research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analyses, inter­molecular inter­action energies and energy frameworks of methyl 6-amino-5-cyano-2-(2-meth­­oxy-2-oxoeth­yl)-4-(4-nitro­phen­yl)-4H-pyran-3-carboxyl­ate

crossmark logo

aDepartment of Chemistry, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, bHacettepe University, Department of Physics, 06800 Beytepe-Ankara, Türkiye, cPeoples' Friendship University of Russia (RUDN University), Miklukho-Maklay St. 6, Moscow 117198, Russian Federation, dN. D. Zelinsky Institute of Organic Chemistry RAS, Leninsky Prosp. 47, Moscow 119991, Russian Federation, eFaculty of Physics, Baku State University, Z. Khalilov Str. 23, Az 1148 Baku, Azerbaijan, fDepartment of Chemistry, Bahir Dar University, PO Box 79, Bahir Dar, Ethiopia, and gInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St. 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: alebel.nibret@bdu.edu.et

Edited by D. Chopra, Indian Institute of Science Education and Research Bhopal, India (Received 13 January 2025; accepted 11 February 2025; online 11 March 2025)

The title compound, C17H15N3O7, contains pyran and phenyl rings, with the pyran ring exhibiting a flattened-boat conformation. In the crystal, inter­molecular N—H⋯N hydrogen bonds link the mol­ecules into centrosymmetric dimers, forming R22(12) ring motifs. These dimers are linked through N—H⋯O hydrogen bonds into a three-dimensional architecture. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H⋯O/O⋯H (29.7%), H⋯H (28.7%), H⋯C/C⋯H (16.0%) and H⋯N/N⋯H (12.9%) inter­actions. In addition to van der Waals inter­actions and N—H⋯N and N—H⋯O hydrogen bonds, halogen bonds, tetrel bonds and pnictogen bonds also play an important role in the cohesion of the crystal structure.

1. Chemical context

4H-Pyrans, a class of heterocyclic compounds containing multifunctional substituents such as nitro (–NO2), cyano (–CN), amino (–NH2) and ester (–COOR) groups have garnered significant inter­est due to their versatile chemical reactivities and wide range of applications (Akkurt et al., 2018[Akkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168-1172.]; Askerov et al., 2020[Askerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007-1011.]; Khalilov, 2021[Khalilov, A. N. (2021). Rev. Roum. Chim. 66, 719-723.]). The 4H-pyran fragment plays a critical role in pharmaceuticals, agrochemicals, material sciences and catalysis (Mahmoudi et al., 2021[Mahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.]; Gurbanov et al., 2021[Gurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.]). The unique combination of electron-withdrawing (e.g. nitro, cyano, ester) and electron-donating (e.g. amino) groups imparts remarkable chemical and biological properties, making these mol­ecules indispensable in modern chemistry (Tas et al., 2023[Tas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.]; Khalilov et al., 2024[Khalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.]). Moreover, the structural characteristics of this class of compounds indicate their potential significance in coordination chemistry. The amino group, pyran ring and the biphenyl structure offer multiple coordination sites, enabling the formation of stable metal complexes (Khalilov et al., 2018a[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019-1020.],b[Khalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947-948.]; Naghiyev et al., 2021a[Naghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195-199.],b[Naghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512-515.]). Natural products containing 4H-pyran derivatives are widespread, forming the core structure of many bioactive compounds. Notable examples include flavonoids (e.g. cyanidin, delphinidin), which exhibit anti­oxidant, anti-inflammatory and photoreactive properties (Karimli et al., 2023[Karimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474-477.]; Rzayev & Khalilov, 2024[Rzayev, R. & Khalilov, A. N. (2024). Chem. Rev. Lett. 7, 479-490.]). These compounds are found in plants, fruits and marine organisms, contributing to diverse biological activities such as anti­microbial, anti­cancer and cardiovascular benefits (Naghiyev et al., 2022[Naghiyev, F. N., Khrustalev, V. N., Dobrokhotova, E. V., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 568-573.]; Mamedov et al., 2020[Mamedov, I., Naghiyev, F. N., Maharramov, A. M., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498-499.]). Herein, we report the synthesis, mol­ecular and crystal structures and Hirshfeld surface analysis of methyl 6-amino-5- cyano-2-(2-meth­oxy-2-oxoeth­yl)-4-(4-nitro­phen­yl)-4H-pyran-3-carboxyl­ate. The results provide comprehensive insights into its mol­ecular geometry, hydrogen-bonding inter­actions and crystal packing, contributing valuable information to the growing database of functionalized carbo- and heterocyclic derivatives.

