research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure and Hirshfeld surface analysis of 2-[(2,4-di­methyl­benz­yl)sulfan­yl]pyrimidine-4,6-di­amine

crossmark logo

aNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bTashkent Medical Academy, 2 Farabi St, Tashkent, 100109, Uzbekistan, cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek St 77, Tashkent 100170, Uzbekistan, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru

Edited by J. Ellena, Universidade de Sâo Paulo, Brazil (Received 21 February 2025; accepted 17 March 2025; online 25 March 2025)

The title compound, C13H16N4S (DAMP-DMB), was synthesized through the reaction of 2,4-di­methyl­benzyl chloride with di­amino­pyrimidine-thiol. Single-crystal X-ray diffraction analysis confirmed that the compound crystallizes in the monoclinic crystal system, space group P21/c. The asymmetric unit contains a single mol­ecular entity. Structural examination revealed the presence of a dimeric arrangement consolidated by N—H⋯N hydrogen-bonding inter­actions. Additionally, Hirshfeld surface analysis indicated that H⋯H, N⋯H, C⋯H, and S⋯H contacts account for 98.9% of the total inter­molecular inter­actions to the Hirshfeld surface.

1. Chemical context

Di­amino-substituted pyrimidines are pyrimidine derivatives with important applications in pharmaceuticals and organic synthesis (Tolba et al., 2022[Tolba, M. S., El-Dean, A., Ahmed, M., Hassanien, R., Sayed, M., Zaki, R., Mohamed, S., Zawam, S. & Abdel-Raheem, S. (2022). Curr. Chem. Lett. 11, 121-138.]; Rosowsky et al., 2004[Rosowsky, A., Forsch, R. A., Sibley, C. H., Inderlied, C. B. & Queener, S. F. (2004). J. Med. Chem. 47, 1475-1486.]). These compounds play a crucial role in medicinal chemistry, in particular because of their anti­viral (Hocková et al., 2004[Hocková, D., Holý, A. N., Masojídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197-3202.]), anti­bacterial (Kandeel et al., 1994[Kandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197-205.]), anti­malarial (Neekhara et al., 2006[Neekhara, R., Mishra, B. J. & Narayana, N. H. (2006). Asian J. Chem. 18(2), 1167-1173.]) and anti­microbial activities (Holla et al., 2006[Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040-2047.]). Similarly, a 4,6-di­amino­pyrimidine-based derivative has showed potential anti­viral activity against dengue by targeting the NS2B/NS3 protease (Subasri et al., 2017[Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306-309.]). Some organometallic complexes of di­amino­pyrimidine-thiol with tin and ruthenium exhibit anti­cancer activity (Grześkiewicz et al., 2017[Grześkiewicz, A. M., Owczarzak, A., Kucińska, M., Murias, M. & Kubicki, M. (2017). J. Coord. Chem. 70, 1776-1789.]; Silva et al., 2020[Silva, M. M. D., Camargo, M. S. D., Castelli, S., Grandis, R. A. D., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desiderib, A. & Batista, A. A. (2020). J. Braz. Chem. Soc. 31, 536-549.]). Herein we report the crystal structure and Hirshfeld surface analysis of a newly synthesized organic compound, namely 2-[(2,4-di­methyl­benz­yl)sulfan­yl]pyrimidine-4,6-di­amine (DAMP-DMB).

[Scheme 1]

2. Structural commentary

DAMP-DMB (Fig. 1[link]) crystallizes in the monoclinic crystal system, space group P21/c (14), with a single mol­ecule in the asymmetric unit. The amine groups on the pyrimidine ring are co-planar and the dihedral angle between the pyrimidine and phenyl rings is 63.03 (14)°. The torsion angles for the groups are N1—C4—S1—C5 = −6.7 (3)° and C11—C6—C5—S1 = −104.2 (3)° respectively. DAMP-DMB contains several hydrogen-bond donor and acceptor groups. However, due to the twisted conformation of the di­amino­pyrimidine group, the mol­ecule does not exhibit any intra­molecular hydrogen-bonding or π-stacking inter­actions.

[Figure 1]
Figure 1
The mol­ecular structure of DAMP-DMB, with atomic displacement ellipsoids drawn at the 30% probability level, showing the atom labeling. Hydrogen atoms are represented as small spheres with arbitrary radii.

3. Supra­molecular features

The crystal structure of DAMP-DMB reveals a dimeric association of mol­ecules around the inversion center, where the mol­ecules are connected through moderately strong N4—H4B⋯N2 [H⋯A = 2.19 (3) Å] hydrogen bonds (Fig. 2[link]a, Table 1[link]) (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). In the dimeric association of DAMP-DMB mol­ecules, the ring pattern contains a total of eight atoms, two of them are donors, two are acceptors, hence the graph-set notation is R22 (8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). These dimeric units are further stabilized by N—H⋯π inter­actions, specifically between the amine hydrogen atom of the pyrimidine ring and the π-electron cloud of the benzene ring [N3—H3ACg2, H⋯Cg = 2.89 (4) Å]. Similarly, as observed in the 2D finger print plots (see Section 4), the crystal structure also contains hydrogen-bonding inter­actions specifically, N—H⋯N inter­actions [N4—H4A⋯N1, H⋯A = 2.56 (3) Å]. Furthermore, the crystal structure exhibits inter­molecular H⋯H inter­actions involving the methyl hydrogen and and the hydrogen atom of the methyl­ene spacer. (Fig. 2[link]b). This hierarchical organization, governed by multiple weak inter­molecular inter­actions, including H⋯H, N⋯H, C⋯H, and S⋯H, plays a crucial role in the overall packing and cohesion of the crystal structure.

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C6–C11 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯C1i 0.93 2.82 3.623 (4) 145
N3—H3B⋯N4ii 0.82 (3) 2.54 (3) 3.340 (5) 168 (3)
N4—H4A⋯N1iii 0.87 (3) 2.56 (3) 3.372 (4) 156 (3)
N4—H4A⋯C4iii 0.87 (3) 2.70 (4) 3.540 (4) 164 (3)
N4—H4B⋯N2iv 0.86 (3) 2.19 (3) 3.039 (3) 172 (3)
N3—H3ACg2v 0.85 (4) 2.89 (4) 3.561 (3) 137 (3)
Symmetry codes: (i) [x, y+1, z]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, -y, -z+1]; (v) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 2]
Figure 2
(a) The association between the mol­ecules of DAMP-DMB to form a dimer involving N4—H4B⋯N2 inter­actions and (b) view of the packing of mol­ecules and association of dimeric units along the c axis in the crystal structure of DAMP-DMB.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed and fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) generated using CrystalExplorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to investigate the inter­actions contributing to the cohesion of the crystal structure. The Hirshfeld surface and fingerprint plots are shown in Figs. 3[link] and 4[link]. The presence of red spots on the Hirshfeld surface indicates close N⋯H contacts, which are also reflected in the corresponding 2D fingerprint plots. The mol­ecule predominantly engages in H⋯H, C⋯H, N⋯H, and S⋯H inter­actions, contributing 51.6%, 23.0%, 15.8%, and 8.5%, respectively to the Hirshfeld surface, accounting for 98.9% of the total inter­actions. In contrast, inter­actions such as C⋯C and C⋯N collectively account for only 0.9%, indicating their minimal role in crystal-structure cohesion. The 2D fingerprint plots reveals the presence of distinct hydrogen-bonding spikes corresponding to N—H⋯N inter­actions. The lower right spike at (di, de) = (1.2, 0.8), represents the hydrogen-bond acceptor, while the upper left spike at (di, de) = (0.8, 1.8) corresponds to the hydrogen-bond donor. Similarly, a sharp feature along the diagonal in the lower left region indicates a close H⋯H contact, shorter than 2.4 Å, where di = de ≃ 1.2 Å (Figs. 3[link] and 4[link]).

[Figure 3]
Figure 3
Visualization of the three-dimensional Hirshfeld surfaces for DAMP-DMB.
[Figure 4]
Figure 4
Two-dimensional fingerprint plots of the Hirshfeld surfaces for DAMP-DMB showing the contributions of various hydrogen-bonding inter­actions.

5. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) revealed 32 crystal structures for the di­amino­pyrimidine-thiol (DAMP) fragment; among which, eleven structures are related to organometallic compounds. Out of the eleven structures, two complexes of the di­amino­pyrimidine thiol ligand with triphenyl tin and one with trimethyl tin are reported where the sulfur atom binds monodentately with the metal atom (CEHZIB, Grześkiewicz et al., 2017[Grześkiewicz, A. M., Owczarzak, A., Kucińska, M., Murias, M. & Kubicki, M. (2017). J. Coord. Chem. 70, 1776-1789.]; VUFTAT, VUFTEX, Ioannidou et al., 2013[Ioannidou, A., Czapik, A., Gkizis, P., Perviaz, M., Tzimopoulos, D., Gdaniec, M. & Akrivos, P. D. (2013). Aust. J. Chem. 66, 600-606.]). Similarly, three structures with ruthenium and two with cobalt metal centers are reported where the metal is coordinated bidentately with N and S atoms (FEGQER, Silva et al., 2020[Silva, M. M. D., Camargo, M. S. D., Castelli, S., Grandis, R. A. D., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desiderib, A. & Batista, A. A. (2020). J. Braz. Chem. Soc. 31, 536-549.]; JACCAV, Ribeiro et al., 2020[Ribeiro, G. H., Guedes, A. P., de Oliveira, T. D., de Correia, C. R. B. b, Colina-Vegas, L., Lima, M. A., Nóbrega, J. A., Cominetti, M. R., Rocha, F. V., Ferreira, A. G., Castellano, E. E., Teixeira, F. R. & Batista, A. A. (2020). Inorg. Chem. 59, 15004-15018.]; XOTDAO, da Silva et al., 2019[Silva, M. M. da, de Camargo, M. S., Correa, R. S., Castelli, S., De Grandis, R. A., Takarada, J. E., Varanda, E. A., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desideri, A. & Batista, A. A. (2019). Dalton Trans. 48, 14885-14897.]; TIYJUG01, Yamanari et al., 2002[Yamanari, K., Kida, M., Fuyuhiro, A., Kita, M. & Kaizaki, S. (2002). Inorg. Chim. Acta, 332, 115-122.]; COHBEK, Gioftsidou et al., 2024[Gioftsidou, D. K., Kallitsakis, M. G., Kavaratzi, K., Hatzidimitriou, A. G., Terzidis, M. A., Lykakis, I. N. & Angaridis, P. A. (2024). Dalton Trans. 53, 1469-1481.]). Inter­estingly, one crystal structure with a Cu metal atom is reported where the di­amino­pyrimidine thiol derivative binds with the metal atom in a bidentate fashion through the nitro­gen atoms (DEDRAI, Moyaert et al., 2017[Moyaert, T. E., Paul, C., Chen, W., Sarjeant, A. A. & Dawe, L. N. (2017). Acta Cryst. E73, 1534-1538.]). Two structures of a di­amino­pyrimidine thiol derivative containing zinc are also deposited (TAGBUY, Romero et al., 1990[Romero, M. A., Salas, J. M., López, R., Gutiérrez, M. D., Panneerselvam, K., Chacko, K. K., Aoki, K. & Yamazaki, H. (1990). Inorg. Chim. Acta, 172, 253-258.]; ZIKFII, Salas et al., 1995[Salas, J. M., Romero, M. A. & Faure, R. (1995). Acta Cryst. C51, 2532-2534.]). Similarly, twelve crystal structures of DAMP with amides have been reported. In addition, one crystal structure having two DAMP fragments connected via a bridging methyl­ene (–CH2–) group are reported. There are also structures for methyl and ethyl derivatives directly connected to the thiol group of the DAMP fragment. However, no crystal structures of DAMP derivatives with 2,4-di­methyl­benzyl have been reported.

6. Synthesis and crystallization

A round-bottomed flask equipped with a magnetic stirrer was charged with di­amino­pyrimidine-thiol (50.0 mg, 0.351 mmol) dissolved in a mixture of 1.0 N aqueous NaOH (0.35 mL, 0.35 mmol) and methanol (5.0 mL). The reaction mixture was stirred at room temperature for 1 h and then concentrated in vacuo to afford a tan solid. The resulting solid was dissolved in DMF (5.0 mL), treated with 2,4-di­methyl­benzyl chloride (50.0 µL, 0.35 mmol), and stirred at room temperature for 2 h. The reaction progress was monitored by TLC. Upon completion, the DMF was removed in vacuo, and the residue was partitioned between water (50 mL) and chloro­form (3 × 50 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under vacuum. The residue was further dried at room temperature for 48 h, yielding the product as colorless crystals (90%) (Salieva et al., 2025[Salieva, G., Uktamova, M., Torikai, K. & Kholikov, T. (2025). Molbank, 2025, M1965.]).

1H-NMR (600 MHz, CD3OD) δ: 2.23 (s, 3H, CH3), 2.30 (s, 3H, CH3), 4.27 (s, 2H, S-CH2) 5.29 (s, 1H, CH pyrimidine), 6.88 (d, J = 6 Hz, 1H, Ar), 6.93 (s, 1H, Ar), 7.17 (d, J = 12 Hz, H, CH Ar) 13C NMR (150 MHz, CD3OD) δ: 18.0, 19.7, 32.4, 79.2, 126.3, 129.7, 130.6, 132.3, 136.4, 136.7, 163.8, 169.6. LC-MC (Q-TOF) m/z; [M+H+] calculated C13H17N4S+ = 261.116, found 261.118.

Elemental analysis: calculated; C13H16N4S = 260.1168, C, 59.97; H, 6.19; N, 21.52; S, 12.31%. Found; C13H16N4S = 260.1168, C, 59.8882; H, 6.0750; N, 21.3749; S, 12.3001%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were refined isotropically by a mixture of independent and constrained refinement.

Table 2
Experimental details

Crystal data
Chemical formula C13H16N4S
Mr 260.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 14.482 (3), 9.3850 (19), 10.590 (2)
β (°) 108.07 (3)
V3) 1368.3 (5)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.00
Crystal size (mm) 0.2 × 0.1 × 0.07
 
Data collection
Diffractometer Bruker D8 VENTURE dual wavelength Mo/Cu
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.64, 0.87
No. of measured, independent and observed [I > 2σ(I)] reflections 37911, 2329, 2057
Rint 0.040
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.149, 1.08
No. of reflections 2329
No. of parameters 181
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.57, −0.21
Computer programs: APEX5 and SAINT (Bruker, 2016[Bruker (2016). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

2-[(2,4-Dimethylbenzyl)sulfanyl]pyrimidine-4,6-diamine top
Crystal data top
C13H16N4SF(000) = 552
Mr = 260.36Dx = 1.264 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
a = 14.482 (3) ÅCell parameters from 9926 reflections
b = 9.3850 (19) Åθ = 5.7–66.3°
c = 10.590 (2) ŵ = 2.00 mm1
β = 108.07 (3)°T = 293 K
V = 1368.3 (5) Å3Prism, colourless
Z = 40.2 × 0.1 × 0.07 mm
Data collection top
Bruker D8 VENTURE dual wavelength Mo/Cu
diffractometer
2329 independent reflections
Radiation source: microfocus sealed X-ray tube, INCOATEC IµS2057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.3910 pixels mm-1θmax = 66.6°, θmin = 5.7°
φ and ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1111
Tmin = 0.64, Tmax = 0.87l = 1212
37911 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.068P)2 + 0.8542P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2329 reflectionsΔρmax = 0.57 e Å3
181 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70925 (6)0.22323 (8)0.45344 (7)0.0692 (3)
N20.58768 (15)0.0155 (2)0.4032 (2)0.0564 (5)
N10.66759 (16)0.0540 (2)0.2395 (2)0.0577 (5)
N30.6348 (2)0.0867 (4)0.0539 (3)0.0772 (8)
N40.4784 (2)0.1665 (3)0.3859 (3)0.0711 (7)
C40.64938 (18)0.0803 (3)0.3523 (2)0.0531 (6)
C10.61661 (19)0.0562 (3)0.1686 (2)0.0562 (6)
C20.5520 (2)0.1347 (3)0.2127 (3)0.0598 (7)
H20.5188480.2117650.1642240.072*
C30.53829 (19)0.0950 (3)0.3309 (2)0.0555 (6)
C60.81963 (19)0.4397 (3)0.4079 (3)0.0598 (7)
C70.88069 (19)0.4817 (3)0.5314 (3)0.0623 (7)
C80.8975 (2)0.6268 (4)0.5536 (3)0.0770 (8)
H80.9376650.6573940.6358630.092*
C90.8560 (3)0.7274 (3)0.4561 (4)0.0847 (10)
C100.7976 (2)0.6828 (4)0.3357 (4)0.0923 (11)
H100.7703510.7490110.2692750.111*
C110.7789 (2)0.5421 (4)0.3123 (4)0.0805 (9)
H110.7376510.5134700.2300420.097*
C50.7966 (2)0.2853 (3)0.3734 (3)0.0692 (8)
H5A0.8555520.2289460.4034930.083*
H5B0.7697440.2746250.2778850.083*
C120.9274 (3)0.3764 (4)0.6386 (3)0.0899 (10)
H12A0.9803090.4212580.7047390.135*
H12B0.9514820.2970200.6009290.135*
H12C0.8803920.3433470.6788830.135*
C130.8798 (4)0.8847 (4)0.4839 (6)0.1331 (18)
H13A0.8490160.9392780.4054190.200*
H13B0.9488110.8981220.5089980.200*
H13C0.8563850.9158940.5548110.200*
H3A0.675 (3)0.036 (4)0.030 (3)0.085 (11)*
H3B0.603 (2)0.150 (4)0.007 (3)0.070 (10)*
H4A0.437 (2)0.222 (3)0.332 (3)0.071 (9)*
H4B0.466 (2)0.124 (3)0.450 (3)0.072 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0831 (5)0.0680 (5)0.0734 (5)0.0215 (3)0.0488 (4)0.0164 (3)
N20.0670 (13)0.0534 (12)0.0586 (12)0.0058 (10)0.0338 (10)0.0031 (10)
N10.0677 (13)0.0592 (12)0.0537 (12)0.0022 (10)0.0296 (10)0.0014 (10)
N30.096 (2)0.0867 (19)0.0632 (15)0.0224 (16)0.0454 (15)0.0157 (14)
N40.0889 (18)0.0677 (15)0.0719 (16)0.0251 (14)0.0468 (14)0.0155 (13)
C40.0594 (14)0.0509 (13)0.0554 (14)0.0026 (11)0.0274 (11)0.0025 (11)
C10.0633 (15)0.0597 (15)0.0500 (13)0.0048 (12)0.0240 (11)0.0012 (11)
C20.0680 (16)0.0579 (15)0.0597 (15)0.0052 (12)0.0288 (12)0.0069 (12)
C30.0626 (15)0.0524 (14)0.0581 (14)0.0009 (11)0.0286 (12)0.0027 (11)
C60.0559 (15)0.0639 (16)0.0697 (17)0.0036 (12)0.0345 (13)0.0030 (13)
C70.0552 (15)0.0678 (17)0.0722 (17)0.0032 (12)0.0317 (13)0.0024 (13)
C80.0640 (18)0.083 (2)0.089 (2)0.0123 (15)0.0304 (15)0.0116 (17)
C90.077 (2)0.0590 (18)0.129 (3)0.0018 (15)0.047 (2)0.0057 (19)
C100.067 (2)0.086 (2)0.119 (3)0.0026 (17)0.023 (2)0.031 (2)
C110.0671 (18)0.085 (2)0.089 (2)0.0080 (16)0.0251 (16)0.0186 (18)
C50.0748 (18)0.0703 (18)0.0786 (19)0.0111 (14)0.0473 (15)0.0064 (14)
C120.080 (2)0.111 (3)0.078 (2)0.0021 (19)0.0240 (17)0.020 (2)
C130.129 (4)0.072 (2)0.197 (5)0.006 (2)0.048 (4)0.008 (3)
Geometric parameters (Å, º) top
S1—C41.767 (3)C7—C81.390 (4)
S1—C51.823 (3)C7—C121.500 (4)
N2—C41.326 (3)C8—H80.9300
N2—C31.354 (3)C8—C91.390 (5)
N1—C41.323 (3)C9—C101.359 (5)
N1—C11.354 (3)C9—C131.524 (5)
N3—C11.351 (3)C10—H100.9300
N3—H3A0.85 (4)C10—C111.355 (5)
N3—H3B0.82 (3)C11—H110.9300
N4—C31.362 (3)C5—H5A0.9700
N4—H4A0.87 (3)C5—H5B0.9700
N4—H4B0.86 (3)C12—H12A0.9600
C1—C21.381 (4)C12—H12B0.9600
C2—H20.9300C12—H12C0.9600
C2—C31.379 (4)C13—H13A0.9600
C6—C71.390 (4)C13—H13B0.9600
C6—C111.388 (4)C13—H13C0.9600
C6—C51.505 (4)
C4—S1—C5103.99 (13)C9—C8—H8119.1
C4—N2—C3115.2 (2)C8—C9—C13119.7 (4)
C4—N1—C1114.6 (2)C10—C9—C8119.2 (3)
C1—N3—H3A119 (2)C10—C9—C13121.1 (4)
C1—N3—H3B118 (2)C9—C10—H10119.9
H3A—N3—H3B122 (3)C11—C10—C9120.2 (3)
C3—N4—H4A115 (2)C11—C10—H10119.9
C3—N4—H4B115 (2)C6—C11—H11119.1
H4A—N4—H4B122 (3)C10—C11—C6121.7 (3)
N2—C4—S1111.56 (18)C10—C11—H11119.1
N1—C4—S1119.41 (19)S1—C5—H5A109.8
N1—C4—N2129.0 (2)S1—C5—H5B109.8
N1—C1—C2122.0 (2)C6—C5—S1109.16 (19)
N3—C1—N1115.8 (3)C6—C5—H5A109.8
N3—C1—C2122.1 (3)C6—C5—H5B109.8
C1—C2—H2121.1H5A—C5—H5B108.3
C3—C2—C1117.8 (2)C7—C12—H12A109.5
C3—C2—H2121.1C7—C12—H12B109.5
N2—C3—N4115.5 (2)C7—C12—H12C109.5
N2—C3—C2121.4 (2)H12A—C12—H12B109.5
N4—C3—C2123.0 (3)H12A—C12—H12C109.5
C7—C6—C5122.0 (3)H12B—C12—H12C109.5
C11—C6—C7119.5 (3)C9—C13—H13A109.5
C11—C6—C5118.5 (3)C9—C13—H13B109.5
C6—C7—C8117.7 (3)C9—C13—H13C109.5
C6—C7—C12122.1 (3)H13A—C13—H13B109.5
C8—C7—C12120.2 (3)H13A—C13—H13C109.5
C7—C8—H8119.1H13B—C13—H13C109.5
C7—C8—C9121.8 (3)
N1—C1—C2—C31.8 (4)C7—C6—C5—S176.3 (3)
N3—C1—C2—C3179.9 (3)C7—C8—C9—C100.2 (5)
C4—S1—C5—C6154.6 (2)C7—C8—C9—C13177.8 (3)
C4—N2—C3—N4176.9 (2)C8—C9—C10—C111.1 (5)
C4—N2—C3—C20.4 (4)C9—C10—C11—C61.3 (5)
C4—N1—C1—N3179.1 (3)C11—C6—C7—C80.4 (4)
C4—N1—C1—C20.8 (4)C11—C6—C7—C12179.7 (3)
C1—N1—C4—S1178.90 (18)C11—C6—C5—S1104.2 (3)
C1—N1—C4—N21.1 (4)C5—S1—C4—N2175.2 (2)
C1—C2—C3—N21.2 (4)C5—S1—C4—N16.7 (3)
C1—C2—C3—N4178.3 (3)C5—C6—C7—C8179.9 (2)
C3—N2—C4—S1179.62 (18)C5—C6—C7—C120.2 (4)
C3—N2—C4—N11.7 (4)C5—C6—C11—C10179.0 (3)
C6—C7—C8—C90.6 (4)C12—C7—C8—C9179.5 (3)
C7—C6—C11—C100.5 (5)C13—C9—C10—C11178.8 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C6–C11 ring.
D—H···AD—HH···AD···AD—H···A
C10—H10···C1i0.932.823.623 (4)145
N3—H3B···N4ii0.82 (3)2.54 (3)3.340 (5)168 (3)
N4—H4A···N1iii0.87 (3)2.56 (3)3.372 (4)156 (3)
N4—H4A···C4iii0.87 (3)2.70 (4)3.540 (4)164 (3)
N4—H4B···N2iv0.86 (3)2.19 (3)3.039 (3)172 (3)
N3—H3A···Cg2v0.85 (4)2.89 (4)3.561 (3)137 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y+1/2, z1/2.
 

Acknowledgements

BT is grateful to the Frank H. Allen Inter­national Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD)

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGioftsidou, D. K., Kallitsakis, M. G., Kavaratzi, K., Hatzidimitriou, A. G., Terzidis, M. A., Lykakis, I. N. & Angaridis, P. A. (2024). Dalton Trans. 53, 1469–1481.  CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGrześkiewicz, A. M., Owczarzak, A., Kucińska, M., Murias, M. & Kubicki, M. (2017). J. Coord. Chem. 70, 1776–1789.  Google Scholar
First citationHocková, D., Holý, A. N., Masojídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197–3202.  Web of Science PubMed Google Scholar
First citationHolla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIoannidou, A., Czapik, A., Gkizis, P., Perviaz, M., Tzimopoulos, D., Gdaniec, M. & Akrivos, P. D. (2013). Aust. J. Chem. 66, 600–606.  CAS Google Scholar
First citationKandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197–205.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMoyaert, T. E., Paul, C., Chen, W., Sarjeant, A. A. & Dawe, L. N. (2017). Acta Cryst. E73, 1534–1538.  CSD CrossRef IUCr Journals Google Scholar
First citationNeekhara, R., Mishra, B. J. & Narayana, N. H. (2006). Asian J. Chem. 18(2), 1167–1173.  Google Scholar
First citationRibeiro, G. H., Guedes, A. P., de Oliveira, T. D., de Correia, C. R. B. b, Colina-Vegas, L., Lima, M. A., Nóbrega, J. A., Cominetti, M. R., Rocha, F. V., Ferreira, A. G., Castellano, E. E., Teixeira, F. R. & Batista, A. A. (2020). Inorg. Chem. 59, 15004–15018.  CAS PubMed Google Scholar
First citationRomero, M. A., Salas, J. M., López, R., Gutiérrez, M. D., Panneerselvam, K., Chacko, K. K., Aoki, K. & Yamazaki, H. (1990). Inorg. Chim. Acta, 172, 253–258.  CSD CrossRef CAS Web of Science Google Scholar
First citationRosowsky, A., Forsch, R. A., Sibley, C. H., Inderlied, C. B. & Queener, S. F. (2004). J. Med. Chem. 47, 1475–1486.  PubMed CAS Google Scholar
First citationSalas, J. M., Romero, M. A. & Faure, R. (1995). Acta Cryst. C51, 2532–2534.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSalieva, G., Uktamova, M., Torikai, K. & Kholikov, T. (2025). Molbank, 2025, M1965.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSilva, M. M. da, de Camargo, M. S., Correa, R. S., Castelli, S., De Grandis, R. A., Takarada, J. E., Varanda, E. A., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desideri, A. & Batista, A. A. (2019). Dalton Trans. 48, 14885–14897.  PubMed Google Scholar
First citationSilva, M. M. D., Camargo, M. S. D., Castelli, S., Grandis, R. A. D., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desiderib, A. & Batista, A. A. (2020). J. Braz. Chem. Soc. 31, 536–549.  Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationSubasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306–309.  CSD CrossRef IUCr Journals Google Scholar
First citationTolba, M. S., El-Dean, A., Ahmed, M., Hassanien, R., Sayed, M., Zaki, R., Mohamed, S., Zawam, S. & Abdel-Raheem, S. (2022). Curr. Chem. Lett. 11, 121–138.  Google Scholar
First citationYamanari, K., Kida, M., Fuyuhiro, A., Kita, M. & Kaizaki, S. (2002). Inorg. Chim. Acta, 332, 115–122.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds