research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 5-{(E)-[(1H-indol-3-ylformamido)­imino]­meth­yl}-2-meth­­oxy­phenyl propane-1-sulfonate

crossmark logo

aChemistry of Natural and Microbial Products Department, National Research, Centre, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
*Correspondence e-mail: am.srour@nrc.sci.eg

Edited by T. Akitsu, Tokyo University of Science, Japan (Received 17 February 2025; accepted 5 March 2025; online 11 March 2025)

In the title mol­ecule, C20H21N3O5S, the methyl­ideneformohydrazide and meth­oxy­benzene groups are almost coplanar, with the indolyl group being rotated farther from the plane. The mol­ecules in the crystal structure form chains parallel to the a-axis direction through N—H⋯O hydrogen-bonding inter­actions. Neighbouring chains are linked by N—H⋯O contacts to form a three-dimensional network.

1. Chemical context

Indole-based compounds are important structural motifs found in numerous natural products and serve as key scaffolds in many clinical drugs, including anti­cancer agents, anti­viral drugs, and non-steroidal anti-inflammatory agents (de Sa Alves et al., 2009[Sá Alves, F. R. de, Barreiro, E. J. & Fraga, C. A. (2009). Mini Rev. Med. Chem. 9, 782-793.]; Suzen, 2017[Suzen, S. (2017). Curr. Org. Chem. 21, 2068-2076.]). They also have various applications in biomedical research (Varun et al., 2020[Varun, B. V., Vaithegi, K., Yi, S. & Park, S. B. (2020). Nat. Commun. 11, 6308.]; Facen et al., 2024[Facen, E., Assoni, G., Donati, G., Paladino, D., Carreira, A., Bonomo, I., Pietra, V. L., La, , Lotti, R., Houser, J., Fava, L. L., Seneci, P., Marinelli, L., Arosio, D. & Provenzani, A. (2024). Sci. Rep. 14, 24501.]). As a result of their unique ability to mimic peptide structures and inter­act with enzymes, indole-based scaffolds are crucial in drug discovery (Kaushik et al., 2013[Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620-6662.]; Ubeid et al., 2012[Ubeid, A. A., Do, S., Nye, C. & Hantash, B. M. (2012). Biochim. Biophys. Acta, 1820, 1481-1489.]; Citarella et al., 2023[Citarella, A., Moi, D., Pedrini, M., Pérez-Peña, H., Pieraccini, S., Dimasi, A., Stagno, C., Micale, N., Schirmeister, T., Sibille, G., Gribaudo, G., Silvani, A., Giannini, C. & Passarella, D. (2023). Org. Biomol. Chem. 21, 3811-3824.]). Recent advancements in drug discovery have driven the development of synthetic strategies to incorporate bioactive indole moieties into new mol­ecules. Similarly to indole-based compounds, sulfonate derivatives have recently shown a wide range of pharmacological effects, such as anti­microbial, anti­cancer, and anti­viral activities (Mohamed-Ezzat & Elgemeie, 2024a[Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2024a). Nucleosides Nucleotides Nucleic Acids, 43, 1511-1528.],b[Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2024b). BMC Chem. 18, 58.]; Mohamed-Ezzat et al., 2022[Mohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2022). IUCrData, 7, x221033.], 2023a[Mohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2023a). Acta Cryst. E79, 331-334.], 2024a[Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024a). Acta Cryst. E80, 120-124.],b[Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2024b). Acta Cryst. E80, 392-395.]). Conjugates that containing both sulfon­ate and indole moieties have demonstrated significant potency as inhibitors of various biological targets, such as carbonic anhydrase, tubulins, phosphatidylinositol 5-phosphate 4-kinase (PI5P4K), MET tyrosine kinase (Pingaew et al., 2021[Pingaew, R., Mandi, P., Prachayasittikul, V., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2021). ACS Omega, 6, 31854-31868.]), butyrylcholinesterase (BChE) (Omar et al., 2023[Omar, M. A., El-Shiekh, R. A., Dawood, D. H., Temirak, A. & Srour, A. M. (2023). Future Med. Chem. 15, 2269-2287.]), and HIV protease inhibitors (Batool et al., 2024[Batool, Z., Ullah, S., Khan, A., Mali, S. N., Gurav, S. S., Jawarkar, R. D., Alshammari, A., Albekairi, N. A., Al-Harrasi, A. & Shafiq, Z. (2024). Sci. Rep. 14, 25754.]). In line with our research on developing synthetic approaches for bioactive heterocycles (Mohamed-Ezzat & Srour, 2024[Mohamed-Ezzat, R. A. & Srour, A. M. (2024). Anticancer Agents Med. Chem. 24, 544-557.]; Mohamed-Ezzat et al., 2023b[Mohamed-Ezzat, R. A., Kariuki, B. M. & Srour, A. M. (2023c). Acta Cryst. E79, 999-1002.],c[Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225-239.]), we have designed and synthesized a novel compound featuring a hydrazone scaffold. Recognizing the broad potency of hydrazine-based derivatives (Elgemeie & Mohamed, 2014[Elgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257-269.]; Mohamed-Ezzat & Elgemeie, 2023[Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66(13), 167-185.]; Mohamed-Ezzat et al., 2023c,d[Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023d). BMC Chem. 17, 88.]; Ragab et al., 2024[Ragab, S. S., Sweed, A. M. & Srour, A. (2024). ChemistrySelect, 9, e202400161.]), the newly synthesized compound incorporates a conjugation of two bioactive moieties, indole and sulfonate, linked through a hydrazine linker (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Synthesis of the novel title compound (3), which incorporates two bioactive moieties, indole and sulfonate, linked through a hydrazine linker.

2. Structural commentary

The asymmetric unit consists of one mol­ecule of 5-((E)-(1H-indole-3-carboyl­imino)­meth­yl)-2-meth­oxy­phenyl propane-1-sulfonate (Fig. 2[link]). The mol­ecule comprises three planar fragments, namely indolyl (IND; C1–C8, N1), methyl­ideneformohydrazide (MFH, C9, C10, N2, N3, O1), and meth­oxy­benzene (MEB, C11–C17, O2) groups. In addition, the mol­ecule has a propane­sulfonate group (C18–C20, S1, O3–O5) with a nearly trans S1—C18—C19—C20 torsion angle [168.2 (4)°]. In the mol­ecule, the methyl­ideneformohydrazide and meth­oxy­benzene groups are almost coplanar with a MFH/MEB twist angle of 13.67 (17)°. A similar conformation is also observed in the structure of (E)-2-meth­oxy-N′-[4-meth­oxy-3-(4-methyl­phenyl­sulfon­yloxy) benzyl­idene] benzohydrazide ethanol solvate hemihydrate(Chen & Yu, 2006[Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5503-o5504.]) where the twist angle is 7°. In the mol­ecule of the title compound, the indolyl group is rotated farther from the plane defined by MFH and MEB with a IND/MFH twist angle of 25.93 (14)°. The geometry is similar to that of N′-(2-hy­droxy­benzyl­idene)indole-3-formyl­hydrazine (Li et al., 2024[Li, M., Li, N., Shao, F., Wang, R., Chen, M., Liu, Y.-J., Zhao, Y. & Li, R. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 308, 123676.]), which has a corresponding twist angle of 18.1°.

[Figure 2]
Figure 2
The mol­ecular structure of the title compound showing 50% probability displacement ellipsoids.

3. Supra­molecular features

In the crystal, the mol­ecules are linked by N—H⋯O hydrogen-bonding inter­actions involving the N—H and carbonyls of methyl­ideneformohydrazide groups of adjacent mol­ecules. Thus, N2—H2A⋯O1 inter­actions link mol­ecules related by glide symmetry to form chains parallel to the a axis (Fig. 3[link]a, Table 1[link]). The chains are linked through N1—H1⋯O4 inter­actions involving the N—H group of the indolyl fragment and an oxygen atom of the sulfonate group to form a three-dimensional network (Fig. 3[link]b, Table 1[link]). O1 is also an acceptor to longer inter­molecular C—H⋯O inter­actions, namely C10—H10⋯O1 and C18—H18A⋯O1 (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O1i 0.93 2.51 3.325 (4) 146
C18—H18A⋯O1ii 0.97 2.52 3.467 (5) 164
N2—H2A⋯O1i 0.86 (1) 2.22 (2) 3.048 (4) 163 (4)
N1—H1⋯O4iii 0.86 (1) 2.07 (3) 2.870 (5) 156 (5)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [-x+1, -y+1, z-{\script{1\over 2}}]; (iii) [-x, -y+1, z+{\script{1\over 2}}].
[Figure 3]
Figure 3
(a) A segment of the crystal structure showing mol­ecules linked through N—H⋯O hydrogen bonds (green dotted lines). (b) The crystal structure viewed down the b axis with C—H⋯O inter­actions shown as black dotted lines.

4. Database survey

A search of the CSD (version 5.46, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for uncoordinated fragments of linked indolyl and methyl­ideneformohydrazide groups revealed N′-[(2-hy­droxy­phen­yl)methyl­idene]-1H-indole-3-carbohydrazide monohydrate (YODCIH; Chen & Yu, 2006[Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5503-o5504.]), which has a similar twist angle to the title compound. The closest hit containing the sulfonate, meth­oxybenzene and methyl­ideneformohydrazide groups was (E)-2-meth­oxy-N′-(4-meth­oxy-3-(4-methyl­benzene­sulfon­yloxy)benzyl­idene)benzohydrazide ethanol solvate hemihydrate (HESRIH; Li et al., 2024[Li, M., Li, N., Shao, F., Wang, R., Chen, M., Liu, Y.-J., Zhao, Y. & Li, R. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 308, 123676.]) in which the two planar fragments also have a twist angle (8.5°)comparable to the title compound.

5. Synthesis and crystallization

For synthesis of (E)-5-{[2-(1H-indole-3-carbon­yl)hydrazono]meth­yl}-2-meth­oxy­phenyl propane-1-sulfonate (3), a mixture of 10 mmol of 1H-indole-3-carbohydrazide (1) and 10 mmol of 5-formyl-2-meth­oxy­phenyl propane-1-sulfonate (2) in 20 ml of acetic acid/ethanol (1:2) was refluxed for 1 h. The mixture was filtered, and then the solid obtained was dried and recrystallized from ethanol. Yield: 91%; m.p. 485–486 K; Color: buff crystals; 1H-NMR (500 MHz, DMSO-d6) δ (ppm): 1.01 (t, 3H, J = 7.4 Hz, CH2CH2CH3), 1.86 (m, 2H, CH2CH2CH3), 3.46 (t, 2H, J = 7.6 Hz, CH2CH2CH3), 3.86 (s, 3H, OCH3), 7.13–7.19 (m, 2H, Ar-H), 7.22 (d, 1H, J = 8.6 Hz, Ar-H), 7.46 (d, 1H, J = 7.8 Hz, Ar-H), 7.59–7.64 (m, 2H, Ar-H), 8.21 (br. s, 3H, CH=N + Ar-H), 11.42 (s, 1H, NH), 11.76 (s, 1H, NH); 13C-NMR (126 MHz, DMSO-d6) δ (ppm): 12.38, 17.01, 51.45, 111.98, 120.80, 122.27, 122.65, 128.32, 133.86, 149.45; Analysis % for C20H21N3O5S (415.46). Calculated: C, 57.82; H, 5.10; N, 10.11. Found: C, 57.78; H, 5.18; N, 9.96.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms were located in difference-Fourier maps. C-bound atoms were thereafter refined with restrained geometry using a riding model with displacement parameters constrained to either 1.2 or 1.5 times the equivalent isotropic displacement parameter of the parent C atom.

Table 2
Experimental details

Crystal data
Chemical formula C20H21N3O5S
Mr 415.46
Crystal system, space group Orthorhombic, Pca21
Temperature (K) 296
a, b, c (Å) 9.2969 (5), 14.0662 (7), 15.1168 (7)
V3) 1976.85 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.34 × 0.14 × 0.09
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.618, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 16123, 4696, 3791
Rint 0.027
(sin θ/λ)max−1) 0.698
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.05
No. of reflections 4696
No. of parameters 272
No. of restraints 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.23
Absolute structure Flack x determined using 1389 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.05 (3)
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Computing details top

5-{(E)-[(1H-Indol-3-ylformamido)imino]methyl}-2-methoxyphenyl propane-1-sulfonate top
Crystal data top
C20H21N3O5SDx = 1.396 Mg m3
Mr = 415.46Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21Cell parameters from 7123 reflections
a = 9.2969 (5) Åθ = 3.9–28.6°
b = 14.0662 (7) ŵ = 0.20 mm1
c = 15.1168 (7) ÅT = 296 K
V = 1976.85 (17) Å3Block, colourless
Z = 40.34 × 0.14 × 0.09 mm
F(000) = 872
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
3791 reflections with I > 2σ(I)
Detector resolution: 10.5082 pixels mm-1Rint = 0.027
ω scansθmax = 29.7°, θmin = 3.6°
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2022)
h = 1211
Tmin = 0.618, Tmax = 1.000k = 1819
16123 measured reflectionsl = 2119
4696 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0461P)2 + 0.6044P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.23 e Å3
4696 reflectionsΔρmin = 0.23 e Å3
272 parametersAbsolute structure: Flack x determined using 1389 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
3 restraintsAbsolute structure parameter: 0.05 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0659 (4)0.2094 (3)0.7066 (3)0.0495 (9)
C20.0849 (6)0.1109 (3)0.7088 (3)0.0697 (13)
H20.1684300.0840580.7316000.084*
C30.0230 (6)0.0556 (3)0.6765 (3)0.0715 (13)
H30.0138520.0102350.6781050.086*
C40.1460 (5)0.0956 (3)0.6413 (3)0.0624 (11)
H40.2184510.0559610.6204380.075*
C50.1645 (4)0.1927 (2)0.6362 (3)0.0488 (8)
H50.2469760.2184110.6109500.059*
C60.0574 (4)0.2512 (2)0.6696 (2)0.0361 (7)
C70.0362 (3)0.3530 (2)0.6756 (2)0.0377 (7)
C80.0946 (4)0.3660 (3)0.7149 (3)0.0496 (8)
H80.1367010.4247880.7262520.059*
C90.1332 (3)0.4263 (2)0.6439 (2)0.0361 (6)
C100.0879 (4)0.6607 (2)0.5743 (3)0.0450 (8)
H100.0071270.6680330.5922030.054*
C110.1630 (4)0.7397 (2)0.5322 (2)0.0415 (7)
C120.3017 (3)0.7294 (2)0.4981 (2)0.0378 (7)
H120.3495550.6716390.5035580.045*
C130.3671 (3)0.8037 (2)0.4567 (2)0.0377 (7)
C140.2995 (4)0.8918 (2)0.4465 (2)0.0420 (7)
C150.1624 (4)0.9023 (2)0.4804 (3)0.0488 (9)
H150.1149560.9602210.4750050.059*
C160.0953 (4)0.8267 (2)0.5223 (3)0.0502 (9)
H160.0026730.8346420.5442360.060*
C170.3050 (5)1.0491 (2)0.3895 (3)0.0609 (11)
H17A0.2199771.0388510.3547180.091*
H17B0.3688621.0910270.3583720.091*
H17C0.2789911.0770060.4451440.091*
C180.6978 (4)0.6949 (3)0.3417 (3)0.0489 (9)
H18A0.7280480.6688570.2852330.059*
H18B0.7663700.7437900.3581430.059*
C190.7020 (5)0.6173 (4)0.4099 (3)0.0769 (14)
H19A0.6918770.6454640.4681360.092*
H19B0.6207060.5752500.4006420.092*
C200.8367 (6)0.5601 (4)0.4077 (4)0.0939 (18)
H20A0.8410890.5249170.3533440.141*
H20B0.8376580.5167570.4567480.141*
H20C0.9182860.6017470.4115640.141*
N10.1539 (3)0.2809 (3)0.7350 (3)0.0614 (9)
N20.0700 (3)0.5101 (2)0.6228 (2)0.0435 (6)
N30.1519 (3)0.58184 (19)0.58674 (19)0.0414 (6)
O10.2641 (2)0.41354 (16)0.63705 (17)0.0462 (6)
O20.3750 (3)0.96064 (16)0.40450 (19)0.0560 (7)
O30.5089 (2)0.79283 (17)0.42481 (16)0.0423 (5)
O40.4236 (3)0.6744 (2)0.3176 (2)0.0725 (9)
O50.5327 (4)0.8204 (3)0.2653 (2)0.0937 (12)
S10.52915 (9)0.74697 (7)0.32886 (7)0.0473 (2)
H2A0.0209 (16)0.520 (3)0.622 (3)0.051 (11)*
H10.243 (2)0.280 (4)0.750 (4)0.097 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (19)0.053 (2)0.053 (2)0.0118 (17)0.0035 (16)0.0162 (18)
C20.075 (3)0.064 (3)0.071 (3)0.028 (2)0.010 (2)0.024 (2)
C30.100 (4)0.040 (2)0.074 (3)0.011 (2)0.020 (3)0.010 (2)
C40.083 (3)0.046 (2)0.059 (2)0.008 (2)0.006 (2)0.0061 (19)
C50.053 (2)0.0437 (19)0.050 (2)0.0015 (16)0.0070 (17)0.0011 (16)
C60.0348 (16)0.0397 (16)0.0338 (15)0.0036 (13)0.0045 (12)0.0050 (13)
C70.0310 (16)0.0406 (16)0.0413 (16)0.0016 (13)0.0001 (13)0.0060 (14)
C80.0355 (18)0.053 (2)0.060 (2)0.0052 (15)0.0062 (15)0.0079 (19)
C90.0322 (16)0.0389 (16)0.0372 (15)0.0004 (13)0.0009 (12)0.0007 (13)
C100.0342 (17)0.0419 (17)0.059 (2)0.0021 (14)0.0086 (15)0.0023 (16)
C110.0370 (18)0.0369 (16)0.0507 (19)0.0002 (13)0.0036 (14)0.0003 (14)
C120.0362 (16)0.0354 (15)0.0418 (16)0.0050 (12)0.0009 (14)0.0015 (14)
C130.0324 (16)0.0380 (16)0.0425 (17)0.0008 (12)0.0019 (13)0.0037 (13)
C140.0404 (18)0.0317 (15)0.054 (2)0.0017 (13)0.0034 (15)0.0004 (15)
C150.043 (2)0.0325 (16)0.071 (2)0.0056 (14)0.0048 (17)0.0010 (16)
C160.0350 (18)0.0430 (18)0.072 (3)0.0066 (15)0.0111 (17)0.0013 (17)
C170.070 (3)0.0339 (18)0.079 (3)0.0034 (17)0.013 (2)0.009 (2)
C180.0393 (18)0.053 (2)0.054 (2)0.0074 (15)0.0061 (15)0.0021 (17)
C190.079 (3)0.089 (3)0.063 (3)0.033 (3)0.008 (2)0.021 (2)
C200.107 (4)0.097 (4)0.078 (3)0.053 (3)0.010 (3)0.018 (3)
N10.0344 (18)0.071 (2)0.079 (2)0.0050 (16)0.0147 (16)0.0224 (19)
N20.0314 (14)0.0394 (14)0.0596 (17)0.0005 (12)0.0067 (13)0.0095 (14)
N30.0343 (14)0.0379 (14)0.0521 (16)0.0026 (12)0.0046 (12)0.0034 (12)
O10.0297 (12)0.0447 (12)0.0642 (15)0.0001 (10)0.0019 (11)0.0073 (12)
O20.0526 (15)0.0357 (12)0.0796 (19)0.0012 (10)0.0126 (13)0.0106 (13)
O30.0312 (11)0.0469 (13)0.0488 (13)0.0007 (10)0.0042 (9)0.0045 (11)
O40.0489 (16)0.093 (2)0.076 (2)0.0002 (15)0.0067 (15)0.0299 (18)
O50.126 (3)0.092 (2)0.064 (2)0.052 (2)0.020 (2)0.0295 (19)
S10.0443 (4)0.0555 (5)0.0420 (4)0.0126 (4)0.0015 (4)0.0018 (4)
Geometric parameters (Å, º) top
C1—N11.365 (5)C13—O31.412 (4)
C1—C21.398 (6)C14—O21.354 (4)
C1—C61.405 (5)C14—C151.382 (5)
C2—C31.360 (7)C15—C161.386 (5)
C2—H20.9300C15—H150.9300
C3—C41.381 (7)C16—H160.9300
C3—H30.9300C17—O21.422 (4)
C4—C51.378 (5)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.387 (5)C17—H17C0.9600
C5—H50.9300C18—C191.503 (6)
C6—C71.447 (5)C18—S11.742 (3)
C7—C81.367 (5)C18—H18A0.9700
C7—C91.451 (4)C18—H18B0.9700
C8—N11.354 (5)C19—C201.488 (6)
C8—H80.9300C19—H19A0.9700
C9—O11.235 (4)C19—H19B0.9700
C9—N21.355 (4)C20—H20A0.9600
C10—N31.273 (4)C20—H20B0.9600
C10—C111.458 (5)C20—H20C0.9600
C10—H100.9300N1—H10.858 (14)
C11—C161.385 (5)N2—N31.376 (4)
C11—C121.397 (5)N2—H2A0.856 (13)
C12—C131.361 (5)O3—S11.599 (3)
C12—H120.9300O4—S11.426 (3)
C13—C141.398 (4)O5—S11.411 (3)
N1—C1—C2130.3 (4)C16—C15—H15119.9
N1—C1—C6107.9 (3)C11—C16—C15121.6 (3)
C2—C1—C6121.8 (4)C11—C16—H16119.2
C3—C2—C1117.8 (4)C15—C16—H16119.2
C3—C2—H2121.1O2—C17—H17A109.5
C1—C2—H2121.1O2—C17—H17B109.5
C2—C3—C4121.0 (4)H17A—C17—H17B109.5
C2—C3—H3119.5O2—C17—H17C109.5
C4—C3—H3119.5H17A—C17—H17C109.5
C5—C4—C3121.9 (4)H17B—C17—H17C109.5
C5—C4—H4119.0C19—C18—S1113.9 (3)
C3—C4—H4119.0C19—C18—H18A108.8
C4—C5—C6118.6 (4)S1—C18—H18A108.8
C4—C5—H5120.7C19—C18—H18B108.8
C6—C5—H5120.7S1—C18—H18B108.8
C5—C6—C1118.8 (3)H18A—C18—H18B107.7
C5—C6—C7135.0 (3)C20—C19—C18113.5 (4)
C1—C6—C7106.1 (3)C20—C19—H19A108.9
C8—C7—C6106.3 (3)C18—C19—H19A108.9
C8—C7—C9126.9 (3)C20—C19—H19B108.9
C6—C7—C9126.7 (3)C18—C19—H19B108.9
N1—C8—C7109.9 (3)H19A—C19—H19B107.7
N1—C8—H8125.0C19—C20—H20A109.5
C7—C8—H8125.0C19—C20—H20B109.5
O1—C9—N2122.3 (3)H20A—C20—H20B109.5
O1—C9—C7122.4 (3)C19—C20—H20C109.5
N2—C9—C7115.3 (3)H20A—C20—H20C109.5
N3—C10—C11120.3 (3)H20B—C20—H20C109.5
N3—C10—H10119.8C8—N1—C1109.7 (3)
C11—C10—H10119.8C8—N1—H1117 (4)
C16—C11—C12118.1 (3)C1—N1—H1131 (4)
C16—C11—C10120.3 (3)C9—N2—N3119.5 (3)
C12—C11—C10121.6 (3)C9—N2—H2A124 (3)
C13—C12—C11120.2 (3)N3—N2—H2A115 (3)
C13—C12—H12119.9C10—N3—N2116.1 (3)
C11—C12—H12119.9C14—O2—C17117.6 (3)
C12—C13—C14122.1 (3)C13—O3—S1117.6 (2)
C12—C13—O3119.4 (3)O5—S1—O4117.3 (3)
C14—C13—O3118.6 (3)O5—S1—O3108.98 (19)
O2—C14—C15125.1 (3)O4—S1—O3108.43 (17)
O2—C14—C13116.9 (3)O5—S1—C18111.2 (2)
C15—C14—C13117.9 (3)O4—S1—C18109.37 (19)
C14—C15—C16120.2 (3)O3—S1—C18100.09 (16)
C14—C15—H15119.9
C20—C19—C18—S1168.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O1i0.932.513.325 (4)146
C18—H18A···O1ii0.972.523.467 (5)164
N2—H2A···O1i0.86 (1)2.22 (2)3.048 (4)163 (4)
N1—H1···O4iii0.86 (1)2.07 (3)2.870 (5)156 (5)
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1, y+1, z1/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

We are grateful for support by the National Research Center, Cairo, Egypt, project ID: 13010155 and Cardiff University.

Funding information

Funding for this research was provided by: National Research Centre (grant No. 13010155).

References

First citationBatool, Z., Ullah, S., Khan, A., Mali, S. N., Gurav, S. S., Jawarkar, R. D., Alshammari, A., Albekairi, N. A., Al-Harrasi, A. & Shafiq, Z. (2024). Sci. Rep. 14, 25754.  Web of Science CrossRef PubMed Google Scholar
First citationChen, X. & Yu, M. (2006). Acta Cryst. E62, o5503–o5504.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCitarella, A., Moi, D., Pedrini, M., Pérez-Peña, H., Pieraccini, S., Dimasi, A., Stagno, C., Micale, N., Schirmeister, T., Sibille, G., Gribaudo, G., Silvani, A., Giannini, C. & Passarella, D. (2023). Org. Biomol. Chem. 21, 3811–3824.  Web of Science CrossRef CAS PubMed Google Scholar
First citationElgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257–269.  Web of Science CrossRef CAS Google Scholar
First citationFacen, E., Assoni, G., Donati, G., Paladino, D., Carreira, A., Bonomo, I., Pietra, V. L., La, , Lotti, R., Houser, J., Fava, L. L., Seneci, P., Marinelli, L., Arosio, D. & Provenzani, A. (2024). Sci. Rep. 14, 24501.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, M., Li, N., Shao, F., Wang, R., Chen, M., Liu, Y.-J., Zhao, Y. & Li, R. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 308, 123676.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66(13), 167–185.  Google Scholar
First citationMohamed-Ezzat, R. A. & Elgemeie, G. H. (2024a). Nucleosides Nucleotides Nucleic Acids, 43, 1511–1528.  CAS PubMed Google Scholar
First citationMohamed-Ezzat, R. A. & Elgemeie, G. H. (2024b). BMC Chem. 18, 58.  Google Scholar
First citationMohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024a). Acta Cryst. E80, 120–124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023d). BMC Chem. 17, 88.  Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2022). IUCrData, 7, x221033.  Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2023a). Acta Cryst. E79, 331–334.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225–239.  Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2024b). Acta Cryst. E80, 392–395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Kariuki, B. M. & Srour, A. M. (2023c). Acta Cryst. E79, 999–1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A. & Srour, A. M. (2024). Anticancer Agents Med. Chem. 24, 544–557.  Web of Science CAS PubMed Google Scholar
First citationOmar, M. A., El-Shiekh, R. A., Dawood, D. H., Temirak, A. & Srour, A. M. (2023). Future Med. Chem. 15, 2269–2287.  Web of Science CrossRef CAS PubMed Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPingaew, R., Mandi, P., Prachayasittikul, V., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2021). ACS Omega, 6, 31854–31868.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRagab, S. S., Sweed, A. M. & Srour, A. (2024). ChemistrySelect, 9, e202400161.  Web of Science CrossRef Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSá Alves, F. R. de, Barreiro, E. J. & Fraga, C. A. (2009). Mini Rev. Med. Chem. 9, 782–793.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSuzen, S. (2017). Curr. Org. Chem. 21, 2068–2076.  CAS Google Scholar
First citationUbeid, A. A., Do, S., Nye, C. & Hantash, B. M. (2012). Biochim. Biophys. Acta, 1820, 1481–1489.  Web of Science CrossRef CAS PubMed Google Scholar
First citationVarun, B. V., Vaithegi, K., Yi, S. & Park, S. B. (2020). Nat. Commun. 11, 6308.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds