research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Syntheses and crystal structures of 4-benzyl-1-ethyl-1,2,4-triazolium bromide and its corresponding NHC complexes of rhodium and iridium

crossmark logo

aDepartment of Chemistry, Millersville University, Millersville, PA 17551, USA, and bDepartment of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
*Correspondence e-mail: edward.rajaseelan@millersville.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 19 March 2025; accepted 24 March 2025; online 27 March 2025)

The syntheses and crystal structures of a triazolium salt, 4-benzyl-1-ethyl-1,2,4-triazolium bromide, C11H14N3+·Br (2), and the corresponding N-heterocyclic carbene complexes, (4-benzyl-1-ethyl-1,2,4-triazol-5-yl­idene)chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene]rhodium(I), [RhCl(C8H12)(C11H13N3)] (3), (4-benzyl-1-ethyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate, [Ir(C8H12)(C11H13N3)(C18H15P)]BF4 (5), and (4-benzyl-1-ethyl-1,2,4-triazol-5-yl­idene)[(1,2,5,6-η)-cyclo­octa-1,5-diene](tri­cyclo­hexyl­phosphane)iridium(I) tetra­fluorido­borate dicholoro­methane sesquisolvate, [Ir(C8H12)(C11H13N3)(C18H33P)]BF4·1.5CH2Cl2 (6), are presented. Complexes 2 and 6 crystallize in the monoclinic space group P21/c, complex 3 in the triclinic space group P1 and complex 5 in the triclinic space group P1 with two mol­ecules in the asymmetric unit. The three metal complexes 3, 5, and 6 have a distorted square-planar geometry around the metal ions. The N1—C1—N3 bond angle in the triazolium salt 2 is 107.1 (2)° and is observed in the range of 102.2 (3) to 103.8 (5)° in the NHC ligands in complexes 3, 5, and 6. The two substituent ‘wing tips' in the NHC ligand (N-ethyl and N-benz­yl) are oriented in an anti-arrangement in compounds 2 and 3, a syn-arrangement in compound 6, and both syn and anti-arrangements in the two independent ion pairs in compound 5. All structures exhibit non-classical hydrogen-bonding inter­actions with the most acidic hydrogen atoms in complexes 2 and 3 playing critical roles in the orientations of structural units.

1. Chemical context

Asymmetric 1,2,4-triazolium cations are of inter­est due to their utility as cations in ionic liquids and as precursors to N-heterocyclic carbenes (NHCs) (Chianese et al., 2004[Chianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461-2468.]; Dwivedi et al., 2014[Dwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatalysis, 1, 13-39.]). The crystal structures of several triazolium salts have been reported (Albert et al., 2025[Albert, D. R., Gau, M. & Rajaseelan, E. (2025). IUCrData, 10, x250092.]; Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]; Kumasaki et al., 2021[Kumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197-201.], El Bakri et al., 2016[El Bakri, Y., Harmaoui, A., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161819.]; Guino-o et al., 2015[Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628-635.]). NHCs have emerged as universal spectator ligands and as alternatives for phosphanes in transition-metal compounds (Herrmann & Köcher, 1997[Herrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162-2187.]; Bourissou et al., 2000[Bourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39-92.]; Weskamp et al., 2000[Weskamp, T., Böhm, V. P. W. & Herrmann, W. A. (2000). J. Organo­met. Chem. 600, 12-22.]). They form strong bonds to metal centers (Bortenschlager et al., 2005[Bortenschlager, M., Schütz, J., von Preysing, D., Nuyken, O., Herrmann, W. A. & Weberskirch, R. (2005). J. Organomet. Chem. 690, 6233-6237.]) and numerous and ever increasing applications of NHCs as supporting ligands in late-transition-metal catalysis have been reported (Díez-Gonzáles et al., 2009[Díez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612-3676.]; Cazin, 2013[Cazin, C. S. J. (2013). Dalton Trans. 42, 7254.]; Rovis & Nolan, 2013[Rovis, T. & Nolan, S. (2013). Synlett, 24, 1188-1189.]). Their catalytic activity in the transfer hydrogenation of unsaturated bonds is of great inter­est and it exemplifies some of the key aspects of green chemistry (Ruff et al., 2016[Ruff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327-335.]; Zuo et al., 2014[Zuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791-5801.]). Steric and electronic tuning of NHCs is possible by changing the ‘wing tip' substituents on the nitro­gen atoms (Díez-Gonzáles & Nolan, 2007[Díez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874-883.]; Gusev, 2009[Gusev, D. G. (2009). Organometallics, 28, 6458-6461.]; Mata et al., 2004[Mata, J. A., Chianese, A. R., Miecznikowski, J. R., Poyatos, M., Peris, E., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 1253-1263.]). Many imidazole- and triazole-based NHC rhodium and iridium complexes have been synthesized and structurally characterized (Herrmann et al., 2006[Herrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437-2448.]; Wang & Lin 1998[Wang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972-975.]; Nichol et al., 2009[Nichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320-4328.], 2010[Nichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.], 2011[Nichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860-m1861.], 2012[Nichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158-m159.]; Idrees et al., 2017a[Idrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.],b[Idrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.]; Rood et al., 2021[Rood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.]; Rushlow et al., 2021[Rushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.]; Newman et al., 2021[Newman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.]; Castaldi et al., 2021[Castaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.]; Lerch et al., 2024[Lerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). IUCrData, 9, x240941.]). Their catalytic activity in the transfer hydrogenation of ketones and imines has also been studied and reported (Hillier et al., 2001[Hillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246-4252.]; Albrecht et al., 2002[Albrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596-3604.]; Gnanamgari et al., 2007[Gnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226-1230.]). In this study we report the syntheses and crystal structures of a new triazolium salt and its corresponding NHC complexes of a neutral rhodium complex and two cationic iridium complexes with different ancillary phosphane ligands.

[Scheme 1]

2. Structural commentary

The triazolium salt (2), C11H14N3+·Br, crystallizes in the monoclinic space group P21/c as shown in Fig. 1[link]. The bond lengths in the triazolium rings indicate aromaticity with C—N bonds exhibiting distances in the range 1.304 (4) to 1.365 (3) Å and an N—N bond distance of 1.379 (3) Å; the N—C—N bond angles in the triazolium ring range from 107.1 (2) to 112.1 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of compound 2. Ellipsoids represent 50% probability levels.

The neutral complex (3), Rh(η2,η2-C8H12)(C11H13N3)Cl, as illustrated in Fig. 2[link], crystallizes in the triclinic space group P[\overline{1}]. The coordination sphere around the RhI ion is formed by the bidentate COD ligand and the monodentate NHC and chloride ligands, resulting in a distorted square-planar geometry. The carbene atom, C1, deviates from the expected sp2 hybridization in that the N1—C1—N3 bond angle in the triazole-based carbene is 102.7 (2)°. Other key bond lengths and angle in the structure are: Rh1—C1(NHC) = 2.014 (3) Å, Rh1—Cl1 = 2.3960 (6) Å, and C1—Rh1—Cl1 is 89.14 (7)°.

[Figure 2]
Figure 2
The mol­ecular structure of compound 3. Ellipsoids represent 50% probability levels. Disordered atoms of the COD ligand (C12–C19) are not shown.

Compound (5), [Ir(η2,η2-C8H12)(C11H13N3)(C18H15P)]+·BF4, comprises a cationic iridium complex and a tetra­fluorido­borate counter-anion, as shown in Fig. 3[link]. Two cations (A containing Ir1 and B containing Ir1′) and two anions are contained in the asymmetric unit, which crystallizes in the triclinic space group P1. The distorted square-planar geometry around the iridium ion arises from the bidentate (1,2,5,6-η)-cyclo­octa-1,5-diene (COD) ligand, and the monodentate NHC and tri­phenyl­phospane ligands. It is characterized by C1—Ir—P bond angles of 93.14 (17)° for cation A and 94.64 (18)° for cation B. The N—C—N bond angles of the NHC ligand are 103.8 (5) and 102.7 (5)° for cations A and B, respectively. The metal—phospho­rus bond lengths are 2.3302 (15) Å (cation A) and 2.3217 (15) Å (cation B) and the metal—carbene bond lengths are 2.039 (6) Å and 2.029 (6) Å for cations A and B, respectively.

[Figure 3]
Figure 3
The mol­ecular structure of compound 5. Ellipsoids represent 50% probability levels. The cation containing Ir1 is designated as 5A and that containing Ir1′ is designated as 5B.

Compound (6), [Ir(η2,η2-C8H12)(C11H13N3)(C18H33P)]+·BF4·1.5CH2Cl2, comprises a cationic iridium complex, a tetra­fluorido­borate counter-anion, and solvating di­chloro­methane (DCM), Fig. 4[link]. The complex crystallizes in the monoclinic space group P21/c with four formula units in the unit cell. The IrI center of the cationic complex has a distorted square-planar conformation, formed by a cyclo­octa-1,5-diene (COD) ligand, an N-heterocyclic carbene, and a tri­cyclo­hexyl­phosphane ligand. There are several disordered atoms/mol­ecules that were modeled appropriately: one DCM mol­ecule sits on a crystallographic center of symmetry and was modeled with statistical occupancy. Another DCM mol­ecule, COD and BF4 were modeled for positional disorder. The N1—C1—N3 bond angle in the carbene is 102.2 (3)°. Other selected bond lengths and angle in the structure are Ir1—C1 = 2.034 (4) Å, Ir1—P1 = 2.3707 (9) Å, and C1—Ir1—P1 = 93.42 (10)°.

[Figure 4]
Figure 4
The mol­ecular structure of compound 6. Ellipsoids represent 50% probability levels. Disordered atoms of the COD ligand, tetra­fluorido­borate anion, and di­chloro­methane solvent are not shown.

A comparison of the triazolium salt (2) bond angles and bond lengths to its corresponding NHC ligands in complexes 3, 5,and 6, show significant changes. Key bond lengths and angles for the structures are summarized in Tables 1[link]–4[link][link][link]. The N1—C1—N3 bond angle changes from 107.1 (2)° in 2 to a range of 102.2 (3)° to 103.8 (5)° in complexes 3, 5,and 6. The C1—N1 and C1—N3 bond lengths change from 1.315 (3) and 1.339 (3) Å in compound 2 to a range from 1.336 (8) to 1.352 (5) Å in compounds 3, 5,and 6, and 1.339 (3) to a range of 1.319 (5) and 1.380 (8) Å in compounds 3, 5, and 6 respectively.

Table 1
Selected geometric parameters (Å, °) for 2[link]

N1—C1 1.315 (3) N3—C1 1.339 (3)
       
N1—C1—N3 107.1 (2)    

Table 2
Selected geometric parameters (Å, °) for 3[link]

N1—C1 1.343 (3) Rh1—Cl1 2.3960 (6)
N3—C1 1.367 (3)    
       
N1—C1—N3 102.7 (2) C1—Rh1—Cl1 89.14 (7)

Table 3
Selected geometric parameters (Å, °) for 5[link]

N1—C1 1.336 (8) N1′—C1′ 1.340 (8)
N3—C1 1.354 (8) N3′—C1′ 1.380 (8)
Ir1—C1 2.039 (6) Ir1′—C1′ 2.029 (6)
       
N1—C1—N3 103.8 (5) N1′—C1′—N3′ 102.7 (5)
C1—Ir1—P1 93.14 (17) C1′—Ir1′—P1′ 94.64 (18)

Table 4
Selected geometric parameters (Å, °) for 6[link]

N1—C1 1.352 (5) Ir1—C1 2.034 (4)
N3—C1 1.369 (5)    
       
N1—C1—N3 102.2 (3) C1—Ir1—P1 93.42 (10)

In compound (2), the ethyl and the benzyl (wing tip) substituents on the nitro­gen atoms are in an anti-conformation and compound (3) also shows an anti-conformation with respect to the triazolium ring as shown in Figs. 5[link] and 6[link], respectively. In compound (5), the wing-tip substituents in the carbene ligands are syn in cation A and anti in cation B (Fig. 7[link]). Fig. 7[link] illustrates the different conformations of the two cations. Unlike the tri­phenyl­phosphine analogue (5), in compound (6) only the syn-conformation of the wing tips is observed as shown in Fig. 8[link]. The different conformations of the wingtips in various structures shows no strong preference for the syn or anti configuration of the wingtips. This is likely due to the ethyl wingtip being relatively small in size.

[Figure 5]
Figure 5
Compound 2 showing the anti configuration of the ethyl and benzyl wingtips relative to the N-heterocyclic ring.
[Figure 6]
Figure 6
Compound 3 showing the anti configuration of the ethyl and benzyl wingtips relative to the N-heterocyclic ring.
[Figure 7]
Figure 7
Compound 5 showing the two different cations (5A and 5B) display different (anti (5A) and syn (5B) configurations of the ethyl and benzyl wingtips relative to the N-heterocyclic rings.
[Figure 8]
Figure 8
Compound 6 showing the syn configuration of the ethyl and benzyl wingtips relative to the N-heterocyclic ring.

3. Supra­molecular features

Packing diagrams of the structures are shown in Figs. 9[link]–12[link][link][link] with non-classical hydrogen-bonding inter­actions shown as red dotted lines and summarized in Tables 5[link]–8[link][link][link]. The triazolium salt (2), shown in Fig. 9[link], exhibits close contacts between the two most acidic hydrogen atoms in the structure (H1 and H2 of the triazolium ring) and the bromide anion. The C—H⋯Br hydrogen bonding inter­actions of 2, summarized in Table 5[link], position the bromide ion between adjacent triazolium rings. This behavior is consistent with other observed crystal structures of 1, 2, 4-triazolium halide salts (Guino-o et al., 2015[Guino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628-635.]; El Bakri et al., 2016[El Bakri, Y., Harmaoui, A., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161819.]; Maynard et al., 2023[Maynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.]; Albert et al., 2024). The neutral rhodium complex (3), shown in Fig. 10[link], crystallizes as dimer pairs with the acidic H atom of the NHC (H2) and chlorido ligand on adjacent structural units displaying a weak C—H⋯Cl hydrogen-bonding inter­action, summarized in Table 6[link]. The ionic iridium complexes (5 and 6), shown in Figs. 11[link] and 12[link], respectively, display many non-classical hydrogen-bonding inter­actions, summarized in Tables 7[link] and 8[link], respectively. Most of the close contacts of the cationic complex are directed towards the tetra­fluorido­borate anion in 5. The weak hydrogen bonds in 6 are exhibited between both between adjacent cations and between cations and the tetra­fluorido­borate anion. Potential weak hydrogen-bonding inter­actions between the di­chloro­methane solvate mol­ecule and the cation are all relatively long and are not included in Table 8[link]. A few short non-standard hydrogen-bonding inter­actions likely occur due to disordered atoms.

Table 5
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Br1i 0.95 2.70 3.528 (3) 146
C2—H2⋯Br1ii 0.95 2.71 3.603 (3) 157
Symmetry codes: (i) [x, y-1, z]; (ii) [x, -y+{\script{5\over 2}}, z-{\script{1\over 2}}].

Table 6
Hydrogen-bond geometry (Å, °) for 3[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cl1i 0.95 2.64 3.461 (3) 145
Symmetry code: (i) [-x+1, -y+1, -z].

Table 7
Hydrogen-bond geometry (Å, °) for 5[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5A⋯F2 0.99 2.52 3.488 (8) 167
C8—H8⋯F2i 0.95 2.51 3.262 (10) 137
C14—H14⋯F4′ 0.95 2.40 3.250 (8) 149
C16—H16⋯F3 0.95 2.74 3.487 (9) 136
C21—H21⋯F3′ii 0.95 2.52 3.413 (8) 157
C22—H22⋯F4′ii 0.95 2.62 3.396 (8) 139
C33—H33A⋯F1′iii 0.99 2.51 3.378 (9) 146
C37—H37B⋯F2′i 0.99 2.38 3.313 (9) 158
C2′—H2′⋯F1iv 0.95 2.37 3.274 (9) 160
C16′—H16′⋯F2v 0.95 2.59 3.388 (7) 142
C20′—H20′⋯F3′vi 0.95 2.71 3.496 (8) 141
C28′—H28′⋯F3′ 0.95 2.45 3.335 (8) 154
C32′—H32D⋯F2′ii 0.99 2.44 3.425 (7) 176
C37′—H37C⋯F4vii 0.99 2.51 3.375 (8) 146
Symmetry codes: (i) [x+1, y, z]; (ii) [x, y+1, z]; (iii) [x+1, y+1, z]; (iv) [x, y+1, z-1]; (v) [x-1, y, z-1]; (vi) [x-1, y, z]; (vii) [x-1, y+1, z-1].

Table 8
Hydrogen-bond geometry (Å, °) for 6[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯F2i 0.95 2.25 3.140 (6) 155
C7—H7⋯F3ii 0.95 2.39 3.182 (7) 141
C8—H8⋯F4ii 0.95 2.61 3.424 (9) 144
C13—H13A⋯F1* 0.99 2.47 3.263 (13) 137
C22—H22B⋯F2*ii 0.99 2.55 3.340 (11) 137
C23—H23B⋯F3ii 0.99 2.44 3.244 (6) 139
C24—H24⋯N3 1.00 2.67 3.497 (5) 140
C29—H29B⋯N1 0.99 2.55 3.383 (5) 142
C33*—H33C⋯F3*ii 0.99 2.06 2.907 (11) 143
C38—H38A⋯F1 0.99 1.98 2.93 (2) 158
C38*—H38D⋯F3* 0.99 2.44 3.37 (4) 155
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 9]
Figure 9
Packing diagram of 2 viewed along the b-axis direction. Hydrogen-bonding inter­actions are shown as dotted red lines.
[Figure 10]
Figure 10
Packing diagram of 3 viewed along the b-axis direction. Hydrogen-bonding inter­actions are shown as dotted red lines.
[Figure 11]
Figure 11
Packing diagram of 5 viewed along the b-axis direction. Hydrogen-bonding inter­actions are shown as dotted red lines.
[Figure 12]
Figure 12
Packing diagram of 6 viewed along the a-axis direction. Hydrogen-bonding inter­actions are shown as dotted red lines.

4. Database survey

The Crystallography Open Database (Gražulis et al., 2009[Gražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726-729.]) was queried for structures similar to those reported. A search for ‘triazolium' and ‘salt' yielded 54 entries in the database. A search for ‘triazol' that included the element iridium yielded 139 entries. A search for ‘triazol' that included the element rhodium yielded 83 entries.

5. Synthesis and crystallization

1-Ethyl-1,2,4-triazole (1) was purchased from Matrix Scientific. All other compounds used in the syntheses, detailed in Fig. 13[link], were obtained from Sigma–Aldrich and Strem and used as received; all syntheses were performed under a nitro­gen atmosphere. NMR spectra were recorded at room temperature in CDCl3 on a 400 MHz (operating at 100 MHz for 13C and 162 MHz for 31P) Varian spectrometer and referenced to the residual solvent peak (δ in p.p.m.). The titular series of compounds (2, 3, 5, and 6) were crystallized by slow diffusion of pentane into a CH2Cl2 solution.

[Figure 13]
Figure 13
Reaction schemes for the syntheses of all compounds.

