

research communications
Synthesis,
and Hirshfeld surface analysis of 2-[(2,4-dimethylbenzyl)sulfanyl]pyrimidine-4,6-diamineaNational University of Uzbekistan named after Mirzo Ulugbek, 4 University St, Tashkent, 100174, Uzbekistan, bTashkent Medical Academy, 2 Farabi St, Tashkent, 100109, Uzbekistan, cS. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Mirzo Ulugbek St 77, Tashkent 100170, Uzbekistan, and dInstitute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, M. Ulugbek St, 83, Tashkent, 100125, Uzbekistan
*Correspondence e-mail: torambetov_b@mail.ru
The title compound, C13H16N4S (DAMP-DMB), was synthesized through the reaction of 2,4-dimethylbenzyl chloride with diaminopyrimidine-thiol. Single-crystal X-ray confirmed that the compound crystallizes in the monoclinic P21/c. The contains a single molecular entity. Structural examination revealed the presence of a dimeric arrangement consolidated by N—H⋯N hydrogen-bonding interactions. Additionally, Hirshfeld surface analysis indicated that H⋯H, N⋯H, C⋯H, and S⋯H contacts account for 98.9% of the total intermolecular interactions to the Hirshfeld surface.
Keywords: crystal structure; molecular structure; diaminopyrimidine-thiol; 2,4-dimethylbenzyl; Hirshfeld surface analysis.
CCDC reference: 2431935
1. Chemical context
Diamino-substituted pyrimidines are pyrimidine derivatives with important applications in pharmaceuticals and organic synthesis (Tolba et al., 2022; Rosowsky et al., 2004
). These compounds play a crucial role in medicinal chemistry, in particular because of their antiviral (Hocková et al., 2004
), antibacterial (Kandeel et al., 1994
), antimalarial (Neekhara et al., 2006
) and antimicrobial activities (Holla et al., 2006
). Similarly, a 4,6-diaminopyrimidine-based derivative has showed potential antiviral activity against dengue by targeting the NS2B/NS3 protease (Subasri et al., 2017
). Some organometallic complexes of diaminopyrimidine-thiol with tin and ruthenium exhibit anticancer activity (Grześkiewicz et al., 2017
; Silva et al., 2020
). Herein we report the and Hirshfeld surface analysis of a newly synthesized organic compound, namely 2-[(2,4-dimethylbenzyl)sulfanyl]pyrimidine-4,6-diamine (DAMP-DMB).
2. Structural commentary
DAMP-DMB (Fig. 1) crystallizes in the monoclinic P21/c (14), with a single molecule in the The amine groups on the pyrimidine ring are co-planar and the dihedral angle between the pyrimidine and phenyl rings is 63.03 (14)°. The torsion angles for the groups are N1—C4—S1—C5 = −6.7 (3)° and C11—C6—C5—S1 = −104.2 (3)° respectively. DAMP-DMB contains several hydrogen-bond donor and acceptor groups. However, due to the twisted conformation of the diaminopyrimidine group, the molecule does not exhibit any intramolecular hydrogen-bonding or π-stacking interactions.
![]() | Figure 1 The molecular structure of DAMP-DMB, with atomic displacement ellipsoids drawn at the 30% probability level, showing the atom labeling. Hydrogen atoms are represented as small spheres with arbitrary radii. |
3. Supramolecular features
The B⋯N2 [H⋯A = 2.19 (3) Å] hydrogen bonds (Fig. 2a, Table 1
) (Steiner, 2002
). In the dimeric association of DAMP-DMB molecules, the ring pattern contains a total of eight atoms, two of them are donors, two are acceptors, hence the graph-set notation is R22 (8) (Bernstein et al., 1995
). These dimeric units are further stabilized by N—H⋯π interactions, specifically between the amine hydrogen atom of the pyrimidine ring and the π-electron cloud of the benzene ring [N3—H3A⋯Cg2, H⋯Cg = 2.89 (4) Å]. Similarly, as observed in the 2D finger print plots (see Section 4), the also contains hydrogen-bonding interactions specifically, N—H⋯N interactions [N4—H4A⋯N1, H⋯A = 2.56 (3) Å]. Furthermore, the exhibits intermolecular H⋯H interactions involving the methyl hydrogen and and the hydrogen atom of the methylene spacer. (Fig. 2
b). This hierarchical organization, governed by multiple weak intermolecular interactions, including H⋯H, N⋯H, C⋯H, and S⋯H, plays a crucial role in the overall packing and cohesion of the crystal structure.
|
![]() | Figure 2 (a) The association between the molecules of DAMP-DMB to form a dimer involving N4—H4B⋯N2 interactions and (b) view of the packing of molecules and association of dimeric units along the c axis in the of DAMP-DMB. |
4. Hirshfeld surface analysis
A Hirshfeld surface analysis (Spackman & Jayatilaka, 2009) was performed and fingerprint plots (Spackman & McKinnon, 2002
) generated using CrystalExplorer 21.5 (Spackman et al., 2021
) to investigate the interactions contributing to the cohesion of the The Hirshfeld surface and fingerprint plots are shown in Figs. 3
and 4
. The presence of red spots on the Hirshfeld surface indicates close N⋯H contacts, which are also reflected in the corresponding 2D fingerprint plots. The molecule predominantly engages in H⋯H, C⋯H, N⋯H, and S⋯H interactions, contributing 51.6%, 23.0%, 15.8%, and 8.5%, respectively to the Hirshfeld surface, accounting for 98.9% of the total interactions. In contrast, interactions such as C⋯C and C⋯N collectively account for only 0.9%, indicating their minimal role in crystal-structure cohesion. The 2D fingerprint plots reveals the presence of distinct hydrogen-bonding spikes corresponding to N—H⋯N interactions. The lower right spike at (di, de) = (1.2, 0.8), represents the hydrogen-bond acceptor, while the upper left spike at (di, de) = (0.8, 1.8) corresponds to the hydrogen-bond donor. Similarly, a sharp feature along the diagonal in the lower left region indicates a close H⋯H contact, shorter than 2.4 Å, where di = de ≃ 1.2 Å (Figs. 3
and 4
).
![]() | Figure 3 Visualization of the three-dimensional Hirshfeld surfaces for DAMP-DMB. |
![]() | Figure 4 Two-dimensional fingerprint plots of the Hirshfeld surfaces for DAMP-DMB showing the contributions of various hydrogen-bonding interactions. |
5. Database survey
A survey of the Cambridge Structural Database (CSD, Version 5.45, last updated March 2024; Groom et al., 2016) using ConQuest (Bruno et al., 2002
) revealed 32 crystal structures for the diaminopyrimidine-thiol (DAMP) fragment; among which, eleven structures are related to organometallic compounds. Out of the eleven structures, two complexes of the diaminopyrimidine thiol ligand with triphenyl tin and one with trimethyl tin are reported where the sulfur atom binds monodentately with the metal atom (CEHZIB, Grześkiewicz et al., 2017
; VUFTAT, VUFTEX, Ioannidou et al., 2013
). Similarly, three structures with ruthenium and two with cobalt metal centers are reported where the metal is coordinated bidentately with N and S atoms (FEGQER, Silva et al., 2020
; JACCAV, Ribeiro et al., 2020
; XOTDAO, da Silva et al., 2019
; TIYJUG01, Yamanari et al., 2002
; COHBEK, Gioftsidou et al., 2024
). Interestingly, one with a Cu metal atom is reported where the diaminopyrimidine thiol derivative binds with the metal atom in a bidentate fashion through the nitrogen atoms (DEDRAI, Moyaert et al., 2017
). Two structures of a diaminopyrimidine thiol derivative containing zinc are also deposited (TAGBUY, Romero et al., 1990
; ZIKFII, Salas et al., 1995
). Similarly, twelve crystal structures of DAMP with have been reported. In addition, one having two DAMP fragments connected via a bridging methylene (–CH2–) group are reported. There are also structures for methyl and ethyl derivatives directly connected to the thiol group of the DAMP fragment. However, no crystal structures of DAMP derivatives with 2,4-dimethylbenzyl have been reported.
6. Synthesis and crystallization
A round-bottomed flask equipped with a magnetic stirrer was charged with diaminopyrimidine-thiol (50.0 mg, 0.351 mmol) dissolved in a mixture of 1.0 N aqueous NaOH (0.35 mL, 0.35 mmol) and methanol (5.0 mL). The reaction mixture was stirred at room temperature for 1 h and then concentrated in vacuo to afford a tan solid. The resulting solid was dissolved in DMF (5.0 mL), treated with 2,4-dimethylbenzyl chloride (50.0 µL, 0.35 mmol), and stirred at room temperature for 2 h. The reaction progress was monitored by TLC. Upon completion, the DMF was removed in vacuo, and the residue was partitioned between water (50 mL) and chloroform (3 × 50 mL). The combined organic extracts were dried over Na2SO4, filtered, and concentrated under vacuum. The residue was further dried at room temperature for 48 h, yielding the product as colorless crystals (90%) (Salieva et al., 2025).
1H-NMR (600 MHz, CD3OD) δ: 2.23 (s, 3H, CH3), 2.30 (s, 3H, CH3), 4.27 (s, 2H, S-CH2) 5.29 (s, 1H, CH pyrimidine), 6.88 (d, J = 6 Hz, 1H, Ar), 6.93 (s, 1H, Ar), 7.17 (d, J = 12 Hz, H, CH Ar) 13C NMR (150 MHz, CD3OD) δ: 18.0, 19.7, 32.4, 79.2, 126.3, 129.7, 130.6, 132.3, 136.4, 136.7, 163.8, 169.6. LC-MC (Q-TOF) m/z; [M+H+] calculated C13H17N4S+ = 261.116, found 261.118.
Elemental analysis: calculated; C13H16N4S = 260.1168, C, 59.97; H, 6.19; N, 21.52; S, 12.31%. Found; C13H16N4S = 260.1168, C, 59.8882; H, 6.0750; N, 21.3749; S, 12.3001%.
7. Refinement
Crystal data, data collection and structure . H atoms were refined isotropically by a mixture of independent and constrained refinement.
|
Supporting information
CCDC reference: 2431935
https://doi.org/10.1107/S2056989025002440/ex2091sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002440/ex2091Isup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025002440/ex2091Isup3.cml
C13H16N4S | F(000) = 552 |
Mr = 260.36 | Dx = 1.264 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
a = 14.482 (3) Å | Cell parameters from 9926 reflections |
b = 9.3850 (19) Å | θ = 5.7–66.3° |
c = 10.590 (2) Å | µ = 2.00 mm−1 |
β = 108.07 (3)° | T = 293 K |
V = 1368.3 (5) Å3 | Prism, colourless |
Z = 4 | 0.2 × 0.1 × 0.07 mm |
Bruker D8 VENTURE dual wavelength Mo/Cu diffractometer | 2329 independent reflections |
Radiation source: microfocus sealed X-ray tube, INCOATEC IµS | 2057 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 66.6°, θmin = 5.7° |
φ and ω scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −11→11 |
Tmin = 0.64, Tmax = 0.87 | l = −12→12 |
37911 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.068P)2 + 0.8542P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
2329 reflections | Δρmax = 0.57 e Å−3 |
181 parameters | Δρmin = −0.21 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.70925 (6) | 0.22323 (8) | 0.45344 (7) | 0.0692 (3) | |
N2 | 0.58768 (15) | 0.0155 (2) | 0.4032 (2) | 0.0564 (5) | |
N1 | 0.66759 (16) | 0.0540 (2) | 0.2395 (2) | 0.0577 (5) | |
N3 | 0.6348 (2) | −0.0867 (4) | 0.0539 (3) | 0.0772 (8) | |
N4 | 0.4784 (2) | −0.1665 (3) | 0.3859 (3) | 0.0711 (7) | |
C4 | 0.64938 (18) | 0.0803 (3) | 0.3523 (2) | 0.0531 (6) | |
C1 | 0.61661 (19) | −0.0562 (3) | 0.1686 (2) | 0.0562 (6) | |
C2 | 0.5520 (2) | −0.1347 (3) | 0.2127 (3) | 0.0598 (7) | |
H2 | 0.518848 | −0.211765 | 0.164224 | 0.072* | |
C3 | 0.53829 (19) | −0.0950 (3) | 0.3309 (2) | 0.0555 (6) | |
C6 | 0.81963 (19) | 0.4397 (3) | 0.4079 (3) | 0.0598 (7) | |
C7 | 0.88069 (19) | 0.4817 (3) | 0.5314 (3) | 0.0623 (7) | |
C8 | 0.8975 (2) | 0.6268 (4) | 0.5536 (3) | 0.0770 (8) | |
H8 | 0.937665 | 0.657394 | 0.635863 | 0.092* | |
C9 | 0.8560 (3) | 0.7274 (3) | 0.4561 (4) | 0.0847 (10) | |
C10 | 0.7976 (2) | 0.6828 (4) | 0.3357 (4) | 0.0923 (11) | |
H10 | 0.770351 | 0.749011 | 0.269275 | 0.111* | |
C11 | 0.7789 (2) | 0.5421 (4) | 0.3123 (4) | 0.0805 (9) | |
H11 | 0.737651 | 0.513470 | 0.230042 | 0.097* | |
C5 | 0.7966 (2) | 0.2853 (3) | 0.3734 (3) | 0.0692 (8) | |
H5A | 0.855552 | 0.228946 | 0.403493 | 0.083* | |
H5B | 0.769744 | 0.274625 | 0.277885 | 0.083* | |
C12 | 0.9274 (3) | 0.3764 (4) | 0.6386 (3) | 0.0899 (10) | |
H12A | 0.980309 | 0.421258 | 0.704739 | 0.135* | |
H12B | 0.951482 | 0.297020 | 0.600929 | 0.135* | |
H12C | 0.880392 | 0.343347 | 0.678883 | 0.135* | |
C13 | 0.8798 (4) | 0.8847 (4) | 0.4839 (6) | 0.1331 (18) | |
H13A | 0.849016 | 0.939278 | 0.405419 | 0.200* | |
H13B | 0.948811 | 0.898122 | 0.508998 | 0.200* | |
H13C | 0.856385 | 0.915894 | 0.554811 | 0.200* | |
H3A | 0.675 (3) | −0.036 (4) | 0.030 (3) | 0.085 (11)* | |
H3B | 0.603 (2) | −0.150 (4) | 0.007 (3) | 0.070 (10)* | |
H4A | 0.437 (2) | −0.222 (3) | 0.332 (3) | 0.071 (9)* | |
H4B | 0.466 (2) | −0.124 (3) | 0.450 (3) | 0.072 (9)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0831 (5) | 0.0680 (5) | 0.0734 (5) | −0.0215 (3) | 0.0488 (4) | −0.0164 (3) |
N2 | 0.0670 (13) | 0.0534 (12) | 0.0586 (12) | −0.0058 (10) | 0.0338 (10) | −0.0031 (10) |
N1 | 0.0677 (13) | 0.0592 (12) | 0.0537 (12) | −0.0022 (10) | 0.0296 (10) | 0.0014 (10) |
N3 | 0.096 (2) | 0.0867 (19) | 0.0632 (15) | −0.0224 (16) | 0.0454 (15) | −0.0157 (14) |
N4 | 0.0889 (18) | 0.0677 (15) | 0.0719 (16) | −0.0251 (14) | 0.0468 (14) | −0.0155 (13) |
C4 | 0.0594 (14) | 0.0509 (13) | 0.0554 (14) | 0.0026 (11) | 0.0274 (11) | 0.0025 (11) |