[Scheme 1]

2. Structural commentary

The title compound contains pyran (A:O1/C2–C6) and phenyl (B: C8–C13), rings (Fig. 1[link]). The pyran ring is in a flattened-boat conformation with puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) QT = 0.1228 (10) Å, θ = 110.83 (47)° and φ = 0.7 (5)° (Fig. 2[link]). Atom N3 is 0.0312 (9) Å away from the best mean plane of the phenyl ring. The nitro (N3/O2/O3) group is oriented at a dihedral angle of 12.06 (8)°with respect to the phenyl ring B. The O6—C17—O7 [124.87 (10)°] bond angle in the 2-meth­oxy-2-oxoethyl moiety is larger than the angle O4—C14—O5 [122.65 (9)°] in the carboxyl­ate group. There are no unusual bond lengths or inter­bond angles in the mol­ecule.

[Figure 1]
Figure 1
The title mol­ecule with atom-numbering scheme and 50% probability ellipsoids.
[Figure 2]
Figure 2
Conformation of the pyran ring (O1/C2–C6).

3. Supra­molecular features

In the crystal, N—H⋯N hydrogen bonds (Table 1[link]) link the mol­ecules into centrosymmetric dimers,forming R22(12) ring motifs (Fig. 3[link]). These dimers are linked through N—H⋯O hydrogen bonds into a three-dimensional architecture (Fig. 3[link]). The distance between the N and O atoms may be slightly longer than the sum of the van der Waals radii of the atoms if the chemically involved atoms inter­act electrostatically. In addition, dispersion has an important role in every inter­action. In this case, the nitro oxygen inter­acts above the plane of the –NH2 group. These are N—(π hole)⋯O contacts under the category of pnictogen bonding (Varadwaj et al., 2022[Varadwaj, A., Varadwaj, P. R., Marques, H. M. & Yamashita, K. (2022). Inorganics 10, 149.]). The O3⋯N1, O3⋯H1B and O2⋯H16A contacts are 3.1495 (13), 3.379 (13) and 2.618 (15) Å, respectively. Tetrel bonding (Varadwaj et al., 2023[Varadwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm, 25, 1411-1423.]) also occurs, involving the nucleophilic oxygen and electrophilic carbon of the carbonyl group [O2⋯C17 = 3.1242 (13), O3⋯C18 = 3.1325 (15) Å. These involve the Burgi–Dunitz trajectory wherein the angular approach of the nucleophile towards an electrophilic centre is probed (Rodríguez et al., 2023[Rodríguez, H. A., Bickelhaupt, F. M. & Fernández, I. (2023). ChemPhysChem, 24, e202300379.]). The Burgi–Dunitz angle herein is 111°. These inter­actions are depicted in Fig. 4[link]. Thus, in addition to N—H⋯N and N—H⋯O hydrogen bonds, halogen bonds, tetrel bonds and pnictogen bonds also play an important role in the cohesion of the crystal structure. Neither ππ nor C—H⋯π(ring) inter­actions are observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4ii 0.887 (16) 2.112 (16) 2.9362 (12) 154.1 (13)
N1—H1B⋯N2iv 0.892 (17) 2.152 (17) 3.0283 (14) 167.2 (14)
Symmetry codes: (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) [-x+2, -y+1, -z+2].
[Figure 3]
Figure 3
A partial packing diagram. Inter­molecular N—H⋯O and N—H⋯N hydrogen bonds are shown as dashed lines. H atoms not involved in these inter­actions have been omitted for clarity.
[Figure 4]
Figure 4
A partial packing diagram showing the halogen, tetrel and pnictogen bonds as dashed lines, where the O, N and C atoms are shown in red, light magenta and blue, respectively, while the H atoms are colourless. H atoms not involved in these inter­actions have been omitted for clarity.

4. Hirshfeld surface analysis

In order to visualize the inter­molecular inter­actions in the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977[Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). In the HS plotted over dnorm (Fig. 5[link]), the white surface indicates contacts with distances equal to the sum of van der Waals radii, and the red and blue colours indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016[Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625-636.]). The bright-red spots indicate their roles as the respective donors and/or acceptors; they also appear as blue and red regions corresponding to positive and negative potentials on the HS mapped over electrostatic potential (Spackman et al., 2008[Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377-388.]; Jayatilaka et al., 2005[Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/]) as shown in Fig. 6[link]. The blue regions indicate the positive electrostatic potential (hydrogen-bond donors), while the red regions indicate the negative electrostatic potential (hydrogen-bond acceptors). The shape-index surface can be used to identify characteristic packing modes, in particular, planar stacking arrangements and the presence of aromatic stacking inter­actions such as C—H⋯π and ππ inter­actions. C—H⋯π inter­actions are seen as red p-holes, which are related to the electron ring inter­actions between the CH groups and the centroids of the aromatic rings of neighbouring mol­ecules while ππ interactions are indicated by the presence of adjacent red and blue triangles. Fig. 7[link] clearly suggests that there are no C—H⋯π or ππ inter­actions present.

[Figure 5]
Figure 5
View of the three-dimensional Hirshfeld surface of the title compound plotted over dnorm.
[Figure 6]
Figure 6
View of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy using the STO-3 G basis set at the Hartree–Fock level of theory. Hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative potentials, respectively.
[Figure 7]
Figure 7
Hirshfeld surface of the title compound plotted over shape-index.

The overall two-dimensional fingerprint plot, Fig. 8[link]a, and those delineated into H⋯O/O⋯H, H⋯H, H⋯C/C⋯H, H⋯N/N⋯H, O ⋯ O, C⋯O/O⋯C, N⋯O/O⋯N, C⋯C and C⋯C/N⋯C (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are illustrated in Fig. 8[link] b–j, respectively, together with their relative contributions to the Hirshfeld surface. The most important inter­action is H⋯O/O⋯H (Table 2[link]) contributing 29.7% to the overall crystal packing, which is shown in Fig. 8[link]b with the pair of spikes at de + di = 2.00 Å. The H⋯H contacts, contributing 28.7% to the overall crystal packing, are represented in Fig. 8[link]c as the widely scattered points of high density due to the large hydrogen content of the mol­ecule with the tip at de = di = 1.12 Å. In the absence of C—H⋯π inter­actions, the characteristic wings of the H⋯C/C⋯H contacts, contributing 16.0% to the overall crystal packing, are shown in Fig. 8[link]d with the tips at de + di = 2.54 Å. The symmetrical pair of spikes of the H⋯N/N⋯H contacts (Fig. 8[link]e; 12.9% contribution to the HS) have the tips at de + di = 2.06 Å. The O⋯O contacts (Fig. 8[link]f) contribute 4.6% to the HS, and they are seen at de = di = 1.54 Å. The C⋯O/O⋯C (Fig. 8[link]g) and N⋯O/O⋯N (Fig. 8[link]h) contacts contribute 4.5% and 2.2%, respectively, to the HS with de + di = 2.96 Å and 3.16 Å, respectively. Finally, the C⋯C (Fig. 8[link]i) and C⋯N/N⋯C (Fig. 8[link]j) contacts with 0.6% and 0.4% contributions to the HS have very low density of points.

Table 2
Selected interatomic distances (Å)

C17⋯O2i 3.1242 (13) O4⋯H15C 2.64
C18⋯O3i 3.1325 (15) O5⋯H4 2.41
O4⋯C16 2.8924 (13) H15C⋯O6iii 2.47
N1⋯O4ii 2.9361 (13) O6⋯H18A 2.66
O5⋯C8 2.9834 (12) O6⋯H18B 2.58
O2⋯H12 2.44 N2⋯N1iv 3.0282 (14)
H16A⋯O2i 2.62 H1B⋯N2iv 2.152 (16)
O3⋯H10 2.4456 C7⋯C13 3.3501 (15)
H10⋯O4iii 2.57 C5⋯H9 2.67
O4⋯H16B 2.20 C7⋯H1B 2.616 (16)
H1A⋯O4ii 2.112 (16) C14⋯H16B 2.70
O4⋯H15A 2.54 H4⋯H13 2.36
Symmetry codes: (i) [x, y-1, z]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+2, -y+1, -z+2].
[Figure 8]
Figure 8
The full two-dimensional fingerprint plots for the title compound, showing (a) all inter­actions, and those delineated into (b) H⋯O/O⋯H, (c) H⋯H, (d) H⋯C/C⋯H, (e) H⋯N/N⋯H, (f) O⋯O, (g) C⋯O/O⋯C, (h) N⋯O/O⋯N, (i) C⋯C and (j) C⋯C/N⋯C inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

The nearest neighbour coordination environment of a mol­ecule can be determined from the colour patches on the HS based on how close to other mol­ecules they are. The Hirshfeld surface representations of contact patches plotted onto the surface are shown for the H⋯O/O⋯H, H⋯H, H⋯C/C⋯H and H⋯ N/N⋯H inter­actions inFig. 9[link]a–c, respectively.

[Figure 9]
Figure 9
The Hirshfeld surface representations of contact patches plotted onto the surface for (a) H⋯O/O⋯H, (b) H⋯H, (c) H⋯C/C⋯H and (d) H⋯N/N⋯H inter­actions.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of H⋯O/O⋯H, H⋯H, H⋯ C/C⋯H and H⋯N/N⋯H inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the major roles in the crystal packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

5. Crystal voids

The strength of the crystal packing is important for determining the response to an applied mechanical force. If the crystal packing results in significant voids, then the mol­ecules are not tightly packed and a small amount of applied external mechanical force may easily break the crystal. For checking the mechanical stability of the crystal, a void analysis was performed by adding up the electron densities of the spherically symmetric atoms contained in the asymmetric unit (Turner et al., 2011[Turner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804-1813.]). The void surface is defined as an isosurface of the procrystal electron density and is calculated for the whole unit cell where the void surface meets the boundary of the unit cell and capping faces are generated to create an enclosed volume. The volume of the crystal voids (Fig. 10[link]a,b) and the percentage of free space in the unit cell are calculated as 170.52 Å3 and 10.20%, respectively. Thus, the crystal packing appears compact and the mechanical stability should be substantial.