4-Benzyl-1-ethyl-1,2,4-triazolium bromide (2): 1-Ethyl-1,2,4-triazole (1) (0.410 g, 4.22 mmol) and excess α-bromo­toluene (5.000 g, 29.23 mmol) were added to toluene (15 ml), and the mixture was refluxed in the dark for 48 h. After the mixture was cooled, the white solid was filtered, washed with ether, and dried under vacuum. Yield: 0.910 g (80.4%). 1H NMR: CDCl3, δ (p.p.m.) 12.01 (s, 1 H, N—C5H—N), 8.23 (s, 1 H, N—C3—N), 7.56–7.54 (m, 2 H, Harom), 7.45–7.26 (m, 3 H, Harom), 5.78 (s, 2 H, CH2Ph), 4.56 (q, 2 H, CH2CH3), 1.67 (t, 3 H, CH2CH3). 13C NMR: δ 142.43 (N—CH—N), 142.24 (N—CH—N), 131.43, 130.19, 129.86, 129.45 (Carom), 52.41 (CH2Ph), 48.62 (CH2 of eth­yl), 14.08 (CH3).

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](4-benzyl-1-ethyl-1,2,4-triazol-5-yl­idene)rhodium(I) (3): Triazolium bromide (2) (0.109 g, 0.406 mmol) and Ag2O (0.047 g, 0.203 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 mL). The mixture was then filtered through Celite into [Rh(cod)Cl]2 (0.100 g, 0.203 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite, and the solvent was removed under reduced pressure in a rotary evaporator. The yellow solid product (3) was dried under vacuum. Yield: 0.158 g (90%). 1H NMR: δ 7.68 (s, 1 H, N—C3H—N), 7.26--7.38 (m, 5 H, Harom), 5.12 (s, 2 H, CH2Ph), 4.77 (q, 2 H, CH2CH3), 4.72 (m, 2 H, CH of COD), 4.64 (m, 2 H, CH of COD), 3.38, 3.20 (m, 4 H, CH2 of COD), 1.59 (t, 3 H, CH3 of eth­yl). 13C NMR: δ 185.32 (d, Rh—C, JC—Rh = 50.9 Hz), 141.96 (N—C3H—N), 134.87, 129.24, 128.75, 128.50, 128.43 (Carom), 99.96,99.89, 99.56, 99.46 (CH of COD), 52.45 (CH2Ph), 47.90 (CH2 of eth­yl), 33.10, 32.65, 28.96, 28.64 (CH2 of COD), 15.44 (CH3 of eth­yl).

Chlorido­[(1,2,5,6-η)-cyclo­octa-1,5-diene](4-benzyl-1-ethyl-1,2,4-triazol-5-yl­idene)iridium(I) (4): Triazolium bromide (2) (0.080 g, 0.298 mmol) and Ag2O (0.035 g, 0.149 mmol) were stirred at room temperature in the dark for 1 h in CH2Cl2 (10 ml). The mixture was then filtered through Celite into [Ir(cod)Cl]2 (0.100 g, 0.149 mmol), and stirred again in the dark for 1.5 h. The resulting solution was filtered through Celite, and the solvent was removed under reduced pressure in a rotary evaporator. The bright-orange solid product (4) was dried under vacuum. Yield: 0.146 g (94%). 1H NMR: δ 7.70 (s, 1 H, N—C3H—N), 7.26–7.39 (m, 5 H, Harom), 5.72 (s, 2 H, CH2Ph), 4.74 (q, 2 H, CH2CH3), 4.71 (m, 2 H, CH of COD), 4.64 (m, 2 H, CH of COD), 3.10–2.81 (m, 4 H, CH2 of COD), 1.56 (t, 3 H, CH3 of eth­yl). 13C NMR: δ 182.61 (Ir—C), 141.75 (N—C3H—N), 134.72, 129.21, 128.73, 128.45 (Carom), 86.86,86.32 (CH of COD), 52.76 (CH2Ph), 47.68 (CH2 of eth­yl), 33.82, 33.14, 29.73, 29.10 (CH2 of COD), 15.41 (CH3 of eth­yl).

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-benzyl-1-ethyl-1,2,4-tri­a­zol-5-yl­idene)(tri­phenyl­phosphane)iridium(I) tetra­fluorido­borate (5): Tri­phenyl­phosphane (0.052 g, 0.197 mmol) and AgBF4 (0.038 g, 0.197 mmol) were added to (4) (0.103 g, 0.197 mmol) in CH2Cl2 (15 mL). The solution was stirred in the dark for 1.5 h. The resulting mixture was filtered through Celite, and the solvent was removed under reduced pressure. The bright-red solid product (5) was dried under vacuum. Yield: 0.165 g (100%). 1H NMR: δ 7.91 (s, 1 H, N—C3H—N), 7.53–7.01 (m, 20 H, Harom), 5.53 (s, 2 H, CH2Ph), 4.74 (q, 2 H, CH2CH3), 4.71 (m, 2 H, CH of COD), 4.51 (m, 2 H, CH of COD), 2.43–2.01 (m, 4 H, CH2 of COD), 1.56 (t, 3 H, CH3 of Eth­yl). 13C NMR: δ 178.26 (Ir—C), 143.80 (N—C3H—N), 134.03-128.27 (Carom), 87.89, 87.76, 86.64, 86.53 (CH of COD), 52.07 (CH2Ph), 47.97 (CH2 of eth­yl), 31.56, 31.06, 30.60, 30.12 (CH2 of COD), 13.84 (CH3 of eth­yl). 31P NMR: δ 17.37.

[(1,2,5,6-η)-Cyclo­octa-1,5-diene](4-benzyl-1-ethyl-1,2,4-tri­azol-5-yl­idene)(tri­cyclo­hexyl­phosphane)iridium(I) tetra­fluorido­borate (6): Tri­cyclo­hexyl­phosphane (0.055 g, 0.197 mmol) and AgBF4 (0.038 g, 0.197 mmol) were added to (4) (0.103 g, 0.197 mmol) in CH2Cl2 (15 mL). The solution was stirred in the dark for 1.5 h. The resulting mixture was filtered through Celite, and the solvent was removed under reduced pressure. The bright-orange solid product (6) was dried under vacuum. Yield: 0.168 g (100%). 1H NMR: δ 8.32 (s, 1 H, N—C3H—N), 7.43–7.26 (m, 5 H, Harom), 5.54 (s, 2 H, CH2Ph), 4.57 (q, 2 H, CH2CH3), 4.71 (m, 2 H, CH of COD), 4.22 (m, 2 H, CH of COD), 2.25-2.19 (m, 4 H, CH2 of COD), 1.84–1.14 (m, 36 H, CH3 of ethyl and CH/CH2 of PCy3). 13C NMR: δ 179.54 (Ir—C), 144.58 (N—C3H—N), 129.42-127.75 (Carom), 82.04, 81.94, 79.27, 77.60 (CH of COD), 52.32 (CH2Ph), 48.17 (CH2 of eth­yl), 37.08, 36.85, 35.03 (CH of PCy3), 31.89, 31.86, 31.81, 31.77 (CH2 of COD), 29.95 – 25.76 (CH2 of PCy3), 14.23 (CH3 of eth­yl). 31P NMR: δ 15.51.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 9[link]. The non-H atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Refinement of 3 and 6 included several disordered atoms/mol­ecules (COD ligand in 3 and COD ligand, tetra­fluorido­borate anion, and di­chloro­methane solvate in 6). In 6, one di­chloro­methane solvate mol­ecule lies on a crystallographic center of symmetry and was modeled using a PART −1 card in SHELXL and as half occupancy.

Table 9
Experimental details

  2 3 5 6
Crystal data
Chemical formula C11H14N3+·Br [RhCl(C8H12)(C11H13N3)] [Ir(C8H12)(C11H13N3)(C18H15P)]BF4 [Ir(C8H12)(C11H13N3)(C18H33P)]BF4·1.5CH2Cl2
Mr 268.16 433.78 836.70 982.23
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}] Triclinic, P1 Monoclinic, P21/c
Temperature (K) 100 100 100 100
a, b, c (Å) 19.6908 (10), 4.7431 (2), 12.6482 (5) 10.1404 (2), 10.2958 (2), 10.3306 (2) 9.47197 (15), 9.50712 (15), 18.7104 (3) 12.1281 (2), 14.4399 (2), 23.7057 (3)
α, β, γ (°) 90, 100.400 (4), 90 116.818 (2), 103.489 (2), 93.997 (2) 79.8203 (14), 86.1222 (13), 89.3859 (13) 90, 92.016 (1), 90
V3) 1161.88 (9) 916.78 (4) 1654.57 (5) 4148.98 (10)
Z 4 2 2 4
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 3.51 1.08 4.14 3.50
Crystal size (mm) 0.38 × 0.19 × 0.02 0.5 × 0.34 × 0.23 0.31 × 0.27 × 0.23 0.27 × 0.1 × 0.01
 
Data collection
Diffractometer Rigaku XtaLAB Synergy-S Rigaku XtaLAB Synergy-S Rigaku XtaLAB Synergy-S Rigaku XtaLAB Synergy-S
Absorption correction Multi-scan (SCALE3 ABSPACK; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (SCALE3 ABSPACK; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (SCALE3 ABSPACK; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (SCALE3 ABSPACK; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.641, 1.000 0.740, 1.000 0.857, 1.000 0.642, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 22182, 2883, 2356 28369, 4565, 4281 50908, 15249, 14450 88352, 10279, 8797
Rint 0.071 0.048 0.045 0.051
(sin θ/λ)max−1) 0.667 0.667 0.667 0.667
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.074, 1.05 0.031, 0.081, 1.04 0.027, 0.062, 1.05 0.036, 0.078, 1.05
No. of reflections 2883 4565 15249 10279
No. of parameters 137 255 849 575
No. of restraints 0 76 3 309
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.40, −0.58 1.52, −0.82 3.38, −1.12 1.90, −1.29
Absolute structure Flack x determined using 6303 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.008 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Benzyl-1-ethyl-1,2,4-triazolium bromide (2) top
Crystal data top
C11H14N3+·BrF(000) = 544
Mr = 268.16Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.6908 (10) ÅCell parameters from 7642 reflections
b = 4.7431 (2) Åθ = 2.1–28.2°
c = 12.6482 (5) ŵ = 3.51 mm1
β = 100.400 (4)°T = 100 K
V = 1161.88 (9) Å3Plate, colourless
Z = 40.38 × 0.19 × 0.02 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
2356 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.071
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Rigaku OD, 2024)
h = 2626
Tmin = 0.641, Tmax = 1.000k = 56
22182 measured reflectionsl = 1616
2883 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0242P)2 + 1.9068P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2883 reflectionsΔρmax = 1.40 e Å3
137 parametersΔρmin = 0.58 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.27593 (2)1.08223 (5)0.65553 (2)0.01623 (9)
N10.37156 (11)0.6097 (5)0.48270 (16)0.0137 (4)
N20.39368 (12)0.7913 (5)0.41081 (18)0.0187 (5)
N30.27987 (11)0.7978 (4)0.39526 (17)0.0133 (5)
C10.30403 (14)0.6171 (5)0.4744 (2)0.0135 (5)
H10.2774170.5136980.5167320.016*
C20.33630 (14)0.8980 (6)0.3585 (2)0.0174 (6)
H20.3340331.0300510.3015320.021*
C30.42177 (14)0.4623 (6)0.5637 (2)0.0177 (6)
H3A0.4556420.3625180.5280780.021*
H3B0.3976520.3203930.6008220.021*
C40.45923 (16)0.6703 (6)0.6452 (2)0.0228 (6)
H4A0.4823240.8127720.6081670.034*
H4B0.4936470.5697560.6973920.034*
H4C0.4258870.7624990.6827810.034*
C50.20775 (14)0.8951 (6)0.3593 (2)0.0170 (6)
H5A0.2014900.9503440.2826800.020*
H5B0.1996641.0642310.4011770.020*
C60.15510 (14)0.6741 (5)0.3724 (2)0.0145 (5)
C70.13942 (14)0.6194 (6)0.4741 (2)0.0182 (6)
H70.1630160.7183890.5351030.022*
C80.08942 (15)0.4206 (7)0.4862 (2)0.0225 (6)
H80.0795190.3822010.5555470.027*
C90.05407 (14)0.2786 (6)0.3975 (2)0.0207 (6)
H90.0195730.1445510.4057670.025*
C100.06910 (14)0.3324 (6)0.2964 (2)0.0195 (6)
H100.0448870.2346760.2355440.023*
C110.11936 (14)0.5285 (6)0.2838 (2)0.0176 (6)
H110.1294580.5636550.2142950.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02611 (15)0.01224 (13)0.01118 (12)0.00239 (12)0.00559 (9)0.00042 (11)
N10.0198 (12)0.0125 (11)0.0091 (10)0.0007 (9)0.0036 (9)0.0015 (9)
N20.0229 (13)0.0208 (12)0.0131 (11)0.0032 (10)0.0052 (10)0.0042 (10)
N30.0194 (12)0.0101 (11)0.0107 (11)0.0003 (9)0.0036 (9)0.0002 (9)
C10.0198 (13)0.0098 (12)0.0114 (12)0.0008 (11)0.0041 (10)0.0013 (10)
C20.0255 (15)0.0161 (13)0.0106 (12)0.0040 (12)0.0037 (11)0.0018 (11)
C30.0193 (14)0.0159 (14)0.0178 (13)0.0031 (11)0.0032 (11)0.0063 (11)
C40.0247 (16)0.0265 (16)0.0161 (14)0.0026 (12)0.0010 (12)0.0029 (12)
C50.0181 (14)0.0160 (13)0.0155 (13)0.0010 (11)0.0013 (10)0.0020 (11)
C60.0169 (14)0.0135 (13)0.0130 (13)0.0058 (10)0.0028 (11)0.0006 (10)
C70.0211 (14)0.0189 (14)0.0149 (13)0.0032 (12)0.0038 (11)0.0015 (11)
C80.0237 (15)0.0284 (16)0.0168 (13)0.0026 (14)0.0070 (11)0.0044 (13)
C90.0178 (14)0.0166 (14)0.0282 (16)0.0005 (12)0.0054 (12)0.0026 (12)
C100.0179 (14)0.0183 (14)0.0212 (14)0.0020 (11)0.0009 (12)0.0039 (11)
C110.0193 (14)0.0187 (14)0.0155 (13)0.0033 (11)0.0046 (11)0.0016 (11)
Geometric parameters (Å, º) top
N1—N21.379 (3)C5—H5A0.9900
N1—C11.315 (3)C5—H5B0.9900
N1—C31.466 (3)C5—C61.504 (4)
N2—C21.304 (4)C6—C71.401 (4)
N3—C11.339 (3)C6—C111.394 (4)
N3—C21.365 (3)C7—H70.9500
N3—C51.484 (3)C7—C81.391 (4)
C1—H10.9500C8—H80.9500
C2—H20.9500C8—C91.384 (4)
C3—H3A0.9900C9—H90.9500
C3—H3B0.9900C9—C101.387 (4)
C3—C41.519 (4)C10—H100.9500
C4—H4A0.9800C10—C111.388 (4)
C4—H4B0.9800C11—H110.9500
C4—H4C0.9800
N2—N1—C3120.3 (2)N3—C5—H5A109.0
C1—N1—N2111.5 (2)N3—C5—H5B109.0
C1—N1—C3127.8 (2)N3—C5—C6113.0 (2)
C2—N2—N1103.2 (2)H5A—C5—H5B107.8
C1—N3—C2106.0 (2)C6—C5—H5A109.0
C1—N3—C5128.3 (2)C6—C5—H5B109.0
C2—N3—C5125.5 (2)C7—C6—C5120.0 (2)
N1—C1—N3107.1 (2)C11—C6—C5121.0 (2)
N1—C1—H1126.4C11—C6—C7118.9 (3)
N3—C1—H1126.4C6—C7—H7119.9
N2—C2—N3112.1 (2)C8—C7—C6120.3 (3)
N2—C2—H2123.9C8—C7—H7119.9
N3—C2—H2123.9C7—C8—H8119.9
N1—C3—H3A109.6C9—C8—C7120.2 (3)
N1—C3—H3B109.6C9—C8—H8119.9
N1—C3—C4110.4 (2)C8—C9—H9120.1
H3A—C3—H3B108.1C8—C9—C10119.9 (3)
C4—C3—H3A109.6C10—C9—H9120.1
C4—C3—H3B109.6C9—C10—H10119.8
C3—C4—H4A109.5C9—C10—C11120.3 (3)
C3—C4—H4B109.5C11—C10—H10119.8
C3—C4—H4C109.5C6—C11—H11119.8
H4A—C4—H4B109.5C10—C11—C6120.4 (3)
H4A—C4—H4C109.5C10—C11—H11119.8
H4B—C4—H4C109.5
N1—N2—C2—N31.3 (3)C3—N1—C1—N3174.2 (2)
N2—N1—C1—N31.6 (3)C5—N3—C1—N1175.4 (2)
N2—N1—C3—C467.8 (3)C5—N3—C2—N2174.5 (2)
N3—C5—C6—C777.2 (3)C5—C6—C7—C8178.3 (3)
N3—C5—C6—C11105.3 (3)C5—C6—C11—C10177.6 (2)
C1—N1—N2—C21.8 (3)C6—C7—C8—C91.0 (4)
C1—N1—C3—C4104.3 (3)C7—C6—C11—C100.0 (4)
C1—N3—C2—N20.4 (3)C7—C8—C9—C100.7 (4)
C1—N3—C5—C632.3 (4)C8—C9—C10—C110.1 (4)
C2—N3—C1—N10.7 (3)C9—C10—C11—C60.2 (4)
C2—N3—C5—C6153.9 (2)C11—C6—C7—C80.6 (4)
C3—N1—N2—C2175.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Br1i0.952.703.528 (3)146
C2—H2···Br1ii0.952.713.603 (3)157
Symmetry codes: (i) x, y1, z; (ii) x, y+5/2, z1/2.
(4-Benzyl-1-ethyl-1,2,4-triazol-5-ylidene)chlorido[(1,2,5,6-η)-cycloocta-1,5-diene]rhodium(I) (3) top
Crystal data top
[RhCl(C8H12)(C11H13N3)]Z = 2
Mr = 433.78F(000) = 444
Triclinic, P1Dx = 1.571 Mg m3
a = 10.1404 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2958 (2) ÅCell parameters from 20452 reflections
c = 10.3306 (2) Åθ = 2.2–28.2°
α = 116.818 (2)°µ = 1.08 mm1
β = 103.489 (2)°T = 100 K
γ = 93.997 (2)°Block, yellow
V = 916.78 (4) Å30.5 × 0.34 × 0.23 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
4281 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.048
ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Rigaku OD, 2024)
h = 1313
Tmin = 0.740, Tmax = 1.000k = 1313
28369 measured reflectionsl = 1313
4565 independent reflections
Refinement top
Refinement on F276 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.081 w = 1/[σ2(Fo2) + (0.0358P)2 + 1.9752P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4565 reflectionsΔρmax = 1.52 e Å3
255 parametersΔρmin = 0.81 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.27552 (2)0.66593 (2)0.29266 (2)0.01327 (7)
Cl10.25333 (7)0.40413 (6)0.13661 (7)0.02028 (14)
N10.5919 (2)0.7218 (3)0.3706 (3)0.0171 (4)
N20.7014 (2)0.7409 (3)0.3184 (3)0.0211 (5)
N30.4997 (2)0.7033 (2)0.1553 (2)0.0163 (4)
C10.4670 (3)0.6983 (3)0.2743 (3)0.0149 (5)
C20.6410 (3)0.7304 (3)0.1877 (3)0.0204 (5)
H20.6887230.7402000.1225560.024*
C30.6207 (3)0.6978 (4)0.5025 (3)0.0250 (6)
H3A0.5376740.7017270.5379950.030*
H3B0.6973050.7772850.5861920.030*
C40.6603 (4)0.5475 (5)0.4604 (5)0.0444 (10)
H4A0.5836540.4690470.3786170.067*
H4B0.6798730.5320910.5493900.067*
H4C0.7428620.5443240.4260360.067*
C50.4011 (3)0.6655 (3)0.0089 (3)0.0189 (5)
H5A0.3308150.5771810.0217080.023*
H5B0.4513100.6376060.0682940.023*
C60.3275 (3)0.7874 (3)0.0073 (3)0.0164 (5)
C70.1891 (3)0.7497 (3)0.0781 (3)0.0219 (5)
H70.1415120.6490210.1299100.026*
C80.1199 (3)0.8584 (4)0.0881 (3)0.0263 (6)
H80.0256420.8315200.1474250.032*
C90.1876 (3)1.0051 (3)0.0123 (3)0.0262 (6)
H90.1400241.0792290.0188070.031*
C100.3256 (3)1.0441 (3)0.0737 (3)0.0228 (6)
H100.3724971.1450280.1260420.027*
C110.3955 (3)0.9354 (3)0.0833 (3)0.0187 (5)
H110.4900200.9624960.1420540.022*
C120.2713 (3)0.8941 (3)0.3739 (3)0.0174 (5)
H120.3417220.9518780.3559490.021*0.632 (9)
H12A0.3503140.9441880.3592390.021*0.368 (9)
C130.3193 (3)0.8668 (3)0.4972 (3)0.0205 (5)
H130.4213000.9050690.5460670.025*0.632 (9)
H13A0.4187070.9089970.5587700.025*0.368 (9)
C140.2509 (6)0.8500 (6)0.6014 (6)0.0197 (10)0.632 (9)
H14A0.2473150.9495560.6801320.024*0.632 (9)
H14B0.3064400.8021840.6530960.024*0.632 (9)
C14*0.2072 (11)0.8742 (9)0.5888 (11)0.0201 (14)0.368 (9)
H14C0.2569230.9100570.6971320.024*0.368 (9)
H14D0.1493720.9462010.5833490.024*0.368 (9)
C150.1021 (7)0.7556 (7)0.5175 (9)0.0208 (12)0.632 (9)
H15A0.0737410.7155890.5800740.025*0.632 (9)
H15B0.0377090.8200110.5051530.025*0.632 (9)
C15*0.1130 (13)0.7216 (10)0.5238 (17)0.0196 (15)0.368 (9)
H15C0.1547030.6701230.5792030.024*0.368 (9)
H15D0.0221400.7369060.5416010.024*0.368 (9)
C160.0908 (3)0.6259 (3)0.3604 (3)0.0185 (5)
H16A0.0646000.5187890.3311450.022*0.368 (9)
H160.0617780.5234840.3439270.022*0.632 (9)
C170.0495 (3)0.6474 (4)0.2361 (3)0.0251 (6)
H17A0.0085790.5605890.1383520.030*0.368 (9)
H170.0002620.5522590.1419930.030*0.632 (9)
C180.0166 (5)0.7740 (6)0.2205 (7)0.0217 (10)0.632 (9)
H18A0.0761890.7868170.2332870.026*0.632 (9)
H18B0.0122170.7546350.1164180.026*0.632 (9)
C18*0.0107 (8)0.8150 (11)0.2781 (13)0.0211 (13)0.368 (9)
H18C0.0652400.8063150.1928920.025*0.368 (9)
H18D0.0213540.8520700.3696420.025*0.368 (9)
C190.1217 (7)0.9192 (8)0.3355 (8)0.0220 (11)0.632 (9)
H19A0.0947800.9659220.4301440.026*0.632 (9)
H19B0.1188460.9887640.2934830.026*0.632 (9)
C19*0.1386 (12)0.9258 (15)0.3074 (15)0.0213 (15)0.368 (9)
H19C0.1397110.9222420.2102710.026*0.368 (9)
H19D0.1309991.0275180.3773950.026*0.368 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01295 (10)0.01225 (10)0.01177 (10)0.00009 (7)0.00308 (7)0.00407 (8)
Cl10.0327 (3)0.0064 (2)0.0182 (3)0.0014 (2)0.0158 (3)0.0005 (2)
N10.0146 (10)0.0192 (11)0.0184 (11)0.0047 (8)0.0052 (8)0.0094 (9)
N20.0160 (10)0.0222 (11)0.0270 (12)0.0051 (9)0.0097 (9)0.0117 (10)
N30.0182 (10)0.0159 (10)0.0166 (10)0.0054 (8)0.0076 (8)0.0079 (9)
C10.0172 (11)0.0117 (11)0.0158 (11)0.0042 (9)0.0057 (9)0.0060 (9)
C20.0197 (12)0.0182 (12)0.0255 (14)0.0054 (10)0.0110 (11)0.0101 (11)
C30.0225 (13)0.0359 (16)0.0181 (13)0.0074 (12)0.0028 (11)0.0155 (12)
C40.058 (2)0.061 (2)0.049 (2)0.040 (2)0.0296 (19)0.045 (2)
C50.0259 (13)0.0164 (12)0.0140 (12)0.0054 (10)0.0060 (10)0.0068 (10)
C60.0204 (12)0.0182 (12)0.0134 (11)0.0046 (10)0.0078 (10)0.0086 (10)
C70.0212 (13)0.0223 (13)0.0192 (13)0.0003 (10)0.0053 (10)0.0082 (11)
C80.0192 (13)0.0371 (17)0.0233 (14)0.0090 (12)0.0055 (11)0.0152 (13)
C90.0321 (15)0.0292 (15)0.0274 (15)0.0177 (12)0.0141 (12)0.0179 (13)
C100.0314 (15)0.0183 (13)0.0234 (14)0.0078 (11)0.0119 (12)0.0118 (11)
C110.0204 (12)0.0181 (12)0.0170 (12)0.0020 (10)0.0059 (10)0.0081 (10)
C120.0163 (12)0.0130 (11)0.0184 (12)0.0026 (9)0.0062 (10)0.0035 (10)
C130.0213 (13)0.0144 (12)0.0153 (12)0.0025 (10)0.0034 (10)0.0003 (10)
C140.0183 (19)0.0187 (18)0.0183 (15)0.0044 (16)0.0076 (16)0.0048 (14)
C14*0.018 (2)0.020 (2)0.0180 (18)0.003 (2)0.010 (2)0.0041 (19)
C150.0186 (17)0.021 (2)0.0196 (16)0.0030 (18)0.0090 (14)0.0054 (18)
C15*0.018 (2)0.019 (2)0.0195 (19)0.003 (2)0.0093 (17)0.005 (2)
C160.0132 (11)0.0210 (13)0.0190 (12)0.0020 (10)0.0054 (10)0.0082 (11)
C170.0108 (11)0.0365 (16)0.0243 (14)0.0079 (11)0.0009 (10)0.0163 (13)
C180.0141 (14)0.0277 (19)0.026 (2)0.0091 (14)0.0091 (16)0.0131 (16)
C18*0.0150 (18)0.025 (2)0.027 (3)0.0103 (18)0.009 (2)0.0127 (19)
C190.0169 (17)0.0252 (17)0.028 (3)0.0101 (14)0.0104 (16)0.0130 (17)
C19*0.016 (2)0.025 (2)0.026 (3)0.0094 (18)0.011 (2)0.012 (2)
Geometric parameters (Å, º) top
N1—N21.382 (3)C12—C131.411 (4)
N1—C11.343 (3)C12—C191.546 (8)
N1—C31.459 (4)C12—C19*1.491 (15)
N2—C21.298 (4)C13—H131.0000
N3—C11.367 (3)C13—H13A1.0000
N3—C21.371 (3)C13—C141.473 (6)
N3—C51.465 (3)C13—C14*1.627 (10)
Rh1—Cl12.3960 (6)C14—H14A0.9900
Rh1—C12.014 (3)C14—H14B0.9900
Rh1—C122.116 (3)C14—C151.549 (6)
Rh1—C132.105 (3)C14*—H14C0.9900
Rh1—C162.220 (2)C14*—H14D0.9900
Rh1—C172.201 (3)C14*—C15*1.539 (9)
C2—H20.9500C15—H15A0.9900
C3—H3A0.9900C15—H15B0.9900
C3—H3B0.9900C15—C161.539 (8)
C3—C41.519 (5)C15*—H15C0.9900
C4—H4A0.9800C15*—H15D0.9900
C4—H4B0.9800C15*—C161.471 (15)
C4—H4C0.9800C16—H16A1.0000
C5—H5A0.9900C16—H161.0000
C5—H5B0.9900C16—C171.376 (4)
C5—C61.509 (4)C17—H17A1.0000
C6—C71.391 (4)C17—H171.0000
C6—C111.391 (4)C17—C181.435 (6)
C7—H70.9500C17—C18*1.678 (10)
C7—C81.392 (4)C18—H18A0.9900
C8—H80.9500C18—H18B0.9900
C8—C91.380 (4)C18—C191.539 (6)
C9—H90.9500C18*—H18C0.9900
C9—C101.389 (4)C18*—H18D0.9900
C10—H100.9500C18*—C19*1.540 (8)
C10—C111.394 (4)C19—H19A0.9900
C11—H110.9500C19—H19B0.9900
C12—H121.0000C19*—H19C0.9900
C12—H12A1.0000C19*—H19D0.9900
N1—C1—N3102.7 (2)C12—C13—H13111.5
C1—Rh1—Cl189.14 (7)C12—C13—H13A117.2
C1—Rh1—C1291.12 (10)C12—C13—C14132.2 (3)
C1—Rh1—C1392.94 (10)C12—C13—C14*113.5 (5)
C1—Rh1—C16166.45 (10)C14—C13—Rh1110.9 (2)
C1—Rh1—C17157.29 (11)C14—C13—H13111.5
C12—Rh1—Cl1164.69 (8)C14*—C13—Rh1112.7 (3)
C12—Rh1—C1692.53 (10)C14*—C13—H13A117.2
C12—Rh1—C1781.74 (11)C13—C14—H14A109.2
C13—Rh1—Cl1156.20 (8)C13—C14—H14B109.2
C13—Rh1—C1239.05 (11)C13—C14—C15112.1 (6)
C13—Rh1—C1681.79 (10)H14A—C14—H14B107.9
C13—Rh1—C1794.87 (11)C15—C14—H14A109.2
C16—Rh1—Cl190.76 (7)C15—C14—H14B109.2
C17—Rh1—Cl192.22 (9)C13—C14*—H14C109.2
C17—Rh1—C1636.25 (10)C13—C14*—H14D109.2
N2—N1—C3117.8 (2)H14C—C14*—H14D107.9
C1—N1—N2113.9 (2)C15*—C14*—C13112.0 (9)
C1—N1—C3126.8 (2)C15*—C14*—H14C109.2
C2—N2—N1103.2 (2)C15*—C14*—H14D109.2
C1—N3—C2108.6 (2)C14—C15—H15A109.2
C1—N3—C5125.8 (2)C14—C15—H15B109.2
C2—N3—C5125.1 (2)H15A—C15—H15B107.9
N1—C1—Rh1130.73 (19)C16—C15—C14112.2 (6)
N3—C1—Rh1126.53 (19)C16—C15—H15A109.2
N2—C2—N3111.5 (2)C16—C15—H15B109.2
N2—C2—H2124.3C14*—C15*—H15C108.9
N3—C2—H2124.3C14*—C15*—H15D108.9
N1—C3—H3A109.7H15C—C15*—H15D107.7
N1—C3—H3B109.7C16—C15*—C14*113.4 (11)
N1—C3—C4109.8 (3)C16—C15*—H15C108.9
H3A—C3—H3B108.2C16—C15*—H15D108.9
C4—C3—H3A109.7Rh1—C16—H16A110.9
C4—C3—H3B109.7Rh1—C16—H16116.7
C3—C4—H4A109.5C15—C16—Rh1109.1 (3)
C3—C4—H4B109.5C15—C16—H16116.7
C3—C4—H4C109.5C15*—C16—Rh1111.4 (5)
H4A—C4—H4B109.5C15*—C16—H16A110.9
H4A—C4—H4C109.5C17—C16—Rh171.12 (15)
H4B—C4—H4C109.5C17—C16—C15118.1 (4)
N3—C5—H5A108.5C17—C16—C15*133.2 (5)
N3—C5—H5B108.5C17—C16—H16A110.9
N3—C5—C6115.0 (2)C17—C16—H16116.7
H5A—C5—H5B107.5Rh1—C17—H17A117.5
C6—C5—H5A108.5Rh1—C17—H17111.5
C6—C5—H5B108.5C16—C17—Rh172.63 (15)
C7—C6—C5118.9 (2)C16—C17—H17A117.5
C11—C6—C5121.9 (2)C16—C17—H17111.5
C11—C6—C7119.1 (3)C16—C17—C18132.5 (4)
C6—C7—H7119.8C16—C17—C18*113.6 (4)
C6—C7—C8120.4 (3)C18—C17—Rh1108.7 (2)
C8—C7—H7119.8C18—C17—H17111.5
C7—C8—H8119.9C18*—C17—Rh1109.9 (3)
C9—C8—C7120.3 (3)C18*—C17—H17A117.5
C9—C8—H8119.9C17—C18—H18A108.9
C8—C9—H9120.1C17—C18—H18B108.9
C8—C9—C10119.8 (3)C17—C18—C19113.5 (5)
C10—C9—H9120.1H18A—C18—H18B107.7
C9—C10—H10119.9C19—C18—H18A108.9
C9—C10—C11120.1 (3)C19—C18—H18B108.9
C11—C10—H10119.9C17—C18*—H18C109.6
C6—C11—C10120.3 (3)C17—C18*—H18D109.6
C6—C11—H11119.9H18C—C18*—H18D108.1
C10—C11—H11119.9C19*—C18*—C17110.4 (8)
Rh1—C12—H12116.0C19*—C18*—H18C109.6
Rh1—C12—H12A110.1C19*—C18*—H18D109.6
C13—C12—Rh170.06 (15)C12—C19—H19A109.1
C13—C12—H12116.0C12—C19—H19B109.1
C13—C12—H12A110.1C18—C19—C12112.6 (6)
C13—C12—C19119.0 (3)C18—C19—H19A109.1
C13—C12—C19*133.8 (5)C18—C19—H19B109.1
C19—C12—Rh1111.6 (3)H19A—C19—H19B107.8
C19—C12—H12116.0C12—C19*—C18*112.8 (10)
C19*—C12—Rh1114.9 (5)C12—C19*—H19C109.0
C19*—C12—H12A110.1C12—C19*—H19D109.0
Rh1—C13—H13111.5C18*—C19*—H19C109.0
Rh1—C13—H13A117.2C18*—C19*—H19D109.0
C12—C13—Rh170.88 (15)H19C—C19*—H19D107.8
Rh1—C12—C13—C14101.2 (4)C5—C6—C11—C10177.1 (2)
Rh1—C12—C13—C14*107.1 (3)C6—C7—C8—C90.6 (4)
Rh1—C12—C19—C1812.2 (6)C7—C6—C11—C100.1 (4)
Rh1—C12—C19*—C18*36.1 (11)C7—C8—C9—C100.4 (4)
Rh1—C13—C14—C1540.9 (6)C8—C9—C10—C110.0 (4)
Rh1—C13—C14*—C15*12.1 (11)C9—C10—C11—C60.2 (4)
Rh1—C16—C17—C1899.7 (4)C11—C6—C7—C80.4 (4)
Rh1—C16—C17—C18*104.7 (3)C12—C13—C14—C1541.8 (7)
Rh1—C17—C18—C1937.7 (6)C12—C13—C14*—C15*90.2 (10)
Rh1—C17—C18*—C19*13.6 (10)C13—C12—C19—C1890.6 (6)
N1—N2—C2—N31.0 (3)C13—C12—C19*—C18*49.5 (13)
N2—N1—C1—Rh1179.34 (18)C13—C14—C15—C1637.7 (8)
N2—N1—C1—N30.2 (3)C13—C14*—C15*—C1629.5 (14)
N2—N1—C3—C468.3 (3)C14—C15—C16—Rh116.1 (7)
N3—C5—C6—C7142.6 (2)C14—C15—C16—C1794.4 (6)
N3—C5—C6—C1140.2 (3)C14*—C15*—C16—Rh132.5 (12)
C1—N1—N2—C20.7 (3)C14*—C15*—C16—C1751.3 (13)
C1—N1—C3—C497.3 (3)C15—C16—C17—Rh1102.1 (3)
C1—N3—C2—N21.0 (3)C15—C16—C17—C182.4 (5)
C1—N3—C5—C681.8 (3)C15*—C16—C17—Rh1102.0 (7)
C2—N3—C1—Rh1178.78 (18)C15*—C16—C17—C18*2.6 (8)
C2—N3—C1—N10.5 (3)C16—C17—C18—C1945.5 (7)
C2—N3—C5—C6107.3 (3)C16—C17—C18*—C19*92.7 (9)
C3—N1—N2—C2168.1 (2)C17—C18—C19—C1234.1 (8)
C3—N1—C1—Rh114.6 (4)C17—C18*—C19*—C1231.3 (13)
C3—N1—C1—N3166.2 (3)C19—C12—C13—Rh1104.3 (3)
C5—N3—C1—Rh19.1 (4)C19—C12—C13—C143.1 (6)
C5—N3—C1—N1171.7 (2)C19*—C12—C13—Rh1105.9 (7)
C5—N3—C2—N2171.2 (2)C19*—C12—C13—C14*1.2 (8)
C5—C6—C7—C8176.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl1i0.952.643.461 (3)145
Symmetry code: (i) x+1, y+1, z.
(4-Benzyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](triphenylphosphane)iridium(I) tetrafluoridoborate (5) top
Crystal data top
[Ir(C8H12)(C11H13N3)(C18H15P)]BF4Z = 2
Mr = 836.70F(000) = 832
Triclinic, P1Dx = 1.679 Mg m3
a = 9.47197 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.50712 (15) ÅCell parameters from 35729 reflections
c = 18.7104 (3) Åθ = 2.2–28.3°
α = 79.8203 (14)°µ = 4.14 mm1
β = 86.1222 (13)°T = 100 K
γ = 89.3859 (13)°Block, red
V = 1654.57 (5) Å30.31 × 0.27 × 0.23 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
14450 reflections with I > 2σ(I)
Detector resolution: 10.0 pixels mm-1Rint = 0.045
ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Rigaku OD, 2024)
h = 1212
Tmin = 0.857, Tmax = 1.000k = 1212
50908 measured reflectionsl = 2424
15249 independent reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.5824P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.001
S = 1.05Δρmax = 3.38 e Å3
15249 reflectionsΔρmin = 1.12 e Å3
849 parametersAbsolute structure: Flack x determined using 6303 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.008 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ir11.06227 (2)0.49154 (2)0.52321 (2)0.01293 (7)
P10.82029 (17)0.52037 (17)0.54790 (8)0.0123 (3)
N11.0682 (5)0.1685 (5)0.5614 (3)0.0148 (10)
N21.0802 (6)0.0502 (6)0.6159 (3)0.0200 (11)
N31.0778 (5)0.2541 (5)0.6579 (3)0.0151 (10)
C11.0645 (6)0.2927 (6)0.5855 (3)0.0131 (11)
C21.0853 (6)0.1068 (7)0.6741 (3)0.0185 (12)
H21.0932150.0536130.7217060.022*
C31.0589 (7)0.1455 (7)0.4868 (3)0.0197 (13)
H3A1.1371620.0823680.4743580.024*
H3B1.0695660.2380750.4531210.024*
C40.9186 (7)0.0781 (7)0.4770 (4)0.0240 (14)
H4A0.9218590.0486760.4293450.036*
H4B0.8424630.1478300.4801100.036*
H4C0.9009570.0055720.5153610.036*
C51.0712 (7)0.3508 (7)0.7115 (3)0.0202 (13)
H5A0.9800420.3360450.7409450.024*
H5B1.0736610.4508530.6852360.024*
C61.1909 (7)0.3285 (6)0.7619 (3)0.0173 (12)
C71.3315 (7)0.3085 (7)0.7379 (4)0.0213 (13)
H71.3538500.3010920.6883970.026*
C81.4385 (9)0.2995 (10)0.7852 (5)0.0241 (19)
H81.5335250.2859730.7680070.029*
C91.4079 (7)0.3100 (8)0.8576 (4)0.0277 (15)
H91.4814520.3044280.8901120.033*
C101.2684 (8)0.3286 (9)0.8821 (4)0.0303 (16)
H101.2466720.3353980.9316840.036*
C111.1596 (8)0.3375 (8)0.8345 (4)0.0236 (15)
H111.0644240.3497710.8518640.028*
C120.7122 (6)0.3569 (6)0.5659 (3)0.0136 (11)
C130.6161 (6)0.3216 (7)0.5193 (3)0.0176 (12)
H130.5980960.3873480.4764560.021*
C140.5455 (6)0.1911 (7)0.5346 (4)0.0205 (13)
H140.4790660.1687700.5024350.025*
C150.5718 (7)0.0936 (7)0.5967 (4)0.0217 (13)
H150.5261350.0031260.6060450.026*
C160.6649 (7)0.1284 (7)0.6450 (3)0.0199 (12)
H160.6807750.0631970.6883760.024*
C170.7349 (6)0.2592 (7)0.6296 (3)0.0173 (12)
H170.7988510.2826980.6626320.021*
C180.7342 (6)0.6427 (6)0.4775 (3)0.0137 (11)
C190.7264 (6)0.6045 (7)0.4088 (3)0.0187 (12)
H190.7647700.5159510.3999760.022*
C200.6634 (6)0.6944 (7)0.3542 (3)0.0191 (12)
H200.6551430.6656610.3085080.023*
C210.6117 (6)0.8270 (7)0.3652 (4)0.0240 (14)
H210.5686350.8886920.3271690.029*
C220.6235 (6)0.8686 (7)0.4318 (4)0.0209 (13)
H220.5908580.9602530.4389590.025*
C230.6826 (6)0.7773 (7)0.4882 (3)0.0183 (12)
H230.6882130.8057380.5341000.022*
C240.7786 (6)0.5997 (6)0.6288 (3)0.0143 (11)
C250.8732 (7)0.6968 (7)0.6488 (3)0.0185 (12)
H250.9640330.7116390.6238500.022*
C260.8352 (7)0.7706 (7)0.7044 (3)0.0202 (13)
H260.8984710.8381740.7165600.024*
C270.7046 (7)0.7461 (7)0.7423 (3)0.0226 (13)
H270.6783030.7975950.7802510.027*
C280.6112 (7)0.6464 (7)0.7253 (4)0.0243 (14)
H280.5232770.6269910.7526430.029*
C290.6484 (6)0.5753 (7)0.6675 (3)0.0174 (12)
H290.5839570.5096480.6546210.021*
C301.2744 (8)0.4394 (8)0.4772 (5)0.0220 (18)
H301.2994390.3359270.4896180.026*
C311.2894 (6)0.5147 (7)0.5337 (4)0.0255 (15)
H311.3249650.4555270.5785120.031*
C321.3368 (7)0.6695 (8)0.5206 (4)0.0314 (16)
H32A1.3934260.6846700.5611440.038*
H32B1.3991760.6882020.4752990.038*
C331.2170 (7)0.7765 (7)0.5141 (4)0.0266 (15)
H33A1.2504610.8654950.4818700.032*
H33B1.1908650.8000350.5627720.032*
C341.0860 (7)0.7236 (7)0.4843 (4)0.0239 (14)
H340.9985200.7799650.4925350.029*
C351.0857 (7)0.6576 (7)0.4240 (4)0.0211 (13)
H350.9978000.6747240.3969840.025*
C361.2186 (7)0.6403 (8)0.3757 (4)0.0280 (15)
H36A1.1930200.6506400.3245560.034*
H36B1.2859830.7177490.3784460.034*
C371.2903 (8)0.4984 (8)0.3967 (4)0.0307 (16)
H37A1.3922720.5091650.3814500.037*
H37B1.2503880.4287870.3699450.037*
Ir1'0.02978 (2)0.84457 (2)0.12244 (2)0.01259 (7)
P1'0.01122 (15)0.60664 (16)0.11049 (9)0.0126 (3)
N1'0.3434 (5)0.8664 (6)0.0955 (3)0.0176 (11)
N2'0.4595 (5)0.9040 (6)0.0474 (3)0.0241 (12)
N3'0.2588 (5)0.9244 (6)0.0078 (3)0.0176 (11)
C1'0.2193 (7)0.8757 (7)0.0646 (3)0.0181 (12)
C2'0.4031 (7)0.9408 (7)0.0143 (4)0.0227 (14)
H2'0.4556580.9752710.0589440.027*
C3'0.3643 (7)0.8194 (8)0.1730 (4)0.0252 (14)
H3'A0.2709350.8101240.2005830.030*
H3'B0.4188920.8932550.1905830.030*
C4'0.4411 (8)0.6793 (8)0.1881 (4)0.0290 (15)
H4'A0.3846550.6043960.1736380.044*
H4'B0.4557140.6547740.2401320.044*
H4'C0.5329180.6871970.1601880.044*
C5'0.1583 (7)0.9568 (8)0.0664 (3)0.0234 (14)
H5'A0.1567551.0613720.0836250.028*
H5'B0.0620050.9272130.0456480.028*
C6'0.1942 (7)0.8839 (7)0.1305 (3)0.0192 (12)
C7'0.3062 (7)0.9334 (8)0.1798 (4)0.0284 (15)
H7'0.3630491.0104880.1721780.034*
C8'0.3347 (8)0.8695 (10)0.2404 (4)0.0379 (19)
H8'0.4114960.9028110.2742840.045*
C9'0.2520 (9)0.7577 (10)0.2518 (5)0.041 (2)
H9'0.2721010.7140160.2933140.049*
C10'0.1409 (8)0.7099 (9)0.2031 (4)0.0357 (18)
H10'0.0837510.6332660.2109540.043*
C11'0.1115 (7)0.7732 (8)0.1424 (4)0.0264 (14)
H11'0.0340420.7400700.1089090.032*
C12'0.0890 (6)0.5903 (6)0.0324 (3)0.0142 (11)
C13'0.1776 (6)0.6992 (7)0.0024 (3)0.0171 (12)
H13'0.1825640.7861250.0208480.021*
C14'0.2591 (7)0.6816 (7)0.0547 (3)0.0229 (14)
H14'0.3191330.7564300.0753620.028*
C15'0.2520 (7)0.5535 (8)0.0811 (3)0.0221 (14)
H15'0.3065770.5415960.1203330.026*
C16'0.1666 (6)0.4439 (7)0.0508 (3)0.0208 (13)
H16'0.1648800.3557230.0680640.025*
C17'0.0828 (6)0.4623 (7)0.0051 (3)0.0161 (12)
H17'0.0213490.3879480.0247050.019*
C18'0.0861 (6)0.4891 (6)0.1852 (3)0.0146 (11)
C19'0.2243 (6)0.4439 (7)0.1788 (3)0.0175 (12)
H19'0.2668150.4712790.1338860.021*
C20'0.3003 (7)0.3602 (7)0.2366 (3)0.0206 (13)
H20'0.3938010.3310030.2307210.025*
C21'0.2407 (8)0.3187 (8)0.3029 (4)0.0245 (16)
H21'0.2923010.2613870.3426930.029*
C22'0.1008 (7)0.3643 (7)0.3098 (4)0.0221 (13)
H22'0.0571850.3349910.3542190.026*
C23'0.0277 (7)0.4504 (7)0.2529 (3)0.0203 (13)
H23'0.0637000.4842130.2594080.024*
C24'0.1752 (6)0.5112 (6)0.0924 (3)0.0154 (12)
C25'0.2574 (6)0.5680 (7)0.0280 (3)0.0185 (12)
H25'0.2227700.6470590.0045110.022*
C26'0.3881 (7)0.5096 (7)0.0118 (4)0.0231 (14)
H26'0.4436170.5506260.0307890.028*
C27'0.4383 (7)0.3905 (8)0.0580 (4)0.0245 (14)
H27'0.5281420.3509120.0472750.029*
C28'0.3558 (7)0.3308 (7)0.1197 (4)0.0221 (13)
H28'0.3883190.2483580.1506090.027*
C29'0.2254 (6)0.3904 (7)0.1369 (3)0.0183 (12)
H29'0.1702060.3481350.1793710.022*
C30'0.0218 (7)1.0714 (7)0.0894 (4)0.0211 (13)
H30'0.0289611.1179030.0427860.025*
C31'0.0578 (7)1.0618 (6)0.1499 (4)0.0197 (13)
H31'0.1558921.1010090.1386360.024*
C32'0.0029 (7)1.0715 (7)0.2251 (4)0.0225 (13)
H32C0.0896741.1306200.2213370.027*
H32D0.0661281.1199750.2499430.027*
C33'0.0393 (7)0.9251 (7)0.2712 (3)0.0219 (13)
H33C0.0456210.8863550.2959790.026*
H33D0.1139040.9373630.3093160.026*
C34'0.0901 (6)0.8174 (7)0.2273 (3)0.0173 (12)
H34'0.0932260.7167010.2542710.021*
C35'0.1867 (8)0.8462 (8)0.1730 (4)0.0178 (16)
H35'0.2449810.7617170.1680510.021*
C36'0.2619 (6)0.9891 (7)0.1534 (4)0.0227 (14)
H36C0.2720061.0355650.1968660.027*
H36D0.3579870.9721070.1389440.027*
C37'0.1811 (7)1.0895 (7)0.0912 (4)0.0229 (13)
H37C0.2143201.0726440.0443430.027*
H37D0.2043341.1894640.0956160.027*
F10.6525 (6)0.0303 (7)0.8562 (3)0.0384 (15)
F20.7677 (5)0.2422 (5)0.8229 (3)0.0377 (10)
F30.8675 (5)0.0396 (6)0.7953 (3)0.0449 (13)
F40.8493 (6)0.0753 (6)0.9118 (3)0.0507 (13)
B10.7835 (7)0.0963 (8)0.8479 (4)0.0196 (14)
F1'0.2691 (7)0.0025 (6)0.3537 (4)0.0625 (18)
F2'0.2486 (5)0.2355 (5)0.3050 (2)0.0384 (11)
F3'0.4319 (6)0.1021 (6)0.2688 (3)0.0507 (13)
F4'0.4216 (7)0.1615 (7)0.3801 (3)0.076 (2)
B1'0.3431 (8)0.1248 (9)0.3276 (4)0.0247 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.00866 (13)0.01089 (15)0.01797 (15)0.00256 (10)0.00083 (10)0.00079 (11)
P10.0109 (7)0.0130 (7)0.0130 (7)0.0034 (6)0.0011 (6)0.0024 (6)
N10.015 (2)0.014 (3)0.015 (2)0.001 (2)0.0027 (18)0.0006 (19)
N20.023 (3)0.014 (3)0.020 (3)0.003 (2)0.004 (2)0.006 (2)
N30.013 (2)0.015 (2)0.015 (2)0.0007 (19)0.0018 (18)0.0006 (19)
C10.008 (3)0.013 (3)0.018 (3)0.004 (2)0.003 (2)0.003 (2)
C20.018 (3)0.016 (3)0.019 (3)0.002 (2)0.000 (2)0.001 (2)
C30.026 (3)0.015 (3)0.018 (3)0.003 (2)0.001 (2)0.001 (2)
C40.026 (3)0.020 (3)0.028 (3)0.002 (3)0.005 (3)0.008 (3)
C50.022 (3)0.021 (3)0.018 (3)0.004 (2)0.001 (2)0.006 (2)
C60.021 (3)0.008 (3)0.023 (3)0.004 (2)0.004 (2)0.002 (2)
C70.021 (3)0.022 (3)0.021 (3)0.002 (3)0.002 (2)0.004 (3)
C80.017 (4)0.021 (5)0.031 (5)0.003 (3)0.001 (3)0.004 (4)
C90.029 (4)0.026 (4)0.029 (4)0.004 (3)0.011 (3)0.003 (3)
C100.036 (4)0.040 (4)0.018 (3)0.002 (3)0.008 (3)0.009 (3)
C110.021 (4)0.032 (4)0.020 (3)0.000 (3)0.002 (3)0.008 (3)
C120.010 (3)0.012 (3)0.018 (3)0.005 (2)0.000 (2)0.003 (2)
C130.018 (3)0.016 (3)0.018 (3)0.006 (2)0.002 (2)0.003 (2)
C140.015 (3)0.021 (3)0.027 (3)0.002 (2)0.006 (2)0.007 (3)
C150.022 (3)0.015 (3)0.028 (3)0.002 (2)0.000 (3)0.004 (3)
C160.022 (3)0.015 (3)0.021 (3)0.002 (2)0.001 (2)0.001 (2)
C170.016 (3)0.019 (3)0.019 (3)0.002 (2)0.003 (2)0.006 (2)
C180.010 (3)0.016 (3)0.015 (3)0.004 (2)0.002 (2)0.000 (2)
C190.016 (3)0.019 (3)0.021 (3)0.002 (2)0.001 (2)0.004 (2)
C200.014 (3)0.027 (3)0.014 (3)0.004 (2)0.001 (2)0.001 (2)
C210.016 (3)0.028 (4)0.023 (3)0.001 (3)0.004 (2)0.010 (3)
C220.015 (3)0.018 (3)0.028 (3)0.002 (2)0.000 (2)0.002 (3)
C230.015 (3)0.019 (3)0.021 (3)0.001 (2)0.002 (2)0.003 (2)
C240.018 (3)0.009 (3)0.015 (3)0.005 (2)0.002 (2)0.001 (2)
C250.018 (3)0.019 (3)0.018 (3)0.000 (2)0.002 (2)0.002 (3)
C260.025 (3)0.017 (3)0.021 (3)0.002 (3)0.008 (2)0.005 (2)
C270.034 (4)0.018 (3)0.016 (3)0.006 (3)0.000 (3)0.003 (2)
C280.029 (3)0.022 (3)0.021 (3)0.004 (3)0.007 (3)0.005 (3)
C290.017 (3)0.020 (3)0.015 (3)0.002 (2)0.000 (2)0.005 (2)
C300.011 (3)0.015 (4)0.037 (4)0.007 (3)0.000 (3)0.002 (3)
C310.009 (3)0.020 (3)0.044 (4)0.000 (2)0.005 (3)0.006 (3)
C320.022 (3)0.026 (4)0.046 (4)0.006 (3)0.007 (3)0.004 (3)
C330.026 (3)0.013 (3)0.039 (4)0.006 (3)0.006 (3)0.000 (3)
C340.024 (3)0.017 (3)0.027 (4)0.005 (3)0.005 (3)0.006 (3)
C350.013 (3)0.024 (3)0.022 (3)0.006 (2)0.002 (2)0.007 (3)
C360.018 (3)0.040 (4)0.025 (3)0.005 (3)0.002 (3)0.004 (3)
C370.024 (4)0.028 (4)0.036 (4)0.005 (3)0.006 (3)0.004 (3)
Ir1'0.01161 (13)0.01094 (15)0.01562 (14)0.00217 (11)0.00095 (10)0.00402 (11)
P1'0.0108 (7)0.0112 (7)0.0159 (8)0.0010 (5)0.0011 (5)0.0027 (6)
N1'0.011 (2)0.025 (3)0.017 (3)0.008 (2)0.0012 (19)0.005 (2)
N2'0.015 (3)0.030 (3)0.025 (3)0.008 (2)0.006 (2)0.003 (2)
N3'0.017 (2)0.020 (3)0.014 (2)0.001 (2)0.0010 (19)0.000 (2)
C1'0.019 (3)0.015 (3)0.021 (3)0.001 (2)0.001 (2)0.005 (3)
C2'0.018 (3)0.030 (4)0.019 (3)0.005 (3)0.004 (2)0.003 (3)
C3'0.015 (3)0.041 (4)0.021 (3)0.002 (3)0.003 (2)0.006 (3)
C4'0.024 (4)0.034 (4)0.028 (4)0.005 (3)0.009 (3)0.001 (3)
C5'0.022 (3)0.026 (4)0.021 (3)0.006 (3)0.002 (2)0.000 (3)
C6'0.021 (3)0.022 (3)0.013 (3)0.006 (2)0.001 (2)0.003 (2)
C7'0.025 (3)0.034 (4)0.023 (3)0.000 (3)0.001 (3)0.004 (3)
C8'0.030 (4)0.049 (5)0.032 (4)0.015 (4)0.007 (3)0.004 (4)
C9'0.043 (5)0.052 (5)0.034 (4)0.025 (4)0.012 (4)0.022 (4)
C10'0.038 (4)0.031 (4)0.041 (4)0.009 (3)0.016 (3)0.011 (3)
C11'0.024 (3)0.029 (4)0.025 (3)0.001 (3)0.006 (3)0.002 (3)
C12'0.013 (3)0.015 (3)0.013 (3)0.004 (2)0.002 (2)0.000 (2)
C13'0.018 (3)0.017 (3)0.016 (3)0.002 (2)0.001 (2)0.002 (2)
C14'0.020 (3)0.027 (4)0.020 (3)0.000 (3)0.002 (2)0.002 (3)
C15'0.017 (3)0.034 (4)0.016 (3)0.006 (3)0.003 (2)0.003 (3)
C16'0.021 (3)0.025 (3)0.019 (3)0.008 (3)0.003 (2)0.012 (3)
C17'0.014 (3)0.017 (3)0.017 (3)0.002 (2)0.000 (2)0.002 (2)
C18'0.018 (3)0.011 (3)0.015 (3)0.000 (2)0.002 (2)0.003 (2)
C19'0.020 (3)0.019 (3)0.015 (3)0.001 (2)0.001 (2)0.006 (2)
C20'0.019 (3)0.021 (3)0.022 (3)0.003 (2)0.007 (2)0.007 (3)
C21'0.025 (4)0.016 (4)0.029 (4)0.001 (3)0.011 (3)0.000 (3)
C22'0.030 (4)0.019 (3)0.017 (3)0.001 (3)0.001 (3)0.002 (2)
C23'0.017 (3)0.019 (3)0.026 (3)0.001 (2)0.002 (2)0.007 (3)
C24'0.013 (3)0.014 (3)0.021 (3)0.001 (2)0.005 (2)0.008 (2)
C25'0.018 (3)0.018 (3)0.019 (3)0.000 (2)0.002 (2)0.004 (3)
C26'0.019 (3)0.027 (4)0.025 (3)0.006 (3)0.004 (2)0.008 (3)
C27'0.013 (3)0.029 (4)0.033 (4)0.001 (3)0.002 (3)0.013 (3)
C28'0.018 (3)0.021 (3)0.029 (3)0.005 (2)0.008 (3)0.006 (3)
C29'0.017 (3)0.019 (3)0.019 (3)0.001 (2)0.002 (2)0.003 (2)
C30'0.020 (3)0.010 (3)0.031 (4)0.003 (3)0.002 (3)0.001 (3)
C31'0.019 (3)0.011 (3)0.029 (3)0.004 (2)0.003 (2)0.007 (3)
C32'0.020 (3)0.023 (3)0.029 (3)0.003 (2)0.005 (3)0.013 (3)
C33'0.025 (3)0.021 (3)0.021 (3)0.000 (3)0.002 (3)0.007 (3)
C34'0.018 (3)0.015 (3)0.019 (3)0.005 (2)0.006 (2)0.005 (2)
C35'0.017 (3)0.015 (4)0.024 (4)0.002 (3)0.006 (3)0.012 (3)
C36'0.016 (3)0.025 (4)0.029 (4)0.001 (3)0.003 (2)0.010 (3)
C37'0.025 (3)0.020 (3)0.023 (3)0.006 (3)0.002 (3)0.005 (3)
F10.025 (3)0.035 (3)0.051 (4)0.001 (3)0.001 (3)0.002 (3)
F20.033 (2)0.027 (2)0.053 (3)0.0017 (19)0.016 (2)0.003 (2)
F30.037 (3)0.062 (4)0.041 (3)0.003 (2)0.015 (2)0.031 (3)
F40.060 (3)0.064 (4)0.029 (3)0.021 (3)0.021 (2)0.005 (2)
B10.019 (3)0.024 (4)0.015 (3)0.003 (3)0.000 (3)0.005 (3)
F1'0.050 (4)0.039 (3)0.085 (5)0.008 (3)0.011 (3)0.022 (3)
F2'0.037 (2)0.037 (3)0.044 (3)0.014 (2)0.023 (2)0.008 (2)
F3'0.060 (3)0.048 (3)0.035 (3)0.016 (2)0.015 (2)0.006 (2)
F4'0.097 (5)0.078 (4)0.071 (4)0.050 (4)0.068 (4)0.045 (3)
B1'0.025 (4)0.032 (5)0.018 (4)0.005 (3)0.008 (3)0.004 (3)
Geometric parameters (Å, º) top
Ir1—P12.3302 (15)Ir1'—C35'2.201 (7)
Ir1—C302.218 (7)P1'—C12'1.825 (6)
Ir1—C312.191 (6)P1'—C18'1.830 (6)
Ir1—C342.206 (7)P1'—C24'1.832 (6)
Ir1—C352.215 (6)N1'—N2'1.382 (7)
P1—C121.839 (6)N1'—C1'1.340 (8)
P1—C181.827 (6)N1'—C3'1.466 (8)
P1—C241.826 (6)N2'—C2'1.295 (9)
N1—N21.388 (7)N3'—C1'1.380 (8)
N1—C11.336 (8)N3'—C2'1.373 (8)
N1—C31.459 (8)N3'—C5'1.489 (8)
N2—C21.301 (8)Ir1'—C1'2.029 (6)
N3—C11.354 (8)C2'—H2'0.9500
N3—C21.382 (8)C3'—H3'A0.9900
N3—C51.473 (8)C3'—H3'B0.9900
Ir1—C12.039 (6)C3'—C4'1.503 (10)
C2—H20.9500C4'—H4'A0.9800
C3—H3A0.9900C4'—H4'B0.9800
C3—H3B0.9900C4'—H4'C0.9800
C3—C41.517 (9)C5'—H5'A0.9900
C4—H4A0.9800C5'—H5'B0.9900
C4—H4B0.9800C5'—C6'1.506 (9)
C4—H4C0.9800C6'—C7'1.387 (9)
C5—H5A0.9900C6'—C11'1.376 (10)
C5—H5B0.9900C7'—H7'0.9500
C5—C61.512 (9)C7'—C8'1.388 (11)
C6—C71.399 (9)C8'—H8'0.9500
C6—C111.389 (9)C8'—C9'1.382 (13)
C7—H70.9500C9'—H9'0.9500
C7—C81.382 (11)C9'—C10'1.371 (13)
C8—H80.9500C10'—H10'0.9500
C8—C91.388 (12)C10'—C11'1.388 (10)
C9—H90.9500C11'—H11'0.9500
C9—C101.388 (10)C12'—C13'1.389 (9)
C10—H100.9500C12'—C17'1.401 (8)
C10—C111.400 (10)C13'—H13'0.9500
C11—H110.9500C13'—C14'1.393 (9)
C12—C131.384 (8)C14'—H14'0.9500
C12—C171.403 (9)C14'—C15'1.392 (10)
C13—H130.9500C15'—H15'0.9500
C13—C141.391 (9)C15'—C16'1.377 (10)
C14—H140.9500C16'—H16'0.9500
C14—C151.387 (9)C16'—C17'1.389 (8)
C15—H150.9500C17'—H17'0.9500
C15—C161.387 (9)C18'—C19'1.401 (8)
C16—H160.9500C18'—C23'1.404 (9)
C16—C171.390 (9)C19'—H19'0.9500
C17—H170.9500C19'—C20'1.387 (8)
C18—C191.402 (8)C20'—H20'0.9500
C18—C231.407 (8)C20'—C21'1.391 (10)
C19—H190.9500C21'—H21'0.9500
C19—C201.377 (9)C21'—C22'1.420 (10)
C20—H200.9500C22'—H22'0.9500
C20—C211.392 (10)C22'—C23'1.373 (9)
C21—H210.9500C23'—H23'0.9500
C21—C221.384 (9)C24'—C25'1.415 (8)
C22—H220.9500C24'—C29'1.394 (9)
C22—C231.388 (9)C25'—H25'0.9500
C23—H230.9500C25'—C26'1.389 (9)
C24—C251.407 (8)C26'—H26'0.9500
C24—C291.387 (8)C26'—C27'1.397 (10)
C25—H250.9500C27'—H27'0.9500
C25—C261.380 (9)C27'—C28'1.386 (9)
C26—H260.9500C28'—H28'0.9500
C26—C271.385 (9)C28'—C29'1.394 (9)
C27—H270.9500C29'—H29'0.9500
C27—C281.395 (10)C30'—H30'1.0000
C28—H280.9500C30'—C31'1.391 (10)
C28—C291.396 (8)C30'—C37'1.516 (9)
C29—H290.9500C31'—H31'1.0000
C30—H301.0000C31'—C32'1.501 (9)
C30—C311.393 (11)C32'—H32C0.9900
C30—C371.509 (11)C32'—H32D0.9900
C31—H311.0000C32'—C33'1.532 (9)
C31—C321.517 (10)C33'—H33C0.9900
C32—H32A0.9900C33'—H33D0.9900
C32—H32B0.9900C33'—C34'1.522 (8)
C32—C331.512 (10)C34'—H34'1.0000
C33—H33A0.9900C34'—C35'1.403 (10)
C33—H33B0.9900C35'—H35'1.0000
C33—C341.520 (10)C35'—C36'1.525 (10)
C34—H341.0000C36'—H36C0.9900
C34—C351.384 (10)C36'—H36D0.9900
C35—H351.0000C36'—C37'1.535 (9)
C35—C361.524 (9)C37'—H37C0.9900
C36—H36A0.9900C37'—H37D0.9900
C36—H36B0.9900F1—B11.383 (9)
C36—C371.505 (10)F2—B11.394 (9)
C37—H37A0.9900F3—B11.401 (8)
C37—H37B0.9900F4—B11.369 (8)
Ir1'—P1'2.3217 (15)F1'—B1'1.360 (10)
Ir1'—C30'2.195 (6)F2'—B1'1.401 (9)
Ir1'—C31'2.238 (6)F3'—B1'1.385 (9)
Ir1'—C34'2.175 (6)F4'—B1'1.366 (9)
N1—C1—N3103.8 (5)C30'—Ir1'—P1'151.29 (18)
C1—Ir1—P193.14 (17)C30'—Ir1'—C31'36.6 (2)
C1—Ir1—C3086.5 (3)C30'—Ir1'—C35'80.3 (3)
C1—Ir1—C3190.4 (2)C31'—Ir1'—P1'171.78 (18)
C1—Ir1—C34163.1 (3)C34'—Ir1'—P1'94.63 (16)
C1—Ir1—C35158.0 (2)C34'—Ir1'—C30'95.8 (2)
C30—Ir1—P1165.6 (2)C34'—Ir1'—C31'80.1 (2)
C31—Ir1—P1157.5 (2)C34'—Ir1'—C35'37.4 (3)
C31—Ir1—C3036.8 (3)C35'—Ir1'—P1'92.18 (19)
C31—Ir1—C3480.2 (2)C35'—Ir1'—C31'87.4 (2)
C31—Ir1—C3587.5 (2)C12'—P1'—Ir1'110.6 (2)
C34—Ir1—P190.39 (17)C12'—P1'—C18'102.6 (3)
C34—Ir1—C3094.1 (3)C12'—P1'—C24'102.5 (3)
C34—Ir1—C3536.5 (3)C18'—P1'—Ir1'116.35 (19)
C35—Ir1—P197.11 (16)C18'—P1'—C24'105.4 (3)
C35—Ir1—C3078.8 (3)C24'—P1'—Ir1'117.59 (19)
C12—P1—Ir1116.58 (18)N2'—N1'—C3'119.4 (5)
C18—P1—Ir1114.38 (19)C1'—N1'—N2'114.4 (5)
C18—P1—C12105.7 (3)C1'—N1'—C3'126.2 (5)
C24—P1—Ir1113.3 (2)C2'—N2'—N1'102.9 (5)
C24—P1—C12102.8 (3)C1'—N3'—C5'124.5 (5)
C24—P1—C18102.5 (3)C2'—N3'—C1'107.8 (5)
N2—N1—C3118.5 (5)C2'—N3'—C5'127.7 (5)
C1—N1—N2113.7 (5)N1'—C1'—Ir1'123.3 (5)
C1—N1—C3127.8 (5)N3'—C1'—Ir1'133.6 (5)
C2—N2—N1102.9 (5)N2'—C2'—N3'112.3 (5)
C1—N3—C2108.2 (5)N2'—C2'—H2'123.9
C1—N3—C5126.0 (5)N3'—C2'—H2'123.9
C2—N3—C5125.5 (5)N1'—C3'—H3'A109.0
N1—C1—Ir1126.4 (4)N1'—C3'—H3'B109.0
N3—C1—Ir1129.5 (4)N1'—C3'—C4'112.8 (6)
N2—C2—N3111.4 (5)H3'A—C3'—H3'B107.8
N2—C2—H2124.3C4'—C3'—H3'A109.0
N3—C2—H2124.3C4'—C3'—H3'B109.0
N1—C3—H3A109.3C3'—C4'—H4'A109.5
N1—C3—H3B109.3C3'—C4'—H4'B109.5
N1—C3—C4111.4 (5)C3'—C4'—H4'C109.5
H3A—C3—H3B108.0H4'A—C4'—H4'B109.5
C4—C3—H3A109.3H4'A—C4'—H4'C109.5
C4—C3—H3B109.3H4'B—C4'—H4'C109.5
C3—C4—H4A109.5N3'—C5'—H5'A108.8
C3—C4—H4B109.5N3'—C5'—H5'B108.8
C3—C4—H4C109.5N3'—C5'—C6'113.9 (5)
H4A—C4—H4B109.5H5'A—C5'—H5'B107.7
H4A—C4—H4C109.5C6'—C5'—H5'A108.8
H4B—C4—H4C109.5C6'—C5'—H5'B108.8
N3—C5—H5A108.9C7'—C6'—C5'119.9 (6)
N3—C5—H5B108.9C11'—C6'—C5'120.1 (6)
N3—C5—C6113.2 (5)C11'—C6'—C7'119.9 (6)
H5A—C5—H5B107.7C6'—C7'—H7'120.3
C6—C5—H5A108.9C6'—C7'—C8'119.5 (7)
C6—C5—H5B108.9C8'—C7'—H7'120.3
C7—C6—C5123.2 (6)C7'—C8'—H8'119.8
C11—C6—C5117.7 (6)C9'—C8'—C7'120.4 (7)
C11—C6—C7119.0 (6)C9'—C8'—H8'119.8
C6—C7—H7119.6C8'—C9'—H9'120.1
C8—C7—C6120.9 (7)C10'—C9'—C8'119.8 (7)
C8—C7—H7119.6C10'—C9'—H9'120.1
C7—C8—H8119.8C9'—C10'—H10'119.9
C7—C8—C9120.4 (7)C9'—C10'—C11'120.3 (7)
C9—C8—H8119.8C11'—C10'—H10'119.9
C8—C9—H9120.4C6'—C11'—C10'120.2 (7)
C8—C9—C10119.2 (7)C6'—C11'—H11'119.9
C10—C9—H9120.4C10'—C11'—H11'119.9
C9—C10—H10119.6C13'—C12'—P1'121.2 (4)
C9—C10—C11120.7 (7)C13'—C12'—C17'119.4 (5)
C11—C10—H10119.6C17'—C12'—P1'119.2 (5)
C6—C11—C10119.9 (7)C12'—C13'—H13'119.8
C6—C11—H11120.1C12'—C13'—C14'120.4 (6)
C10—C11—H11120.1C14'—C13'—H13'119.8
C13—C12—P1124.4 (5)C13'—C14'—H14'120.3
C13—C12—C17118.5 (5)C15'—C14'—C13'119.4 (6)
C17—C12—P1117.0 (4)C15'—C14'—H14'120.3
C12—C13—H13119.6C14'—C15'—H15'119.7
C12—C13—C14120.8 (6)C16'—C15'—C14'120.7 (6)
C14—C13—H13119.6C16'—C15'—H15'119.7
C13—C14—H14119.9C15'—C16'—H16'120.0
C15—C14—C13120.2 (6)C15'—C16'—C17'120.0 (6)
C15—C14—H14119.9C17'—C16'—H16'120.0
C14—C15—H15120.0C12'—C17'—H17'120.0
C14—C15—C16119.9 (6)C16'—C17'—C12'120.1 (6)
C16—C15—H15120.0C16'—C17'—H17'120.0
C15—C16—H16120.2C19'—C18'—P1'121.5 (5)
C15—C16—C17119.6 (6)C19'—C18'—C23'117.9 (5)
C17—C16—H16120.2C23'—C18'—P1'120.4 (4)
C12—C17—H17119.6C18'—C19'—H19'119.3
C16—C17—C12120.9 (6)C20'—C19'—C18'121.5 (6)
C16—C17—H17119.6C20'—C19'—H19'119.3
C19—C18—P1118.7 (4)C19'—C20'—H20'119.8
C19—C18—C23118.7 (6)C19'—C20'—C21'120.5 (6)
C23—C18—P1122.5 (4)C21'—C20'—H20'119.8
C18—C19—H19119.8C20'—C21'—H21'120.9
C20—C19—C18120.4 (6)C20'—C21'—C22'118.3 (6)
C20—C19—H19119.8C22'—C21'—H21'120.9
C19—C20—H20119.7C21'—C22'—H22'119.6
C19—C20—C21120.6 (6)C23'—C22'—C21'120.8 (6)
C21—C20—H20119.7C23'—C22'—H22'119.6
C20—C21—H21120.2C18'—C23'—H23'119.5
C22—C21—C20119.6 (6)C22'—C23'—C18'121.0 (6)
C22—C21—H21120.2C22'—C23'—H23'119.5
C21—C22—H22119.8C25'—C24'—P1'116.2 (5)
C21—C22—C23120.4 (6)C29'—C24'—P1'125.6 (5)
C23—C22—H22119.8C29'—C24'—C25'118.2 (5)
C18—C23—H23119.9C24'—C25'—H25'119.6
C22—C23—C18120.1 (6)C26'—C25'—C24'120.7 (6)
C22—C23—H23119.9C26'—C25'—H25'119.6
C25—C24—P1120.1 (4)C25'—C26'—H26'119.9
C29—C24—P1120.6 (4)C25'—C26'—C27'120.2 (6)
C29—C24—C25119.1 (5)C27'—C26'—H26'119.9
C24—C25—H25119.8C26'—C27'—H27'120.3
C26—C25—C24120.5 (6)C28'—C27'—C26'119.3 (6)
C26—C25—H25119.8C28'—C27'—H27'120.3
C25—C26—H26120.1C27'—C28'—H28'119.6
C25—C26—C27119.9 (6)C27'—C28'—C29'120.7 (6)
C27—C26—H26120.1C29'—C28'—H28'119.6
C26—C27—H27119.7C24'—C29'—C28'120.8 (6)
C26—C27—C28120.6 (6)C24'—C29'—H29'119.6
C28—C27—H27119.7C28'—C29'—H29'119.6
C27—C28—H28120.4Ir1'—C30'—H30'114.1
C27—C28—C29119.3 (6)C31'—C30'—Ir1'73.4 (4)
C29—C28—H28120.4C31'—C30'—H30'114.1
C24—C29—C28120.6 (6)C31'—C30'—C37'124.5 (6)
C24—C29—H29119.7C37'—C30'—Ir1'109.5 (4)
C28—C29—H29119.7C37'—C30'—H30'114.1
Ir1—C30—H30113.6Ir1'—C31'—H31'114.1
C31—C30—Ir170.5 (4)C30'—C31'—Ir1'70.0 (4)
C31—C30—H30113.6C30'—C31'—H31'114.1
C31—C30—C37126.7 (7)C30'—C31'—C32'124.2 (6)
C37—C30—Ir1110.4 (5)C32'—C31'—Ir1'112.3 (4)
C37—C30—H30113.6C32'—C31'—H31'114.1
Ir1—C31—H31114.0C31'—C32'—H32C109.0
C30—C31—Ir172.6 (4)C31'—C32'—H32D109.0
C30—C31—H31114.0C31'—C32'—C33'112.9 (5)
C30—C31—C32122.6 (7)H32C—C32'—H32D107.8
C32—C31—Ir1112.8 (4)C33'—C32'—H32C109.0
C32—C31—H31114.0C33'—C32'—H32D109.0
C31—C32—H32A108.7C32'—C33'—H33C108.9
C31—C32—H32B108.7C32'—C33'—H33D108.9
H32A—C32—H32B107.6H33C—C33'—H33D107.7
C33—C32—C31114.3 (6)C34'—C33'—C32'113.5 (5)
C33—C32—H32A108.7C34'—C33'—H33C108.9
C33—C32—H32B108.7C34'—C33'—H33D108.9
C32—C33—H33A108.8Ir1'—C34'—H34'114.0
C32—C33—H33B108.8C33'—C34'—Ir1'109.5 (4)
C32—C33—C34113.6 (6)C33'—C34'—H34'114.0
H33A—C33—H33B107.7C35'—C34'—Ir1'72.3 (4)
C34—C33—H33A108.8C35'—C34'—C33'125.3 (6)
C34—C33—H33B108.8C35'—C34'—H34'114.0
Ir1—C34—H34114.1Ir1'—C35'—H35'113.9
C33—C34—Ir1109.4 (4)C34'—C35'—Ir1'70.3 (4)
C33—C34—H34114.1C34'—C35'—H35'113.9
C35—C34—Ir172.1 (4)C34'—C35'—C36'123.8 (6)
C35—C34—C33125.2 (6)C36'—C35'—Ir1'113.5 (5)
C35—C34—H34114.1C36'—C35'—H35'113.9
Ir1—C35—H35113.9C35'—C36'—H36C109.2
C34—C35—Ir171.4 (4)C35'—C36'—H36D109.2
C34—C35—H35113.9C35'—C36'—C37'112.0 (5)
C34—C35—C36123.0 (6)H36C—C36'—H36D107.9
C36—C35—Ir1113.6 (4)C37'—C36'—H36C109.2
C36—C35—H35113.9C37'—C36'—H36D109.2
C35—C36—H36A109.0C30'—C37'—C36'114.1 (5)
C35—C36—H36B109.0C30'—C37'—H37C108.7
H36A—C36—H36B107.8C30'—C37'—H37D108.7
C37—C36—C35113.0 (6)C36'—C37'—H37C108.7
C37—C36—H36A109.0C36'—C37'—H37D108.7
C37—C36—H36B109.0H37C—C37'—H37D107.6
C30—C37—H37A108.8F1—B1—F2109.6 (6)
C30—C37—H37B108.8F1—B1—F3108.5 (6)
C36—C37—C30113.7 (6)F2—B1—F3108.1 (6)
C36—C37—H37A108.8F4—B1—F1111.6 (6)
C36—C37—H37B108.8F4—B1—F2109.6 (6)
H37A—C37—H37B107.7F4—B1—F3109.3 (6)
N1'—C1'—N3'102.7 (5)F1'—B1'—F2'109.3 (6)
C1'—Ir1'—P1'94.64 (18)F1'—B1'—F3'108.5 (7)
C1'—Ir1'—C30'90.2 (3)F1'—B1'—F4'110.6 (7)
C1'—Ir1'—C31'86.9 (2)F3'—B1'—F2'109.5 (6)
C1'—Ir1'—C34'148.7 (2)F4'—B1'—F2'109.3 (6)
C1'—Ir1'—C35'169.9 (3)F4'—B1'—F3'109.6 (6)
Ir1—P1—C12—C13110.1 (5)Ir1'—P1'—C12'—C13'19.5 (5)
Ir1—P1—C12—C1766.7 (5)Ir1'—P1'—C12'—C17'164.4 (4)
Ir1—P1—C18—C1966.1 (5)Ir1'—P1'—C18'—C19'103.8 (5)
Ir1—P1—C18—C23110.2 (5)Ir1'—P1'—C18'—C23'71.3 (5)
Ir1—P1—C24—C2530.9 (5)Ir1'—P1'—C24'—C25'59.7 (5)
Ir1—P1—C24—C29154.9 (4)Ir1'—P1'—C24'—C29'119.4 (5)
Ir1—C30—C31—C32106.4 (6)Ir1'—C30'—C31'—C32'103.9 (6)
Ir1—C30—C37—C3636.2 (8)Ir1'—C30'—C37'—C36'36.4 (7)
Ir1—C31—C32—C338.6 (8)Ir1'—C31'—C32'—C33'12.9 (7)
Ir1—C34—C35—C36106.6 (6)Ir1'—C34'—C35'—C36'105.6 (7)
Ir1—C35—C36—C3712.0 (8)Ir1'—C35'—C36'—C37'11.5 (7)
P1—C12—C13—C14175.5 (5)P1'—C12'—C13'—C14'176.5 (4)
P1—C12—C17—C16175.6 (5)P1'—C12'—C17'—C16'175.2 (4)
P1—C18—C19—C20179.5 (5)P1'—C18'—C19'—C20'177.0 (5)
P1—C18—C23—C22177.3 (5)P1'—C18'—C23'—C22'178.8 (5)
P1—C24—C25—C26172.0 (5)P1'—C24'—C25'—C26'175.6 (5)
P1—C24—C29—C28174.0 (5)P1'—C24'—C29'—C28'176.5 (5)
N1—N2—C2—N30.3 (6)N1'—N2'—C2'—N3'1.8 (7)
N2—N1—C1—Ir1175.2 (4)N2'—N1'—C1'—Ir1'174.4 (4)
N2—N1—C1—N31.4 (6)N2'—N1'—C1'—N3'0.9 (7)
N2—N1—C3—C469.9 (7)N2'—N1'—C3'—C4'66.8 (8)
N3—C5—C6—C743.3 (8)N3'—C5'—C6'—C7'74.6 (8)
N3—C5—C6—C11140.9 (6)N3'—C5'—C6'—C11'108.8 (7)
C1—N1—N2—C20.7 (6)C1'—N1'—N2'—C2'1.7 (7)
C1—N1—C3—C4109.0 (7)C1'—N1'—C3'—C4'112.3 (7)
C1—N3—C2—N21.2 (7)C1'—N3'—C2'—N2'1.4 (8)
C1—N3—C5—C6132.0 (6)C1'—N3'—C5'—C6'127.9 (6)
C2—N3—C1—Ir1175.0 (4)C2'—N3'—C1'—Ir1'172.2 (5)
C2—N3—C1—N11.5 (6)C2'—N3'—C1'—N1'0.2 (7)
C2—N3—C5—C654.5 (8)C2'—N3'—C5'—C6'54.4 (9)
C3—N1—N2—C2179.7 (5)C3'—N1'—N2'—C2'179.1 (6)
C3—N1—C1—Ir15.9 (9)C3'—N1'—C1'—Ir1'6.5 (9)
C3—N1—C1—N3179.7 (5)C3'—N1'—C1'—N3'180.0 (6)
C5—N3—C1—Ir110.5 (8)C5'—N3'—C1'—Ir1'5.9 (10)
C5—N3—C1—N1175.9 (5)C5'—N3'—C1'—N1'178.3 (6)
C5—N3—C2—N2175.7 (5)C5'—N3'—C2'—N2'179.4 (6)
C5—C6—C7—C8175.0 (7)C5'—C6'—C7'—C8'177.3 (6)
C5—C6—C11—C10175.1 (7)C5'—C6'—C11'—C10'177.3 (6)
C6—C7—C8—C90.1 (12)C6'—C7'—C8'—C9'0.2 (11)
C7—C6—C11—C100.9 (10)C7'—C6'—C11'—C10'0.7 (10)
C7—C8—C9—C100.5 (12)C7'—C8'—C9'—C10'0.2 (12)
C8—C9—C10—C110.3 (12)C8'—C9'—C10'—C11'0.2 (12)
C9—C10—C11—C60.4 (11)C9'—C10'—C11'—C6'0.3 (11)
C11—C6—C7—C80.7 (10)C11'—C6'—C7'—C8'0.7 (10)
C12—P1—C18—C1963.5 (5)C12'—P1'—C18'—C19'17.1 (5)
C12—P1—C18—C23120.1 (5)C12'—P1'—C18'—C23'167.9 (5)
C12—P1—C24—C25157.6 (5)C12'—P1'—C24'—C25'61.7 (5)
C12—P1—C24—C2928.2 (5)C12'—P1'—C24'—C29'119.2 (5)
C12—C13—C14—C150.6 (9)C12'—C13'—C14'—C15'0.5 (9)
C13—C12—C17—C161.4 (8)C13'—C12'—C17'—C16'1.1 (8)
C13—C14—C15—C162.4 (9)C13'—C14'—C15'—C16'0.8 (9)
C14—C15—C16—C172.1 (9)C14'—C15'—C16'—C17'2.2 (9)
C15—C16—C17—C120.2 (9)C15'—C16'—C17'—C12'2.3 (9)
C17—C12—C13—C141.2 (8)C17'—C12'—C13'—C14'0.3 (9)
C18—P1—C12—C1318.2 (5)C18'—P1'—C12'—C13'105.3 (5)
C18—P1—C12—C17165.0 (4)C18'—P1'—C12'—C17'70.9 (5)
C18—P1—C24—C2592.8 (5)C18'—P1'—C24'—C25'168.8 (4)
C18—P1—C24—C2981.4 (5)C18'—P1'—C24'—C29'12.2 (6)
C18—C19—C20—C212.6 (9)C18'—C19'—C20'—C21'0.1 (9)
C19—C18—C23—C220.9 (9)C19'—C18'—C23'—C22'3.6 (9)
C19—C20—C21—C220.2 (9)C19'—C20'—C21'—C22'0.0 (10)
C20—C21—C22—C231.9 (9)C20'—C21'—C22'—C23'1.7 (10)
C21—C22—C23—C181.5 (9)C21'—C22'—C23'—C18'3.6 (10)
C23—C18—C19—C203.0 (9)C23'—C18'—C19'—C20'1.8 (9)
C24—P1—C12—C13125.3 (5)C24'—P1'—C12'—C13'145.6 (5)
C24—P1—C12—C1757.9 (5)C24'—P1'—C12'—C17'38.2 (5)
C24—P1—C18—C19170.9 (5)C24'—P1'—C18'—C19'124.0 (5)
C24—P1—C18—C2312.7 (5)C24'—P1'—C18'—C23'61.0 (5)
C24—C25—C26—C271.9 (10)C24'—C25'—C26'—C27'2.0 (9)
C25—C24—C29—C280.3 (9)C25'—C24'—C29'—C28'2.5 (9)
C25—C26—C27—C280.5 (10)C25'—C26'—C27'—C28'0.6 (9)
C26—C27—C28—C292.5 (10)C26'—C27'—C28'—C29'1.6 (9)
C27—C28—C29—C242.1 (10)C27'—C28'—C29'—C24'0.0 (9)
C29—C24—C25—C262.3 (9)C29'—C24'—C25'—C26'3.5 (9)
C30—C31—C32—C3392.0 (8)C30'—C31'—C32'—C33'93.2 (8)
C31—C30—C37—C3644.2 (10)C31'—C30'—C37'—C36'46.5 (9)
C31—C32—C33—C3429.2 (9)C31'—C32'—C33'—C34'33.8 (8)
C32—C33—C34—Ir134.7 (7)C32'—C33'—C34'—Ir1'37.9 (6)
C32—C33—C34—C3546.6 (9)C32'—C33'—C34'—C35'43.7 (8)
C33—C34—C35—Ir1101.4 (6)C33'—C34'—C35'—Ir1'101.8 (6)
C33—C34—C35—C365.1 (10)C33'—C34'—C35'—C36'3.9 (10)
C34—C35—C36—C3794.5 (8)C34'—C35'—C36'—C37'92.8 (8)
C35—C36—C37—C3032.0 (9)C35'—C36'—C37'—C30'31.9 (8)
C37—C30—C31—Ir1101.4 (7)C37'—C30'—C31'—Ir1'102.5 (6)
C37—C30—C31—C325.0 (11)C37'—C30'—C31'—C32'1.4 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5A···F20.992.523.488 (8)167
C8—H8···F2i0.952.513.262 (10)137
C14—H14···F40.952.403.250 (8)149
C16—H16···F30.952.743.487 (9)136
C21—H21···F3ii0.952.523.413 (8)157
C22—H22···F4ii0.952.623.396 (8)139
C33—H33A···F1iii0.992.513.378 (9)146
C37—H37B···F2i0.992.383.313 (9)158
C2—H2···F1iv0.952.373.274 (9)160
C16—H16···F2v0.952.593.388 (7)142
C20—H20···F3vi0.952.713.496 (8)141
C28—H28···F30.952.453.335 (8)154
C32—H32D···F2ii0.992.443.425 (7)176
C37—H37C···F4vii0.992.513.375 (8)146
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x, y+1, z1; (v) x1, y, z1; (vi) x1, y, z; (vii) x1, y+1, z1.
(4-Benzyl-1-ethyl-1,2,4-triazol-5-ylidene)[(1,2,5,6-η)-cycloocta-1,5-diene](tricyclohexylphosphane)iridium(I) tetrafluoridoborate dicholoromethane sesquisolvate (6) top
Crystal data top
[Ir(C8H12)(C11H13N3)(C18H33P)]BF4·1.5CH2Cl2F(000) = 1988
Mr = 982.23Dx = 1.572 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1281 (2) ÅCell parameters from 35970 reflections
b = 14.4399 (2) Åθ = 2.2–28.2°
c = 23.7057 (3) ŵ = 3.50 mm1
β = 92.016 (1)°T = 100 K
V = 4148.98 (10) Å3Plate, orange
Z = 40.27 × 0.1 × 0.01 mm
Data collection top
Rigaku XtaLAB Synergy-S
diffractometer
8797 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.051
ω scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SCALE3 ABSPACK; Rigaku OD, 2024)
h = 1616
Tmin = 0.642, Tmax = 1.000k = 1919
88352 measured reflectionsl = 3131
10279 independent reflections
Refinement top
Refinement on F2309 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0263P)2 + 17.4212P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
10279 reflectionsΔρmax = 1.90 e Å3
575 parametersΔρmin = 1.29 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ir10.21581 (2)0.31646 (2)0.37651 (2)0.01583 (5)
P10.33938 (7)0.18989 (6)0.38680 (4)0.01495 (17)
N10.3216 (3)0.4014 (2)0.27119 (13)0.0227 (7)
N20.4035 (3)0.4605 (2)0.25436 (14)0.0301 (8)
N30.4030 (3)0.4466 (2)0.34670 (13)0.0210 (6)
C10.3193 (3)0.3899 (3)0.32772 (15)0.0192 (7)
C20.4509 (4)0.4867 (3)0.30157 (17)0.0293 (9)
H20.5114010.5284320.3043710.035*
C30.2533 (4)0.3569 (3)0.22702 (16)0.0315 (9)
H3A0.2003990.3143600.2445180.038*
H3B0.3008650.3197350.2025410.038*
C40.1904 (5)0.4281 (4)0.19135 (19)0.0439 (12)
H4A0.1481770.3965460.1610070.066*
H4B0.2425590.4713920.1749570.066*
H4C0.1397340.4621800.2150800.066*
C50.4356 (3)0.4623 (3)0.40607 (16)0.0242 (8)
H5A0.5146430.4794340.4084340.029*
H5B0.4270680.4036520.4270600.029*
C60.3703 (3)0.5367 (3)0.43438 (15)0.0211 (7)
C70.3432 (3)0.5250 (3)0.49038 (17)0.0279 (9)
H70.3629110.4691570.5094160.033*
C80.2878 (4)0.5939 (3)0.51890 (18)0.0337 (10)
H80.2707690.5854690.5573700.040*
C90.2577 (4)0.6741 (3)0.4914 (2)0.0351 (10)
H90.2194030.7211440.5107020.042*
C100.2832 (4)0.6865 (3)0.4353 (2)0.0336 (9)
H100.2620830.7419270.4162370.040*
C110.3392 (4)0.6185 (3)0.40718 (18)0.0299 (9)
H110.3568200.6275620.3688380.036*
C120.2774 (3)0.0849 (2)0.35419 (15)0.0187 (7)
H120.2181360.0665900.3802700.022*
C130.2167 (3)0.1003 (3)0.29744 (16)0.0230 (8)
H13A0.2706650.1130720.2680420.028*
H13B0.1671130.1544440.2999310.028*
C140.1491 (4)0.0138 (3)0.28133 (19)0.0327 (10)
H14A0.0905590.0049190.3088660.039*
H14B0.1131230.0229840.2436150.039*
C150.2215 (4)0.0723 (3)0.28034 (19)0.0359 (10)
H15A0.1747380.1272760.2723400.043*
H15B0.2743830.0665380.2496480.043*
C160.2850 (4)0.0861 (3)0.33630 (18)0.0289 (9)
H16A0.3344530.1402760.3333930.035*
H16B0.2323240.0990120.3662970.035*
C170.3532 (3)0.0006 (2)0.35230 (16)0.0217 (8)
H17A0.4105760.0092900.3242300.026*
H17B0.3904230.0100420.3896960.026*
C180.3798 (3)0.1479 (3)0.45886 (15)0.0197 (7)
H180.4443980.1060440.4537600.024*
C190.2941 (4)0.0891 (3)0.48899 (16)0.0261 (8)
H19A0.2280030.1272330.4958340.031*
H19B0.2710950.0364290.4645840.031*
C200.3420 (4)0.0525 (3)0.54528 (17)0.0311 (9)
H20A0.2844620.0173730.5647690.037*
H20B0.4035900.0095610.5380600.037*
C210.3837 (4)0.1310 (3)0.58314 (17)0.0330 (10)
H21A0.4171460.1048960.6183680.040*
H21B0.3208240.1705660.5933740.040*
C220.4689 (4)0.1896 (3)0.55380 (17)0.0313 (9)
H22A0.5352770.1516100.5473760.038*
H22B0.4911690.2421130.5784800.038*
C230.4230 (3)0.2269 (3)0.49704 (16)0.0249 (8)
H23A0.4818830.2608330.4778040.030*
H23B0.3623290.2709660.5038040.030*
C240.4754 (3)0.2124 (3)0.35529 (17)0.0219 (8)
H240.4918060.2790850.3634360.026*
C250.5777 (3)0.1588 (3)0.3783 (2)0.0311 (10)
H25A0.5833080.1643290.4198760.037*
H25B0.5699710.0923120.3685930.037*
C260.6819 (4)0.1976 (3)0.3527 (3)0.0476 (14)
H26A0.6930910.2620940.3658110.057*
H26B0.7462410.1606500.3662480.057*
C270.6760 (4)0.1963 (3)0.2888 (3)0.0535 (16)
H27A0.7420220.2274050.2743800.064*
H27B0.6762600.1313090.2755100.064*
C280.5735 (4)0.2443 (3)0.2654 (2)0.0446 (13)
H28A0.5686970.2366040.2238830.053*
H28B0.5784510.3114000.2737140.053*
C290.4697 (4)0.2049 (3)0.29090 (17)0.0282 (9)
H29A0.4613600.1390500.2798830.034*
H29B0.4043370.2390180.2758100.034*
C300.0635 (9)0.3834 (9)0.3417 (4)0.0303 (15)0.5
H300.0698120.4051990.3019340.036*0.5
C30*0.0852 (9)0.3941 (10)0.3353 (4)0.0307 (14)0.5
H30*0.1052820.4236060.2989080.037*0.5
C310.1152 (3)0.4433 (3)0.38211 (17)0.0288 (8)
H31A0.1584980.4996670.3724020.035*0.5
H310.1487450.5007740.3666170.035*0.5
C320.0628 (4)0.4535 (3)0.43806 (18)0.0339 (9)
H32A0.1041810.5012680.4600240.041*0.5
H32B0.0131640.4770860.4312680.041*0.5
H32C0.0183270.4538790.4317540.041*0.5
H32D0.0843110.5143320.4542810.041*0.5
C330.0568 (8)0.3681 (5)0.4736 (4)0.0316 (15)0.5
H33A0.0209820.3474050.4742430.038*0.5
H33B0.0807350.3837420.5128320.038*0.5
C33*0.0932 (8)0.3774 (5)0.4817 (4)0.0293 (15)0.5
H33C0.1545320.3995350.5068850.035*0.5
H33D0.0289420.3651150.5052290.035*0.5
C340.1275 (3)0.2878 (3)0.45318 (16)0.0267 (8)
H340.1704130.2536160.4833410.032*0.5
H34A0.1738160.2491710.4797840.032*0.5
C350.0816 (3)0.2343 (3)0.41109 (18)0.0321 (10)
H35A0.0912760.1656070.4137100.038*0.5
H350.1083200.1692550.4165680.038*0.5
C360.0251 (7)0.2316 (7)0.3774 (4)0.0376 (16)0.5
H36A0.0867990.2167320.4020730.045*0.5
H36B0.0221480.1838130.3475270.045*0.5
C36*0.0296 (7)0.2727 (7)0.3843 (4)0.0339 (15)0.5
H36C0.0773020.2194990.3735930.041*0.5
H36D0.0676820.3081990.4136360.041*0.5
C370.0414 (7)0.3268 (7)0.3513 (4)0.0337 (14)0.5
H37A0.0895260.3632000.3758320.040*0.5
H37B0.0814110.3191480.3144100.040*0.5
C37*0.0186 (8)0.3357 (7)0.3318 (4)0.0332 (14)0.5
H37C0.0176820.2966550.2975520.040*0.5
H37D0.0836940.3769850.3283910.040*0.5
Cl10.0914 (3)0.1650 (2)0.20050 (15)0.0913 (9)0.7
Cl20.0151 (3)0.2836 (3)0.11033 (19)0.0877 (11)0.7
C380.0202 (16)0.1727 (11)0.1378 (7)0.0888 (13)0.7
H38A0.0561810.1501620.1448680.107*0.7
H38B0.0560370.1313540.1093250.107*0.7
Cl1*0.0146 (9)0.3008 (7)0.0811 (4)0.0856 (17)0.3
Cl2*0.0496 (6)0.2152 (6)0.1931 (4)0.0932 (14)0.3
C38*0.019 (4)0.192 (3)0.1232 (17)0.0886 (14)0.3
H38C0.0753910.1498520.1063750.106*0.3
H38D0.0535630.1603750.1221330.106*0.3
Cl30.0397 (15)0.5163 (8)0.0662 (5)0.102 (3)0.5
Cl40.0172 (15)0.5042 (9)0.0541 (5)0.097 (3)0.5
C390.0466 (13)0.5722 (9)0.0003 (5)0.097 (3)0.5
H39A0.0093740.6331410.0012910.117*0.5
H39B0.1247310.5829640.0091410.117*0.5
F10.2168 (4)0.1568 (4)0.1635 (2)0.0626 (15)0.7
F1*0.2650 (10)0.1739 (8)0.1705 (5)0.064 (3)0.3
F20.3946 (4)0.1517 (3)0.1611 (2)0.0568 (11)0.7
F2*0.3989 (6)0.1141 (8)0.1179 (5)0.070 (2)0.3
F30.2972 (6)0.1329 (4)0.08020 (18)0.0702 (15)0.7
F3*0.2328 (9)0.1246 (10)0.0839 (3)0.066 (3)0.3
F40.3022 (5)0.0209 (3)0.1453 (3)0.0583 (15)0.7
F4*0.2671 (12)0.0243 (6)0.1505 (7)0.064 (3)0.3
B10.2955 (4)0.1124 (3)0.1342 (2)0.0510 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ir10.01694 (7)0.01633 (7)0.01429 (7)0.00267 (6)0.00145 (4)0.00031 (6)
P10.0168 (4)0.0139 (4)0.0144 (4)0.0006 (3)0.0026 (3)0.0001 (3)
N10.0325 (18)0.0183 (16)0.0174 (15)0.0010 (13)0.0024 (13)0.0020 (12)
N20.042 (2)0.0244 (18)0.0245 (17)0.0050 (16)0.0073 (15)0.0052 (14)
N30.0249 (16)0.0183 (15)0.0199 (15)0.0012 (13)0.0008 (12)0.0007 (12)
C10.0238 (19)0.0172 (17)0.0166 (16)0.0068 (14)0.0012 (14)0.0004 (14)
C20.038 (2)0.021 (2)0.029 (2)0.0030 (17)0.0089 (18)0.0047 (16)
C30.048 (3)0.031 (2)0.0154 (18)0.002 (2)0.0036 (17)0.0027 (16)
C40.060 (3)0.049 (3)0.022 (2)0.003 (3)0.012 (2)0.007 (2)
C50.030 (2)0.0214 (19)0.0207 (18)0.0020 (16)0.0051 (15)0.0011 (15)
C60.0226 (18)0.0202 (19)0.0204 (17)0.0049 (15)0.0030 (14)0.0029 (14)
C70.030 (2)0.029 (2)0.0241 (19)0.0034 (17)0.0038 (16)0.0019 (16)
C80.031 (2)0.045 (3)0.024 (2)0.000 (2)0.0029 (17)0.0030 (19)
C90.030 (2)0.035 (2)0.040 (2)0.0004 (19)0.0067 (18)0.012 (2)
C100.037 (2)0.021 (2)0.043 (2)0.0019 (19)0.0059 (19)0.0042 (19)
C110.039 (2)0.025 (2)0.026 (2)0.0008 (18)0.0065 (17)0.0040 (17)
C120.0228 (18)0.0153 (17)0.0181 (17)0.0008 (14)0.0013 (14)0.0014 (13)
C130.028 (2)0.0181 (18)0.0221 (18)0.0021 (15)0.0024 (15)0.0019 (15)
C140.039 (2)0.027 (2)0.031 (2)0.0071 (19)0.0092 (18)0.0058 (18)
C150.053 (3)0.021 (2)0.033 (2)0.007 (2)0.002 (2)0.0096 (18)
C160.041 (2)0.0147 (18)0.031 (2)0.0016 (17)0.0077 (18)0.0027 (16)
C170.027 (2)0.0147 (17)0.0240 (18)0.0003 (15)0.0035 (15)0.0006 (14)
C180.0238 (19)0.0195 (17)0.0158 (16)0.0007 (15)0.0011 (14)0.0022 (14)
C190.034 (2)0.023 (2)0.0209 (18)0.0007 (17)0.0041 (16)0.0064 (15)
C200.039 (2)0.030 (2)0.024 (2)0.0061 (19)0.0007 (17)0.0106 (17)
C210.040 (3)0.041 (3)0.0180 (19)0.010 (2)0.0001 (17)0.0045 (18)
C220.032 (2)0.038 (2)0.0235 (19)0.0025 (19)0.0063 (16)0.0044 (18)
C230.026 (2)0.028 (2)0.0202 (18)0.0003 (16)0.0022 (15)0.0013 (16)
C240.0180 (18)0.0156 (17)0.033 (2)0.0016 (14)0.0089 (15)0.0006 (15)
C250.0171 (19)0.025 (2)0.052 (3)0.0001 (15)0.0044 (18)0.0047 (19)
C260.022 (2)0.032 (3)0.090 (4)0.0070 (19)0.017 (2)0.015 (3)
C270.039 (3)0.029 (3)0.094 (4)0.010 (2)0.044 (3)0.012 (3)
C280.057 (3)0.025 (2)0.055 (3)0.007 (2)0.036 (3)0.002 (2)
C290.036 (2)0.021 (2)0.029 (2)0.0002 (16)0.0175 (17)0.0001 (16)
C300.023 (3)0.036 (3)0.032 (3)0.010 (2)0.003 (2)0.002 (3)
C30*0.023 (3)0.038 (3)0.032 (3)0.007 (2)0.005 (2)0.003 (3)
C310.0251 (18)0.0232 (18)0.0383 (19)0.0050 (15)0.0056 (15)0.0064 (15)
C320.0306 (19)0.0318 (19)0.040 (2)0.0095 (16)0.0054 (16)0.0080 (17)
C330.031 (3)0.031 (3)0.034 (3)0.000 (3)0.015 (3)0.006 (2)
C33*0.026 (3)0.029 (3)0.033 (3)0.001 (3)0.014 (3)0.004 (2)
C340.0274 (19)0.0266 (18)0.0269 (18)0.0019 (15)0.0127 (15)0.0060 (15)
C350.019 (2)0.038 (3)0.040 (2)0.0084 (17)0.0117 (17)0.003 (2)
C360.025 (3)0.045 (4)0.043 (3)0.005 (3)0.001 (3)0.007 (3)
C36*0.022 (3)0.037 (4)0.043 (3)0.007 (3)0.001 (3)0.008 (3)
C370.022 (3)0.041 (3)0.038 (3)0.001 (2)0.005 (2)0.005 (3)
C37*0.022 (3)0.041 (3)0.036 (3)0.002 (2)0.000 (2)0.004 (3)
Cl10.0749 (18)0.090 (2)0.110 (2)0.0134 (14)0.0146 (16)0.0585 (18)
Cl20.0568 (13)0.0572 (16)0.149 (3)0.0152 (12)0.003 (2)0.022 (2)
C380.064 (2)0.072 (2)0.131 (3)0.002 (2)0.014 (2)0.044 (2)
Cl1*0.057 (2)0.072 (3)0.128 (4)0.015 (2)0.010 (3)0.047 (3)
Cl2*0.069 (2)0.083 (3)0.129 (3)0.003 (2)0.022 (2)0.050 (3)
C38*0.063 (2)0.071 (3)0.132 (3)0.005 (2)0.013 (3)0.043 (3)
Cl30.122 (7)0.087 (5)0.097 (5)0.051 (5)0.017 (4)0.021 (4)
Cl40.112 (6)0.086 (5)0.094 (4)0.035 (4)0.019 (4)0.003 (3)
C390.116 (7)0.085 (5)0.092 (5)0.045 (5)0.018 (4)0.006 (4)
F10.056 (3)0.078 (3)0.054 (3)0.018 (3)0.002 (2)0.020 (2)
F1*0.085 (6)0.058 (5)0.050 (5)0.005 (5)0.003 (5)0.016 (4)
F20.062 (3)0.045 (2)0.062 (3)0.012 (2)0.012 (2)0.001 (2)
F2*0.076 (5)0.062 (4)0.071 (4)0.008 (4)0.019 (4)0.016 (4)
F30.125 (4)0.061 (3)0.026 (2)0.015 (3)0.020 (3)0.001 (2)
F3*0.081 (6)0.076 (5)0.041 (4)0.019 (5)0.013 (5)0.001 (4)
F40.068 (4)0.053 (3)0.055 (3)0.000 (2)0.016 (3)0.008 (2)
F4*0.099 (7)0.048 (5)0.048 (5)0.017 (5)0.039 (6)0.002 (4)
B10.067 (3)0.049 (3)0.038 (2)0.012 (3)0.016 (2)0.005 (2)
Geometric parameters (Å, º) top
Ir1—P12.3707 (9)C24—C291.529 (6)
Ir1—C302.218 (14)C25—H25A0.9900
Ir1—C30*2.147 (15)C25—H25B0.9900
Ir1—C312.207 (4)C25—C261.527 (6)
Ir1—C342.181 (4)C26—H26A0.9900
Ir1—C352.196 (4)C26—H26B0.9900
P1—C121.849 (4)C26—C271.513 (9)
P1—C181.862 (4)C27—H27A0.9900
P1—C241.864 (4)C27—H27B0.9900
N1—N21.379 (5)C27—C281.512 (8)
N1—C11.352 (5)C28—H28A0.9900
N1—C31.461 (5)C28—H28B0.9900
N2—C21.296 (6)C28—C291.525 (6)
N3—C11.369 (5)C29—H29A0.9900
N3—C21.364 (5)C29—H29B0.9900
N3—C51.466 (5)C30—H301.0000
Ir1—C12.034 (4)C30—C311.420 (8)
C2—H20.9500C30—C371.536 (8)
C3—H3A0.9900C30*—H30*1.0000
C3—H3B0.9900C30*—C311.356 (8)
C3—C41.520 (6)C30*—C37*1.515 (8)
C4—H4A0.9800C31—H31A1.0000
C4—H4B0.9800C31—H311.0000
C4—H4C0.9800C31—C321.498 (6)
C5—H5A0.9900C32—H32A0.9900
C5—H5B0.9900C32—H32B0.9900
C5—C61.506 (5)C32—H32C0.9900
C6—C71.389 (5)C32—H32D0.9900
C6—C111.391 (6)C32—C331.498 (8)
C7—H70.9500C32—C33*1.545 (8)
C7—C81.390 (6)C33—H33A0.9900
C8—H80.9500C33—H33B0.9900
C8—C91.373 (7)C33—C341.530 (7)
C9—H90.9500C33*—H33C0.9900
C9—C101.386 (6)C33*—H33D0.9900
C10—H100.9500C33*—C341.524 (7)
C10—C111.380 (6)C34—H341.0000
C11—H110.9500C34—H34A1.0000
C12—H121.0000C34—C351.366 (5)
C12—C131.527 (5)C35—H35A1.0000
C12—C171.541 (5)C35—H351.0000
C13—H13A0.9900C35—C361.497 (8)
C13—H13B0.9900C35—C36*1.572 (7)
C13—C141.534 (5)C36—H36A0.9900
C14—H14A0.9900C36—H36B0.9900
C14—H14B0.9900C36—C371.517 (9)
C14—C151.523 (6)C36*—H36C0.9900
C15—H15A0.9900C36*—H36D0.9900
C15—H15B0.9900C36*—C37*1.551 (8)
C15—C161.523 (6)C37—H37A0.9900
C16—H16A0.9900C37—H37B0.9900
C16—H16B0.9900C37*—H37C0.9900
C16—C171.526 (5)C37*—H37D0.9900
C17—H17A0.9900Cl1—C381.749 (17)
C17—H17B0.9900Cl2—C381.731 (15)
C18—H181.0000C38—H38A0.9900
C18—C191.538 (5)C38—H38B0.9900
C18—C231.537 (5)Cl1*—C38*1.86 (4)
C19—H19A0.9900Cl2*—C38*1.74 (4)
C19—H19B0.9900C38*—H38C0.9900
C19—C201.531 (5)C38*—H38D0.9900
C20—H20A0.9900Cl3—C391.7772
C20—H20B0.9900Cl4—C391.7657
C20—C211.521 (6)C39—H39A0.9900
C21—H21A0.9900C39—H39B0.9900
C21—H21B0.9900F1—B11.360 (6)
C21—C221.523 (6)F1*—B11.300 (6)
C22—H22A0.9900F2—B11.456 (6)
C22—H22B0.9900F2*—B11.325 (6)
C22—C231.536 (5)F3—B11.314 (6)
C23—H23A0.9900F3*—B11.401 (6)
C23—H23B0.9900F4—B11.350 (6)
C24—H241.0000F4*—B11.378 (7)
C24—C251.545 (6)
N1—C1—N3102.2 (3)C24—C25—H25A109.7
C1—Ir1—P193.42 (10)C24—C25—H25B109.7
C1—Ir1—C3094.8 (3)H25A—C25—H25B108.2
C1—Ir1—C30*85.9 (3)C26—C25—C24109.9 (4)
C1—Ir1—C3187.44 (15)C26—C25—H25A109.7
C1—Ir1—C34154.59 (15)C26—C25—H25B109.7
C1—Ir1—C35166.87 (15)C25—C26—H26A109.1
C30—Ir1—P1152.8 (2)C25—C26—H26B109.1
C30*—Ir1—P1154.5 (2)H26A—C26—H26B107.8
C30*—Ir1—C3136.2 (2)C27—C26—C25112.5 (4)
C30*—Ir1—C3495.9 (3)C27—C26—H26A109.1
C30*—Ir1—C3584.7 (3)C27—C26—H26B109.1
C31—Ir1—P1169.21 (11)C26—C27—H27A109.3
C31—Ir1—C3037.4 (2)C26—C27—H27B109.3
C34—Ir1—P195.47 (11)H27A—C27—H27B107.9
C34—Ir1—C3088.0 (3)C28—C27—C26111.8 (4)
C34—Ir1—C3179.54 (15)C28—C27—H27A109.3
C34—Ir1—C3536.35 (14)C28—C27—H27B109.3
C35—Ir1—P191.09 (12)C27—C28—H28A109.4
C35—Ir1—C3075.9 (3)C27—C28—H28B109.4
C35—Ir1—C3190.43 (16)C27—C28—C29111.2 (4)
C12—P1—Ir1110.05 (12)H28A—C28—H28B108.0
C12—P1—C18101.93 (17)C29—C28—H28A109.4
C12—P1—C24109.16 (17)C29—C28—H28B109.4
C18—P1—Ir1119.37 (13)C24—C29—H29A109.4
C18—P1—C24102.49 (18)C24—C29—H29B109.4
C24—P1—Ir1112.92 (13)C28—C29—C24111.1 (4)
N2—N1—C3117.4 (3)C28—C29—H29A109.4
C1—N1—N2113.8 (3)C28—C29—H29B109.4
C1—N1—C3128.7 (3)H29A—C29—H29B108.0
C2—N2—N1103.5 (3)Ir1—C30—H30113.4
C1—N3—C5125.5 (3)C31—C30—Ir170.9 (5)
C2—N3—C1109.1 (3)C31—C30—H30113.4
C2—N3—C5125.4 (3)C31—C30—C37125.0 (8)
N1—C1—Ir1131.5 (3)C37—C30—Ir1113.4 (8)
N3—C1—Ir1126.2 (3)C37—C30—H30113.4
N2—C2—N3111.4 (4)Ir1—C30*—H30*114.6
N2—C2—H2124.3C31—C30*—Ir174.3 (6)
N3—C2—H2124.3C31—C30*—H30*114.6
N1—C3—H3A109.4C31—C30*—C37*122.3 (8)
N1—C3—H3B109.4C37*—C30*—Ir1109.4 (8)
N1—C3—C4111.2 (4)C37*—C30*—H30*114.6
H3A—C3—H3B108.0Ir1—C31—H31A111.5
C4—C3—H3A109.4Ir1—C31—H31115.7
C4—C3—H3B109.4C30—C31—Ir171.7 (6)
C3—C4—H4A109.5C30—C31—H31115.7
C3—C4—H4B109.5C30—C31—C32117.8 (5)
C3—C4—H4C109.5C30*—C31—Ir169.5 (7)
H4A—C4—H4B109.5C30*—C31—H31A111.5
H4A—C4—H4C109.5C30*—C31—C32131.8 (6)
H4B—C4—H4C109.5C32—C31—Ir1112.8 (3)
N3—C5—H5A108.7C32—C31—H31A111.5
N3—C5—H5B108.7C32—C31—H31115.7
N3—C5—C6114.2 (3)C31—C32—H32A108.1
H5A—C5—H5B107.6C31—C32—H32B108.1
C6—C5—H5A108.7C31—C32—H32C108.5
C6—C5—H5B108.7C31—C32—H32D108.5
C7—C6—C5119.0 (4)C31—C32—C33*115.1 (4)
C7—C6—C11118.5 (4)H32A—C32—H32B107.3
C11—C6—C5122.4 (3)H32C—C32—H32D107.5
C6—C7—H7119.6C33—C32—C31116.6 (4)
C6—C7—C8120.8 (4)C33—C32—H32A108.1
C8—C7—H7119.6C33—C32—H32B108.1
C7—C8—H8120.1C33*—C32—H32C108.5
C9—C8—C7119.9 (4)C33*—C32—H32D108.5
C9—C8—H8120.1C32—C33—H33A108.8
C8—C9—H9120.0C32—C33—H33B108.8
C8—C9—C10120.0 (4)C32—C33—C34114.0 (6)
C10—C9—H9120.0H33A—C33—H33B107.7
C9—C10—H10119.9C34—C33—H33A108.8
C11—C10—C9120.1 (4)C34—C33—H33B108.8
C11—C10—H10119.9C32—C33*—H33C109.3
C6—C11—H11119.7C32—C33*—H33D109.3
C10—C11—C6120.7 (4)H33C—C33*—H33D108.0
C10—C11—H11119.7C34—C33*—C32111.6 (6)
P1—C12—H12104.4C34—C33*—H33C109.3
C13—C12—P1115.2 (3)C34—C33*—H33D109.3
C13—C12—H12104.4Ir1—C34—H34115.5
C13—C12—C17111.1 (3)Ir1—C34—H34A110.5
C17—C12—P1115.8 (3)C33—C34—Ir1114.7 (4)
C17—C12—H12104.4C33—C34—H34115.5
C12—C13—H13A109.7C33*—C34—Ir1111.0 (4)
C12—C13—H13B109.7C33*—C34—H34A110.5
C12—C13—C14109.8 (3)C35—C34—Ir172.4 (2)
H13A—C13—H13B108.2C35—C34—C33116.2 (5)
C14—C13—H13A109.7C35—C34—C33*134.0 (5)
C14—C13—H13B109.7C35—C34—H34115.5
C13—C14—H14A109.3C35—C34—H34A110.5
C13—C14—H14B109.3Ir1—C35—H35A118.2
H14A—C14—H14B108.0Ir1—C35—H35108.4
C15—C14—C13111.4 (4)C34—C35—Ir171.2 (2)
C15—C14—H14A109.3C34—C35—H35A118.2
C15—C14—H14B109.3C34—C35—H35108.4
C14—C15—H15A109.3C34—C35—C36136.6 (6)
C14—C15—H15B109.3C34—C35—C36*114.6 (5)
H15A—C15—H15B108.0C36—C35—Ir1116.9 (5)
C16—C15—C14111.5 (3)C36—C35—H35108.4
C16—C15—H15A109.3C36*—C35—Ir1107.2 (4)
C16—C15—H15B109.3C36*—C35—H35A118.2
C15—C16—H16A109.4C35—C36—H36A110.3
C15—C16—H16B109.4C35—C36—H36B110.3
C15—C16—C17111.3 (3)C35—C36—C37107.0 (7)
H16A—C16—H16B108.0H36A—C36—H36B108.6
C17—C16—H16A109.4C37—C36—H36A110.3
C17—C16—H16B109.4C37—C36—H36B110.3
C12—C17—H17A109.7C35—C36*—H36C108.3
C12—C17—H17B109.7C35—C36*—H36D108.3
C16—C17—C12109.7 (3)H36C—C36*—H36D107.4
C16—C17—H17A109.7C37*—C36*—C35115.7 (7)
C16—C17—H17B109.7C37*—C36*—H36C108.3
H17A—C17—H17B108.2C37*—C36*—H36D108.3
P1—C18—H18105.5C30—C37—H37A108.2
C19—C18—P1116.4 (3)C30—C37—H37B108.2
C19—C18—H18105.5C36—C37—C30116.4 (9)
C23—C18—P1111.8 (3)C36—C37—H37A108.2
C23—C18—H18105.5C36—C37—H37B108.2
C23—C18—C19111.0 (3)H37A—C37—H37B107.3
C18—C19—H19A109.5C30*—C37*—C36*112.2 (8)
C18—C19—H19B109.5C30*—C37*—H37C109.2
H19A—C19—H19B108.1C30*—C37*—H37D109.2
C20—C19—C18110.7 (3)C36*—C37*—H37C109.2
C20—C19—H19A109.5C36*—C37*—H37D109.2
C20—C19—H19B109.5H37C—C37*—H37D107.9
C19—C20—H20A109.4Cl1—C38—H38A108.8
C19—C20—H20B109.4Cl1—C38—H38B108.8
H20A—C20—H20B108.0Cl2—C38—Cl1113.8 (9)
C21—C20—C19111.4 (4)Cl2—C38—H38A108.8
C21—C20—H20A109.4Cl2—C38—H38B108.8
C21—C20—H20B109.4H38A—C38—H38B107.7
C20—C21—H21A109.4Cl1*—C38*—H38C109.5
C20—C21—H21B109.4Cl1*—C38*—H38D109.5
C20—C21—C22111.2 (3)Cl2*—C38*—Cl1*111 (2)
H21A—C21—H21B108.0Cl2*—C38*—H38C109.5
C22—C21—H21A109.4Cl2*—C38*—H38D109.5
C22—C21—H21B109.4H38C—C38*—H38D108.0
C21—C22—H22A109.4Cl3—C39—H39A109.5
C21—C22—H22B109.4Cl3—C39—H39B109.5
C21—C22—C23111.4 (3)Cl4—C39—Cl3110.8
H22A—C22—H22B108.0Cl4—C39—H39A109.5
C23—C22—H22A109.4Cl4—C39—H39B109.5
C23—C22—H22B109.4H39A—C39—H39B108.1
C18—C23—H23A109.4F1—B1—F2100.1 (4)
C18—C23—H23B109.4F1*—B1—F2*118.3 (7)
C22—C23—C18111.1 (3)F1*—B1—F3*108.6 (6)
C22—C23—H23A109.4F1*—B1—F4*111.4 (7)
C22—C23—H23B109.4F2*—B1—F3*103.9 (6)
H23A—C23—H23B108.0F2*—B1—F4*110.3 (7)
P1—C24—H24105.3F3—B1—F1115.3 (6)
C25—C24—P1118.8 (3)F3—B1—F2107.3 (5)
C25—C24—H24105.3F3—B1—F4114.1 (5)
C29—C24—P1112.2 (3)F4—B1—F1113.6 (5)
C29—C24—H24105.3F4—B1—F2104.6 (5)
C29—C24—C25108.9 (3)F4*—B1—F3*102.8 (7)
Ir1—P1—C12—C1342.0 (3)C12—P1—C24—C2582.2 (3)
Ir1—P1—C12—C17174.0 (2)C12—P1—C24—C2946.4 (3)
Ir1—P1—C18—C1976.6 (3)C12—C13—C14—C1556.1 (5)
Ir1—P1—C18—C2352.4 (3)C13—C12—C17—C1658.2 (4)
Ir1—P1—C24—C25155.1 (3)C13—C14—C15—C1655.2 (5)
Ir1—P1—C24—C2976.4 (3)C14—C15—C16—C1755.6 (5)
Ir1—C30—C31—C32106.7 (5)C15—C16—C17—C1256.4 (4)
Ir1—C30—C37—C365.5 (11)C17—C12—C13—C1457.9 (4)
Ir1—C30*—C31—C32102.8 (7)C18—P1—C12—C13169.6 (3)
Ir1—C30*—C37*—C36*35.2 (10)C18—P1—C12—C1758.4 (3)
Ir1—C31—C32—C3317.7 (7)C18—P1—C24—C2525.4 (3)
Ir1—C31—C32—C33*3.0 (6)C18—P1—C24—C29153.9 (3)
Ir1—C34—C35—C36109.7 (8)C18—C19—C20—C2156.4 (5)
Ir1—C34—C35—C36*100.8 (5)C19—C18—C23—C2255.0 (4)
Ir1—C35—C36—C3736.4 (10)C19—C20—C21—C2256.5 (5)
Ir1—C35—C36*—C37*15.3 (9)C20—C21—C22—C2355.7 (5)
P1—C12—C13—C14168.0 (3)C21—C22—C23—C1855.0 (5)
P1—C12—C17—C16167.9 (3)C23—C18—C19—C2055.5 (4)
P1—C18—C19—C20175.0 (3)C24—P1—C12—C1382.5 (3)
P1—C18—C23—C22173.2 (3)C24—P1—C12—C1749.5 (3)
P1—C24—C25—C26171.9 (3)C24—P1—C18—C19157.8 (3)
P1—C24—C29—C28167.2 (3)C24—P1—C18—C2373.2 (3)
N1—N2—C2—N30.3 (5)C24—C25—C26—C2756.0 (5)
N2—N1—C1—Ir1177.5 (3)C25—C24—C29—C2859.2 (4)
N2—N1—C1—N31.3 (4)C25—C26—C27—C2853.7 (5)
N2—N1—C3—C461.7 (5)C26—C27—C28—C2953.4 (5)
N3—C5—C6—C7142.8 (4)C27—C28—C29—C2457.1 (5)
N3—C5—C6—C1139.6 (5)C29—C24—C25—C2658.0 (5)
C1—N1—N2—C21.1 (5)C30—C31—C32—C3362.9 (10)
C1—N1—C3—C4121.6 (5)C30*—C31—C32—C33*85.2 (11)
C1—N3—C2—N20.5 (5)C31—C30—C37—C3687.9 (14)
C1—N3—C5—C685.3 (5)C31—C30*—C37*—C36*48.1 (15)
C2—N3—C1—Ir1177.5 (3)C31—C32—C33—C3412.7 (10)
C2—N3—C1—N11.1 (4)C31—C32—C33*—C3424.8 (8)
C2—N3—C5—C694.2 (5)C32—C33—C34—Ir11.4 (9)
C3—N1—N2—C2178.2 (4)C32—C33—C34—C3583.2 (8)
C3—N1—C1—Ir15.8 (6)C32—C33*—C34—Ir134.8 (7)
C3—N1—C1—N3178.1 (4)C32—C33*—C34—C3550.7 (9)
C5—N3—C1—Ir12.1 (5)C33—C34—C35—Ir1109.4 (4)
C5—N3—C1—N1178.5 (3)C33—C34—C35—C360.3 (10)
C5—N3—C2—N2179.1 (4)C33*—C34—C35—Ir1102.5 (6)
C5—C6—C7—C8176.8 (4)C33*—C34—C35—C36*1.7 (9)
C5—C6—C11—C10177.4 (4)C34—C35—C36—C3754.3 (12)
C6—C7—C8—C91.0 (7)C34—C35—C36*—C37*92.0 (9)
C7—C6—C11—C100.2 (6)C35—C36—C37—C3025.9 (12)
C7—C8—C9—C100.4 (7)C35—C36*—C37*—C30*34.3 (12)
C8—C9—C10—C110.3 (7)C37—C30—C31—Ir1105.7 (12)
C9—C10—C11—C60.4 (7)C37—C30—C31—C321.0 (15)
C11—C6—C7—C80.9 (6)C37*—C30*—C31—Ir1103.3 (12)
C12—P1—C18—C1944.8 (3)C37*—C30*—C31—C320.6 (18)
C12—P1—C18—C23173.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···F2i0.952.253.140 (6)155
C7—H7···F3ii0.952.393.182 (7)141
C8—H8···F4ii0.952.613.424 (9)144
C13—H13A···F1*0.992.473.263 (13)137
C22—H22B···F2*ii0.992.553.340 (11)137
C23—H23B···F3ii0.992.443.244 (6)139
C24—H24···N31.002.673.497 (5)140
C29—H29B···N10.992.553.383 (5)142
C33*—H33C···F3*ii0.992.062.907 (11)143
C38—H38A···F10.991.982.93 (2)158
C38*—H38D···F3*0.992.443.37 (4)155
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
Selected Geometric Parameters (Å, °) for 6 top
N1—C11.352 (5)
N3—C11.369 (5)
Ir1—C12.034 (4)
N1—C1—N3102.2 (3)
C1—Ir1—P193.42 (10)
Selected Geometric Parameters (Å, °) for 2 top
N1—C11.315 (3)
N3—C11.339 (3)
N1—C1—N3107.1 (2)
Selected Geometric Parameters (Å, °) for 3 top
N1—C11.343 (3)
N3—C11.367 (3)
Rh1—C12.3960 (6)
N1—C1—N3102.7 (2)
C1—Rh1—Cl189.14 (7)
Selected Geometric Parameters (Å, °) for 5 top
N1—C11.336 (8)
N1`—C1`1.340 (8)
N3—C11.354 (8)
N3`—C1`1.380 (8)
Ir1—C12.039 (6)
Ir1`—C1`2.029 (6)
N1—C1—N3103.8 (5)
N1'—C1'—N3'102.7 (5)
C1—Ir1—P193.14 (17)
C1`—Ir1`—P1`94.64 (18)

Acknowledgements

TGL thanks the Millersville University Neimeyer–Hodgson Endowment Research Grant and the Millersville University Student Grants for Research and Creative Activity for support of this work.

References

First citationAlbert, D. R., Gau, M. & Rajaseelan, E. (2025). IUCrData, 10, x250092.  Google Scholar
First citationAlbrecht, M., Miecznikowski, J. R., Samuel, A., Faller, J. W. & Crabtree, R. H. (2002). Organometallics, 21, 3596–3604.  Web of Science CSD CrossRef CAS Google Scholar
First citationBortenschlager, M., Schütz, J., von Preysing, D., Nuyken, O., Herrmann, W. A. & Weberskirch, R. (2005). J. Organomet. Chem. 690, 6233–6237.  CAS Google Scholar
First citationBourissou, D., Guerret, O., Gabbaï, F. P. & Bertrand, G. (2000). Chem. Rev. 100, 39–92.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCastaldi, K. T., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x211142.  Google Scholar
First citationCazin, C. S. J. (2013). Dalton Trans. 42, 7254.  Web of Science CrossRef Google Scholar
First citationChianese, A. R., Kovacevic, A., Zeglis, B. M., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 2461–2468.  Web of Science CSD CrossRef CAS Google Scholar
First citationDíez-González, S., Marion, N. & Nolan, S. P. (2009). Chem. Rev. 109, 3612–3676.  Web of Science PubMed Google Scholar
First citationDíez-González, S. & Nolan, S. P. (2007). Coord. Chem. Rev. 251, 874–883.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDwivedi, S., Gupta, S. & Das, S. (2014). Curr. Organocatalysis, 1, 13–39.  CrossRef CAS Google Scholar
First citationEl Bakri, Y., Harmaoui, A., Sebhaoui, J., Ramli, Y., Essassi, E. M. & Mague, J. T. (2016). IUCrData, 1, x161819.  Google Scholar
First citationGnanamgari, D., Moores, A., Rajaseelan, E. & Crabtree, R. H. (2007). Organometallics, 26, 1226–1230.  Web of Science CrossRef CAS Google Scholar
First citationGražulis, S., Chateigner, D., Downs, R. T., Yokochi, A. F. T., Quirós, M., Lutterotti, L., Manakova, E., Butkus, J., Moeck, P. & Le Bail, A. (2009). J. Appl. Cryst. 42, 726–729.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGuino-o, M. A., Talbot, M. O., Slitts, M. M., Pham, T. N., Audi, M. C. & Janzen, D. E. (2015). Acta Cryst. E71, 628–635.  CSD CrossRef IUCr Journals Google Scholar
First citationGusev, D. G. (2009). Organometallics, 28, 6458–6461.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A. & Köcher, C. (1997). Angew. Chem. Int. Ed. Engl. 36, 2162–2187.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A., Schütz, J., Frey, G. D. & Herdtweck, E. (2006). Organometallics, 25, 2437–2448.  Web of Science CSD CrossRef CAS Google Scholar
First citationHillier, A. C., Lee, H. M., Stevens, E. D. & Nolan, S. P. (2001). Organometallics, 20, 4246–4252.  Web of Science CSD CrossRef CAS Google Scholar
First citationIdrees, K. B., Astashkin, A. V. & Rajaseelan, E. (2017b). IUCrData, 2, x171081.  Google Scholar
First citationIdrees, K. B., Rutledge, W. J., Roberts, S. A. & Rajaseelan, E. (2017a). IUCrData, 2, x171411.  Google Scholar
First citationKumasaki, M., Gontani, S., Mori, K., Matsumoto, S. & Inoue, K. (2021). Acta Cryst. C77, 197–201.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLerch, G. L., Gau, M., Albert, D. R. & Rajaseelan, E. (2024). IUCrData, 9, x240941.  Google Scholar
First citationMata, J. A., Chianese, A. R., Miecznikowski, J. R., Poyatos, M., Peris, E., Faller, J. W. & Crabtree, R. H. (2004). Organometallics, 23, 1253–1263.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaynard, A., Keller, T. M., Gau, M., Albert, D. R. & Rajaseelan, E. (2023). IUCrData, 8, x230784.  Google Scholar
First citationNewman, E. B., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210836.  Google Scholar
First citationNichol, G. S., Rajaseelan, J., Anna, L. J. & Rajaseelan, E. (2009). Eur. J. Inorg. Chem. pp. 4320–4328.  Web of Science CSD CrossRef Google Scholar
First citationNichol, G. S., Rajaseelan, J., Walton, D. P. & Rajaseelan, E. (2011). Acta Cryst. E67, m1860–m1861.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Stasiw, D., Anna, L. J. & Rajaseelan, E. (2010). Acta Cryst. E66, m1114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNichol, G. S., Walton, D. P., Anna, L. J. & Rajaseelan, E. (2012). Acta Cryst. E68, m158–m159.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationRood, J., Subedi, C. B., Risell, J. P., Astashkin, A. V. & Rajaseelan, E. (2021). IUCrData, 6, x210597.  Google Scholar
First citationRovis, T. & Nolan, S. (2013). Synlett, 24, 1188–1189.  Web of Science CrossRef CAS Google Scholar
First citationRuff, A., Kirby, C., Chan, B. C. & O'Connor, A. R. (2016). Organometallics, 35, 327–335.  Web of Science CSD CrossRef CAS Google Scholar
First citationRushlow, J., Astashkin, A. V., Albert, D. R. & Rajaseelan, E. (2021). IUCrData, 6, x210811.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, H. M. J. & Lin, I. J. B. (1998). Organometallics, 17, 972–975.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeskamp, T., Böhm, V. P. W. & Herrmann, W. A. (2000). J. Organo­met. Chem. 600, 12–22.  Web of Science CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZuo, W., Tauer, S., Prokopchuk, D. E. & Morris, R. H. (2014). Organometallics, 33, 5791–5801.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds