

research communications
H-pyran-3-carboxylate
and Hirshfeld surface analyses, intermolecular interaction energies and energy frameworks of methyl 6-amino-5-cyano-2-(2-methoxy-2-oxoethyl)-4-(4-nitrophenyl)-4aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, eFaculty of Physics, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, fDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia, and gInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St. 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: alebel.nibret@bdu.edu.et
The title compound, C17H15N3O7, contains pyran and phenyl rings, with the pyran ring exhibiting a flattened-boat conformation. In the crystal, intermolecular N—H⋯N hydrogen bonds link the molecules into centrosymmetric dimers, forming R22(12) ring motifs. These dimers are linked through N—H⋯O hydrogen bonds into a three-dimensional architecture. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (29.7%), H⋯H (28.7%), H⋯C/C⋯H (16.0%) and H⋯N/N⋯H (12.9%) interactions. In addition to van der Waals interactions and N—H⋯N and N—H⋯O hydrogen bonds, halogen bonds, tetrel bonds and pnictogen bonds also play an important role in the cohesion of the crystal structure.
Keywords: crystal structure; carboxylate; hydrogen bond.
CCDC reference: 2423124
1. Chemical context
4H-Pyrans, a class of containing multifunctional substituents such as nitro (–NO2), cyano (–CN), amino (–NH2) and ester (–COOR) groups have garnered significant interest due to their versatile chemical reactivities and wide range of applications (Akkurt et al., 2018; Askerov et al., 2020
; Khalilov, 2021
). The 4H-pyran fragment plays a critical role in pharmaceuticals, agrochemicals, material sciences and catalysis (Mahmoudi et al., 2021
; Gurbanov et al., 2021
). The unique combination of electron-withdrawing (e.g. nitro, cyano, ester) and electron-donating (e.g. amino) groups imparts remarkable chemical and biological properties, making these molecules indispensable in modern chemistry (Tas et al., 2023
; Khalilov et al., 2024
). Moreover, the structural characteristics of this class of compounds indicate their potential significance in coordination chemistry. The amino group, pyran ring and the biphenyl structure offer multiple coordination sites, enabling the formation of stable metal complexes (Khalilov et al., 2018a
,b
; Naghiyev et al., 2021a
,b
). Natural products containing 4H-pyran derivatives are widespread, forming the core structure of many bioactive compounds. Notable examples include (e.g. cyanidin, delphinidin), which exhibit antioxidant, anti-inflammatory and photoreactive properties (Karimli et al., 2023
; Rzayev & Khalilov, 2024
). These compounds are found in plants, fruits and marine organisms, contributing to diverse biological activities such as antimicrobial, anticancer and cardiovascular benefits (Naghiyev et al., 2022
; Mamedov et al., 2020
). Herein, we report the synthesis, molecular and crystal structures and Hirshfeld surface analysis of methyl 6-amino-5- cyano-2-(2-methoxy-2-oxoethyl)-4-(4-nitrophenyl)-4H-pyran-3-carboxylate. The results provide comprehensive insights into its molecular geometry, hydrogen-bonding interactions and crystal packing, contributing valuable information to the growing database of functionalized carbo- and heterocyclic derivatives.
2. Structural commentary
The title compound contains pyran (A:O1/C2–C6) and phenyl (B: C8–C13), rings (Fig. 1). The pyran ring is in a flattened-boat conformation with puckering parameters (Cremer & Pople, 1975
) QT = 0.1228 (10) Å, θ = 110.83 (47)° and φ = 0.7 (5)° (Fig. 2
). Atom N3 is 0.0312 (9) Å away from the best mean plane of the phenyl ring. The nitro (N3/O2/O3) group is oriented at a dihedral angle of 12.06 (8)°with respect to the phenyl ring B. The O6—C17—O7 [124.87 (10)°] bond angle in the 2-methoxy-2-oxoethyl moiety is larger than the angle O4—C14—O5 [122.65 (9)°] in the carboxylate group. There are no unusual bond lengths or interbond angles in the molecule.
![]() | Figure 1 The title molecule with atom-numbering scheme and 50% probability ellipsoids. |
![]() | Figure 2 Conformation of the pyran ring (O1/C2–C6). |
3. Supramolecular features
In the crystal, N—H⋯N hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers,forming R22(12) ring motifs (Fig. 3
). These dimers are linked through N—H⋯O hydrogen bonds into a three-dimensional architecture (Fig. 3
). The distance between the N and O atoms may be slightly longer than the sum of the van der Waals radii of the atoms if the chemically involved atoms interact electrostatically. In addition, dispersion has an important role in every interaction. In this case, the nitro oxygen interacts above the plane of the –NH2 group. These are N—(π hole)⋯O contacts under the category of pnictogen bonding (Varadwaj et al., 2022
). The O3⋯N1, O3⋯H1B and O2⋯H16A contacts are 3.1495 (13), 3.379 (13) and 2.618 (15) Å, respectively. Tetrel bonding (Varadwaj et al., 2023
) also occurs, involving the nucleophilic oxygen and electrophilic carbon of the carbonyl group [O2⋯C17 = 3.1242 (13), O3⋯C18 = 3.1325 (15) Å. These involve the Burgi–Dunitz trajectory wherein the angular approach of the towards an electrophilic centre is probed (Rodríguez et al., 2023
). The Burgi–Dunitz angle herein is 111°. These interactions are depicted in Fig. 4
. Thus, in addition to N—H⋯N and N—H⋯O hydrogen bonds, halogen bonds, tetrel bonds and pnictogen bonds also play an important role in the cohesion of the Neither π–π nor C—H⋯π(ring) interactions are observed.
|
![]() | Figure 3 A partial packing diagram. Intermolecular N—H⋯O and N—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in these interactions have been omitted for clarity. |
![]() | Figure 4 A partial packing diagram showing the halogen, tetrel and pnictogen bonds as dashed lines, where the O, N and C atoms are shown in red, light magenta and blue, respectively, while the H atoms are colourless. H atoms not involved in these interactions have been omitted for clarity. |
4. Hirshfeld surface analysis
In order to visualize the intermolecular interactions in the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009
) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021
). In the HS plotted over dnorm (Fig. 5
), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016
). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008
; Jayatilaka et al., 2005
) as shown in Fig. 6
. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index surface can be used to identify characteristic packing modes, in particular, planar stacking arrangements and the presence of aromatic stacking interactions such as C—H⋯π and π–π interactions. C—H⋯π interactions are seen as red p-holes, which are related to the electron ring interactions between the CH groups and the centroids of the aromatic rings of neighbouring molecules while π–π interactions are indicated by the presence of adjacent red and blue triangles. Fig. 7
clearly suggests that there are no C—H⋯π or π–π interactions present.
![]() | Figure 5 View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm. |
![]() | Figure 6 View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively. |
![]() | Figure 7 Hirshfeld surface of the title compound plotted over shape-index. |
The overall two-dimensional fingerprint plot, Fig. 8a, and those delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, O ⋯ O, C⋯O/O⋯C, N⋯O/O⋯N, C⋯C and C⋯C/N⋯C (McKinnon et al., 2007
) are illustrated in Fig. 8
b–j, respectively, together with their relative contributions to the Hirshfeld surface. The most important interaction is H⋯O/O⋯H (Table 2
) contributing 29.7% to the overall crystal packing, which is shown in Fig. 8
b with the pair of spikes at de + di = 2.00 Å. The H⋯H contacts, contributing 28.7% to the overall crystal packing, are represented in Fig. 8
c as the widely scattered points of high density due to the large hydrogen content of the molecule with the tip at de = di = 1.12 Å. In the absence of C—H⋯π interactions, the characteristic wings of the H⋯C/C⋯H contacts, contributing 16.0% to the overall crystal packing, are shown in Fig. 8
d with the tips at de + di = 2.54 Å. The symmetrical pair of spikes of the H⋯N/N⋯H contacts (Fig. 8
e; 12.9% contribution to the HS) have the tips at de + di = 2.06 Å. The O⋯O contacts (Fig. 8
f) contribute 4.6% to the HS, and they are seen at de = di = 1.54 Å. The C⋯O/O⋯C (Fig. 8
g) and N⋯O/O⋯N (Fig. 8
h) contacts contribute 4.5% and 2.2%, respectively, to the HS with de + di = 2.96 Å and 3.16 Å, respectively. Finally, the C⋯C (Fig. 8
i) and C⋯N/N⋯C (Fig. 8
j) contacts with 0.6% and 0.4% contributions to the HS have very low density of points.
|
![]() | Figure 8 The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and those delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) O⋯O, (g) C⋯O/O⋯C, (h) N⋯O/O⋯N, (i) C⋯C and (j) C⋯C/N⋯C interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
The nearest neighbour coordination environment of a molecule can be determined from the colour patches on the HS based on how close to other molecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H and H⋯ N/N⋯H interactions inFig. 9a–c, respectively.
![]() | Figure 9 The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯C/C⋯H and (d) H⋯N/N⋯H interactions. |
The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯H, H⋯ C/C⋯H and H⋯N/N⋯H interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015).
5. Crystal voids
The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the molecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. For checking the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the et al., 2011). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole where the void surface meets the boundary of the and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 10
a,b) and the percentage of free space in the are calculated as 170.52 Å3 and 10.20%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.
![]() | Figure 10 Graphical views of voids in the crystal packing of the title compound (a) along the a-axis and (b) along the b-axis directions. |
6. Interaction energy calculations and energy frameworks
The intermolecular interaction energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021), where a cluster of molecules is generated by applying operations with respect to a selected central molecule within the radius of 3.8 Å by default (Turner et al., 2014
). The total intermolecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015
) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017
). Hydrogen-bonding interaction energies (in kJ mol−1) were calculated to be −29.7 (Eele), −7.0 (Epol), −74.4 (Edis), 55.0 (Erep) and −67.3 (Etot) for N1—H1A⋯O4 and −71.4 (Eele), −15.8 (Epol), −13.0 (Edis), 58.0 (Erep) and −62.6 (Etot) for N1—H11B⋯N2. Energy frameworks combine the calculation of intermolecular interaction energies with a graphical representation of their magnitude (Turner et al., 2015
). Energies between molecular pairs are represented as cylinders joining the centroids of pairs of molecules with the cylinder radius proportional to the relative strength of the corresponding interaction energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 11
a,b,c). The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the of the title compound.
![]() | Figure 11 The energy frameworks for a cluster of molecules of the title compound viewed down the a-axis showing the (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol−1 within 2×2×2 unit cells. |
7. Synthesis and crystallization
The title compound was synthesized following a reported procedure (Heber & Stoyanov, 2003). A mixture of 1.0 g (0.0051 mol) of p-nitrobenzylidenemalononitrile and 0.9 g (0.0052 mol) of dimethyl-1.3-acetonedicarboxylate was dissolved in 30 ml of methyl alcohol with stirring for 20 min, 3–4 drops of methylpiperazine were added and stirring was continued. The reaction mixture was kept for 48 h. After that, crystals precipitated as the solvent evaporated. Colorless crystals were obtained from an ethanol/water (3:1 v/v) solution after recrystallization. Yield 75.70%, m.p. 449–450 K. 1H NMR (300 MHz, DMSO-d6, δ). 3.48 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.74 (d, 1H, CH2, J = 17.1 Hz), 3.96 (d, 1H, CH2, J = 17.1 Hz), 4.52 (s, 1H, PhCH), 7.11 (s, 2H, NH2), 7.47 (d, 2H, arom., J = 8.4 Hz), 8.21 (d, 2H, arom., J = 8.4 Hz).
8. Refinement
Crystal data, data collection and structure . The NH hydrogen atoms were located in a difference-Fourier map, and refined freely. The C-bound hydrogen-atom positions were calculated geometrically at distances of 1.00 Å (for methine CH), 0.95 Å (for aromatic CH), 0.99 Å (for CH2) and 0.98 Å (for CH3) and refined using a riding model by applying the constraint Uiso(H) = k Ueq (C), where k = 1.5 for methyl H atoms and k = 1.2 for all other C-bound H atoms.
|
Supporting information
CCDC reference: 2423124
https://doi.org/10.1107/S2056989025001276/dx2064sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001276/dx2064Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025001276/dx2064Isup3.cml
C17H15N3O7 | F(000) = 776 |
Mr = 373.32 | Dx = 1.483 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 10.27958 (5) Å | Cell parameters from 36303 reflections |
b = 11.18770 (6) Å | θ = 4.0–77.7° |
c = 15.09983 (8) Å | µ = 1.00 mm−1 |
β = 105.6759 (5)° | T = 100 K |
V = 1671.96 (2) Å3 | Prism, colourless |
Z = 4 | 0.21 × 0.15 × 0.13 mm |
XtaLAB Synergy-i CCD diffractometer | 3505 reflections with I > 2σ(I) |
Radiation source: micro-focus sealed X-ray tube | Rint = 0.024 |
φ and ω scans | θmax = 77.8°, θmin = 4.5° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −13→13 |
Tmin = 0.399, Tmax = 1.000 | k = −14→14 |
43458 measured reflections | l = −19→18 |
3550 independent reflections |
Refinement on F2 | Primary atom site location: difference Fourier map |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: mixed |
wR(F2) = 0.082 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0426P)2 + 0.66P] where P = (Fo2 + 2Fc2)/3 |
3550 reflections | (Δ/σ)max = 0.001 |
254 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.77251 (7) | 0.28311 (6) | 0.73783 (5) | 0.01923 (16) | |
O2 | 0.60222 (8) | 1.02372 (7) | 0.72626 (6) | 0.02412 (17) | |
O3 | 0.41912 (8) | 0.92231 (7) | 0.66787 (6) | 0.02586 (18) | |
O4 | 0.72560 (8) | 0.39316 (7) | 0.45860 (5) | 0.02369 (17) | |
O5 | 0.85282 (7) | 0.55117 (7) | 0.51861 (5) | 0.01883 (16) | |
O6 | 0.47708 (8) | 0.31475 (7) | 0.61457 (6) | 0.02503 (18) | |
O7 | 0.45768 (8) | 0.13799 (7) | 0.54080 (5) | 0.02177 (17) | |
N1 | 0.86641 (9) | 0.29814 (9) | 0.88857 (7) | 0.02135 (19) | |
H1A | 0.8151 (15) | 0.2350 (14) | 0.8908 (10) | 0.028 (4)* | |
H1B | 0.9009 (16) | 0.3401 (14) | 0.9398 (11) | 0.033 (4)* | |
N2 | 1.03545 (10) | 0.58976 (9) | 0.92255 (7) | 0.0275 (2) | |
N3 | 0.54251 (9) | 0.93095 (8) | 0.69545 (6) | 0.01857 (18) | |
C2 | 0.84714 (10) | 0.35325 (9) | 0.80715 (7) | 0.0170 (2) | |
C3 | 0.89769 (10) | 0.46004 (9) | 0.78966 (7) | 0.0160 (2) | |
C4 | 0.86693 (9) | 0.51344 (9) | 0.69395 (6) | 0.01460 (19) | |
H4 | 0.9540 | 0.5385 | 0.6820 | 0.018* | |
C5 | 0.80138 (9) | 0.42006 (9) | 0.62345 (7) | 0.0156 (2) | |
C6 | 0.75493 (10) | 0.31621 (9) | 0.64726 (7) | 0.0170 (2) | |
C7 | 0.97348 (10) | 0.52994 (10) | 0.86393 (7) | 0.0189 (2) | |
C8 | 0.77799 (9) | 0.62376 (9) | 0.68853 (6) | 0.01387 (19) | |
C9 | 0.63820 (10) | 0.61374 (9) | 0.67295 (7) | 0.0169 (2) | |
H9 | 0.5963 | 0.5375 | 0.6612 | 0.020* | |
C10 | 0.56015 (10) | 0.71444 (9) | 0.67456 (7) | 0.0175 (2) | |
H10 | 0.4650 | 0.7082 | 0.6641 | 0.021* | |
C11 | 0.62397 (10) | 0.82428 (9) | 0.69179 (6) | 0.01549 (19) | |
C12 | 0.76225 (10) | 0.83757 (9) | 0.70665 (7) | 0.0172 (2) | |
H12 | 0.8035 | 0.9141 | 0.7179 | 0.021* | |
C13 | 0.83852 (10) | 0.73601 (9) | 0.70462 (7) | 0.0169 (2) | |
H13 | 0.9335 | 0.7430 | 0.7143 | 0.020* | |
C14 | 0.78635 (10) | 0.45024 (9) | 0.52536 (7) | 0.0164 (2) | |
C15 | 0.84512 (11) | 0.58914 (11) | 0.42552 (7) | 0.0219 (2) | |
H15A | 0.8778 | 0.5248 | 0.3931 | 0.033* | |
H15B | 0.9012 | 0.6604 | 0.4274 | 0.033* | |
H15C | 0.7511 | 0.6079 | 0.3932 | 0.033* | |
C16 | 0.67455 (11) | 0.22033 (9) | 0.58768 (7) | 0.0198 (2) | |
H16A | 0.7080 | 0.1409 | 0.6126 | 0.024* | |
H16B | 0.6859 | 0.2267 | 0.5248 | 0.024* | |
C17 | 0.52626 (10) | 0.23216 (9) | 0.58392 (7) | 0.0182 (2) | |
C18 | 0.31474 (11) | 0.13772 (11) | 0.53517 (8) | 0.0258 (2) | |
H18A | 0.2708 | 0.2054 | 0.4976 | 0.039* | |
H18B | 0.3025 | 0.1447 | 0.5971 | 0.039* | |
H18C | 0.2742 | 0.0629 | 0.5070 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0228 (4) | 0.0168 (3) | 0.0193 (4) | −0.0020 (3) | 0.0077 (3) | 0.0004 (3) |
O2 | 0.0298 (4) | 0.0153 (4) | 0.0275 (4) | 0.0010 (3) | 0.0082 (3) | −0.0020 (3) |
O3 | 0.0180 (4) | 0.0233 (4) | 0.0373 (5) | 0.0047 (3) | 0.0092 (3) | 0.0058 (3) |
O4 | 0.0295 (4) | 0.0212 (4) | 0.0180 (4) | 0.0001 (3) | 0.0025 (3) | −0.0042 (3) |
O5 | 0.0197 (4) | 0.0225 (4) | 0.0147 (3) | −0.0020 (3) | 0.0053 (3) | 0.0017 (3) |
O6 | 0.0215 (4) | 0.0221 (4) | 0.0314 (4) | 0.0010 (3) | 0.0070 (3) | −0.0063 (3) |
O7 | 0.0218 (4) | 0.0199 (4) | 0.0220 (4) | −0.0033 (3) | 0.0032 (3) | −0.0035 (3) |
N1 | 0.0228 (4) | 0.0213 (5) | 0.0201 (5) | −0.0002 (4) | 0.0062 (4) | 0.0054 (4) |
N2 | 0.0292 (5) | 0.0317 (5) | 0.0189 (4) | −0.0087 (4) | 0.0016 (4) | 0.0029 (4) |
N3 | 0.0213 (4) | 0.0167 (4) | 0.0188 (4) | 0.0024 (3) | 0.0074 (3) | 0.0033 (3) |
C2 | 0.0141 (4) | 0.0191 (5) | 0.0185 (5) | 0.0036 (4) | 0.0056 (4) | 0.0012 (4) |
C3 | 0.0141 (4) | 0.0176 (5) | 0.0160 (5) | 0.0025 (4) | 0.0036 (4) | 0.0014 (4) |
C4 | 0.0136 (4) | 0.0154 (5) | 0.0151 (4) | −0.0001 (3) | 0.0046 (3) | 0.0002 (3) |
C5 | 0.0145 (4) | 0.0158 (5) | 0.0170 (5) | 0.0023 (3) | 0.0052 (4) | −0.0016 (4) |
C6 | 0.0167 (4) | 0.0172 (5) | 0.0185 (5) | 0.0026 (4) | 0.0072 (4) | −0.0009 (4) |
C7 | 0.0173 (5) | 0.0225 (5) | 0.0169 (5) | 0.0005 (4) | 0.0044 (4) | 0.0056 (4) |
C8 | 0.0155 (4) | 0.0157 (5) | 0.0105 (4) | 0.0002 (3) | 0.0036 (3) | 0.0008 (3) |
C9 | 0.0161 (5) | 0.0155 (5) | 0.0189 (5) | −0.0020 (4) | 0.0041 (4) | 0.0002 (4) |
C10 | 0.0141 (4) | 0.0189 (5) | 0.0191 (5) | −0.0004 (4) | 0.0037 (4) | 0.0017 (4) |
C11 | 0.0183 (5) | 0.0151 (5) | 0.0133 (4) | 0.0026 (4) | 0.0047 (3) | 0.0016 (3) |
C12 | 0.0194 (5) | 0.0151 (5) | 0.0171 (5) | −0.0034 (4) | 0.0047 (4) | −0.0012 (4) |
C13 | 0.0141 (4) | 0.0188 (5) | 0.0175 (5) | −0.0022 (4) | 0.0041 (4) | −0.0006 (4) |
C14 | 0.0154 (4) | 0.0163 (5) | 0.0179 (5) | 0.0040 (4) | 0.0055 (4) | −0.0009 (4) |
C15 | 0.0216 (5) | 0.0294 (6) | 0.0159 (5) | 0.0037 (4) | 0.0068 (4) | 0.0058 (4) |
C16 | 0.0218 (5) | 0.0159 (5) | 0.0240 (5) | −0.0021 (4) | 0.0098 (4) | −0.0038 (4) |
C17 | 0.0218 (5) | 0.0166 (5) | 0.0156 (5) | −0.0010 (4) | 0.0042 (4) | 0.0007 (4) |
C18 | 0.0197 (5) | 0.0261 (6) | 0.0274 (6) | −0.0027 (4) | −0.0006 (4) | −0.0002 (4) |
O1—C2 | 1.3661 (13) | C5—C14 | 1.4860 (14) |
O1—C6 | 1.3807 (12) | C6—C16 | 1.4970 (14) |
O2—N3 | 1.2313 (12) | C8—C13 | 1.3934 (14) |
O3—N3 | 1.2273 (12) | C8—C9 | 1.3965 (13) |
O4—C14 | 1.2139 (13) | C9—C10 | 1.3870 (14) |
O5—C14 | 1.3378 (13) | C9—H9 | 0.9500 |
O5—C15 | 1.4501 (12) | C10—C11 | 1.3842 (14) |
O6—C17 | 1.2042 (13) | C10—H10 | 0.9500 |
O7—C17 | 1.3353 (12) | C11—C12 | 1.3858 (14) |
O7—C18 | 1.4487 (13) | C12—C13 | 1.3855 (14) |
N1—C2 | 1.3413 (14) | C12—H12 | 0.9500 |
N1—H1A | 0.887 (16) | C13—H13 | 0.9500 |
N1—H1B | 0.892 (17) | C15—H15A | 0.9800 |
N2—C7 | 1.1543 (15) | C15—H15B | 0.9800 |
N3—C11 | 1.4674 (13) | C15—H15C | 0.9800 |
C2—C3 | 1.3570 (14) | C16—C17 | 1.5157 (14) |
C3—C7 | 1.4156 (14) | C16—H16A | 0.9900 |
C3—C4 | 1.5162 (13) | C16—H16B | 0.9900 |
C4—C5 | 1.5137 (13) | C18—H18A | 0.9800 |
C4—C8 | 1.5250 (13) | C18—H18B | 0.9800 |
C4—H4 | 1.0000 | C18—H18C | 0.9800 |
C5—C6 | 1.3416 (14) | ||
C17···O2i | 3.1242 (13) | O4···H15C | 2.64 |
C18···O3i | 3.1325 (15) | O5···H4 | 2.41 |
O4···C16 | 2.8924 (13) | H15C···O6iii | 2.47 |
N1···O4ii | 2.9361 (13) | O6···H18A | 2.66 |
O5···C8 | 2.9834 (12) | O6···H18B | 2.58 |
O2···H12 | 2.44 | N2···N1iv | 3.0282 (14) |
H16A···O2i | 2.62 | H1B···N2iv | 2.152 (16) |
O3···H10 | 2.4456 | C7···C13 | 3.3501 (15) |
H10···O4iii | 2.57 | C5···H9 | 2.67 |
O4···H16B | 2.20 | C7···H1B | 2.616 (16) |
H1A···O4ii | 2.112 (16) | C14···H16B | 2.70 |
O4···H15A | 2.54 | H4···H13 | 2.36 |
C2—O1—C6 | 120.07 (8) | C11—C10—H10 | 120.7 |
C14—O5—C15 | 115.20 (8) | C9—C10—H10 | 120.7 |
C17—O7—C18 | 115.07 (8) | C10—C11—C12 | 122.61 (9) |
C2—N1—H1A | 117.3 (10) | C10—C11—N3 | 118.87 (9) |
C2—N1—H1B | 118.5 (10) | C12—C11—N3 | 118.52 (9) |
H1A—N1—H1B | 119.2 (14) | C13—C12—C11 | 118.05 (9) |
O3—N3—O2 | 123.95 (9) | C13—C12—H12 | 121.0 |
O3—N3—C11 | 118.11 (9) | C11—C12—H12 | 121.0 |
O2—N3—C11 | 117.94 (8) | C12—C13—C8 | 120.94 (9) |
N1—C2—C3 | 127.86 (10) | C12—C13—H13 | 119.5 |
N1—C2—O1 | 110.58 (9) | C8—C13—H13 | 119.5 |
C3—C2—O1 | 121.46 (9) | O4—C14—O5 | 122.65 (9) |
C2—C3—C7 | 119.33 (9) | O4—C14—C5 | 126.85 (10) |
C2—C3—C4 | 122.70 (9) | O5—C14—C5 | 110.49 (8) |
C7—C3—C4 | 117.77 (9) | O5—C15—H15A | 109.5 |
C5—C4—C3 | 109.69 (8) | O5—C15—H15B | 109.5 |
C5—C4—C8 | 111.99 (8) | H15A—C15—H15B | 109.5 |
C3—C4—C8 | 109.73 (8) | O5—C15—H15C | 109.5 |
C5—C4—H4 | 108.5 | H15A—C15—H15C | 109.5 |
C3—C4—H4 | 108.5 | H15B—C15—H15C | 109.5 |
C8—C4—H4 | 108.5 | C6—C16—C17 | 110.25 (8) |
C6—C5—C14 | 121.02 (9) | C6—C16—H16A | 109.6 |
C6—C5—C4 | 122.16 (9) | C17—C16—H16A | 109.6 |
C14—C5—C4 | 116.79 (9) | C6—C16—H16B | 109.6 |
C5—C6—O1 | 122.47 (9) | C17—C16—H16B | 109.6 |
C5—C6—C16 | 129.65 (9) | H16A—C16—H16B | 108.1 |
O1—C6—C16 | 107.84 (8) | O6—C17—O7 | 124.87 (10) |
N2—C7—C3 | 177.84 (11) | O6—C17—C16 | 125.10 (9) |
C13—C8—C9 | 119.51 (9) | O7—C17—C16 | 110.03 (8) |
C13—C8—C4 | 119.14 (8) | O7—C18—H18A | 109.5 |
C9—C8—C4 | 121.25 (9) | O7—C18—H18B | 109.5 |
C10—C9—C8 | 120.37 (9) | H18A—C18—H18B | 109.5 |
C10—C9—H9 | 119.8 | O7—C18—H18C | 109.5 |
C8—C9—H9 | 119.8 | H18A—C18—H18C | 109.5 |
C11—C10—C9 | 118.51 (9) | H18B—C18—H18C | 109.5 |
C6—O1—C2—N1 | −172.01 (8) | C4—C8—C9—C10 | 175.54 (9) |
C6—O1—C2—C3 | 4.55 (14) | C8—C9—C10—C11 | 0.07 (15) |
N1—C2—C3—C7 | −4.60 (16) | C9—C10—C11—C12 | 0.57 (15) |
O1—C2—C3—C7 | 179.47 (9) | C9—C10—C11—N3 | −178.79 (9) |
N1—C2—C3—C4 | −179.38 (9) | O3—N3—C11—C10 | −12.19 (14) |
O1—C2—C3—C4 | 4.70 (14) | O2—N3—C11—C10 | 167.63 (9) |
C2—C3—C4—C5 | −12.33 (13) | O3—N3—C11—C12 | 168.42 (9) |
C7—C3—C4—C5 | 172.82 (8) | O2—N3—C11—C12 | −11.75 (13) |
C2—C3—C4—C8 | 111.09 (10) | C10—C11—C12—C13 | −0.46 (15) |
C7—C3—C4—C8 | −63.76 (11) | N3—C11—C12—C13 | 178.90 (9) |
C3—C4—C5—C6 | 12.41 (13) | C11—C12—C13—C8 | −0.29 (15) |
C8—C4—C5—C6 | −109.67 (10) | C9—C8—C13—C12 | 0.91 (15) |
C3—C4—C5—C14 | −169.57 (8) | C4—C8—C13—C12 | −175.50 (9) |
C8—C4—C5—C14 | 68.34 (10) | C15—O5—C14—O4 | 1.14 (13) |
C14—C5—C6—O1 | 177.07 (8) | C15—O5—C14—C5 | 179.93 (8) |
C4—C5—C6—O1 | −5.00 (15) | C6—C5—C14—O4 | 5.60 (16) |
C14—C5—C6—C16 | −5.52 (16) | C4—C5—C14—O4 | −172.44 (9) |
C4—C5—C6—C16 | 172.42 (9) | C6—C5—C14—O5 | −173.13 (9) |
C2—O1—C6—C5 | −4.43 (14) | C4—C5—C14—O5 | 8.83 (12) |
C2—O1—C6—C16 | 177.66 (8) | C5—C6—C16—C17 | −99.61 (12) |
C5—C4—C8—C13 | −144.02 (9) | O1—C6—C16—C17 | 78.09 (10) |
C3—C4—C8—C13 | 93.92 (10) | C18—O7—C17—O6 | −2.19 (15) |
C5—C4—C8—C9 | 39.64 (12) | C18—O7—C17—C16 | 178.38 (8) |
C3—C4—C8—C9 | −82.42 (11) | C6—C16—C17—O6 | 8.59 (15) |
C13—C8—C9—C10 | −0.79 (15) | C6—C16—C17—O7 | −171.99 (8) |
Symmetry codes: (i) x, y−1, z; (ii) x, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O4ii | 0.887 (16) | 2.112 (16) | 2.9362 (12) | 154.1 (13) |
N1—H1B···N2iv | 0.892 (17) | 2.152 (17) | 3.0283 (14) | 167.2 (14) |
Symmetry codes: (ii) x, −y+1/2, z+1/2; (iv) −x+2, −y+1, −z+2. |
Acknowledgements
The authors contributions are as follows. Conceptualizations, IGM and TH; methodology, FNN and ANB; investigation, VNK and IGM; writing (original draft), TH, ANB and IGM; writing (review and editing of the manuscript), TH and IGM; visualization, TH and ANB; funding acquisition, VNK, TH and HMM; resources, TH, VNK and JA; supervision, FNN and TH.
Funding information
This paper was supported by Baku State University and the RUDN University Strategic academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011. Web of Science CSD CrossRef IUCr Journals Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112. Web of Science CSD CrossRef Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Heber, D. & Stoyanov, E. V. (2003). Synthesis, 2, 227–232. Web of Science CrossRef Google Scholar
Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138. CrossRef CAS Web of Science Google Scholar
Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/ Google Scholar
Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723. Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948. Web of Science CSD CrossRef CAS Google Scholar
Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652. Web of Science CSD CrossRef Google Scholar
Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279. Web of Science CSD CrossRef Google Scholar
Mamedov, I., Naghiyev, F. N., Maharramov, A. M., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499. Web of Science CrossRef CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Khrustalev, V. N., Dobrokhotova, E. V., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 568–573. Web of Science CSD CrossRef IUCr Journals Google Scholar
Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Rodríguez, H. A., Bickelhaupt, F. M. & Fernández, I. (2023). ChemPhysChem, 24, e202300379. Web of Science PubMed Google Scholar
Rzayev, R. & Khalilov, A. N. (2024). Chem. Rev. Lett. 7, 479–490. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282. Web of Science CrossRef Google Scholar
Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255. Web of Science CrossRef CAS PubMed Google Scholar
Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813. Web of Science CrossRef CAS Google Scholar
Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738. Web of Science CrossRef CAS Google Scholar
Varadwaj, A., Varadwaj, P. R., Marques, H. M. & Yamashita, K. (2022). Inorganics 10, 149. Web of Science CrossRef Google Scholar
Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm, 25, 1411–1423. Web of Science CrossRef CAS Google Scholar
Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.