C1 | 0.0633 (15) | 0.0597 (15) | 0.0500 (13) | 0.0048 (12) | 0.0240 (11) | 0.0012 (11) |
C2 | 0.0680 (16) | 0.0579 (15) | 0.0597 (15) | −0.0052 (12) | 0.0288 (12) | −0.0069 (12) |
C3 | 0.0626 (15) | 0.0524 (14) | 0.0581 (14) | 0.0009 (11) | 0.0286 (12) | 0.0027 (11) |
C6 | 0.0559 (15) | 0.0639 (16) | 0.0697 (17) | −0.0036 (12) | 0.0345 (13) | 0.0030 (13) |
C7 | 0.0552 (15) | 0.0678 (17) | 0.0722 (17) | −0.0032 (12) | 0.0317 (13) | 0.0024 (13) |
C8 | 0.0640 (18) | 0.083 (2) | 0.089 (2) | −0.0123 (15) | 0.0304 (15) | −0.0116 (17) |
C9 | 0.077 (2) | 0.0590 (18) | 0.129 (3) | 0.0018 (15) | 0.047 (2) | 0.0057 (19) |
C10 | 0.067 (2) | 0.086 (2) | 0.119 (3) | 0.0026 (17) | 0.023 (2) | 0.031 (2) |
C11 | 0.0671 (18) | 0.085 (2) | 0.089 (2) | −0.0080 (16) | 0.0251 (16) | 0.0186 (18) |
C5 | 0.0748 (18) | 0.0703 (18) | 0.0786 (19) | −0.0111 (14) | 0.0473 (15) | −0.0064 (14) |
C12 | 0.080 (2) | 0.111 (3) | 0.078 (2) | −0.0021 (19) | 0.0240 (17) | 0.020 (2) |
C13 | 0.129 (4) | 0.072 (2) | 0.197 (5) | −0.006 (2) | 0.048 (4) | −0.008 (3) |
S1—C4 | 1.767 (3) | C7—C8 | 1.390 (4) |
S1—C5 | 1.823 (3) | C7—C12 | 1.500 (4) |
N2—C4 | 1.326 (3) | C8—H8 | 0.9300 |
N2—C3 | 1.354 (3) | C8—C9 | 1.390 (5) |
N1—C4 | 1.323 (3) | C9—C10 | 1.359 (5) |
N1—C1 | 1.354 (3) | C9—C13 | 1.524 (5) |
N3—C1 | 1.351 (3) | C10—H10 | 0.9300 |
N3—H3A | 0.85 (4) | C10—C11 | 1.355 (5) |
N3—H3B | 0.82 (3) | C11—H11 | 0.9300 |
N4—C3 | 1.362 (3) | C5—H5A | 0.9700 |
N4—H4A | 0.87 (3) | C5—H5B | 0.9700 |
N4—H4B | 0.86 (3) | C12—H12A | 0.9600 |
C1—C2 | 1.381 (4) | C12—H12B | 0.9600 |
C2—H2 | 0.9300 | C12—H12C | 0.9600 |
C2—C3 | 1.379 (4) | C13—H13A | 0.9600 |
C6—C7 | 1.390 (4) | C13—H13B | 0.9600 |
C6—C11 | 1.388 (4) | C13—H13C | 0.9600 |
C6—C5 | 1.505 (4) | ||
C4—S1—C5 | 103.99 (13) | C9—C8—H8 | 119.1 |
C4—N2—C3 | 115.2 (2) | C8—C9—C13 | 119.7 (4) |
C4—N1—C1 | 114.6 (2) | C10—C9—C8 | 119.2 (3) |
C1—N3—H3A | 119 (2) | C10—C9—C13 | 121.1 (4) |
C1—N3—H3B | 118 (2) | C9—C10—H10 | 119.9 |
H3A—N3—H3B | 122 (3) | C11—C10—C9 | 120.2 (3) |
C3—N4—H4A | 115 (2) | C11—C10—H10 | 119.9 |
C3—N4—H4B | 115 (2) | C6—C11—H11 | 119.1 |
H4A—N4—H4B | 122 (3) | C10—C11—C6 | 121.7 (3) |
N2—C4—S1 | 111.56 (18) | C10—C11—H11 | 119.1 |
N1—C4—S1 | 119.41 (19) | S1—C5—H5A | 109.8 |
N1—C4—N2 | 129.0 (2) | S1—C5—H5B | 109.8 |
N1—C1—C2 | 122.0 (2) | C6—C5—S1 | 109.16 (19) |
N3—C1—N1 | 115.8 (3) | C6—C5—H5A | 109.8 |
N3—C1—C2 | 122.1 (3) | C6—C5—H5B | 109.8 |
C1—C2—H2 | 121.1 | H5A—C5—H5B | 108.3 |
C3—C2—C1 | 117.8 (2) | C7—C12—H12A | 109.5 |
C3—C2—H2 | 121.1 | C7—C12—H12B | 109.5 |
N2—C3—N4 | 115.5 (2) | C7—C12—H12C | 109.5 |
N2—C3—C2 | 121.4 (2) | H12A—C12—H12B | 109.5 |
N4—C3—C2 | 123.0 (3) | H12A—C12—H12C | 109.5 |
C7—C6—C5 | 122.0 (3) | H12B—C12—H12C | 109.5 |
C11—C6—C7 | 119.5 (3) | C9—C13—H13A | 109.5 |
C11—C6—C5 | 118.5 (3) | C9—C13—H13B | 109.5 |
C6—C7—C8 | 117.7 (3) | C9—C13—H13C | 109.5 |
C6—C7—C12 | 122.1 (3) | H13A—C13—H13B | 109.5 |
C8—C7—C12 | 120.2 (3) | H13A—C13—H13C | 109.5 |
C7—C8—H8 | 119.1 | H13B—C13—H13C | 109.5 |
C7—C8—C9 | 121.8 (3) | ||
N1—C1—C2—C3 | 1.8 (4) | C7—C6—C5—S1 | 76.3 (3) |
N3—C1—C2—C3 | −179.9 (3) | C7—C8—C9—C10 | −0.2 (5) |
C4—S1—C5—C6 | 154.6 (2) | C7—C8—C9—C13 | −177.8 (3) |
C4—N2—C3—N4 | 176.9 (2) | C8—C9—C10—C11 | 1.1 (5) |
C4—N2—C3—C2 | −0.4 (4) | C9—C10—C11—C6 | −1.3 (5) |
C4—N1—C1—N3 | −179.1 (3) | C11—C6—C7—C8 | 0.4 (4) |
C4—N1—C1—C2 | −0.8 (4) | C11—C6—C7—C12 | −179.7 (3) |
C1—N1—C4—S1 | −178.90 (18) | C11—C6—C5—S1 | −104.2 (3) |
C1—N1—C4—N2 | −1.1 (4) | C5—S1—C4—N2 | 175.2 (2) |
C1—C2—C3—N2 | −1.2 (4) | C5—S1—C4—N1 | −6.7 (3) |
C1—C2—C3—N4 | −178.3 (3) | C5—C6—C7—C8 | 179.9 (2) |
C3—N2—C4—S1 | 179.62 (18) | C5—C6—C7—C12 | −0.2 (4) |
C3—N2—C4—N1 | 1.7 (4) | C5—C6—C11—C10 | −179.0 (3) |
C6—C7—C8—C9 | −0.6 (4) | C12—C7—C8—C9 | 179.5 (3) |
C7—C6—C11—C10 | 0.5 (5) | C13—C9—C10—C11 | 178.8 (4) |
Cg2 is the centroid of the C6–C11 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···C1i | 0.93 | 2.82 | 3.623 (4) | 145 |
N3—H3B···N4ii | 0.82 (3) | 2.54 (3) | 3.340 (5) | 168 (3) |
N4—H4A···N1iii | 0.87 (3) | 2.56 (3) | 3.372 (4) | 156 (3) |
N4—H4A···C4iii | 0.87 (3) | 2.70 (4) | 3.540 (4) | 164 (3) |
N4—H4B···N2iv | 0.86 (3) | 2.19 (3) | 3.039 (3) | 172 (3) |
N3—H3A···Cg2v | 0.85 (4) | 2.89 (4) | 3.561 (3) | 137 (3) |
Symmetry codes: (i) x, y+1, z; (ii) x, −y−1/2, z−1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) −x+1, −y, −z+1; (v) x, −y+1/2, z−1/2. |
Acknowledgements
BT is grateful to the Frank H. Allen International Research and Education (FAIRE) programme, provided by the Cambridge Crystallographic Data Centre (CCDC), for the opportunity to use the Cambridge Structural Database (CSD)
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX5 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gioftsidou, D. K., Kallitsakis, M. G., Kavaratzi, K., Hatzidimitriou, A. G., Terzidis, M. A., Lykakis, I. N. & Angaridis, P. A. (2024). Dalton Trans. 53, 1469–1481. CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Grześkiewicz, A. M., Owczarzak, A., Kucińska, M., Murias, M. & Kubicki, M. (2017). J. Coord. Chem. 70, 1776–1789. Google Scholar
Hocková, D., Holý, A. N., Masojídková, M., Andrei, G., Snoeck, R., De Clercq, E. & Balzarini, J. (2004). Bioorg. Med. Chem. 12, 3197–3202. Web of Science PubMed Google Scholar
Holla, B. S., Mahalinga, M., Karthikeyan, M. S., Akberali, P. M. & Shetty, N. S. (2006). Bioorg. Med. Chem. 14, 2040–2047. Web of Science CrossRef PubMed CAS Google Scholar
Ioannidou, A., Czapik, A., Gkizis, P., Perviaz, M., Tzimopoulos, D., Gdaniec, M. & Akrivos, P. D. (2013). Aust. J. Chem. 66, 600–606. CAS Google Scholar
Kandeel, M., El-Meligie, S., Omar, R., Roshdy, S. & Youssef, K. (1994). J. Pharm. Sci. 3, 197–205. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Moyaert, T. E., Paul, C., Chen, W., Sarjeant, A. A. & Dawe, L. N. (2017). Acta Cryst. E73, 1534–1538. CSD CrossRef IUCr Journals Google Scholar
Neekhara, R., Mishra, B. J. & Narayana, N. H. (2006). Asian J. Chem. 18(2), 1167–1173. Google Scholar
Ribeiro, G. H., Guedes, A. P., de Oliveira, T. D., de Correia, C. R. B. b, Colina-Vegas, L., Lima, M. A., Nóbrega, J. A., Cominetti, M. R., Rocha, F. V., Ferreira, A. G., Castellano, E. E., Teixeira, F. R. & Batista, A. A. (2020). Inorg. Chem. 59, 15004–15018. CAS PubMed Google Scholar
Romero, M. A., Salas, J. M., López, R., Gutiérrez, M. D., Panneerselvam, K., Chacko, K. K., Aoki, K. & Yamazaki, H. (1990). Inorg. Chim. Acta, 172, 253–258. CSD CrossRef CAS Web of Science Google Scholar
Rosowsky, A., Forsch, R. A., Sibley, C. H., Inderlied, C. B. & Queener, S. F. (2004). J. Med. Chem. 47, 1475–1486. PubMed CAS Google Scholar
Salas, J. M., Romero, M. A. & Faure, R. (1995). Acta Cryst. C51, 2532–2534. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Salieva, G., Uktamova, M., Torikai, K. & Kholikov, T. (2025). Molbank, 2025, M1965. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Silva, M. M. da, de Camargo, M. S., Correa, R. S., Castelli, S., De Grandis, R. A., Takarada, J. E., Varanda, E. A., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desideri, A. & Batista, A. A. (2019). Dalton Trans. 48, 14885–14897. PubMed Google Scholar
Silva, M. M. D., Camargo, M. S. D., Castelli, S., Grandis, R. A. D., Castellano, E. E., Deflon, V. M., Cominetti, M. R., Desiderib, A. & Batista, A. A. (2020). J. Braz. Chem. Soc. 31, 536–549. Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Subasri, S., Kumar, T. A., Sinha, B. N., Jayaprakash, V., Viswanathan, V. & Velmurugan, D. (2017). Acta Cryst. E73, 306–309. CSD CrossRef IUCr Journals Google Scholar
Tolba, M. S., El-Dean, A., Ahmed, M., Hassanien, R., Sayed, M., Zaki, R., Mohamed, S., Zawam, S. & Abdel-Raheem, S. (2022). Curr. Chem. Lett. 11, 121–138. Google Scholar
Yamanari, K., Kida, M., Fuyuhiro, A., Kita, M. & Kaizaki, S. (2002). Inorg. Chim. Acta, 332, 115–122. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.