[Figure 10]
Figure 10
Graphical views of voids in the crystal packing of the title compound (a) along the a-axis and (b) along the b-axis directions.

6. Inter­action energy calculations and energy frameworks

The inter­molecular inter­action energies were calculated using the CE–B3LYP/6–31G(d,p) energy model available in Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]), where a cluster of mol­ecules is generated by applying crystallographic symmetry operations with respect to a selected central mol­ecule within the radius of 3.8 Å by default (Turner et al., 2014[Turner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249-4255.]). The total inter­molecular energy (Etot) is the sum of the electrostatic (Eele), polarization (Epol), dispersion (Edis) and exchange-repulsion (Erep) energies (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]) with scale factors of 1.057, 0.740, 0.871 and 0.618, respectively (Mackenzie et al., 2017[Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575-587.]). Hydrogen-bonding inter­action energies (in kJ mol−1) were calculated to be −29.7 (Eele), −7.0 (Epol), −74.4 (Edis), 55.0 (Erep) and −67.3 (Etot) for N1—H1A⋯O4 and −71.4 (Eele), −15.8 (Epol), −13.0 (Edis), 58.0 (Erep) and −62.6 (Etot) for N1—H11B⋯N2. Energy frameworks combine the calculation of inter­molecular inter­action energies with a graphical representation of their magnitude (Turner et al., 2015[Turner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735-3738.]). Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules with the cylinder radius proportional to the relative strength of the corresponding inter­action energy. Energy frameworks were constructed for Eele (red cylinders), Edis (green cylinders) and Etot (blue cylinders) (Fig. 11[link]a,b,c). The evaluation of the electrostatic, dispersion and total energy frameworks indicates that the stabilization is dominated by the electrostatic energy contributions in the crystal structure of the title compound.

[Figure 11]
Figure 11
The energy frameworks for a cluster of mol­ecules of the title compound viewed down the a-axis showing the (a) electrostatic energy, (b) dispersion energy and (c) total energy diagrams. The cylindrical radius is proportional to the relative strength of the corresponding energies and they were adjusted to the same scale factor of 80 with cut-off value of 5 kJ mol−1 within 2×2×2 unit cells.

7. Synthesis and crystallization

The title compound was synthesized following a reported procedure (Heber & Stoyanov, 2003[Heber, D. & Stoyanov, E. V. (2003). Synthesis, 2, 227-232.]). A mixture of 1.0 g (0.0051 mol) of p-nitro­benzyl­idenemalono­nitrile and 0.9 g (0.0052 mol) of dimethyl-1.3-acetonedi­carboxyl­ate was dissolved in 30 ml of methyl alcohol with stirring for 20 min, 3–4 drops of methyl­piperazine were added and stirring was continued. The reaction mixture was kept for 48 h. After that, crystals precipitated as the solvent evaporated. Colorless crystals were obtained from an ethanol/water (3:1 v/v) solution after recrystallization. Yield 75.70%, m.p. 449–450 K. 1H NMR (300 MHz, DMSO-d6, δ). 3.48 (s, 3H, OCH3), 3.69 (s, 3H, OCH3), 3.74 (d, 1H, CH2, J = 17.1 Hz), 3.96 (d, 1H, CH2, J = 17.1 Hz), 4.52 (s, 1H, PhCH), 7.11 (s, 2H, NH2), 7.47 (d, 2H, arom., J = 8.4 Hz), 8.21 (d, 2H, arom., J = 8.4 Hz).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH hydrogen atoms were located in a difference-Fourier map, and refined freely. The C-bound hydrogen-atom positions were calculated geometrically at distances of 1.00 Å (for methine CH), 0.95 Å (for aromatic CH), 0.99 Å (for CH2) and 0.98 Å (for CH3) and refined using a riding model by applying the constraint Uiso(H) = k Ueq (C), where k = 1.5 for methyl H atoms and k = 1.2 for all other C-bound H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C17H15N3O7
Mr 373.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 10.27958 (5), 11.18770 (6), 15.09983 (8)
β (°) 105.6759 (5)
V3) 1671.96 (2)
Z 4
Radiation type Cu Kα
μ (mm−1) 1.00
Crystal size (mm) 0.21 × 0.15 × 0.13
 
Data collection
Diffractometer XtaLAB Synergy-i CCD diffractometer
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.399, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 43458, 3550, 3505
Rint 0.024
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.082, 1.05
No. of reflections 3550
No. of parameters 254
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.26
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Methyl 6-amino-5-cyano-2-(2-methoxy-2-oxoethyl)-4-(4-nitrophenyl)-4H-pyran-3-carboxylate top
Crystal data top
C17H15N3O7F(000) = 776
Mr = 373.32Dx = 1.483 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 10.27958 (5) ÅCell parameters from 36303 reflections
b = 11.18770 (6) Åθ = 4.0–77.7°
c = 15.09983 (8) ŵ = 1.00 mm1
β = 105.6759 (5)°T = 100 K
V = 1671.96 (2) Å3Prism, colourless
Z = 40.21 × 0.15 × 0.13 mm
Data collection top
XtaLAB Synergy-i CCD
diffractometer
3505 reflections with I > 2σ(I)
Radiation source: micro-focus sealed X-ray tubeRint = 0.024
φ and ω scansθmax = 77.8°, θmin = 4.5°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1313
Tmin = 0.399, Tmax = 1.000k = 1414
43458 measured reflectionsl = 1918
3550 independent reflections
Refinement top
Refinement on F2Primary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: mixed
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0426P)2 + 0.66P]
where P = (Fo2 + 2Fc2)/3
3550 reflections(Δ/σ)max = 0.001
254 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.77251 (7)0.28311 (6)0.73783 (5)0.01923 (16)
O20.60222 (8)1.02372 (7)0.72626 (6)0.02412 (17)
O30.41912 (8)0.92231 (7)0.66787 (6)0.02586 (18)
O40.72560 (8)0.39316 (7)0.45860 (5)0.02369 (17)
O50.85282 (7)0.55117 (7)0.51861 (5)0.01883 (16)
O60.47708 (8)0.31475 (7)0.61457 (6)0.02503 (18)
O70.45768 (8)0.13799 (7)0.54080 (5)0.02177 (17)
N10.86641 (9)0.29814 (9)0.88857 (7)0.02135 (19)
H1A0.8151 (15)0.2350 (14)0.8908 (10)0.028 (4)*
H1B0.9009 (16)0.3401 (14)0.9398 (11)0.033 (4)*
N21.03545 (10)0.58976 (9)0.92255 (7)0.0275 (2)
N30.54251 (9)0.93095 (8)0.69545 (6)0.01857 (18)
C20.84714 (10)0.35325 (9)0.80715 (7)0.0170 (2)
C30.89769 (10)0.46004 (9)0.78966 (7)0.0160 (2)
C40.86693 (9)0.51344 (9)0.69395 (6)0.01460 (19)
H40.95400.53850.68200.018*
C50.80138 (9)0.42006 (9)0.62345 (7)0.0156 (2)
C60.75493 (10)0.31621 (9)0.64726 (7)0.0170 (2)
C70.97348 (10)0.52994 (10)0.86393 (7)0.0189 (2)
C80.77799 (9)0.62376 (9)0.68853 (6)0.01387 (19)
C90.63820 (10)0.61374 (9)0.67295 (7)0.0169 (2)
H90.59630.53750.66120.020*
C100.56015 (10)0.71444 (9)0.67456 (7)0.0175 (2)
H100.46500.70820.66410.021*
C110.62397 (10)0.82428 (9)0.69179 (6)0.01549 (19)
C120.76225 (10)0.83757 (9)0.70665 (7)0.0172 (2)
H120.80350.91410.71790.021*
C130.83852 (10)0.73601 (9)0.70462 (7)0.0169 (2)
H130.93350.74300.71430.020*
C140.78635 (10)0.45024 (9)0.52536 (7)0.0164 (2)
C150.84512 (11)0.58914 (11)0.42552 (7)0.0219 (2)
H15A0.87780.52480.39310.033*
H15B0.90120.66040.42740.033*
H15C0.75110.60790.39320.033*
C160.67455 (11)0.22033 (9)0.58768 (7)0.0198 (2)
H16A0.70800.14090.61260.024*
H16B0.68590.22670.52480.024*
C170.52626 (10)0.23216 (9)0.58392 (7)0.0182 (2)
C180.31474 (11)0.13772 (11)0.53517 (8)0.0258 (2)
H18A0.27080.20540.49760.039*
H18B0.30250.14470.59710.039*
H18C0.27420.06290.50700.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0228 (4)0.0168 (3)0.0193 (4)0.0020 (3)0.0077 (3)0.0004 (3)
O20.0298 (4)0.0153 (4)0.0275 (4)0.0010 (3)0.0082 (3)0.0020 (3)
O30.0180 (4)0.0233 (4)0.0373 (5)0.0047 (3)0.0092 (3)0.0058 (3)
O40.0295 (4)0.0212 (4)0.0180 (4)0.0001 (3)0.0025 (3)0.0042 (3)
O50.0197 (4)0.0225 (4)0.0147 (3)0.0020 (3)0.0053 (3)0.0017 (3)
O60.0215 (4)0.0221 (4)0.0314 (4)0.0010 (3)0.0070 (3)0.0063 (3)
O70.0218 (4)0.0199 (4)0.0220 (4)0.0033 (3)0.0032 (3)0.0035 (3)
N10.0228 (4)0.0213 (5)0.0201 (5)0.0002 (4)0.0062 (4)0.0054 (4)
N20.0292 (5)0.0317 (5)0.0189 (4)0.0087 (4)0.0016 (4)0.0029 (4)
N30.0213 (4)0.0167 (4)0.0188 (4)0.0024 (3)0.0074 (3)0.0033 (3)
C20.0141 (4)0.0191 (5)0.0185 (5)0.0036 (4)0.0056 (4)0.0012 (4)
C30.0141 (4)0.0176 (5)0.0160 (5)0.0025 (4)0.0036 (4)0.0014 (4)
C40.0136 (4)0.0154 (5)0.0151 (4)0.0001 (3)0.0046 (3)0.0002 (3)
C50.0145 (4)0.0158 (5)0.0170 (5)0.0023 (3)0.0052 (4)0.0016 (4)
C60.0167 (4)0.0172 (5)0.0185 (5)0.0026 (4)0.0072 (4)0.0009 (4)
C70.0173 (5)0.0225 (5)0.0169 (5)0.0005 (4)0.0044 (4)0.0056 (4)
C80.0155 (4)0.0157 (5)0.0105 (4)0.0002 (3)0.0036 (3)0.0008 (3)
C90.0161 (5)0.0155 (5)0.0189 (5)0.0020 (4)0.0041 (4)0.0002 (4)
C100.0141 (4)0.0189 (5)0.0191 (5)0.0004 (4)0.0037 (4)0.0017 (4)
C110.0183 (5)0.0151 (5)0.0133 (4)0.0026 (4)0.0047 (3)0.0016 (3)
C120.0194 (5)0.0151 (5)0.0171 (5)0.0034 (4)0.0047 (4)0.0012 (4)
C130.0141 (4)0.0188 (5)0.0175 (5)0.0022 (4)0.0041 (4)0.0006 (4)
C140.0154 (4)0.0163 (5)0.0179 (5)0.0040 (4)0.0055 (4)0.0009 (4)
C150.0216 (5)0.0294 (6)0.0159 (5)0.0037 (4)0.0068 (4)0.0058 (4)
C160.0218 (5)0.0159 (5)0.0240 (5)0.0021 (4)0.0098 (4)0.0038 (4)
C170.0218 (5)0.0166 (5)0.0156 (5)0.0010 (4)0.0042 (4)0.0007 (4)
C180.0197 (5)0.0261 (6)0.0274 (6)0.0027 (4)0.0006 (4)0.0002 (4)
Geometric parameters (Å, º) top
O1—C21.3661 (13)C5—C141.4860 (14)
O1—C61.3807 (12)C6—C161.4970 (14)
O2—N31.2313 (12)C8—C131.3934 (14)
O3—N31.2273 (12)C8—C91.3965 (13)
O4—C141.2139 (13)C9—C101.3870 (14)
O5—C141.3378 (13)C9—H90.9500
O5—C151.4501 (12)C10—C111.3842 (14)
O6—C171.2042 (13)C10—H100.9500
O7—C171.3353 (12)C11—C121.3858 (14)
O7—C181.4487 (13)C12—C131.3855 (14)
N1—C21.3413 (14)C12—H120.9500
N1—H1A0.887 (16)C13—H130.9500
N1—H1B0.892 (17)C15—H15A0.9800
N2—C71.1543 (15)C15—H15B0.9800
N3—C111.4674 (13)C15—H15C0.9800
C2—C31.3570 (14)C16—C171.5157 (14)
C3—C71.4156 (14)C16—H16A0.9900
C3—C41.5162 (13)C16—H16B0.9900
C4—C51.5137 (13)C18—H18A0.9800
C4—C81.5250 (13)C18—H18B0.9800
C4—H41.0000C18—H18C0.9800
C5—C61.3416 (14)
C17···O2i3.1242 (13)O4···H15C2.64
C18···O3i3.1325 (15)O5···H42.41
O4···C162.8924 (13)H15C···O6iii2.47
N1···O4ii2.9361 (13)O6···H18A2.66
O5···C82.9834 (12)O6···H18B2.58
O2···H122.44N2···N1iv3.0282 (14)
H16A···O2i2.62H1B···N2iv2.152 (16)
O3···H102.4456C7···C133.3501 (15)
H10···O4iii2.57C5···H92.67
O4···H16B2.20C7···H1B2.616 (16)
H1A···O4ii2.112 (16)C14···H16B2.70
O4···H15A2.54H4···H132.36
C2—O1—C6120.07 (8)C11—C10—H10120.7
C14—O5—C15115.20 (8)C9—C10—H10120.7
C17—O7—C18115.07 (8)C10—C11—C12122.61 (9)
C2—N1—H1A117.3 (10)C10—C11—N3118.87 (9)
C2—N1—H1B118.5 (10)C12—C11—N3118.52 (9)
H1A—N1—H1B119.2 (14)C13—C12—C11118.05 (9)
O3—N3—O2123.95 (9)C13—C12—H12121.0
O3—N3—C11118.11 (9)C11—C12—H12121.0
O2—N3—C11117.94 (8)C12—C13—C8120.94 (9)
N1—C2—C3127.86 (10)C12—C13—H13119.5
N1—C2—O1110.58 (9)C8—C13—H13119.5
C3—C2—O1121.46 (9)O4—C14—O5122.65 (9)
C2—C3—C7119.33 (9)O4—C14—C5126.85 (10)
C2—C3—C4122.70 (9)O5—C14—C5110.49 (8)
C7—C3—C4117.77 (9)O5—C15—H15A109.5
C5—C4—C3109.69 (8)O5—C15—H15B109.5
C5—C4—C8111.99 (8)H15A—C15—H15B109.5
C3—C4—C8109.73 (8)O5—C15—H15C109.5
C5—C4—H4108.5H15A—C15—H15C109.5
C3—C4—H4108.5H15B—C15—H15C109.5
C8—C4—H4108.5C6—C16—C17110.25 (8)
C6—C5—C14121.02 (9)C6—C16—H16A109.6
C6—C5—C4122.16 (9)C17—C16—H16A109.6
C14—C5—C4116.79 (9)C6—C16—H16B109.6
C5—C6—O1122.47 (9)C17—C16—H16B109.6
C5—C6—C16129.65 (9)H16A—C16—H16B108.1
O1—C6—C16107.84 (8)O6—C17—O7124.87 (10)
N2—C7—C3177.84 (11)O6—C17—C16125.10 (9)
C13—C8—C9119.51 (9)O7—C17—C16110.03 (8)
C13—C8—C4119.14 (8)O7—C18—H18A109.5
C9—C8—C4121.25 (9)O7—C18—H18B109.5
C10—C9—C8120.37 (9)H18A—C18—H18B109.5
C10—C9—H9119.8O7—C18—H18C109.5
C8—C9—H9119.8H18A—C18—H18C109.5
C11—C10—C9118.51 (9)H18B—C18—H18C109.5
C6—O1—C2—N1172.01 (8)C4—C8—C9—C10175.54 (9)
C6—O1—C2—C34.55 (14)C8—C9—C10—C110.07 (15)
N1—C2—C3—C74.60 (16)C9—C10—C11—C120.57 (15)
O1—C2—C3—C7179.47 (9)C9—C10—C11—N3178.79 (9)
N1—C2—C3—C4179.38 (9)O3—N3—C11—C1012.19 (14)
O1—C2—C3—C44.70 (14)O2—N3—C11—C10167.63 (9)
C2—C3—C4—C512.33 (13)O3—N3—C11—C12168.42 (9)
C7—C3—C4—C5172.82 (8)O2—N3—C11—C1211.75 (13)
C2—C3—C4—C8111.09 (10)C10—C11—C12—C130.46 (15)
C7—C3—C4—C863.76 (11)N3—C11—C12—C13178.90 (9)
C3—C4—C5—C612.41 (13)C11—C12—C13—C80.29 (15)
C8—C4—C5—C6109.67 (10)C9—C8—C13—C120.91 (15)
C3—C4—C5—C14169.57 (8)C4—C8—C13—C12175.50 (9)
C8—C4—C5—C1468.34 (10)C15—O5—C14—O41.14 (13)
C14—C5—C6—O1177.07 (8)C15—O5—C14—C5179.93 (8)
C4—C5—C6—O15.00 (15)C6—C5—C14—O45.60 (16)
C14—C5—C6—C165.52 (16)C4—C5—C14—O4172.44 (9)
C4—C5—C6—C16172.42 (9)C6—C5—C14—O5173.13 (9)
C2—O1—C6—C54.43 (14)C4—C5—C14—O58.83 (12)
C2—O1—C6—C16177.66 (8)C5—C6—C16—C1799.61 (12)
C5—C4—C8—C13144.02 (9)O1—C6—C16—C1778.09 (10)
C3—C4—C8—C1393.92 (10)C18—O7—C17—O62.19 (15)
C5—C4—C8—C939.64 (12)C18—O7—C17—C16178.38 (8)
C3—C4—C8—C982.42 (11)C6—C16—C17—O68.59 (15)
C13—C8—C9—C100.79 (15)C6—C16—C17—O7171.99 (8)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+2, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4ii0.887 (16)2.112 (16)2.9362 (12)154.1 (13)
N1—H1B···N2iv0.892 (17)2.152 (17)3.0283 (14)167.2 (14)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iv) x+2, y+1, z+2.
 

Acknowledgements

The authors contributions are as follows. Conceptualizations, IGM and TH; methodology, FNN and ANB; investigation, VNK and IGM; writing (original draft), TH, ANB and IGM; writing (review and editing of the manuscript), TH and IGM; visualization, TH and ANB; funding acquisition, VNK, TH and HMM; resources, TH, VNK and JA; supervision, FNN and TH.

Funding information

This paper was supported by Baku State University and the RUDN University Strategic academic Leadership Program. TH is also grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAkkurt, M., Duruskari, G. S., Toze, F. A. A., Khalilov, A. N. & Huseynova, A. T. (2018). Acta Cryst. E74, 1168–1172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAskerov, R. K., Maharramov, A. M., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A., Osmanov, V. K. & Borisov, A. V. (2020). Acta Cryst. E76, 1007–1011.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGurbanov, A. V., Mertsalov, D. F., Zubkov, F. I., Nadirova, M. A., Nikitina, E. V., Truong, H. H., Grigoriev, M. S., Zaytsev, V. P., Mahmudov, K. T. & Pombeiro, A. J. L. (2021). Crystals, 11, 112.  Web of Science CSD CrossRef Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationHeber, D. & Stoyanov, E. V. (2003). Synthesis, 2, 227–232.  Web of Science CrossRef Google Scholar
First citationHirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129–138.  CrossRef CAS Web of Science Google Scholar
First citationJayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO - A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/  Google Scholar
First citationKarimli, E. G., Khrustalev, V. N., Kurasova, M. N., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2023). Acta Cryst. E79, 474–477.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhalilov, A. N. (2021). Rev. Roum. Chim. 66, 719–723.  Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Maharramov, A. M., Nagiyev, F. N. & Brito, I. (2018a). Z. Kristallogr. New Cryst. Struct. 233, 1019–1020.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Asgarova, A. R., Gurbanov, A. V., Nagiyev, F. N. & Brito, I. (2018b). Z. Kristallogr. New Cryst. Struct. 233, 947–948.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalilov, A. N., Cisterna, J., Cárdenas, A., Tuzun, B., Erkan, S., Gurbanov, A. V. & Brito, I. (2024). J. Mol. Struct. 1313, 138652.  Web of Science CSD CrossRef Google Scholar
First citationMackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587.  Web of Science CrossRef CAS PubMed IUCr Journals Google Scholar
First citationMahmoudi, G., Zangrando, E., Miroslaw, B., Gurbanov, A. V., Babashkina, M. G., Frontera, A. & Safin, D. A. (2021). Inorg. Chim. Acta, 519, 120279.  Web of Science CSD CrossRef Google Scholar
First citationMamedov, I., Naghiyev, F. N., Maharramov, A. M., Uwangue, O., Farewell, A., Sunnerhagen, P. & Erdelyi, M. (2020). Mendeleev Commun. 30, 498–499.  Web of Science CrossRef CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationNaghiyev, F. N., Grishina, M. M., Khrustalev, V. N., Khalilov, A. N., Akkurt, M., Akobirshoeva, A. A. & Mamedov, İ. G. (2021a). Acta Cryst. E77, 195–199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Khrustalev, V. N., Dobrokhotova, E. V., Akkurt, M., Khalilov, A. N., Bhattarai, A. & Mamedov, İ. G. (2022). Acta Cryst. E78, 568–573.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaghiyev, F. N., Tereshina, T. A., Khrustalev, V. N., Akkurt, M., Khalilov, A. N., Akobirshoeva, A. A. & Mamedov, İ. G. (2021b). Acta Cryst. E77, 512–515.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRodríguez, H. A., Bickelhaupt, F. M. & Fernández, I. (2023). ChemPhysChem, 24, e202300379.  Web of Science PubMed Google Scholar
First citationRzayev, R. & Khalilov, A. N. (2024). Chem. Rev. Lett. 7, 479–490.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTas, A., Tüzün, B., Khalilov, A. N., Taslimi, P., Ağbektas, T. & Cakmak, N. K. (2023). J. Mol. Struct. 1273, 134282.  Web of Science CrossRef Google Scholar
First citationTurner, M. J., Grabowsky, S., Jayatilaka, D. & Spackman, M. A. (2014). J. Phys. Chem. Lett. 5, 4249–4255.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTurner, M. J., McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2011). CrystEngComm, 13, 1804–1813.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., Thomas, S. P., Shi, M. W., Jayatilaka, D. & Spackman, M. A. (2015). Chem. Commun. 51, 3735–3738.  Web of Science CrossRef CAS Google Scholar
First citationVaradwaj, A., Varadwaj, P. R., Marques, H. M. & Yamashita, K. (2022). Inorganics 10, 149.  Web of Science CrossRef Google Scholar
First citationVaradwaj, P. R., Varadwaj, A., Marques, H. M. & Yamashita, K. (2023). CrystEngComm, 25, 1411–1423.  Web of Science CrossRef CAS Google Scholar
First citationVenkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta A Mol. Biomol. Spectrosc. 153, 625–636.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds