (7)0.0006 (6)
C390.0159 (8)0.0164 (8)0.0284 (9)0.0018 (6)0.0105 (7)0.0038 (7)
C400.0266 (9)0.0147 (8)0.0246 (9)0.0022 (6)0.0151 (8)0.0002 (6)
C410.0252 (9)0.0192 (8)0.0183 (8)0.0017 (7)0.0071 (7)0.0036 (6)
C420.0163 (8)0.0198 (8)0.0160 (8)0.0008 (6)0.0039 (6)0.0009 (6)
Geometric parameters (Å, º) top
I1—C152.1555 (18)C20—C211.388 (2)
I2—C362.1533 (18)C20—H200.9500
O1—C141.4146 (19)C21—H210.9500
O1—C71.4422 (19)C22—C231.391 (2)
O2—C351.4227 (19)C22—C271.399 (2)
O2—C281.4450 (18)C22—C281.530 (2)
C1—C61.396 (2)C23—C241.397 (2)
C1—C21.397 (2)C23—H230.9500
C1—C71.531 (2)C24—C251.382 (3)
C2—C31.392 (2)C24—H240.9500
C2—H20.9500C25—C261.388 (3)
C3—C41.384 (3)C25—H250.9500
C3—H30.9500C26—C271.385 (2)
C4—C51.389 (3)C26—H260.9500
C4—H40.9500C27—H270.9500
C5—C61.393 (2)C28—C371.532 (2)
C5—H50.9500C28—C291.539 (2)
C6—H60.9500C29—C301.391 (2)
C7—C81.537 (2)C29—C341.400 (2)
C7—C161.540 (2)C30—C311.396 (2)
C8—C131.387 (2)C30—H300.9500
C8—C91.395 (2)C31—C321.383 (3)
C9—C101.390 (2)C31—H310.9500
C9—H90.9500C32—C331.389 (3)
C10—C111.386 (3)C32—H320.9500
C10—H100.9500C33—C341.386 (2)
C11—C121.386 (3)C33—H330.9500
C11—H110.9500C34—H340.9500
C12—C131.395 (2)C35—C361.503 (2)
C12—H120.9500C35—H35A0.9900
C13—H130.9500C35—H35B0.9900
C14—C151.510 (2)C36—H36A0.9900
C14—H14A0.9900C36—H36B0.9900
C14—H14B0.9900C37—C421.392 (2)
C15—H15A0.9900C37—C381.398 (2)
C15—H15B0.9900C38—C391.386 (2)
C16—C171.387 (2)C38—H380.9500
C16—C211.400 (2)C39—C401.388 (2)
C17—C181.399 (2)C39—H390.9500
C17—H170.9500C40—C411.384 (2)
C18—C191.381 (3)C40—H400.9500
C18—H180.9500C41—C421.392 (2)
C19—C201.388 (3)C41—H410.9500
C19—H190.9500C42—H420.9500
C14—O1—C7117.95 (12)C16—C21—H21119.6
C35—O2—C28116.86 (12)C23—C22—C27118.35 (16)
C6—C1—C2118.05 (16)C23—C22—C28123.83 (15)
C6—C1—C7119.94 (14)C27—C22—C28117.53 (14)
C2—C1—C7121.71 (15)C22—C23—C24120.60 (17)
C3—C2—C1120.95 (16)C22—C23—H23119.7
C3—C2—H2119.5C24—C23—H23119.7
C1—C2—H2119.5C25—C24—C23120.31 (18)
C4—C3—C2120.47 (17)C25—C24—H24119.8
C4—C3—H3119.8C23—C24—H24119.8
C2—C3—H3119.8C24—C25—C26119.61 (17)
C3—C4—C5119.23 (17)C24—C25—H25120.2
C3—C4—H4120.4C26—C25—H25120.2
C5—C4—H4120.4C27—C26—C25120.13 (18)
C4—C5—C6120.36 (17)C27—C26—H26119.9
C4—C5—H5119.8C25—C26—H26119.9
C6—C5—H5119.8C26—C27—C22120.99 (17)
C5—C6—C1120.92 (16)C26—C27—H27119.5
C5—C6—H6119.5C22—C27—H27119.5
C1—C6—H6119.5O2—C28—C22108.83 (12)
O1—C7—C1109.02 (13)O2—C28—C37104.40 (12)
O1—C7—C8104.00 (12)C22—C28—C37111.01 (13)
C1—C7—C8112.74 (13)O2—C28—C29110.48 (13)
O1—C7—C16110.61 (13)C22—C28—C29114.04 (13)
C1—C7—C16112.88 (13)C37—C28—C29107.65 (13)
C8—C7—C16107.23 (13)C30—C29—C34118.49 (15)
C13—C8—C9118.53 (15)C30—C29—C28121.09 (14)
C13—C8—C7121.16 (14)C34—C29—C28120.30 (15)
C9—C8—C7120.27 (14)C29—C30—C31120.70 (16)
C10—C9—C8120.75 (16)C29—C30—H30119.7
C10—C9—H9119.6C31—C30—H30119.7
C8—C9—H9119.6C32—C31—C30120.18 (17)
C11—C10—C9120.30 (16)C32—C31—H31119.9
C11—C10—H10119.8C30—C31—H31119.9
C9—C10—H10119.8C31—C32—C33119.56 (16)
C10—C11—C12119.35 (16)C31—C32—H32120.2
C10—C11—H11120.3C33—C32—H32120.2
C12—C11—H11120.3C34—C33—C32120.36 (16)
C11—C12—C13120.25 (16)C34—C33—H33119.8
C11—C12—H12119.9C32—C33—H33119.8
C13—C12—H12119.9C33—C34—C29120.68 (16)
C8—C13—C12120.80 (16)C33—C34—H34119.7
C8—C13—H13119.6C29—C34—H34119.7
C12—C13—H13119.6O2—C35—C36107.63 (13)
O1—C14—C15107.16 (13)O2—C35—H35A110.2
O1—C14—H14A110.3C36—C35—H35A110.2
C15—C14—H14A110.3O2—C35—H35B110.2
O1—C14—H14B110.3C36—C35—H35B110.2
C15—C14—H14B110.3H35A—C35—H35B108.5
H14A—C14—H14B108.5C35—C36—I2112.77 (11)
C14—C15—I1112.97 (12)C35—C36—H36A109.0
C14—C15—H15A109.0I2—C36—H36A109.0
I1—C15—H15A109.0C35—C36—H36B109.0
C14—C15—H15B109.0I2—C36—H36B109.0
I1—C15—H15B109.0H36A—C36—H36B107.8
H15A—C15—H15B107.8C42—C37—C38118.56 (15)
C17—C16—C21118.45 (15)C42—C37—C28121.26 (14)
C17—C16—C7121.31 (14)C38—C37—C28120.15 (14)
C21—C16—C7120.13 (14)C39—C38—C37120.47 (16)
C16—C17—C18120.71 (16)C39—C38—H38119.8
C16—C17—H17119.6C37—C38—H38119.8
C18—C17—H17119.6C38—C39—C40120.51 (16)
C19—C18—C17120.26 (16)C38—C39—H39119.7
C19—C18—H18119.9C40—C39—H39119.7
C17—C18—H18119.9C41—C40—C39119.47 (16)
C18—C19—C20119.52 (16)C41—C40—H40120.3
C18—C19—H19120.2C39—C40—H40120.3
C20—C19—H19120.2C40—C41—C42120.17 (16)
C21—C20—C19120.29 (17)C40—C41—H41119.9
C21—C20—H20119.9C42—C41—H41119.9
C19—C20—H20119.9C41—C42—C37120.80 (16)
C20—C21—C16120.72 (16)C41—C42—H42119.6
C20—C21—H21119.6C37—C42—H42119.6
C6—C1—C2—C30.2 (3)C27—C22—C23—C240.8 (3)
C7—C1—C2—C3173.91 (16)C28—C22—C23—C24174.58 (16)
C1—C2—C3—C40.5 (3)C22—C23—C24—C250.7 (3)
C2—C3—C4—C50.4 (3)C23—C24—C25—C260.2 (3)
C3—C4—C5—C60.3 (3)C24—C25—C26—C270.1 (3)
C4—C5—C6—C11.0 (3)C25—C26—C27—C220.0 (3)
C2—C1—C6—C50.9 (3)C23—C22—C27—C260.5 (3)
C7—C1—C6—C5174.73 (16)C28—C22—C27—C26174.66 (15)
C14—O1—C7—C150.77 (17)C35—O2—C28—C2246.44 (17)
C14—O1—C7—C8171.25 (13)C35—O2—C28—C37165.03 (13)
C14—O1—C7—C1673.92 (17)C35—O2—C28—C2979.50 (16)
C6—C1—C7—O180.01 (18)C23—C22—C28—O2108.95 (17)
C2—C1—C7—O193.57 (18)C27—C22—C28—O264.84 (18)
C6—C1—C7—C834.9 (2)C23—C22—C28—C37136.69 (16)
C2—C1—C7—C8151.47 (15)C27—C22—C28—C3749.52 (19)
C6—C1—C7—C16156.65 (15)C23—C22—C28—C2914.9 (2)
C2—C1—C7—C1629.8 (2)C27—C22—C28—C29171.32 (14)
O1—C7—C8—C1312.82 (19)O2—C28—C29—C308.2 (2)
C1—C7—C8—C13130.77 (16)C22—C28—C29—C30131.12 (15)
C16—C7—C8—C13104.38 (17)C37—C28—C29—C30105.25 (16)
O1—C7—C8—C9169.74 (14)O2—C28—C29—C34175.75 (14)
C1—C7—C8—C951.8 (2)C22—C28—C29—C3452.8 (2)
C16—C7—C8—C973.05 (18)C37—C28—C29—C3470.83 (18)
C13—C8—C9—C101.5 (3)C34—C29—C30—C311.6 (2)
C7—C8—C9—C10176.04 (15)C28—C29—C30—C31177.75 (15)
C8—C9—C10—C111.2 (3)C29—C30—C31—C321.5 (3)
C9—C10—C11—C120.1 (3)C30—C31—C32—C330.4 (3)
C10—C11—C12—C130.7 (3)C31—C32—C33—C340.6 (3)
C9—C8—C13—C120.6 (2)C32—C33—C34—C290.5 (3)
C7—C8—C13—C12176.84 (15)C30—C29—C34—C330.6 (2)
C11—C12—C13—C80.5 (3)C28—C29—C34—C33176.76 (15)
C7—O1—C14—C15179.79 (13)C28—O2—C35—C36177.23 (13)
O1—C14—C15—I158.47 (15)O2—C35—C36—I263.50 (15)
O1—C7—C16—C1713.9 (2)O2—C28—C37—C4220.69 (19)
C1—C7—C16—C17136.35 (16)C22—C28—C37—C42137.79 (15)
C8—C7—C16—C1798.89 (17)C29—C28—C37—C4296.74 (17)
O1—C7—C16—C21169.95 (14)O2—C28—C37—C38161.21 (14)
C1—C7—C16—C2147.5 (2)C22—C28—C37—C3844.10 (19)
C8—C7—C16—C2177.26 (18)C29—C28—C37—C3881.36 (18)
C21—C16—C17—C181.9 (2)C42—C37—C38—C390.1 (2)
C7—C16—C17—C18178.14 (15)C28—C37—C38—C39178.25 (15)
C16—C17—C18—C192.0 (3)C37—C38—C39—C400.7 (3)
C17—C18—C19—C200.2 (3)C38—C39—C40—C410.3 (3)
C18—C19—C20—C211.7 (3)C39—C40—C41—C420.9 (3)
C19—C20—C21—C161.7 (3)C40—C41—C42—C371.7 (3)
C17—C16—C21—C200.1 (2)C38—C37—C42—C411.3 (2)
C7—C16—C21—C20176.33 (15)C28—C37—C42—C41179.42 (15)
 

Acknowledgements

The authors would like to thank Dr Christoph Wölper for his helpful suggestions. The authors would also like to acknowledge Professor Jens Müller for financial and non-material support, as well as for providing access to laboratories and chemicals. MH would like to thank the funds of the chemical industry (VCI) for their support.

References

First citationBruker (2021). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, D. J., Singh, G. P., Watson, A. J. A. & Fairbank, A. J. (2014). Eur. J. Org. Chem. pp. 4624–4642.  CrossRef Google Scholar
First citationFarràs, P., Teixidor, F., Sillanpää, R. & Viñas, C. (2010). Dalton Trans. 39, 1716–1718.  PubMed Google Scholar
First citationGierszewski, M., Falkowski, M., Sobotta, L., Stolarska, M., Popenda, L., Lijewski, S., Wicher, B., Burdzinski, G., Karolczak, J., Jurga, S., Gdaniec, M., Tykarska, E., Sikorski, M., Mielcarek, J. & Goslinski, T. (2015). J. Photochem. Photobiol. Chem. 307–308, 54–67.  CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGunosewoyo, H., Midzak, A., Gaisina, I. N., Sabath, E., Fedolak, A., Hanania, T., Brunner, D., Papadopoulos, V. & Kozikowski, A. P. J. (2013). J. Med. Chem. 56, 5115–5129.  CrossRef PubMed Google Scholar
First citationHo, O. C., Soundararajan, R., Lu, J., Matteson, D. S., Wang, Z., Chen, X., Wei, M. & Willett, R. D. (1995). Organometallics, 14, 2855–2860.  CrossRef Google Scholar
First citationJakobsmeier, L., Krossing, I., Nöth, H. & Schmidt, M. J. H. (1996). Z. Naturforsch. B, 51, 1117–1126.  CrossRef Google Scholar
First citationKarpus, A., Daran, J.-C., Voitenko, Z. & Manoury, E. (2015). Fr. Ukr. J. Chem. 3, 131–139.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMeguellati, K., Koripelly, G. & Ladame, S. (2010). Angew. Chem. Int. Ed. 49, 2738–2742.  CrossRef Google Scholar
First citationNishio, M. (2011). Phys. Chem. Chem. Phys. 13, 13873–13900.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPruitt, D. G., Baumann, S. M., Place, G. J., Oyeamalu, A. N., Sinn, E. & Jelliss, P. A. (2015). J. Organomet. Chem. 798, 60–69.  CrossRef Google Scholar
First citationReese, C. B. (2005). Org. Biomol. Chem. 3, 3851–3868.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSmits, H. (2006). Studies towards the Total Synthesis of (–)-Kendomycin, PhD Dissertation, Oregon State University, Corvallis, OR.  Google Scholar
First citationStelakatos, G. C., Theodoropoulos, D. M. & Zervas, L. (1959). J. Am. Chem. Soc. 81, 2884–2887.  CrossRef Google Scholar
First citationSureshan, K. M., Shashidhar, M. S. & Varma, A. J. J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2298–2302.  CrossRef Google Scholar
First citationWagner, J., von Matt, P., Sedrani, R., Albert, R., Cooke, N., Ehrhardt, C., Geiser, M., Rummel, G., Stark, W., Strauss, A., Cowan-Jacob, S. W., Beerli, C., Weckbecker, G., Evenou, J.-P., Zenke, G. & Cottens, S. J. (2009). J. Med. Chem. 52, 6193–6196.  CrossRef PubMed Google Scholar
First citationWang, X., Chen, Z., Yin, J. & Liu, S. H. (2022). Chin. Chem. Lett. 33, 2522–2526.  CrossRef Google Scholar
First citationWang, X.-Y., Hu, Y.-X., Yang, X.-F., Yin, J., Chen, Z. & Liu, S. H. (2019). Org. Lett. 21, 9945–9949.  CrossRef PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X., Kakde, B. N., Guo, R., Yadav, S., Gu, Y. & Li, A. (2019). Angew. Chem. Int. Ed. 58, 6053–6058.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds