research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of three tri­phenyl­sulfonium halometallate salts of zinc, cadmium and mercury

crossmark logo

aDepartment of Biochemistry, Chemistry and Physics, Georgia Southern University, Armstrong Campus, 11935 Abercorn Street Savannah GA 31419, USA
*Correspondence e-mail: cpadgett@georgiasouthern.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 3 February 2025; accepted 12 March 2025; online 27 March 2025)

Bis(tri­phenyl­sulfonium) tetra­chlorido­zinc(II), (C18H15S)2[ZnCl4] (I), bis­(tri­phenyl­sulfonium) tetra­chlorido­cadmium(II), (C18H15S)2[CdCl4] (II), and bis­(tri­phenyl­sulfonium) tetra­chlorido­mercury(II) methanol monosolvate, (C18H15S)2[HgCl4]·CH3OH (III), each crystallize in the monoclinic space group P21/n. In all three structures, there are two crystallographically independent tri­phenyl­sulfonium (TPS) cations per asymmetric unit, each adopting a distorted trigonal–pyramidal geometry about the S atom (S—C bond lengths in the 1.77–1.80 Å range and C—S—C angles of 100–107°). The [MCl4]2– anions (M = Zn2+, Cd2+, Hg2+) are tetra­hedral; their M—Cl bond lengths systematically increase from Zn2+ to Hg2+, consistent with the larger ionic radius of the heavier metal. Hirshfeld surface analyses show that H⋯H and H⋯C contacts dominate the TPS cation environments, whereas H⋯Cl and S⋯M inter­actions anchor each [MCl4]2– anion to two surrounding TPS cations. Weak C—H⋯Cl hydrogen bonds, as well as inversion-centered ππ stacking, generate layers in (I) and (II) and dimeric [(TPS)2–HgCl4]2 assemblies in (III).

1. Chemical context

Tri­phenyl­sulfonium (TPS) salts are versatile organosulfur compounds with applications across a variety of chemical and industrial processes. They are widely utilized as photoinitiators in photochemical processes, particularly for the polymerization of ep­oxy resins and other photoresist mat­erials. The basis of their photoinitiating activity lies in their direct or sensitized photolysis, which results in the release of a reactive proton and cleavage of the C—S bond in the tri­phenyl­sulfonium cation. This reaction initiates solubility-changing processes such as cationic polymerization or acid-catalyzed cleavage, enabling desired modifications in material characteristics (Petsalakis et al., 2014[Petsalakis, I. D., Theodorakopoulos, G., Lathiotakis, N. N., Georgiadou, D. G., Vasilopoulou, M. & Argitis, P. (2014). Chem. Phys. Lett. 601, 63-68.]).

Beyond photoinitiation, TPS salts are a subject of inter­est in photochemistry due to their role as photoacid generators, producing acids in response to light exposure (Ohmori et al., 1998[Ohmori, N., Nakazono, Y., Hata, M., Hoshino, T. & Tsuda, M. (1998). J. Phys. Chem. B, 102, 927-930.]). This unique property makes them valuable for photolithography and the production of semiconductor devices, including computer chips (Kwon et al., 2014[Kwon, S. H., Park, S. & Kim, H. J. (2014). J. Semiconductor Technol. 12, 245-260.]; Wang et al., 2023[Wang, X., Tao, P., Wang, Q., Zhao, R., Liu, T., Hu, Y., Hu, Z., Wang, Y., Wang, J., Tang, Y., Xu, H. & He, X. (2023). Mater. Today, 67, 299-319.]). Furthermore, tri­phenyl­sulfonium ions have been studied for their role in inhibiting mitochondrial oxidative phospho­rylation and adenosine triphosphate activity (Barrett et al., 1976[Barrett, J. N., Barrett, D. F. & Ingber, L. (1976). Biochem. J. 15, 1512-1516.]), as well as for their use in exciton emission applications in anti-counterfeiting technologies (Luo et al., 2022b[Luo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022b). Adv. Mater. 34, 2200607.]).

In this study, we report the crystal structures of three new TPS salts of group-12 complex ions: bis­(tri­phenyl­sulfonium) tetra­chloro­zincate (I), bis­(tri­phenyl­sulfonium) tetra­chloro­cadmate (II), and bis­(tri­phenyl­sulfonium) tetra­chloro­mercurate methanol monosolvate (III). These structures provide valuable insights into packing arrangements and ionic inter­actions, highlighting the influence of metal halide anions on the stability and properties of the tri­phenyl­sulfonium cation.

[Scheme 1]

2. Structural commentary

Compound (I) crystallizes in the monoclinic space group P21/n. The asymmetric unit of [TPS]2[ZnCl4] comprises two crystallographically independent C18H15S+ tri­phenyl­sulfonium (TPS+) cations and one [ZnCl4]2– anion (Fig. 1[link]). Each sulfonium center exhibits a distorted trigonal–pyramidal geometry. In the first cation (containing S1), the S—C bond lengths lie between 1.7784 (18) and 1.7919 (19) Å, while the C—S—C angles range from 103.45 (9) to 104.88 (9)°. In the second cation (containg S2), the S—C distances span 1.7868 (18)–1.7879 (19) Å, and the C—S—C angles vary from 100.78 (9) to 106.27 (9)°. The [ZnCl4]2− anion adopts a slightly distorted tetra­hedral arrangement, with Zn—Cl bond lengths of 2.2615 (5)—2.2863 (5) Å and Cl—Zn—Cl angles in the 105.247 (19)–112.522 (19)° range.

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Compound (II) also crystallizes in space group P21/n and is isostructural with (I). The asymmetric unit of [TPS]2[CdCl4] has two independent TPS+ cations and one [CdCl4]2– anion (Fig. 2[link]). The sulfonium groups are again distorted trigonal–pyramidal. For the first sulfonium (S1) cation, the S—C distances range from 1.784 (2) to 1.794 (3) Å and C—S—C angles from 103.29 (12) to 105.24 (12)°. The second sulfonium (S2) exhibits S—C bond lengths of 1.788 (2)–1.794 (3) Å with C—S—C angles spanning 100.63 (11)–106.56 (11)°. The [CdCl4]2− anion is tetra­hedral but shows longer Cd—Cl bonds [2.4386 (6)–2.4653 (6) Å] relative to the Zn analogue, consistent with the larger ionic radius of Cd. The Cl—Cd—Cl angles vary from 103.71 (2) to 113.21 (2)°.

[Figure 2]
Figure 2
The mol­ecular structure of (II) with displacement ellipsoids drawn at the 50% probability level.

Compound (III), likewise crystallizes in the monoclinic space group P21/n and in this case the asymmetric unit contains two TPS+ cations, one [HgCl4]2– anion, and one methanol solvent mol­ecule (Fig. 3[link]). The sulfonium centers retain their usual distorted trigonal–pyramidal geometries. For S1, the S—C distances lie in the 1.789 (4)–1.796 (4) Å range, with C—S—C angles of 102.6 (2)–105.5 (2)°; for S2 they span 1.783 (4)–1.784 (4) Å, with angles of 102.9 (2)–106.8 (2)°. The [HgCl4]2– anion adopts a distorted tetra­hedral coordination with Hg–Cl distances of 2.4602 (10)–2.5333 (11) Å and Cl—Hg—Cl angles ranging from 101.77 (4) to 117.50 (4)°, having a slightly larger spread in bond angles consistent with the heavier metal center.

[Figure 3]
Figure 3
The mol­ecular structure of (III) with displacement ellipsoids drawn at the 50% probability level.

Comparisons among the Zn2+, Cd2+, and Hg2+ analogues show the systematic increase in M—Cl bond distances from Zn2+ to Hg2+, consistent with the increasing ionic radii. Nevertheless, the TPS+ cations exhibit only minor structural variations across the three salts, with S—C bond lengths and C—S—C angles remaining fairly constant.

3. Supra­molecular features

Figs. 4[link], 5[link] and 6[link] illustrate the crystal packings of compounds (I), (II), and (III), respectively. In all three structures, the packing is consolidated by van der Waals and electrostatic inter­actions, as well as ππ stacking. Hirshfeld surfaces were generated in Crystal Explorer 21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) for each crystallographically independent tri­phenyl­sulfonium (TPS) cation and for the [MCl4]2– anion (M = Zn2+, Cd2+, Hg2+). The corresponding two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were analyzed to qu­antify the relative contributions of the various inter­molecular contacts (Table 1[link]). Hydrogen bonds for (I), (II) and (III) are listed in Tables 2[link]–4[link][link], respectively.

Table 1
Contributions of selected inter­molecular contacts (%)

Contact (I) (TPS1) (I) (TPS2) (I) (ZnCl4) (II) (TPS1) (II) (TPS2) (II) (CdCl4) (III) (TPS1) (III) (TPS2) (III) (HgCl4)
C⋯C 5.6 3.8 5.3 3.7 5.3 8.2
H⋯C/C⋯H 21.8 31.7 21.4 31.0 21.9 19.5
H⋯H 53.7 48.8 53.4 48.6 56.8 51.4
H⋯Cl/Cl⋯H 15.5 13.7 89.7 16.1 14.5 88.8 11.0 16.2 88.1
S⋯Cl 1.2 1.3 4.8 1.1 1.2 4.2 1.1 1.2 4.2
H⋯O/O⋯H 2.7 0.7
S⋯M 1.5 1.8 2.0

Table 2
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯Cl3i 0.95 2.68 3.5210 (19) 148
C8—H8⋯Cl2 0.95 2.66 3.552 (2) 158
C14—H14⋯Cl1 0.95 2.75 3.610 (2) 151
C21—H21⋯Cl1ii 0.95 2.65 3.554 (2) 159
C24—H24⋯Cl4 0.95 2.74 3.5792 (19) 147
C26—H26⋯Cl2 0.95 2.66 3.509 (2) 149
C33—H33⋯Cl3i 0.95 2.76 3.695 (2) 167
C35—H35⋯Cl1iii 0.95 2.81 3.592 (2) 140
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Table 3
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl3i 0.95 2.65 3.561 (3) 162
C5—H5⋯Cl4 0.95 2.81 3.453 (3) 126
C11—H11⋯Cl1ii 0.95 2.65 3.512 (3) 150
C18—H18⋯Cl2i 0.95 2.73 3.593 (3) 152
C21—H21⋯Cl2iii 0.95 2.80 3.559 (3) 137
C23—H23⋯Cl1i 0.95 2.74 3.667 (3) 165
C30—H30⋯Cl3ii 0.95 2.67 3.528 (3) 150
C32—H32⋯Cl4ii 0.95 2.76 3.588 (3) 146
C35—H35⋯Cl2 0.95 2.63 3.508 (3) 155
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+1, y, z].

Table 4
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl1 0.84 2.41 3.187 (5) 155
C3—H3⋯Cl2i 0.95 2.75 3.631 (4) 155
C10—H10⋯Cl4ii 0.95 2.65 3.588 (6) 168
C13—H13⋯O1iii 0.95 2.56 3.192 (7) 124
C19—H19⋯Cl3i 0.95 2.64 3.542 (5) 159
C21—H21⋯Cl3 0.95 2.72 3.639 (4) 163
C31—H31⋯Cl1 0.95 2.81 3.630 (5) 145
C36—H36⋯Cl4iv 0.95 2.62 3.573 (5) 178
C37—H37⋯Cl4 0.95 2.81 3.712 (5) 159
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+1, y, z]; (iv) [-x+1, -y+1, -z+2].
[Figure 4]
Figure 4
A view along the a-axis direction of the crystal packing of (I) with close contacts shown as red dashed lines.
[Figure 5]
Figure 5
A view along the a-axis direction of the crystal packing of (II) with close contacts shown as red dashed lines.
[Figure 6]
Figure 6
A view along the a-axis direction of the crystal packing of (III) with close contacts shown as red dashed lines.

In the crystal structure of compound (I), two TPS+ cations (TPS1 and TPS2) occur in the asymmetric unit. On the Hirshfeld surfaces of TPS1 and TPS2, H⋯H inter­actions dominate, accounting for 53.7% (TPS1) and 48.8% (TPS2), followed by H⋯C/C⋯H contacts at 21.8% (TPS1) and 31.7% (TPS2). The C⋯C contacts are minor (5.6% for TPS1; 3.8% for TPS2). Notably, H⋯Cl/Cl⋯H contacts (15.5% for TPS1; 13.7% for TPS2) reflect hydrogen-bond-like inter­actions with the [ZnCl4]2– anion. The [ZnCl4]2– Hirshfeld surface is dominated by H⋯Cl (89.7%), with S⋯Cl (4.8%) and S⋯Zn (1.5%) also present (Table 1[link]). Each TPS cation is anchored to the [ZnCl4]2– anion via S⋯Zn [S1⋯Zn1 = 3.7464 (6), S2⋯Zn1 = 3.6708 (6) Å] and C—H⋯Cl [H26⋯Cl2 = 2.66, H8⋯Cl2 = 2.66 Å] contacts, forming discrete (TPS)2–ZnCl4 complexes. These complexes are further stitched into layers by C—H⋯Cl inter­actions, including C3—H3⋯Cl3(1 − x, 1 − y, 1 − z) at 2.6815 (5) Å and C21—H21⋯Cl1(−[{1\over 2}] + x, [{3\over 2}] − y, [{1\over 2}] + z) at 2.6491 (5) Å, these layers are aligned parallel to the (101) plane (Fig. 4[link]). All of these C—H⋯Cl short contacts can be regarded as weak hydrogen bonds (Steiner et al., 1998[Steiner, T. (1998). Acta Cryst. B54, 456-463.]). There is also a single inversion-centered ππ stacking inter­action [Cg1⋯Cg1(2 − x, 1 − y, 1 − z; centroid–centroid separation = 3.6871 (15) Å, shift = 1.471 (3) Å; Cg1 is the centroid of the C1–C6 ring].

In the crystal structure of compound (II), as in (I), two independent TPS+ cations (TPS1, TPS2) occur in the asymmetric unit. H⋯H inter­actions dominate (53.4% for TPS1; 48.6% for TPS2) the Hirshfeld surface, followed by H⋯C/C⋯H (21.4% for TPS1; 31.0% for TPS2), with minor C⋯C contacts (5.3% for TPS1; 3.7% for TPS2). Hydrogen-bond-like inter­actions with [CdCl4]2– appear as H⋯Cl/Cl⋯H contributions of 16.1% (TPS1) and 14.5% (TPS2). On the anion Hirshfeld surface, H⋯Cl/Cl⋯H inter­actions dominate (88.8%), with S⋯Cl (4.2%) and S⋯Cd (1.8%) also being observed. Each TPS cation is anchored to the [CdCl4]2– anion via S⋯Cd [S1⋯Cd1 = 3.8080 (6), S2⋯Cd1 = 3.7067 (6) Å] and C—H⋯Cl [H2⋯Cl3 = 2.65, H30⋯Cl3 = 2.67 Å] contacts, forming discrete (TPS)2–CdCl4 complexes. Additional short contacts [H11⋯Cl1([{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z) at 2.6536 (7) Å and H35⋯Cl2([{1\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z) = 2.6268 (7) Å] link these complexes into layers that are aligned parallel to the (101) plane (Fig. 5[link]). Collectively, the S⋯Cd and C—H⋯Cl inter­actions yield a robust supra­molecular network. A single inversion-centered ππ stacking inter­action [Cg1⋯Cg(1 − x, 1 − y, 1 − z; centroid–centroid = 3.736 (2) Å, shift = 1.553 (4) Å; Cg1 is the centroid of the C7–C12 ring] is also observed.

In the crystal structure of compound (III), two independent TPS+ cations are present. H⋯H contacts dominate the Hirshfeld surfaces of both (56.8% for TPS1; 51.4% for TPS2). The H⋯C contacts account for 21.9% (TPS1) and 19.5% (TPS2), while C⋯C contacts are slightly higher for TPS2 (8.2%) than for TPS1 (5.3%). Contacts with the [HgCl4]2– anion, include H⋯Cl (11.0% for TPS1; 16.2% for TPS2) and S⋯Cl (1.1% and 1.2%, respectively). A small but non-negligible H⋯O contribution (2.7% for TPS1; 0.7% for TPS2) arises from the solvated methanol mol­ecule. On the [HgCl4]2– Hirshfeld surface, H⋯Cl contacts dominate (88.1%), with S⋯Cl (4.2%) and S⋯Hg (2.0%) also being present. Each TPS cation binds the [HgCl4]2– anion via S⋯Hg [Hg1⋯S1 = 3.7674 (12), Hg1⋯S2 = 3.8233 (10) Å] and C—H⋯Cl inter­actions [Cl3⋯H19 = 2.64, Cl3⋯H21 = 2.72 Å], forming (TPS)2–HgCl4 complexes. Unlike in (I) and (II), two such complexes associate to form (TPS)2–HgCl4 dimers via additional C—H⋯Cl contacts [Cl4⋯H36 = 2.6231 (13) Å, symmetry code: (1 − x, 1 − y, 2 − z); Cl4⋯H10 = 2.6530 (13) Å, symmetry code: ([{3\over 2}] − x, [{1\over 2}] + y, [{3\over 2}] − z)], with neighboring dimers inter­act only weakly (Fig. 6[link]). These dimers also incorporate a hydrogen-bonded methanol mol­ecule [O1⋯Cl1 = 3.188 (5) Å] (Table 4[link]). An inversion-centered ππ stacking inter­action is observed in (III) [Cg1⋯Cg1(2 − x, 1 − y, 2 − z; centroid–centroid = 3.658 (4) Å, shift = 1.054 (8) Å; Cg1 is the centroid of the C32–C37 ring] is accompanied by a second ππ inter­action [Cg2⋯Cg3(2 − x, 1 − y, 1 − z; angle = 7.464 (14)°, centroid–centroid = 3.910 (3) Å, shift = 2.097 (6) Å; Cg1 andCg2 are the centroids of the C20–C25 and C14–C19 rings, respectively].

4. Database survey

A search of the web-based Cambridge Structural Database (CSD, website, accessed on January 16, 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the tri­phenyl­sulfonium ion yielded 24 entries with the majority (19) being TPS+ complexes. In the search, two of the returns were imine, one was a thia­zine motif and two are nitrile derivatives of tri­phenyl­sulfonium. Simple salts derivatives of TPS+ include the bis­[(tri­fluoro­meth­yl)sulfon­yl]aza­dine salt (CSD refcode BANYOH; Siu et al., 2017[Siu, B., Cassity, C. G., Benchea, A., Hamby, T., Hendrich, J., Strickland, K. J., Wierzbicki, A., Sykora, R. E., Salter, E. A., O'Brien, R. A., West, K. N. & Davis, J. H. (2017). RSC Adv. 7, 7623-7630.]), azide (FOYKEK; Klapötke et al., 2009a[Klapötke, T. M. & Krumm, B. (2009a). Z. Naturforsch. B Chem. Sci. 64, 467-469.]), tri­fluoro­methansulfonate (LECWOI; Zhang et al., 2017[Zhang, L., Li, X., Sun, Y., Zhao, W., Luo, F., Huang, X., Lin, L., Yang, Y. & Peng, B. (2017). Org. Biomol. Chem. 15, 7181-7189.]), chloride monohydrate (NIMMIJ; Luo et al., 2022a[Luo, H., Zhang, Y., Chen, X. & Tang, B. Z. (2022a). Mater. Lett. 4, 132-140.]), bromide hydrate (ROKYAS; Klapötke et al., 2009a[Klapötke, T. M. & Krumm, B. (2009a). Z. Naturforsch. B Chem. Sci. 64, 467-469.]), tetra­fluoro­borate (TUBXET; Ovchinnikov et al., 1996[Ovchinnikov, Y. E., Struchkov, T. T., Nedel'kin, V. I., Kuznetsov, S. N. & Izmailov, B. A. (1996). Russ. Chem. Bull. 45, 1400-1403.]) and the recently reported triiodide (FUMMEJ; Artis et al., 2025[Artis, R., Callaway, W., Heyward, E., Reyes, N., Roberts, G., Van Ostenbridge, K., Padgett, C. W. & Lynch, W. E. (2025). Acta Cryst. E81, 114-119.]), perchlorate (FUMMIN; Artis et al., 2025[Artis, R., Callaway, W., Heyward, E., Reyes, N., Roberts, G., Van Ostenbridge, K., Padgett, C. W. & Lynch, W. E. (2025). Acta Cryst. E81, 114-119.]) and hexa­fluoro­phosphate (FUMMOT; Artis et al., 2025[Artis, R., Callaway, W., Heyward, E., Reyes, N., Roberts, G., Van Ostenbridge, K., Padgett, C. W. & Lynch, W. E. (2025). Acta Cryst. E81, 114-119.]) salts.

Metal-based anionic salts of the formula [TPS]2MClx (where x = 5 or 6) include the bis­(tri­phenyl­sulfonium) penta­chloro­anti­mony(III) (MUFFAY; Liao et al. 2024[Liao, J. F., Zhang, Z., Zhou, L., Tang, Z. & Xing, G. (2024). Angew. Chem. Int. Ed. 63, e202404100.]) and its aceto­nitrile solvate (MUFFIG; Liao et al. 2024[Liao, J. F., Zhang, Z., Zhou, L., Tang, Z. & Xing, G. (2024). Angew. Chem. Int. Ed. 63, e202404100.]), the bis­(tri­phenyl­sulfonium) hexa­chloro­tin(IV) (NIMMAB; Luo et al., 2022a[Luo, H., Zhang, Y., Chen, X. & Tang, B. Z. (2022a). Mater. Lett. 4, 132-140.]), and bis­(tri­phenyl­sulfonium) hexa­chloro­tellurium(V) (NIMMEF; Luo et al., 2022a[Luo, H., Zhang, Y., Chen, X. & Tang, B. Z. (2022a). Mater. Lett. 4, 132-140.]). Finally more unique silver and manganese structures are reported, the bis­(μ2-1,3-azido)­silver(I) (QOSQEV; Klapötke et al., 2009b[Klapötke, T. M., Krumm, B. & Scherr, M. (2009b). J. Am. Chem. Soc. 131, 72-74.]) and the tris­(μ2-dicyanamido)­manganese(II) (SABFUX; Schlueter et al., 2004[Schlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2004). Inorg. Chem. 43, 4100-4102.]) structures with tri­phenyl­sulfonium.

5. Synthesis and crystallization

Compound (I) was synthesized by dissolving tri­phenyl­sulfonium chloride (0.0947g, 0.317 mmol, purchased from TCI America) in 20 ml of methanol within a glass beaker before adding zinc(II) chloride (0.0216 g, 0.158 mmol, purchased from Millipore Sigma) to the reaction mixture. The reaction was covered with a watch glass before heating and stirring until complete dissolution. After dissolving, the reaction vessel was covered in parafilm with small holes to allow for cooling and evaporation over the course of one week. The resulting crystals in the form of colorless irregular blocks were washed with diethyl ether in pre-weighed crucibles during vacuum filtration, and reweighed once crucibles were dried. Yield, 0.0961g (82.6%). Selected IR bands (ATR-IR cm−1): 3100(w), 3050(w), 3000(w), 1750(w), 1600(w), 1550(s), 1450(s), 1250(w), 1150(w), 1000(w), 750(s), 650(s), 500(s).

Compound (II) was synthesized by dissolving CdCl2 (0.0382g, 0.167 mmol, purchased from Baker and Adamson) in 100 ml of methanol and heating to a boil to dissolved. Tri­phenyl­sulfonium chloride (0.100 g, 0.335 mmol, purchased from TCI America) was added in one portion and the solution was refluxed for 10 minutes to ensure complete dissolution. The reaction vessel was covered in parafilm to allow for evaporation to produce X-ray quality crystals in the form of colorless irregular blocks. Yield, 0.0845g (61.1%). Selected IR bands (ATR-IR cm−1): 3108(w), 1524(m), 1502(m), 1096(w), 998(w), 820(s), 804(s), 752(s), 730(s).

Compound (III) was prepared by dissolving HgCl2 (0.0454 g, 0.167 mmol, purchased from Reagents, Inc.) in 50 ml of methanol at room temperature. Tri­phenyl­sulfonium chloride (0.100 g, 0.335 mmol, purchased from TCI America) was added in one portion and the solution was stirred for 10 minutes. The reaction vessel was covered in parafilm to allow for evaporation to produce X-ray quality crystals as colorless irregular blocks. Yield, 0.1020 g (70.3%) Selected IR Bands (ATR-IRcm−1): 3098 (w), 1738(s), 1473(s), 1456(s), 1369(w), 1228(m), 1055(w), 991(s), 862(s), 825(s), 753(s), 679(s).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. All carbon-bound H atoms were positioned geometrically and refined as riding atoms: C—H = 0.95–0.98 Å with Uiso(H) = 1.2Ueq(C). The methanol O-bonded H atom in (III) was geometrically placed (O—H = 0.84 Å) and refined as riding.

Table 5
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula (C18H15S)2[ZnCl4] (C18H15S)2[CdCl4] (C18H15S)2[HgCl4]·CH4O
Mr 733.89 780.92 901.15
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/n Monoclinic, P21/n
Temperature (K) 100 100 100
a, b, c (Å) 9.1630 (1), 17.5749 (2), 21.1697 (2) 9.2696 (1), 17.6682 (2), 21.4072 (2) 9.43577 (14), 18.0709 (3), 21.2467 (3)
β (°) 99.322 (1) 99.801 (1) 95.1778 (14)
V3) 3364.12 (6) 3454.84 (6) 3608.05 (9)
Z 4 4 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 5.29 9.22 11.68
Crystal size (mm) 0.41 × 0.29 × 0.16 0.19 × 0.13 × 0.09 0.11 × 0.06 × 0.05
 
Data collection
Diffractometer XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000 XtaLAB Synergy, Single source at home/near, HyPix3000
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.398, 1.000 0.488, 1.000 0.644, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 19982, 6146, 5660 20400, 6456, 5793 22094, 6743, 6142
Rint 0.036 0.055 0.054
(sin θ/λ)max−1) 0.602 0.609 0.610
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.074, 1.04 0.026, 0.066, 1.05 0.031, 0.080, 1.07
No. of reflections 6146 6456 6743
No. of parameters 388 388 408
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.37 0.63, −0.49 2.45, −2.10
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Bis(triphenylsulfonium) tetrachloridozinc(II) (I) top
Crystal data top
(C18H15S)2[ZnCl4]F(000) = 1504
Mr = 733.89Dx = 1.449 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.1630 (1) ÅCell parameters from 13744 reflections
b = 17.5749 (2) Åθ = 2.1–69.5°
c = 21.1697 (2) ŵ = 5.29 mm1
β = 99.322 (1)°T = 100 K
V = 3364.12 (6) Å3Irregular, clear colourless
Z = 40.41 × 0.29 × 0.16 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
6146 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source5660 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.036
Detector resolution: 10.0000 pixels mm-1θmax = 68.2°, θmin = 3.3°
ω scansh = 1110
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 2120
Tmin = 0.398, Tmax = 1.000l = 2525
19982 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0352P)2 + 1.5636P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6146 reflectionsΔρmax = 0.32 e Å3
388 parametersΔρmin = 0.37 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8253 (2)0.47093 (10)0.38690 (8)0.0146 (4)
S10.74640 (5)0.51070 (3)0.31186 (2)0.01438 (10)
C20.7441 (2)0.48286 (11)0.43563 (9)0.0184 (4)
H20.6572000.5132620.4289240.022*
C30.7930 (2)0.44910 (12)0.49490 (9)0.0231 (4)
H30.7386180.4559060.5290780.028*
C40.9207 (2)0.40567 (11)0.50395 (9)0.0225 (4)
H40.9525400.3820960.5442030.027*
C51.0025 (2)0.39624 (11)0.45497 (10)0.0225 (4)
H51.0910950.3672140.4620980.027*
C60.9557 (2)0.42893 (11)0.39561 (9)0.0195 (4)
H61.0111710.4228180.3617300.023*
C70.9009 (2)0.52951 (11)0.27204 (9)0.0165 (4)
C80.9798 (2)0.59510 (12)0.29067 (10)0.0236 (4)
H80.9509420.6275200.3223680.028*
C91.1020 (2)0.61272 (13)0.26219 (10)0.0253 (5)
H91.1580560.6572240.2748080.030*
C101.1421 (2)0.56588 (12)0.21575 (10)0.0247 (5)
H101.2253650.5782530.1962280.030*
C111.0618 (3)0.50129 (13)0.19762 (11)0.0345 (6)
H111.0902480.4693370.1655330.041*
C120.9398 (3)0.48194 (12)0.22537 (10)0.0272 (5)
H120.8844400.4372340.2127020.033*
C130.6535 (2)0.43173 (11)0.26970 (8)0.0166 (4)
C140.5248 (2)0.44948 (12)0.22839 (10)0.0235 (4)
H140.4907340.5005180.2234180.028*
C150.4469 (2)0.39056 (13)0.19437 (11)0.0301 (5)
H150.3579850.4013380.1659740.036*
C160.4974 (2)0.31665 (12)0.20143 (10)0.0256 (5)
H160.4435260.2769130.1777550.031*
C170.6264 (2)0.30022 (12)0.24291 (10)0.0259 (5)
H170.6609490.2492410.2474670.031*
C180.7052 (2)0.35761 (12)0.27774 (10)0.0235 (4)
H180.7931560.3465070.3066550.028*
S20.53980 (5)0.77362 (2)0.49292 (2)0.01309 (10)
C190.3622 (2)0.79066 (11)0.51477 (9)0.0164 (4)
C200.3423 (2)0.80035 (13)0.57820 (10)0.0257 (5)
H200.4246290.8012090.6118440.031*
C210.1995 (3)0.80870 (13)0.59095 (11)0.0305 (5)
H210.1834670.8159840.6337550.037*
C220.0806 (2)0.80650 (12)0.54183 (11)0.0275 (5)
H220.0167610.8124080.5511450.033*
C230.1015 (2)0.79579 (12)0.47909 (11)0.0240 (4)
H230.0186400.7938880.4457360.029*
C240.2437 (2)0.78781 (11)0.46489 (9)0.0183 (4)
H240.2592680.7805670.4220120.022*
C250.6307 (2)0.86388 (10)0.49645 (9)0.0154 (4)
C260.7194 (2)0.87534 (12)0.44999 (9)0.0200 (4)
H260.7288790.8369980.4192790.024*
C270.7940 (2)0.94416 (12)0.44938 (10)0.0260 (5)
H270.8554430.9530120.4180430.031*
C280.7792 (2)0.99994 (12)0.49421 (11)0.0286 (5)
H280.8313111.0466310.4938070.034*
C290.6889 (3)0.98766 (12)0.53940 (10)0.0296 (5)
H290.6787241.0262660.5697990.035*
C300.6129 (2)0.91971 (11)0.54101 (9)0.0241 (4)
H300.5500070.9115000.5718950.029*
C310.6273 (2)0.72101 (11)0.56086 (8)0.0143 (4)
C320.5861 (2)0.64505 (11)0.56004 (9)0.0196 (4)
H320.5249440.6240180.5237040.023*
C330.6357 (2)0.60016 (12)0.61330 (10)0.0231 (4)
H330.6071000.5482600.6141290.028*
C340.7274 (2)0.63185 (12)0.66521 (9)0.0224 (4)
H340.7603310.6013930.7018130.027*
C350.7715 (2)0.70692 (12)0.66456 (9)0.0211 (4)
H350.8360930.7273280.7001480.025*
C360.7215 (2)0.75270 (11)0.61196 (9)0.0179 (4)
H360.7512140.8044230.6110300.021*
Cl10.54216 (5)0.65468 (3)0.23073 (2)0.02032 (11)
Zn10.54009 (3)0.69024 (2)0.33396 (2)0.01294 (7)
Cl20.77135 (5)0.69108 (3)0.39384 (2)0.01820 (11)
Cl30.40705 (5)0.60886 (3)0.38479 (2)0.02266 (11)
Cl40.43578 (5)0.80813 (3)0.33149 (2)0.01928 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0172 (9)0.0137 (9)0.0119 (9)0.0019 (7)0.0006 (7)0.0015 (7)
S10.0168 (2)0.0139 (2)0.0117 (2)0.00158 (17)0.00013 (17)0.00038 (17)
C20.0164 (9)0.0197 (10)0.0189 (10)0.0037 (8)0.0024 (8)0.0005 (8)
C30.0297 (11)0.0252 (11)0.0143 (9)0.0090 (9)0.0035 (8)0.0024 (8)
C40.0291 (11)0.0193 (10)0.0161 (10)0.0076 (9)0.0054 (8)0.0056 (8)
C50.0212 (10)0.0183 (10)0.0248 (11)0.0019 (8)0.0059 (8)0.0035 (8)
C60.0207 (10)0.0203 (10)0.0168 (9)0.0012 (8)0.0006 (8)0.0011 (8)
C70.0202 (9)0.0171 (9)0.0115 (9)0.0028 (8)0.0008 (7)0.0040 (7)
C80.0248 (10)0.0264 (11)0.0199 (10)0.0030 (9)0.0048 (8)0.0063 (9)
C90.0223 (10)0.0290 (12)0.0238 (11)0.0049 (9)0.0011 (8)0.0010 (9)
C100.0240 (11)0.0272 (11)0.0246 (11)0.0064 (9)0.0088 (9)0.0087 (9)
C110.0548 (15)0.0225 (11)0.0332 (13)0.0012 (11)0.0284 (12)0.0003 (10)
C120.0439 (13)0.0166 (10)0.0248 (11)0.0042 (9)0.0169 (10)0.0043 (9)
C130.0204 (9)0.0173 (9)0.0119 (9)0.0022 (8)0.0018 (7)0.0017 (7)
C140.0245 (11)0.0180 (10)0.0256 (11)0.0021 (8)0.0034 (8)0.0001 (8)
C150.0270 (11)0.0281 (12)0.0293 (12)0.0006 (9)0.0132 (9)0.0018 (10)
C160.0313 (12)0.0221 (11)0.0214 (11)0.0052 (9)0.0018 (9)0.0034 (9)
C170.0324 (12)0.0181 (10)0.0252 (11)0.0022 (9)0.0015 (9)0.0024 (8)
C180.0257 (11)0.0194 (10)0.0223 (10)0.0034 (9)0.0057 (8)0.0007 (8)
S20.0147 (2)0.0147 (2)0.0096 (2)0.00055 (17)0.00127 (16)0.00027 (16)
C190.0181 (9)0.0157 (9)0.0164 (9)0.0016 (8)0.0053 (7)0.0025 (8)
C200.0291 (11)0.0332 (12)0.0155 (10)0.0066 (9)0.0055 (8)0.0030 (9)
C210.0363 (12)0.0359 (13)0.0237 (11)0.0099 (10)0.0185 (10)0.0078 (9)
C220.0219 (11)0.0231 (11)0.0413 (13)0.0027 (9)0.0167 (10)0.0074 (9)
C230.0172 (10)0.0196 (10)0.0347 (12)0.0027 (8)0.0025 (9)0.0011 (9)
C240.0194 (10)0.0150 (9)0.0206 (10)0.0006 (8)0.0032 (8)0.0015 (8)
C250.0170 (9)0.0126 (9)0.0150 (9)0.0003 (7)0.0018 (7)0.0021 (7)
C260.0196 (10)0.0193 (10)0.0207 (10)0.0009 (8)0.0024 (8)0.0006 (8)
C270.0269 (11)0.0248 (11)0.0269 (11)0.0043 (9)0.0062 (9)0.0044 (9)
C280.0342 (12)0.0184 (11)0.0300 (12)0.0059 (9)0.0044 (10)0.0026 (9)
C290.0458 (14)0.0177 (11)0.0243 (11)0.0025 (10)0.0029 (10)0.0052 (9)
C300.0351 (12)0.0194 (10)0.0183 (10)0.0008 (9)0.0055 (9)0.0014 (8)
C310.0139 (9)0.0163 (9)0.0122 (9)0.0017 (7)0.0006 (7)0.0010 (7)
C320.0206 (10)0.0192 (10)0.0175 (10)0.0036 (8)0.0011 (8)0.0012 (8)
C330.0245 (10)0.0181 (10)0.0261 (11)0.0019 (8)0.0025 (8)0.0044 (8)
C340.0225 (10)0.0277 (11)0.0170 (10)0.0037 (9)0.0032 (8)0.0078 (8)
C350.0215 (10)0.0283 (11)0.0120 (9)0.0006 (9)0.0022 (8)0.0013 (8)
C360.0194 (9)0.0183 (10)0.0158 (9)0.0017 (8)0.0026 (7)0.0017 (8)
Cl10.0317 (3)0.0195 (2)0.0104 (2)0.00282 (19)0.00520 (18)0.00101 (17)
Zn10.01626 (13)0.01306 (13)0.00941 (13)0.00044 (9)0.00177 (10)0.00183 (9)
Cl20.0158 (2)0.0190 (2)0.0185 (2)0.00186 (17)0.00122 (17)0.00075 (17)
Cl30.0242 (2)0.0237 (2)0.0204 (2)0.00547 (19)0.00445 (19)0.00802 (19)
Cl40.0259 (2)0.0164 (2)0.0145 (2)0.00658 (18)0.00023 (18)0.00183 (17)
Geometric parameters (Å, º) top
C1—S11.7784 (18)S2—C311.7868 (18)
C1—C21.383 (3)C19—C201.394 (3)
C1—C61.391 (3)C19—C241.388 (3)
S1—C71.7919 (19)C20—H200.9500
S1—C131.7892 (19)C20—C211.386 (3)
C2—H20.9500C21—H210.9500
C2—C31.395 (3)C21—C221.380 (3)
C3—H30.9500C22—H220.9500
C3—C41.384 (3)C22—C231.385 (3)
C4—H40.9500C23—H230.9500
C4—C51.384 (3)C23—C241.391 (3)
C5—H50.9500C24—H240.9500
C5—C61.385 (3)C25—C261.388 (3)
C6—H60.9500C25—C301.389 (3)
C7—C81.384 (3)C26—H260.9500
C7—C121.384 (3)C26—C271.390 (3)
C8—H80.9500C27—H270.9500
C8—C91.390 (3)C27—C281.386 (3)
C9—H90.9500C28—H280.9500
C9—C101.377 (3)C28—C291.380 (3)
C10—H100.9500C29—H290.9500
C10—C111.373 (3)C29—C301.386 (3)
C11—H110.9500C30—H300.9500
C11—C121.386 (3)C31—C321.387 (3)
C12—H120.9500C31—C361.387 (3)
C13—C141.385 (3)C32—H320.9500
C13—C181.387 (3)C32—C331.391 (3)
C14—H140.9500C33—H330.9500
C14—C151.391 (3)C33—C341.387 (3)
C15—H150.9500C34—H340.9500
C15—C161.379 (3)C34—C351.381 (3)
C16—H160.9500C35—H350.9500
C16—C171.384 (3)C35—C361.390 (3)
C17—H170.9500C36—H360.9500
C17—C181.382 (3)Cl1—Zn12.2760 (5)
C18—H180.9500Zn1—Cl22.2863 (5)
S2—C191.7879 (19)Zn1—Cl32.2615 (5)
S2—C251.7876 (19)Zn1—Cl42.2788 (5)
C2—C1—S1114.63 (14)C20—C19—S2122.41 (15)
C2—C1—C6122.44 (17)C24—C19—S2115.48 (14)
C6—C1—S1122.90 (14)C24—C19—C20121.94 (18)
C1—S1—C7104.77 (8)C19—C20—H20120.8
C1—S1—C13103.45 (9)C21—C20—C19118.4 (2)
C13—S1—C7104.88 (9)C21—C20—H20120.8
C1—C2—H2120.9C20—C21—H21119.8
C1—C2—C3118.25 (18)C22—C21—C20120.4 (2)
C3—C2—H2120.9C22—C21—H21119.8
C2—C3—H3120.0C21—C22—H22119.6
C4—C3—C2120.02 (19)C21—C22—C23120.8 (2)
C4—C3—H3120.0C23—C22—H22119.6
C3—C4—H4119.6C22—C23—H23120.0
C3—C4—C5120.71 (18)C22—C23—C24120.1 (2)
C5—C4—H4119.6C24—C23—H23120.0
C4—C5—H5119.9C19—C24—C23118.48 (18)
C4—C5—C6120.28 (19)C19—C24—H24120.8
C6—C5—H5119.9C23—C24—H24120.8
C1—C6—H6120.9C26—C25—S2114.92 (14)
C5—C6—C1118.26 (18)C26—C25—C30121.69 (18)
C5—C6—H6120.9C30—C25—S2123.38 (15)
C8—C7—S1115.83 (15)C25—C26—H26120.7
C8—C7—C12121.57 (19)C25—C26—C27118.54 (19)
C12—C7—S1122.60 (16)C27—C26—H26120.7
C7—C8—H8120.6C26—C27—H27119.8
C7—C8—C9118.85 (19)C28—C27—C26120.4 (2)
C9—C8—H8120.6C28—C27—H27119.8
C8—C9—H9119.9C27—C28—H28120.0
C10—C9—C8120.2 (2)C29—C28—C27120.0 (2)
C10—C9—H9119.9C29—C28—H28120.0
C9—C10—H10120.0C28—C29—H29119.6
C11—C10—C9120.1 (2)C28—C29—C30120.8 (2)
C11—C10—H10120.0C30—C29—H29119.6
C10—C11—H11119.4C25—C30—H30120.7
C10—C11—C12121.1 (2)C29—C30—C25118.52 (19)
C12—C11—H11119.4C29—C30—H30120.7
C7—C12—C11118.2 (2)C32—C31—S2113.72 (13)
C7—C12—H12120.9C32—C31—C36122.02 (17)
C11—C12—H12120.9C36—C31—S2124.17 (15)
C14—C13—S1115.34 (15)C31—C32—H32120.6
C14—C13—C18121.87 (18)C31—C32—C33118.90 (18)
C18—C13—S1122.79 (15)C33—C32—H32120.6
C13—C14—H14120.9C32—C33—H33120.3
C13—C14—C15118.18 (19)C34—C33—C32119.40 (19)
C15—C14—H14120.9C34—C33—H33120.3
C14—C15—H15119.7C33—C34—H34119.5
C16—C15—C14120.68 (19)C35—C34—C33121.10 (19)
C16—C15—H15119.7C35—C34—H34119.4
C15—C16—H16119.9C34—C35—H35119.9
C15—C16—C17120.16 (19)C34—C35—C36120.15 (18)
C17—C16—H16119.9C36—C35—H35119.9
C16—C17—H17119.8C31—C36—C35118.36 (18)
C18—C17—C16120.33 (19)C31—C36—H36120.8
C18—C17—H17119.8C35—C36—H36120.8
C13—C18—H18120.6Cl1—Zn1—Cl2112.522 (19)
C17—C18—C13118.77 (18)Cl1—Zn1—Cl4107.238 (18)
C17—C18—H18120.6Cl3—Zn1—Cl1111.85 (2)
C25—S2—C19106.14 (9)Cl3—Zn1—Cl2105.247 (19)
C31—S2—C19100.78 (9)Cl3—Zn1—Cl4109.24 (2)
C31—S2—C25106.27 (9)Cl4—Zn1—Cl2110.760 (19)
C1—S1—C7—C879.65 (16)S2—C19—C20—C21176.14 (16)
C1—S1—C7—C12100.49 (18)S2—C19—C24—C23176.02 (15)
C1—S1—C13—C14146.68 (15)S2—C25—C26—C27179.96 (15)
C1—S1—C13—C1832.96 (19)S2—C25—C30—C29179.96 (16)
C1—C2—C3—C40.7 (3)S2—C31—C32—C33173.80 (15)
S1—C1—C2—C3175.68 (15)S2—C31—C36—C35174.11 (15)
S1—C1—C6—C5175.80 (15)C19—S2—C25—C26143.88 (14)
S1—C7—C8—C9179.31 (15)C19—S2—C25—C3034.76 (19)
S1—C7—C12—C11179.67 (17)C19—S2—C31—C3279.22 (16)
S1—C13—C14—C15179.71 (17)C19—S2—C31—C3697.33 (17)
S1—C13—C18—C17179.72 (16)C19—C20—C21—C220.7 (3)
C2—C1—S1—C7152.39 (15)C20—C19—C24—C230.7 (3)
C2—C1—S1—C1397.97 (15)C20—C21—C22—C230.1 (3)
C2—C1—C6—C51.9 (3)C21—C22—C23—C240.6 (3)
C2—C3—C4—C51.1 (3)C22—C23—C24—C190.2 (3)
C3—C4—C5—C61.4 (3)C24—C19—C20—C211.2 (3)
C4—C5—C6—C10.1 (3)C25—S2—C19—C2078.26 (19)
C6—C1—S1—C729.71 (18)C25—S2—C19—C24106.50 (15)
C6—C1—S1—C1379.93 (18)C25—S2—C31—C32170.27 (14)
C6—C1—C2—C32.2 (3)C25—S2—C31—C3613.18 (19)
C7—S1—C13—C14103.76 (16)C25—C26—C27—C280.2 (3)
C7—S1—C13—C1876.59 (19)C26—C25—C30—C291.5 (3)
C7—C8—C9—C100.7 (3)C26—C27—C28—C290.7 (3)
C8—C7—C12—C110.5 (3)C27—C28—C29—C300.5 (3)
C8—C9—C10—C110.3 (3)C28—C29—C30—C250.6 (3)
C9—C10—C11—C120.0 (3)C30—C25—C26—C271.3 (3)
C10—C11—C12—C70.0 (3)C31—S2—C19—C2032.35 (19)
C12—C7—C8—C90.8 (3)C31—S2—C19—C24142.89 (15)
C13—S1—C7—C8171.75 (15)C31—S2—C25—C26109.43 (15)
C13—S1—C7—C128.11 (19)C31—S2—C25—C3071.94 (18)
C13—C14—C15—C160.4 (3)C31—C32—C33—C341.3 (3)
C14—C13—C18—C170.7 (3)C32—C31—C36—C352.2 (3)
C14—C15—C16—C170.3 (4)C32—C33—C34—C350.8 (3)
C15—C16—C17—C180.3 (3)C33—C34—C35—C361.4 (3)
C16—C17—C18—C130.8 (3)C34—C35—C36—C310.0 (3)
C18—C13—C14—C150.1 (3)C36—C31—C32—C332.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···Cl3i0.952.683.5210 (19)148
C8—H8···Cl20.952.663.552 (2)158
C14—H14···Cl10.952.753.610 (2)151
C21—H21···Cl1ii0.952.653.554 (2)159
C24—H24···Cl40.952.743.5792 (19)147
C26—H26···Cl20.952.663.509 (2)149
C33—H33···Cl3i0.952.763.695 (2)167
C35—H35···Cl1iii0.952.813.592 (2)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2.
Bis(triphenylsulfonium) tetrachloridocadmium(II) (II) top
Crystal data top
(C18H15S)2[CdCl4]F(000) = 1576
Mr = 780.92Dx = 1.501 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.2696 (1) ÅCell parameters from 13508 reflections
b = 17.6682 (2) Åθ = 3.3–69.5°
c = 21.4072 (2) ŵ = 9.22 mm1
β = 99.801 (1)°T = 100 K
V = 3454.84 (6) Å3Irregular, clear colourless
Z = 40.19 × 0.13 × 0.09 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
5793 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.055
ω scansθmax = 69.9°, θmin = 3.3°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1111
Tmin = 0.488, Tmax = 1.000k = 2121
20400 measured reflectionsl = 2125
6456 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0269P)2 + 1.3464P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
6456 reflectionsΔρmax = 0.63 e Å3
388 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0953 (3)0.46409 (14)0.72725 (11)0.0276 (5)
S10.24934 (6)0.48478 (3)0.68954 (2)0.02528 (12)
C20.0226 (3)0.39737 (17)0.70845 (12)0.0378 (6)
H20.0549400.3656750.6777520.045*
C30.0987 (3)0.37742 (18)0.73523 (13)0.0407 (6)
H30.1495700.3316650.7229600.049*
C40.1450 (3)0.42379 (17)0.77937 (13)0.0401 (7)
H40.2277480.4100580.7976490.048*
C50.0724 (4)0.48939 (18)0.79694 (16)0.0530 (9)
H50.1059720.5212590.8272130.064*
C60.0498 (4)0.51075 (17)0.77156 (13)0.0450 (7)
H60.1005540.5563470.7844510.054*
C70.1726 (3)0.52561 (14)0.61506 (10)0.0254 (5)
C80.0427 (3)0.56613 (15)0.60619 (12)0.0313 (5)
H80.0140150.5704290.6390260.038*
C90.0018 (3)0.60040 (15)0.54733 (12)0.0346 (6)
H90.0900130.6288120.5396640.041*
C100.0818 (3)0.59315 (15)0.50038 (12)0.0351 (6)
H100.0517260.6176400.4608050.042*
C110.2082 (3)0.55103 (16)0.50987 (12)0.0344 (6)
H110.2631130.5457460.4764960.041*
C120.2564 (3)0.51612 (15)0.56770 (11)0.0286 (5)
H120.3435870.4868030.5746430.034*
C130.3395 (3)0.56290 (15)0.73269 (11)0.0288 (5)
C140.2880 (3)0.63655 (16)0.72499 (12)0.0364 (6)
H140.2009940.6476400.6960810.044*
C150.3652 (3)0.69340 (16)0.75994 (14)0.0408 (7)
H150.3308660.7441020.7553970.049*
C160.4922 (3)0.67695 (17)0.80156 (13)0.0420 (7)
H160.5449110.7165560.8253290.050*
C170.5430 (3)0.60427 (19)0.80894 (15)0.0491 (8)
H170.6305120.5937500.8377470.059*
C180.4671 (3)0.54570 (17)0.77447 (13)0.0397 (6)
H180.5017580.4950800.7793590.048*
S20.54251 (6)0.77489 (3)0.49517 (2)0.02358 (12)
C190.6295 (3)0.72077 (14)0.56160 (10)0.0253 (5)
C200.7241 (3)0.75133 (15)0.61263 (11)0.0300 (5)
H200.7552860.8025090.6121850.036*
C210.7717 (3)0.70487 (16)0.66432 (11)0.0344 (6)
H210.8361810.7244220.6999290.041*
C220.7261 (3)0.63053 (17)0.66441 (12)0.0361 (6)
H220.7567390.5998310.7006760.043*
C230.6361 (3)0.60025 (16)0.61203 (13)0.0371 (6)
H230.6075690.5486090.6120300.044*
C240.5877 (3)0.64525 (15)0.55971 (11)0.0309 (5)
H240.5272560.6248810.5233060.037*
C250.6324 (3)0.86513 (14)0.50027 (11)0.0288 (5)
C260.6108 (3)0.91985 (16)0.54382 (12)0.0391 (6)
H260.5480720.9108460.5738240.047*
C270.6839 (4)0.98893 (17)0.54242 (14)0.0473 (7)
H270.6704641.0276770.5716530.057*
C280.7753 (4)1.00122 (17)0.49902 (15)0.0463 (7)
H280.8258881.0479820.4990600.056*
C290.7938 (3)0.94590 (18)0.45535 (15)0.0445 (7)
H290.8556390.9550800.4250330.053*
C300.7222 (3)0.87703 (16)0.45580 (13)0.0343 (6)
H300.7345210.8386860.4260580.041*
C310.3665 (3)0.79086 (14)0.51693 (11)0.0271 (5)
C320.2482 (3)0.78776 (14)0.46805 (12)0.0299 (5)
H320.2621640.7805920.4255100.036*
C330.1084 (3)0.79537 (16)0.48249 (15)0.0389 (6)
H330.0254500.7935640.4496470.047*
C340.0902 (3)0.80549 (17)0.54425 (17)0.0454 (7)
H340.0056680.8108940.5538470.055*
C350.2102 (4)0.8079 (2)0.59286 (15)0.0510 (8)
H350.1961770.8151470.6353940.061*
C360.3492 (3)0.79992 (18)0.57954 (13)0.0413 (7)
H360.4318660.8005670.6125740.050*
Cd10.03901 (2)0.80558 (2)0.83501 (2)0.02284 (6)
Cl10.10045 (7)0.89355 (4)0.88926 (3)0.03605 (14)
Cl20.04029 (7)0.84236 (4)0.72454 (3)0.03335 (14)
Cl30.28460 (6)0.80632 (3)0.90087 (3)0.02929 (13)
Cl40.07390 (7)0.67949 (4)0.83420 (3)0.03362 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0306 (12)0.0277 (13)0.0242 (11)0.0055 (10)0.0034 (9)0.0039 (10)
S10.0274 (3)0.0239 (3)0.0233 (2)0.0032 (2)0.0011 (2)0.0011 (2)
C20.0349 (14)0.0441 (17)0.0350 (13)0.0019 (12)0.0080 (11)0.0101 (12)
C30.0347 (14)0.0457 (17)0.0424 (14)0.0050 (13)0.0083 (12)0.0041 (13)
C40.0438 (16)0.0399 (16)0.0408 (14)0.0078 (13)0.0188 (12)0.0121 (13)
C50.079 (2)0.0359 (17)0.0556 (18)0.0047 (16)0.0438 (18)0.0011 (15)
C60.070 (2)0.0292 (15)0.0425 (15)0.0062 (14)0.0279 (15)0.0051 (12)
C70.0295 (12)0.0228 (12)0.0225 (10)0.0000 (10)0.0003 (9)0.0007 (9)
C80.0321 (13)0.0308 (14)0.0298 (12)0.0050 (11)0.0025 (10)0.0004 (11)
C90.0358 (14)0.0262 (14)0.0380 (13)0.0036 (11)0.0043 (11)0.0028 (11)
C100.0459 (15)0.0277 (14)0.0283 (12)0.0111 (12)0.0036 (11)0.0078 (11)
C110.0380 (14)0.0384 (15)0.0282 (12)0.0104 (12)0.0093 (11)0.0046 (11)
C120.0242 (12)0.0290 (13)0.0327 (12)0.0030 (10)0.0050 (10)0.0010 (10)
C130.0314 (13)0.0266 (13)0.0266 (11)0.0005 (10)0.0001 (10)0.0019 (10)
C140.0380 (14)0.0322 (15)0.0358 (13)0.0023 (12)0.0031 (11)0.0027 (11)
C150.0489 (17)0.0281 (15)0.0419 (15)0.0018 (12)0.0019 (13)0.0048 (12)
C160.0456 (16)0.0349 (16)0.0402 (14)0.0034 (13)0.0078 (13)0.0079 (12)
C170.0426 (16)0.0434 (18)0.0524 (17)0.0026 (14)0.0175 (14)0.0042 (14)
C180.0372 (14)0.0317 (15)0.0447 (15)0.0049 (12)0.0087 (12)0.0017 (12)
S20.0241 (3)0.0237 (3)0.0228 (2)0.0017 (2)0.0038 (2)0.0005 (2)
C190.0257 (12)0.0266 (12)0.0236 (11)0.0000 (10)0.0040 (9)0.0006 (10)
C200.0306 (13)0.0283 (13)0.0304 (12)0.0024 (11)0.0034 (10)0.0061 (10)
C210.0317 (13)0.0435 (16)0.0254 (12)0.0028 (12)0.0023 (10)0.0031 (11)
C220.0344 (14)0.0423 (16)0.0308 (12)0.0034 (12)0.0032 (10)0.0098 (12)
C230.0376 (14)0.0287 (14)0.0440 (14)0.0047 (11)0.0042 (12)0.0086 (12)
C240.0297 (13)0.0298 (14)0.0308 (12)0.0062 (11)0.0012 (10)0.0023 (10)
C250.0306 (13)0.0227 (12)0.0311 (12)0.0020 (10)0.0005 (10)0.0030 (10)
C260.0544 (18)0.0306 (15)0.0325 (13)0.0022 (13)0.0077 (12)0.0036 (11)
C270.069 (2)0.0284 (15)0.0423 (15)0.0057 (14)0.0026 (15)0.0063 (13)
C280.0524 (18)0.0277 (15)0.0559 (17)0.0111 (13)0.0009 (14)0.0025 (13)
C290.0431 (16)0.0385 (17)0.0539 (17)0.0095 (13)0.0141 (14)0.0034 (14)
C300.0334 (13)0.0290 (14)0.0415 (14)0.0022 (11)0.0093 (11)0.0009 (11)
C310.0272 (12)0.0250 (12)0.0311 (12)0.0015 (10)0.0101 (10)0.0032 (10)
C320.0281 (13)0.0241 (13)0.0373 (13)0.0026 (10)0.0052 (10)0.0035 (11)
C330.0266 (13)0.0299 (15)0.0596 (18)0.0035 (11)0.0052 (12)0.0014 (13)
C340.0341 (15)0.0378 (17)0.071 (2)0.0047 (13)0.0277 (15)0.0130 (15)
C350.057 (2)0.059 (2)0.0445 (16)0.0181 (16)0.0299 (15)0.0154 (15)
C360.0399 (16)0.0548 (19)0.0319 (13)0.0118 (14)0.0132 (12)0.0086 (13)
Cd10.02514 (9)0.02262 (9)0.02076 (8)0.00049 (6)0.00392 (6)0.00405 (6)
Cl10.0372 (3)0.0373 (3)0.0345 (3)0.0079 (3)0.0083 (2)0.0117 (3)
Cl20.0461 (3)0.0329 (3)0.0222 (2)0.0039 (3)0.0093 (2)0.0037 (2)
Cl30.0252 (3)0.0286 (3)0.0322 (3)0.0027 (2)0.0003 (2)0.0001 (2)
Cl40.0412 (3)0.0280 (3)0.0303 (3)0.0100 (3)0.0022 (2)0.0059 (2)
Geometric parameters (Å, º) top
C1—S11.794 (3)S2—C311.794 (2)
C1—C21.383 (4)C19—C201.388 (3)
C1—C61.376 (4)C19—C241.388 (4)
S1—C71.784 (2)C20—H200.9500
S1—C131.787 (3)C20—C211.388 (4)
C2—H20.9500C21—H210.9500
C2—C31.392 (4)C21—C221.380 (4)
C3—H30.9500C22—H220.9500
C3—C41.373 (4)C22—C231.386 (4)
C4—H40.9500C23—H230.9500
C4—C51.361 (5)C23—C241.384 (4)
C5—H50.9500C24—H240.9500
C5—C61.389 (4)C25—C261.381 (4)
C6—H60.9500C25—C301.383 (4)
C7—C81.386 (3)C26—H260.9500
C7—C121.388 (3)C26—C271.399 (4)
C8—H80.9500C27—H270.9500
C8—C91.396 (4)C27—C281.377 (5)
C9—H90.9500C28—H280.9500
C9—C101.376 (4)C28—C291.383 (4)
C10—H100.9500C29—H290.9500
C10—C111.373 (4)C29—C301.387 (4)
C11—H110.9500C30—H300.9500
C11—C121.387 (4)C31—C321.382 (4)
C12—H120.9500C31—C361.386 (4)
C13—C141.386 (4)C32—H320.9500
C13—C181.390 (4)C32—C331.389 (4)
C14—H140.9500C33—H330.9500
C14—C151.378 (4)C33—C341.373 (4)
C15—H150.9500C34—H340.9500
C15—C161.381 (4)C34—C351.389 (5)
C16—H160.9500C35—H350.9500
C16—C171.367 (4)C35—C361.374 (4)
C17—H170.9500C36—H360.9500
C17—C181.390 (4)Cd1—Cl12.4386 (6)
C18—H180.9500Cd1—Cl22.4545 (6)
S2—C191.788 (2)Cd1—Cl32.4653 (6)
S2—C251.794 (3)Cd1—Cl42.4602 (6)
C2—C1—S1115.38 (19)C20—C19—S2123.8 (2)
C6—C1—S1123.3 (2)C24—C19—S2113.91 (17)
C6—C1—C2121.3 (3)C24—C19—C20122.2 (2)
C7—S1—C1104.94 (11)C19—C20—H20121.0
C7—S1—C13103.29 (12)C21—C20—C19118.0 (2)
C13—S1—C1105.24 (12)C21—C20—H20121.0
C1—C2—H2120.5C20—C21—H21119.7
C1—C2—C3118.9 (3)C22—C21—C20120.5 (2)
C3—C2—H2120.5C22—C21—H21119.7
C2—C3—H3120.0C21—C22—H22119.7
C4—C3—C2120.1 (3)C21—C22—C23120.6 (2)
C4—C3—H3120.0C23—C22—H22119.7
C3—C4—H4120.0C22—C23—H23120.0
C5—C4—C3120.0 (3)C24—C23—C22120.0 (3)
C5—C4—H4120.0C24—C23—H23120.0
C4—C5—H5119.3C19—C24—H24120.7
C4—C5—C6121.4 (3)C23—C24—C19118.6 (2)
C6—C5—H5119.3C23—C24—H24120.7
C1—C6—C5118.2 (3)C26—C25—S2122.9 (2)
C1—C6—H6120.9C26—C25—C30122.1 (3)
C5—C6—H6120.9C30—C25—S2114.9 (2)
C8—C7—S1122.43 (18)C25—C26—H26121.0
C8—C7—C12122.9 (2)C25—C26—C27118.0 (3)
C12—C7—S1114.60 (18)C27—C26—H26121.0
C7—C8—H8121.2C26—C27—H27119.7
C7—C8—C9117.7 (2)C28—C27—C26120.5 (3)
C9—C8—H8121.2C28—C27—H27119.7
C8—C9—H9119.9C27—C28—H28119.8
C10—C9—C8120.2 (3)C27—C28—C29120.4 (3)
C10—C9—H9119.9C29—C28—H28119.8
C9—C10—H10119.5C28—C29—H29120.0
C11—C10—C9121.0 (2)C28—C29—C30120.0 (3)
C11—C10—H10119.5C30—C29—H29120.0
C10—C11—H11119.7C25—C30—C29118.9 (3)
C10—C11—C12120.7 (2)C25—C30—H30120.6
C12—C11—H11119.7C29—C30—H30120.6
C7—C12—H12121.2C32—C31—S2115.91 (19)
C11—C12—C7117.5 (2)C32—C31—C36122.0 (2)
C11—C12—H12121.2C36—C31—S2121.9 (2)
C14—C13—S1122.84 (19)C31—C32—H32120.7
C14—C13—C18121.3 (2)C31—C32—C33118.6 (2)
C18—C13—S1115.8 (2)C33—C32—H32120.7
C13—C14—H14120.5C32—C33—H33120.0
C15—C14—C13118.9 (2)C34—C33—C32120.0 (3)
C15—C14—H14120.5C34—C33—H33120.0
C14—C15—H15119.9C33—C34—H34119.6
C14—C15—C16120.2 (3)C33—C34—C35120.8 (3)
C16—C15—H15119.9C35—C34—H34119.6
C15—C16—H16119.6C34—C35—H35119.9
C17—C16—C15120.7 (3)C36—C35—C34120.1 (3)
C17—C16—H16119.6C36—C35—H35119.9
C16—C17—H17119.9C31—C36—H36120.7
C16—C17—C18120.3 (3)C35—C36—C31118.7 (3)
C18—C17—H17119.9C35—C36—H36120.7
C13—C18—C17118.5 (3)Cl1—Cd1—Cl2112.33 (2)
C13—C18—H18120.8Cl1—Cd1—Cl3103.71 (2)
C17—C18—H18120.8Cl1—Cd1—Cl4108.73 (2)
C19—S2—C25106.56 (11)Cl2—Cd1—Cl3113.21 (2)
C19—S2—C31100.63 (11)Cl2—Cd1—Cl4107.74 (2)
C31—S2—C25106.16 (12)Cl4—Cd1—Cl3111.05 (2)
C1—S1—C7—C829.3 (2)S2—C19—C20—C21173.1 (2)
C1—S1—C7—C12153.19 (19)S2—C19—C24—C23173.0 (2)
C1—S1—C13—C1477.0 (2)S2—C25—C26—C27178.4 (2)
C1—S1—C13—C18103.8 (2)S2—C25—C30—C29178.7 (2)
C1—C2—C3—C40.3 (4)S2—C31—C32—C33176.4 (2)
S1—C1—C2—C3179.6 (2)S2—C31—C36—C35176.6 (2)
S1—C1—C6—C5179.1 (2)C19—S2—C25—C2674.1 (2)
S1—C7—C8—C9175.3 (2)C19—S2—C25—C30107.8 (2)
S1—C7—C12—C11175.59 (19)C19—S2—C31—C32141.6 (2)
S1—C13—C14—C15179.5 (2)C19—S2—C31—C3633.6 (3)
S1—C13—C18—C17179.4 (2)C19—C20—C21—C220.2 (4)
C2—C1—S1—C781.7 (2)C20—C19—C24—C233.5 (4)
C2—C1—S1—C13169.7 (2)C20—C21—C22—C232.2 (4)
C2—C1—C6—C50.4 (4)C21—C22—C23—C241.8 (4)
C2—C3—C4—C50.1 (5)C22—C23—C24—C191.0 (4)
C3—C4—C5—C60.6 (5)C24—C19—C20—C213.2 (4)
C4—C5—C6—C10.8 (5)C25—S2—C19—C2012.6 (2)
C6—C1—S1—C797.8 (2)C25—S2—C19—C24170.83 (19)
C6—C1—S1—C1310.8 (3)C25—S2—C31—C32107.5 (2)
C6—C1—C2—C30.1 (4)C25—S2—C31—C3677.3 (2)
C7—S1—C13—C1432.8 (3)C25—C26—C27—C280.4 (5)
C7—S1—C13—C18146.4 (2)C26—C25—C30—C290.6 (4)
C7—C8—C9—C100.3 (4)C26—C27—C28—C291.2 (5)
C8—C7—C12—C111.9 (4)C27—C28—C29—C301.1 (5)
C8—C9—C10—C111.4 (4)C28—C29—C30—C250.2 (4)
C9—C10—C11—C121.5 (4)C30—C25—C26—C270.5 (4)
C10—C11—C12—C70.1 (4)C31—S2—C19—C2097.9 (2)
C12—C7—C8—C92.0 (4)C31—S2—C19—C2478.6 (2)
C13—S1—C7—C880.7 (2)C31—S2—C25—C2632.5 (3)
C13—S1—C7—C1296.8 (2)C31—S2—C25—C30145.5 (2)
C13—C14—C15—C160.5 (4)C31—C32—C33—C340.2 (4)
C14—C13—C18—C170.2 (4)C32—C31—C36—C351.7 (4)
C14—C15—C16—C170.3 (5)C32—C33—C34—C350.3 (4)
C15—C16—C17—C180.0 (5)C33—C34—C35—C360.2 (5)
C16—C17—C18—C130.0 (5)C34—C35—C36—C311.2 (5)
C18—C13—C14—C150.4 (4)C36—C31—C32—C331.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl3i0.952.653.561 (3)162
C5—H5···Cl40.952.813.453 (3)126
C11—H11···Cl1ii0.952.653.512 (3)150
C18—H18···Cl2i0.952.733.593 (3)152
C21—H21···Cl2iii0.952.803.559 (3)137
C23—H23···Cl1i0.952.743.667 (3)165
C30—H30···Cl3ii0.952.673.528 (3)150
C32—H32···Cl4ii0.952.763.588 (3)146
C35—H35···Cl20.952.633.508 (3)155
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+3/2, z1/2; (iii) x+1, y, z.
Bis(triphenylsulfonium) tetrachloridomercury(II) methanol monosolvate (III) top
Crystal data top
(C18H15S)2[HgCl4]·CH4OF(000) = 1776
Mr = 901.15Dx = 1.659 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
a = 9.43577 (14) ÅCell parameters from 16563 reflections
b = 18.0709 (3) Åθ = 3.2–69.7°
c = 21.2467 (3) ŵ = 11.68 mm1
β = 95.1778 (14)°T = 100 K
V = 3608.05 (9) Å3Irregular, clear colourless
Z = 40.11 × 0.06 × 0.05 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix3000
diffractometer
6142 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.054
ω scansθmax = 70.0°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
h = 1111
Tmin = 0.644, Tmax = 1.000k = 1721
22094 measured reflectionsl = 2525
6743 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0299P)2 + 13.4612P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
6743 reflectionsΔρmax = 2.45 e Å3
408 parametersΔρmin = 2.10 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.59944 (13)0.41086 (6)0.70016 (5)0.0333 (2)
Hg10.54319 (2)0.35810 (2)0.80553 (2)0.02241 (7)
Cl20.37497 (11)0.25678 (6)0.77766 (5)0.0293 (2)
Cl30.76456 (11)0.32714 (6)0.87198 (5)0.0282 (2)
Cl40.44023 (12)0.45546 (7)0.86876 (6)0.0366 (3)
S20.78402 (10)0.52803 (5)0.82731 (5)0.0201 (2)
C200.9390 (4)0.5172 (2)0.78599 (19)0.0211 (8)
C210.9934 (5)0.4454 (2)0.7864 (2)0.0272 (9)
H210.9460530.4061190.8055930.033*
C221.1182 (5)0.4324 (3)0.7581 (2)0.0340 (11)
H221.1574450.3840130.7580050.041*
C231.1851 (5)0.4902 (3)0.7302 (2)0.0309 (10)
H231.2715140.4813990.7116970.037*
C241.1277 (5)0.5606 (3)0.7290 (2)0.0290 (10)
H241.1738560.5993280.7085480.035*
C251.0038 (5)0.5755 (2)0.7570 (2)0.0237 (9)
H250.9646110.6239260.7564970.028*
C260.6957 (4)0.6094 (2)0.7969 (2)0.0214 (8)
C270.7468 (5)0.6803 (3)0.8110 (2)0.0297 (10)
H270.8335780.6873440.8366110.036*
C280.6686 (5)0.7404 (3)0.7869 (2)0.0344 (11)
H280.7012490.7892540.7962720.041*
C290.5431 (5)0.7295 (3)0.7492 (2)0.0318 (10)
H290.4905400.7709440.7323940.038*
C300.4938 (5)0.6590 (3)0.7358 (2)0.0329 (11)
H300.4073560.6522810.7098960.039*
C310.5691 (4)0.5979 (3)0.7598 (2)0.0249 (9)
H310.5348160.5492150.7509440.030*
C320.8516 (5)0.5553 (2)0.9050 (2)0.0239 (9)
C330.9851 (5)0.5856 (3)0.9187 (2)0.0316 (10)
H331.0478620.5913260.8865030.038*
C341.0261 (5)0.6075 (3)0.9800 (2)0.0354 (11)
H341.1174930.6286490.9901150.042*
C350.9349 (5)0.5989 (3)1.0265 (2)0.0347 (11)
H350.9638870.6141961.0684910.042*
C360.8016 (6)0.5680 (3)1.0127 (2)0.0411 (13)
H360.7394700.5622441.0451800.049*
C370.7582 (5)0.5455 (3)0.9513 (2)0.0340 (11)
H370.6671610.5239370.9412640.041*
S10.98108 (10)0.26645 (6)0.44256 (5)0.0219 (2)
C20.8066 (4)0.2824 (2)0.4665 (2)0.0230 (9)
C30.6955 (5)0.2756 (2)0.4193 (2)0.0255 (9)
H30.7131540.2613990.3777220.031*
C40.5587 (5)0.2900 (3)0.4343 (2)0.0331 (11)
H40.4815680.2861100.4024760.040*
C50.5328 (5)0.3097 (3)0.4947 (2)0.0348 (11)
H50.4382490.3197460.5043370.042*
C60.6444 (5)0.3151 (3)0.5417 (2)0.0345 (11)
H60.6255930.3281030.5834100.041*
C70.7827 (5)0.3016 (3)0.5283 (2)0.0310 (10)
H70.8594590.3053010.5603300.037*
C81.0795 (4)0.2404 (2)0.5151 (2)0.0235 (9)
C91.0712 (5)0.1663 (3)0.5299 (2)0.0312 (10)
H91.0223550.1326220.5012310.037*
C101.1353 (6)0.1421 (3)0.5873 (3)0.0406 (13)
H101.1299320.0914530.5986920.049*
C111.2080 (5)0.1922 (3)0.6283 (2)0.0334 (11)
H111.2504840.1757550.6680520.040*
C121.2185 (5)0.2659 (3)0.6115 (2)0.0318 (10)
H121.2705710.2993750.6391920.038*
C131.1533 (5)0.2910 (3)0.5541 (2)0.0268 (9)
H131.1593330.3415260.5421200.032*
C141.0444 (5)0.3571 (2)0.4246 (2)0.0236 (9)
C150.9691 (5)0.4200 (3)0.4365 (2)0.0319 (10)
H150.8833160.4168310.4565420.038*
C161.0206 (6)0.4879 (3)0.4188 (2)0.0365 (11)
H160.9684330.5316660.4257890.044*
C171.1475 (6)0.4926 (3)0.3909 (2)0.0341 (11)
H171.1833360.5393920.3796300.041*
C181.2218 (5)0.4284 (3)0.3795 (2)0.0330 (11)
H181.3093150.4315290.3607680.040*
C191.1693 (5)0.3598 (3)0.3952 (2)0.0292 (10)
H191.2180270.3156280.3859360.035*
C10.3895 (7)0.4989 (4)0.5682 (3)0.0584 (17)
H1A0.3401000.5073640.5262810.088*
H1B0.4924260.4979700.5651030.088*
H1C0.3661860.5387850.5967960.088*
O10.3467 (5)0.4319 (3)0.5916 (2)0.0596 (12)
H10.4145720.4128120.6142340.089*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0466 (6)0.0291 (6)0.0259 (5)0.0051 (5)0.0120 (5)0.0060 (4)
Hg10.02457 (10)0.02156 (10)0.02097 (10)0.00267 (6)0.00126 (7)0.00035 (6)
Cl20.0311 (5)0.0242 (5)0.0322 (5)0.0075 (4)0.0000 (4)0.0037 (4)
Cl30.0245 (5)0.0308 (5)0.0282 (5)0.0029 (4)0.0029 (4)0.0062 (4)
Cl40.0331 (6)0.0356 (6)0.0431 (7)0.0021 (5)0.0143 (5)0.0141 (5)
S20.0189 (4)0.0194 (5)0.0218 (5)0.0003 (4)0.0010 (4)0.0019 (4)
C200.0184 (19)0.023 (2)0.021 (2)0.0013 (16)0.0003 (15)0.0010 (17)
C210.029 (2)0.022 (2)0.031 (2)0.0004 (18)0.0063 (18)0.0032 (18)
C220.031 (2)0.026 (2)0.047 (3)0.0064 (19)0.009 (2)0.001 (2)
C230.026 (2)0.033 (3)0.036 (3)0.0004 (19)0.0085 (19)0.003 (2)
C240.028 (2)0.029 (2)0.030 (2)0.0072 (19)0.0030 (18)0.0010 (19)
C250.027 (2)0.021 (2)0.023 (2)0.0024 (17)0.0008 (17)0.0006 (17)
C260.021 (2)0.018 (2)0.026 (2)0.0020 (16)0.0043 (16)0.0026 (17)
C270.029 (2)0.027 (2)0.032 (2)0.0023 (19)0.0005 (19)0.002 (2)
C280.042 (3)0.021 (2)0.042 (3)0.001 (2)0.009 (2)0.002 (2)
C290.030 (2)0.026 (2)0.040 (3)0.0071 (19)0.009 (2)0.008 (2)
C300.023 (2)0.036 (3)0.039 (3)0.0007 (19)0.000 (2)0.013 (2)
C310.022 (2)0.026 (2)0.027 (2)0.0020 (17)0.0034 (17)0.0018 (18)
C320.024 (2)0.026 (2)0.021 (2)0.0039 (17)0.0018 (17)0.0014 (17)
C330.028 (2)0.043 (3)0.024 (2)0.004 (2)0.0021 (18)0.002 (2)
C340.035 (3)0.040 (3)0.031 (3)0.004 (2)0.002 (2)0.004 (2)
C350.043 (3)0.038 (3)0.022 (2)0.008 (2)0.003 (2)0.006 (2)
C360.038 (3)0.059 (4)0.028 (3)0.005 (2)0.011 (2)0.004 (2)
C370.025 (2)0.048 (3)0.029 (2)0.001 (2)0.0040 (19)0.000 (2)
S10.0190 (5)0.0252 (5)0.0213 (5)0.0003 (4)0.0013 (4)0.0013 (4)
C20.0178 (19)0.025 (2)0.026 (2)0.0011 (16)0.0018 (16)0.0002 (18)
C30.025 (2)0.028 (2)0.024 (2)0.0000 (18)0.0002 (17)0.0002 (18)
C40.021 (2)0.040 (3)0.038 (3)0.0031 (19)0.0011 (19)0.002 (2)
C50.019 (2)0.043 (3)0.044 (3)0.001 (2)0.008 (2)0.003 (2)
C60.031 (2)0.045 (3)0.029 (2)0.002 (2)0.011 (2)0.001 (2)
C70.023 (2)0.043 (3)0.026 (2)0.002 (2)0.0006 (18)0.004 (2)
C80.0183 (19)0.026 (2)0.026 (2)0.0001 (17)0.0038 (16)0.0009 (18)
C90.025 (2)0.033 (3)0.035 (3)0.0053 (19)0.0006 (19)0.001 (2)
C100.039 (3)0.037 (3)0.047 (3)0.000 (2)0.009 (2)0.017 (2)
C110.031 (2)0.045 (3)0.024 (2)0.009 (2)0.0032 (19)0.010 (2)
C120.028 (2)0.041 (3)0.026 (2)0.005 (2)0.0000 (18)0.003 (2)
C130.027 (2)0.029 (2)0.024 (2)0.0037 (18)0.0017 (17)0.0002 (18)
C140.025 (2)0.026 (2)0.019 (2)0.0016 (17)0.0023 (16)0.0013 (17)
C150.032 (2)0.028 (2)0.038 (3)0.001 (2)0.012 (2)0.003 (2)
C160.047 (3)0.025 (2)0.039 (3)0.002 (2)0.012 (2)0.004 (2)
C170.046 (3)0.032 (3)0.025 (2)0.012 (2)0.008 (2)0.001 (2)
C180.027 (2)0.043 (3)0.030 (2)0.004 (2)0.0061 (19)0.001 (2)
C190.026 (2)0.034 (3)0.029 (2)0.0008 (18)0.0043 (19)0.0024 (19)
C10.042 (3)0.072 (5)0.061 (4)0.004 (3)0.003 (3)0.009 (3)
O10.048 (2)0.062 (3)0.068 (3)0.009 (2)0.002 (2)0.012 (2)
Geometric parameters (Å, º) top
Cl1—Hg12.5333 (11)S1—C81.789 (4)
Hg1—Cl22.4602 (10)S1—C141.796 (4)
Hg1—Cl32.4773 (10)C2—C31.388 (6)
Hg1—Cl42.4657 (11)C2—C71.397 (6)
S2—C201.783 (4)C3—H30.9500
S2—C261.783 (4)C3—C41.382 (6)
S2—C321.784 (4)C4—H40.9500
C20—C211.395 (6)C4—C51.376 (7)
C20—C251.390 (6)C5—H50.9500
C21—H210.9500C5—C61.387 (7)
C21—C221.389 (6)C6—H60.9500
C22—H220.9500C6—C71.382 (7)
C22—C231.380 (7)C7—H70.9500
C23—H230.9500C8—C91.379 (7)
C23—C241.382 (7)C8—C131.380 (6)
C24—H240.9500C9—H90.9500
C24—C251.385 (6)C9—C101.382 (7)
C25—H250.9500C10—H100.9500
C26—C271.392 (6)C10—C111.394 (8)
C26—C311.386 (6)C11—H110.9500
C27—H270.9500C11—C121.384 (7)
C27—C281.385 (7)C12—H120.9500
C28—H280.9500C12—C131.392 (6)
C28—C291.382 (7)C13—H130.9500
C29—H290.9500C14—C151.376 (6)
C29—C301.377 (7)C14—C191.384 (6)
C30—H300.9500C15—H150.9500
C30—C311.385 (6)C15—C161.385 (7)
C31—H310.9500C16—H160.9500
C32—C331.380 (6)C16—C171.386 (7)
C32—C371.390 (6)C17—H170.9500
C33—H330.9500C17—C181.387 (7)
C33—C341.384 (7)C18—H180.9500
C34—H340.9500C18—C191.388 (7)
C34—C351.375 (7)C19—H190.9500
C35—H350.9500C1—H1A0.9800
C35—C361.383 (8)C1—H1B0.9800
C36—H360.9500C1—H1C0.9800
C36—C371.394 (7)C1—O11.382 (8)
C37—H370.9500O1—H10.8400
S1—C21.790 (4)
Cl2—Hg1—Cl1104.45 (4)C8—S1—C2102.6 (2)
Cl2—Hg1—Cl3117.50 (4)C8—S1—C14105.5 (2)
Cl2—Hg1—Cl4112.63 (4)C3—C2—S1115.8 (3)
Cl3—Hg1—Cl1110.82 (4)C3—C2—C7121.7 (4)
Cl4—Hg1—Cl1109.71 (4)C7—C2—S1122.5 (3)
Cl4—Hg1—Cl3101.77 (4)C2—C3—H3120.7
C20—S2—C26106.8 (2)C4—C3—C2118.6 (4)
C20—S2—C32104.2 (2)C4—C3—H3120.7
C26—S2—C32102.9 (2)C3—C4—H4119.6
C21—C20—S2114.7 (3)C5—C4—C3120.8 (4)
C25—C20—S2123.2 (3)C5—C4—H4119.6
C25—C20—C21122.1 (4)C4—C5—H5120.0
C20—C21—H21120.7C4—C5—C6120.1 (4)
C22—C21—C20118.7 (4)C6—C5—H5120.0
C22—C21—H21120.7C5—C6—H6119.6
C21—C22—H22120.1C7—C6—C5120.7 (5)
C23—C22—C21119.8 (4)C7—C6—H6119.6
C23—C22—H22120.1C2—C7—H7120.9
C22—C23—H23119.7C6—C7—C2118.2 (4)
C22—C23—C24120.7 (4)C6—C7—H7120.9
C24—C23—H23119.7C9—C8—S1114.6 (3)
C23—C24—H24119.5C9—C8—C13122.9 (4)
C23—C24—C25121.0 (4)C13—C8—S1122.5 (3)
C25—C24—H24119.5C8—C9—H9120.7
C20—C25—H25121.1C8—C9—C10118.6 (5)
C24—C25—C20117.7 (4)C10—C9—H9120.7
C24—C25—H25121.1C9—C10—H10120.1
C27—C26—S2122.7 (3)C9—C10—C11119.9 (5)
C31—C26—S2115.6 (3)C11—C10—H10120.1
C31—C26—C27121.7 (4)C10—C11—H11119.8
C26—C27—H27120.7C12—C11—C10120.4 (4)
C28—C27—C26118.6 (4)C12—C11—H11119.8
C28—C27—H27120.7C11—C12—H12119.9
C27—C28—H28119.9C11—C12—C13120.3 (5)
C29—C28—C27120.2 (4)C13—C12—H12119.9
C29—C28—H28119.9C8—C13—C12117.9 (4)
C28—C29—H29119.7C8—C13—H13121.0
C30—C29—C28120.5 (4)C12—C13—H13121.0
C30—C29—H29119.7C15—C14—S1121.8 (4)
C29—C30—H30119.7C15—C14—C19121.9 (4)
C29—C30—C31120.6 (4)C19—C14—S1116.2 (3)
C31—C30—H30119.7C14—C15—H15120.5
C26—C31—H31120.8C14—C15—C16118.9 (4)
C30—C31—C26118.4 (4)C16—C15—H15120.5
C30—C31—H31120.8C15—C16—H16119.8
C33—C32—S2123.2 (3)C15—C16—C17120.5 (5)
C33—C32—C37121.7 (4)C17—C16—H16119.8
C37—C32—S2115.0 (3)C16—C17—H17120.2
C32—C33—H33120.5C16—C17—C18119.6 (5)
C32—C33—C34119.0 (4)C18—C17—H17120.2
C34—C33—H33120.5C17—C18—H18119.7
C33—C34—H34119.9C17—C18—C19120.5 (4)
C35—C34—C33120.3 (5)C19—C18—H18119.7
C35—C34—H34119.9C14—C19—C18118.5 (4)
C34—C35—H35119.7C14—C19—H19120.7
C34—C35—C36120.6 (4)C18—C19—H19120.7
C36—C35—H35119.7H1A—C1—H1B109.5
C35—C36—H36120.0H1A—C1—H1C109.5
C35—C36—C37120.0 (5)H1B—C1—H1C109.5
C37—C36—H36120.0O1—C1—H1A109.5
C32—C37—C36118.4 (5)O1—C1—H1B109.5
C32—C37—H37120.8O1—C1—H1C109.5
C36—C37—H37120.8C1—O1—H1109.5
C2—S1—C14104.2 (2)
S2—C20—C21—C22176.8 (4)S1—C2—C3—C4177.7 (4)
S2—C20—C25—C24177.0 (3)S1—C2—C7—C6178.0 (4)
S2—C26—C27—C28177.9 (4)S1—C8—C9—C10175.4 (4)
S2—C26—C31—C30178.7 (4)S1—C8—C13—C12175.8 (3)
S2—C32—C33—C34177.7 (4)S1—C14—C15—C16177.0 (4)
S2—C32—C37—C36177.7 (4)S1—C14—C19—C18179.1 (4)
C20—S2—C26—C2773.2 (4)C2—S1—C8—C985.4 (4)
C20—S2—C26—C31109.0 (3)C2—S1—C8—C1392.3 (4)
C20—S2—C32—C3320.3 (5)C2—S1—C14—C156.7 (4)
C20—S2—C32—C37161.1 (4)C2—S1—C14—C19170.1 (3)
C20—C21—C22—C230.3 (7)C2—C3—C4—C50.8 (7)
C21—C20—C25—C241.1 (6)C3—C2—C7—C61.1 (7)
C21—C22—C23—C241.3 (8)C3—C4—C5—C60.4 (8)
C22—C23—C24—C251.7 (7)C4—C5—C6—C70.8 (8)
C23—C24—C25—C200.5 (7)C5—C6—C7—C20.1 (8)
C25—C20—C21—C221.5 (7)C7—C2—C3—C41.5 (7)
C26—S2—C20—C21158.3 (3)C8—S1—C2—C3156.0 (3)
C26—S2—C20—C2523.4 (4)C8—S1—C2—C724.9 (4)
C26—S2—C32—C3391.1 (4)C8—S1—C14—C15100.9 (4)
C26—S2—C32—C3787.5 (4)C8—S1—C14—C1982.3 (4)
C26—C27—C28—C290.6 (7)C8—C9—C10—C110.8 (8)
C27—C26—C31—C300.8 (7)C9—C8—C13—C121.7 (7)
C27—C28—C29—C300.7 (8)C9—C10—C11—C121.2 (8)
C28—C29—C30—C310.1 (8)C10—C11—C12—C131.8 (7)
C29—C30—C31—C260.6 (7)C11—C12—C13—C80.4 (7)
C31—C26—C27—C280.2 (7)C13—C8—C9—C102.3 (7)
C32—S2—C20—C2193.2 (4)C14—S1—C2—C394.3 (4)
C32—S2—C20—C2585.1 (4)C14—S1—C2—C784.9 (4)
C32—S2—C26—C2736.2 (4)C14—S1—C8—C9165.8 (3)
C32—S2—C26—C31141.6 (3)C14—S1—C8—C1316.5 (4)
C32—C33—C34—C350.3 (8)C14—C15—C16—C171.5 (8)
C33—C32—C37—C360.9 (8)C15—C14—C19—C182.3 (7)
C33—C34—C35—C360.2 (8)C15—C16—C17—C181.4 (8)
C34—C35—C36—C370.1 (8)C16—C17—C18—C190.7 (7)
C35—C36—C37—C320.4 (8)C17—C18—C19—C142.5 (7)
C37—C32—C33—C340.8 (8)C19—C14—C15—C160.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl10.842.413.187 (5)155
C3—H3···Cl2i0.952.753.631 (4)155
C10—H10···Cl4ii0.952.653.588 (6)168
C13—H13···O1iii0.952.563.192 (7)124
C19—H19···Cl3i0.952.643.542 (5)159
C21—H21···Cl30.952.723.639 (4)163
C31—H31···Cl10.952.813.630 (5)145
C36—H36···Cl4iv0.952.623.573 (5)178
C37—H37···Cl40.952.813.712 (5)159
Symmetry codes: (i) x+1/2, y+1/2, z1/2; (ii) x+3/2, y1/2, z+3/2; (iii) x+1, y, z; (iv) x+1, y+1, z+2.
Contributions of selected intermolecular contacts (%) top
Contact(I) (TPS1)(I) (TPS2)(I) (ZnCl4)(II) (TPS1)(II) (TPS2)(II) (CdCl4)(III) (TPS1)(III) (TPS2)(III) (HgCl4)
C···C5.63.85.33.75.38.2
H···C21.831.721.431.021.919.5
H···H53.748.853.448.656.851.4
H···Cl15.513.789.716.114.588.811.016.288.1
S···Cl1.21.34.81.11.24.21.11.24.2
O···H2.70.7
S···M1.51.82.0
 

Acknowledgements

The authors thank the Department of Biochemistry, Chemistry, and Physics and the Center for Advanced Materials Science at Georgia Southern University for the financial support of this work and the National Science Foundation Major Research Instrumentation fund for the purchase of the X-ray diffractometer.

Funding information

Funding for this research was provided by: National Science Foundation Major Research Instrumentation fund (grant No. 2215812).

References

First citationArtis, R., Callaway, W., Heyward, E., Reyes, N., Roberts, G., Van Ostenbridge, K., Padgett, C. W. & Lynch, W. E. (2025). Acta Cryst. E81, 114–119.  CrossRef IUCr Journals Google Scholar
First citationBarrett, J. N., Barrett, D. F. & Ingber, L. (1976). Biochem. J. 15, 1512–1516.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKlapötke, T. M. & Krumm, B. (2009a). Z. Naturforsch. B Chem. Sci. 64, 467–469.  Google Scholar
First citationKlapötke, T. M., Krumm, B. & Scherr, M. (2009b). J. Am. Chem. Soc. 131, 72–74.  PubMed Google Scholar
First citationKwon, S. H., Park, S. & Kim, H. J. (2014). J. Semiconductor Technol. 12, 245–260.  Google Scholar
First citationLiao, J. F., Zhang, Z., Zhou, L., Tang, Z. & Xing, G. (2024). Angew. Chem. Int. Ed. 63, e202404100.  Google Scholar
First citationLuo, H., Zhang, Y., Chen, X. & Tang, B. Z. (2022a). Mater. Lett. 4, 132–140.  Google Scholar
First citationLuo, Z., Liu, Y., Liu, Y., Li, C., Li, Y., Li, Q., Wei, Y., Zhang, L., Xu, B., Chang, X. & Quan, Z. (2022b). Adv. Mater. 34, 2200607.  Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationOhmori, N., Nakazono, Y., Hata, M., Hoshino, T. & Tsuda, M. (1998). J. Phys. Chem. B, 102, 927–930.  Web of Science CrossRef CAS Google Scholar
First citationOvchinnikov, Y. E., Struchkov, T. T., Nedel'kin, V. I., Kuznetsov, S. N. & Izmailov, B. A. (1996). Russ. Chem. Bull. 45, 1400–1403.  CrossRef Web of Science Google Scholar
First citationPetsalakis, I. D., Theodorakopoulos, G., Lathiotakis, N. N., Georgiadou, D. G., Vasilopoulou, M. & Argitis, P. (2014). Chem. Phys. Lett. 601, 63–68.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSchlueter, J. A., Manson, J. L., Hyzer, K. A. & Geiser, U. (2004). Inorg. Chem. 43, 4100–4102.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiu, B., Cassity, C. G., Benchea, A., Hamby, T., Hendrich, J., Strickland, K. J., Wierzbicki, A., Sykora, R. E., Salter, E. A., O'Brien, R. A., West, K. N. & Davis, J. H. (2017). RSC Adv. 7, 7623–7630.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (1998). Acta Cryst. B54, 456–463.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X., Tao, P., Wang, Q., Zhao, R., Liu, T., Hu, Y., Hu, Z., Wang, Y., Wang, J., Tang, Y., Xu, H. & He, X. (2023). Mater. Today, 67, 299–319.  Web of Science CrossRef CAS Google Scholar
First citationZhang, L., Li, X., Sun, Y., Zhao, W., Luo, F., Huang, X., Lin, L., Yang, Y. & Peng, B. (2017). Org. Biomol. Chem. 15, 7181–7189.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds