

research communications
Synthesis and E)-[(1H-indol-3-ylformamido)imino]methyl}-2-methoxyphenyl propane-1-sulfonate
of 5-{(aChemistry of Natural and Microbial Products Department, National Research, Centre, Cairo, Egypt, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10, 3AT, United Kingdom, and cDepartment of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, 12622, Egypt
*Correspondence e-mail: am.srour@nrc.sci.eg
In the title molecule, C20H21N3O5S, the methylideneformohydrazide and methoxybenzene groups are almost coplanar, with the indolyl group being rotated farther from the plane. The molecules in the form chains parallel to the a-axis direction through N—H⋯O hydrogen-bonding interactions. Neighbouring chains are linked by N—H⋯O contacts to form a three-dimensional network.
Keywords: crystal structure; indole; sulfonate.
CCDC reference: 2418615
1. Chemical context
Indole-based compounds are important structural motifs found in numerous natural products and serve as key scaffolds in many clinical drugs, including anticancer agents, antiviral drugs, and non-steroidal anti-inflammatory agents (de Sa Alves et al., 2009; Suzen, 2017
). They also have various applications in biomedical research (Varun et al., 2020
; Facen et al., 2024
). As a result of their unique ability to mimic peptide structures and interact with enzymes, indole-based scaffolds are crucial in drug discovery (Kaushik et al., 2013
; Ubeid et al., 2012
; Citarella et al., 2023
). Recent advancements in drug discovery have driven the development of synthetic strategies to incorporate bioactive indole moieties into new molecules. Similarly to indole-based compounds, sulfonate derivatives have recently shown a wide range of pharmacological effects, such as antimicrobial, anticancer, and antiviral activities (Mohamed-Ezzat & Elgemeie, 2024a
,b
; Mohamed-Ezzat et al., 2022
, 2023a
, 2024a
,b
). Conjugates that containing both sulfonate and indole moieties have demonstrated significant potency as inhibitors of various biological targets, such as carbonic anhydrase, tubulins, phosphatidylinositol 5-phosphate 4-kinase (PI5P4K), MET tyrosine kinase (Pingaew et al., 2021
), butyrylcholinesterase (BChE) (Omar et al., 2023
), and HIV protease inhibitors (Batool et al., 2024
). In line with our research on developing synthetic approaches for bioactive heterocycles (Mohamed-Ezzat & Srour, 2024
; Mohamed-Ezzat et al., 2023b
,c
), we have designed and synthesized a novel compound featuring a hydrazone scaffold. Recognizing the broad potency of hydrazine-based derivatives (Elgemeie & Mohamed, 2014
; Mohamed-Ezzat & Elgemeie, 2023
; Mohamed-Ezzat et al., 2023c,d
; Ragab et al., 2024
), the newly synthesized compound incorporates a conjugation of two bioactive moieties, indole and sulfonate, linked through a hydrazine linker (Fig. 1
).
![]() | Figure 1 Synthesis of the novel title compound (3), which incorporates two bioactive moieties, indole and sulfonate, linked through a hydrazine linker. |
2. Structural commentary
The E)-(1H-indole-3-carboylimino)methyl)-2-methoxyphenyl propane-1-sulfonate (Fig. 2). The molecule comprises three planar fragments, namely indolyl (IND; C1–C8, N1), methylideneformohydrazide (MFH, C9, C10, N2, N3, O1), and methoxybenzene (MEB, C11–C17, O2) groups. In addition, the molecule has a propanesulfonate group (C18–C20, S1, O3–O5) with a nearly trans S1—C18—C19—C20 torsion angle [168.2 (4)°]. In the molecule, the methylideneformohydrazide and methoxybenzene groups are almost coplanar with a MFH/MEB twist angle of 13.67 (17)°. A similar conformation is also observed in the structure of (E)-2-methoxy-N′-[4-methoxy-3-(4-methylphenylsulfonyloxy) benzylidene] benzohydrazide ethanol solvate hemihydrate(Chen & Yu, 2006
) where the twist angle is 7°. In the molecule of the title compound, the indolyl group is rotated farther from the plane defined by MFH and MEB with a IND/MFH twist angle of 25.93 (14)°. The geometry is similar to that of N′-(2-hydroxybenzylidene)indole-3-formylhydrazine (Li et al., 2024
), which has a corresponding twist angle of 18.1°.
![]() | Figure 2 The molecular structure of the title compound showing 50% probability displacement ellipsoids. |
3. Supramolecular features
In the crystal, the molecules are linked by N—H⋯O hydrogen-bonding interactions involving the N—H and carbonyls of methylideneformohydrazide groups of adjacent molecules. Thus, N2—H2A⋯O1 interactions link molecules related by glide symmetry to form chains parallel to the a axis (Fig. 3a, Table 1
). The chains are linked through N1—H1⋯O4 interactions involving the N—H group of the indolyl fragment and an oxygen atom of the sulfonate group to form a three-dimensional network (Fig. 3
b, Table 1
). O1 is also an acceptor to longer intermolecular C—H⋯O interactions, namely C10—H10⋯O1 and C18—H18A⋯O1 (Table 1
).
|
![]() | Figure 3 (a) A segment of the showing molecules linked through N—H⋯O hydrogen bonds (green dotted lines). (b) The viewed down the b axis with C—H⋯O interactions shown as black dotted lines. |
4. Database survey
A search of the CSD (version 5.46, November 2024; Groom et al., 2016) for uncoordinated fragments of linked indolyl and methylideneformohydrazide groups revealed N′-[(2-hydroxyphenyl)methylidene]-1H-indole-3-carbohydrazide monohydrate (YODCIH; Chen & Yu, 2006
), which has a similar twist angle to the title compound. The closest hit containing the sulfonate, methoxybenzene and methylideneformohydrazide groups was (E)-2-methoxy-N′-(4-methoxy-3-(4-methylbenzenesulfonyloxy)benzylidene)benzohydrazide ethanol solvate hemihydrate (HESRIH; Li et al., 2024
) in which the two planar fragments also have a twist angle (8.5°)comparable to the title compound.
5. Synthesis and crystallization
For synthesis of (E)-5-{[2-(1H-indole-3-carbonyl)hydrazono]methyl}-2-methoxyphenyl propane-1-sulfonate (3), a mixture of 10 mmol of 1H-indole-3-carbohydrazide (1) and 10 mmol of 5-formyl-2-methoxyphenyl propane-1-sulfonate (2) in 20 ml of acetic acid/ethanol (1:2) was refluxed for 1 h. The mixture was filtered, and then the solid obtained was dried and recrystallized from ethanol. Yield: 91%; m.p. 485–486 K; Color: buff crystals; 1H-NMR (500 MHz, DMSO-d6) δ (ppm): 1.01 (t, 3H, J = 7.4 Hz, CH2CH2CH3), 1.86 (m, 2H, CH2CH2CH3), 3.46 (t, 2H, J = 7.6 Hz, CH2CH2CH3), 3.86 (s, 3H, OCH3), 7.13–7.19 (m, 2H, Ar-H), 7.22 (d, 1H, J = 8.6 Hz, Ar-H), 7.46 (d, 1H, J = 7.8 Hz, Ar-H), 7.59–7.64 (m, 2H, Ar-H), 8.21 (br. s, 3H, CH=N + Ar-H), 11.42 (s, 1H, NH), 11.76 (s, 1H, NH); 13C-NMR (126 MHz, DMSO-d6) δ (ppm): 12.38, 17.01, 51.45, 111.98, 120.80, 122.27, 122.65, 128.32, 133.86, 149.45; Analysis % for C20H21N3O5S (415.46). Calculated: C, 57.82; H, 5.10; N, 10.11. Found: C, 57.78; H, 5.18; N, 9.96.
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms were located in difference-Fourier maps. C-bound atoms were thereafter refined with restrained geometry using a riding model with displacement parameters constrained to either 1.2 or 1.5 times the equivalent isotropic displacement parameter of the parent C atom.
|
Supporting information
CCDC reference: 2418615
https://doi.org/10.1107/S2056989025002087/jp2017sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002087/jp2017Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025002087/jp2017Isup3.cml
C20H21N3O5S | Dx = 1.396 Mg m−3 |
Mr = 415.46 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pca21 | Cell parameters from 7123 reflections |
a = 9.2969 (5) Å | θ = 3.9–28.6° |
b = 14.0662 (7) Å | µ = 0.20 mm−1 |
c = 15.1168 (7) Å | T = 296 K |
V = 1976.85 (17) Å3 | Block, colourless |
Z = 4 | 0.34 × 0.14 × 0.09 mm |
F(000) = 872 |
SuperNova, Dual, Cu at home/near, Atlas diffractometer | 3791 reflections with I > 2σ(I) |
Detector resolution: 10.5082 pixels mm-1 | Rint = 0.027 |
ω scans | θmax = 29.7°, θmin = 3.6° |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2022) | h = −12→11 |
Tmin = 0.618, Tmax = 1.000 | k = −18→19 |
16123 measured reflections | l = −21→19 |
4696 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.0461P)2 + 0.6044P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.111 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 0.23 e Å−3 |
4696 reflections | Δρmin = −0.23 e Å−3 |
272 parameters | Absolute structure: Flack x determined using 1389 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
3 restraints | Absolute structure parameter: −0.05 (3) |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.0659 (4) | 0.2094 (3) | 0.7066 (3) | 0.0495 (9) | |
C2 | −0.0849 (6) | 0.1109 (3) | 0.7088 (3) | 0.0697 (13) | |
H2 | −0.168430 | 0.084058 | 0.731600 | 0.084* | |
C3 | 0.0230 (6) | 0.0556 (3) | 0.6765 (3) | 0.0715 (13) | |
H3 | 0.013852 | −0.010235 | 0.678105 | 0.086* | |
C4 | 0.1460 (5) | 0.0956 (3) | 0.6413 (3) | 0.0624 (11) | |
H4 | 0.218451 | 0.055961 | 0.620438 | 0.075* | |
C5 | 0.1645 (4) | 0.1927 (2) | 0.6362 (3) | 0.0488 (8) | |
H5 | 0.246976 | 0.218411 | 0.610950 | 0.059* | |
C6 | 0.0574 (4) | 0.2512 (2) | 0.6696 (2) | 0.0361 (7) | |
C7 | 0.0362 (3) | 0.3530 (2) | 0.6756 (2) | 0.0377 (7) | |
C8 | −0.0946 (4) | 0.3660 (3) | 0.7149 (3) | 0.0496 (8) | |
H8 | −0.136701 | 0.424788 | 0.726252 | 0.059* | |
C9 | 0.1332 (3) | 0.4263 (2) | 0.6439 (2) | 0.0361 (6) | |
C10 | 0.0879 (4) | 0.6607 (2) | 0.5743 (3) | 0.0450 (8) | |
H10 | −0.007127 | 0.668033 | 0.592203 | 0.054* | |
C11 | 0.1630 (4) | 0.7397 (2) | 0.5322 (2) | 0.0415 (7) | |
C12 | 0.3017 (3) | 0.7294 (2) | 0.4981 (2) | 0.0378 (7) | |
H12 | 0.349555 | 0.671639 | 0.503558 | 0.045* | |
C13 | 0.3671 (3) | 0.8037 (2) | 0.4567 (2) | 0.0377 (7) | |
C14 | 0.2995 (4) | 0.8918 (2) | 0.4465 (2) | 0.0420 (7) | |
C15 | 0.1624 (4) | 0.9023 (2) | 0.4804 (3) | 0.0488 (9) | |
H15 | 0.114956 | 0.960221 | 0.475005 | 0.059* | |
C16 | 0.0953 (4) | 0.8267 (2) | 0.5223 (3) | 0.0502 (9) | |
H16 | 0.002673 | 0.834642 | 0.544236 | 0.060* | |
C17 | 0.3050 (5) | 1.0491 (2) | 0.3895 (3) | 0.0609 (11) | |
H17A | 0.219977 | 1.038851 | 0.354718 | 0.091* | |
H17B | 0.368862 | 1.091027 | 0.358372 | 0.091* | |
H17C | 0.278991 | 1.077006 | 0.445144 | 0.091* | |
C18 | 0.6978 (4) | 0.6949 (3) | 0.3417 (3) | 0.0489 (9) | |
H18A | 0.728048 | 0.668857 | 0.285233 | 0.059* | |
H18B | 0.766370 | 0.743790 | 0.358143 | 0.059* | |
C19 | 0.7020 (5) | 0.6173 (4) | 0.4099 (3) | 0.0769 (14) | |
H19A | 0.691877 | 0.645464 | 0.468136 | 0.092* | |
H19B | 0.620706 | 0.575250 | 0.400642 | 0.092* | |
C20 | 0.8367 (6) | 0.5601 (4) | 0.4077 (4) | 0.0939 (18) | |
H20A | 0.841089 | 0.524917 | 0.353344 | 0.141* | |
H20B | 0.837658 | 0.516757 | 0.456748 | 0.141* | |
H20C | 0.918286 | 0.601747 | 0.411564 | 0.141* | |
N1 | −0.1539 (3) | 0.2809 (3) | 0.7350 (3) | 0.0614 (9) | |
N2 | 0.0700 (3) | 0.5101 (2) | 0.6228 (2) | 0.0435 (6) | |
N3 | 0.1519 (3) | 0.58184 (19) | 0.58674 (19) | 0.0414 (6) | |
O1 | 0.2641 (2) | 0.41354 (16) | 0.63705 (17) | 0.0462 (6) | |
O2 | 0.3750 (3) | 0.96064 (16) | 0.40450 (19) | 0.0560 (7) | |
O3 | 0.5089 (2) | 0.79283 (17) | 0.42481 (16) | 0.0423 (5) | |
O4 | 0.4236 (3) | 0.6744 (2) | 0.3176 (2) | 0.0725 (9) | |
O5 | 0.5327 (4) | 0.8204 (3) | 0.2653 (2) | 0.0937 (12) | |
S1 | 0.52915 (9) | 0.74697 (7) | 0.32886 (7) | 0.0473 (2) | |
H2A | −0.0209 (16) | 0.520 (3) | 0.622 (3) | 0.051 (11)* | |
H1 | −0.243 (2) | 0.280 (4) | 0.750 (4) | 0.097 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0429 (19) | 0.053 (2) | 0.053 (2) | −0.0118 (17) | −0.0035 (16) | 0.0162 (18) |
C2 | 0.075 (3) | 0.064 (3) | 0.071 (3) | −0.028 (2) | −0.010 (2) | 0.024 (2) |
C3 | 0.100 (4) | 0.040 (2) | 0.074 (3) | −0.011 (2) | −0.020 (3) | 0.010 (2) |
C4 | 0.083 (3) | 0.046 (2) | 0.059 (2) | 0.008 (2) | −0.006 (2) | −0.0061 (19) |
C5 | 0.053 (2) | 0.0437 (19) | 0.050 (2) | 0.0015 (16) | −0.0070 (17) | −0.0011 (16) |
C6 | 0.0348 (16) | 0.0397 (16) | 0.0338 (15) | −0.0036 (13) | −0.0045 (12) | 0.0050 (13) |
C7 | 0.0310 (16) | 0.0406 (16) | 0.0413 (16) | 0.0016 (13) | 0.0001 (13) | 0.0060 (14) |
C8 | 0.0355 (18) | 0.053 (2) | 0.060 (2) | 0.0052 (15) | 0.0062 (15) | 0.0079 (19) |
C9 | 0.0322 (16) | 0.0389 (16) | 0.0372 (15) | 0.0004 (13) | 0.0009 (12) | −0.0007 (13) |
C10 | 0.0342 (17) | 0.0419 (17) | 0.059 (2) | −0.0021 (14) | 0.0086 (15) | 0.0023 (16) |
C11 | 0.0370 (18) | 0.0369 (16) | 0.0507 (19) | 0.0002 (13) | 0.0036 (14) | 0.0003 (14) |
C12 | 0.0362 (16) | 0.0354 (15) | 0.0418 (16) | 0.0050 (12) | −0.0009 (14) | 0.0015 (14) |
C13 | 0.0324 (16) | 0.0380 (16) | 0.0425 (17) | 0.0008 (12) | 0.0019 (13) | −0.0037 (13) |
C14 | 0.0404 (18) | 0.0317 (15) | 0.054 (2) | −0.0017 (13) | 0.0034 (15) | −0.0004 (15) |
C15 | 0.043 (2) | 0.0325 (16) | 0.071 (2) | 0.0056 (14) | 0.0048 (17) | 0.0010 (16) |
C16 | 0.0350 (18) | 0.0430 (18) | 0.072 (3) | 0.0066 (15) | 0.0111 (17) | −0.0013 (17) |
C17 | 0.070 (3) | 0.0339 (18) | 0.079 (3) | 0.0034 (17) | 0.013 (2) | 0.009 (2) |
C18 | 0.0393 (18) | 0.053 (2) | 0.054 (2) | 0.0074 (15) | 0.0061 (15) | −0.0021 (17) |
C19 | 0.079 (3) | 0.089 (3) | 0.063 (3) | 0.033 (3) | 0.008 (2) | 0.021 (2) |
C20 | 0.107 (4) | 0.097 (4) | 0.078 (3) | 0.053 (3) | 0.010 (3) | 0.018 (3) |
N1 | 0.0344 (18) | 0.071 (2) | 0.079 (2) | −0.0050 (16) | 0.0147 (16) | 0.0224 (19) |
N2 | 0.0314 (14) | 0.0394 (14) | 0.0596 (17) | 0.0005 (12) | 0.0067 (13) | 0.0095 (14) |
N3 | 0.0343 (14) | 0.0379 (14) | 0.0521 (16) | −0.0026 (12) | 0.0046 (12) | 0.0034 (12) |
O1 | 0.0297 (12) | 0.0447 (12) | 0.0642 (15) | −0.0001 (10) | 0.0019 (11) | 0.0073 (12) |
O2 | 0.0526 (15) | 0.0357 (12) | 0.0796 (19) | 0.0012 (10) | 0.0126 (13) | 0.0106 (13) |
O3 | 0.0312 (11) | 0.0469 (13) | 0.0488 (13) | 0.0007 (10) | 0.0042 (9) | −0.0045 (11) |
O4 | 0.0489 (16) | 0.093 (2) | 0.076 (2) | −0.0002 (15) | −0.0067 (15) | −0.0299 (18) |
O5 | 0.126 (3) | 0.092 (2) | 0.064 (2) | 0.052 (2) | 0.020 (2) | 0.0295 (19) |
S1 | 0.0443 (4) | 0.0555 (5) | 0.0420 (4) | 0.0126 (4) | 0.0015 (4) | 0.0018 (4) |
C1—N1 | 1.365 (5) | C13—O3 | 1.412 (4) |
C1—C2 | 1.398 (6) | C14—O2 | 1.354 (4) |
C1—C6 | 1.405 (5) | C14—C15 | 1.382 (5) |
C2—C3 | 1.360 (7) | C15—C16 | 1.386 (5) |
C2—H2 | 0.9300 | C15—H15 | 0.9300 |
C3—C4 | 1.381 (7) | C16—H16 | 0.9300 |
C3—H3 | 0.9300 | C17—O2 | 1.422 (4) |
C4—C5 | 1.378 (5) | C17—H17A | 0.9600 |
C4—H4 | 0.9300 | C17—H17B | 0.9600 |
C5—C6 | 1.387 (5) | C17—H17C | 0.9600 |
C5—H5 | 0.9300 | C18—C19 | 1.503 (6) |
C6—C7 | 1.447 (5) | C18—S1 | 1.742 (3) |
C7—C8 | 1.367 (5) | C18—H18A | 0.9700 |
C7—C9 | 1.451 (4) | C18—H18B | 0.9700 |
C8—N1 | 1.354 (5) | C19—C20 | 1.488 (6) |
C8—H8 | 0.9300 | C19—H19A | 0.9700 |
C9—O1 | 1.235 (4) | C19—H19B | 0.9700 |
C9—N2 | 1.355 (4) | C20—H20A | 0.9600 |
C10—N3 | 1.273 (4) | C20—H20B | 0.9600 |
C10—C11 | 1.458 (5) | C20—H20C | 0.9600 |
C10—H10 | 0.9300 | N1—H1 | 0.858 (14) |
C11—C16 | 1.385 (5) | N2—N3 | 1.376 (4) |
C11—C12 | 1.397 (5) | N2—H2A | 0.856 (13) |
C12—C13 | 1.361 (5) | O3—S1 | 1.599 (3) |
C12—H12 | 0.9300 | O4—S1 | 1.426 (3) |
C13—C14 | 1.398 (4) | O5—S1 | 1.411 (3) |
N1—C1—C2 | 130.3 (4) | C16—C15—H15 | 119.9 |
N1—C1—C6 | 107.9 (3) | C11—C16—C15 | 121.6 (3) |
C2—C1—C6 | 121.8 (4) | C11—C16—H16 | 119.2 |
C3—C2—C1 | 117.8 (4) | C15—C16—H16 | 119.2 |
C3—C2—H2 | 121.1 | O2—C17—H17A | 109.5 |
C1—C2—H2 | 121.1 | O2—C17—H17B | 109.5 |
C2—C3—C4 | 121.0 (4) | H17A—C17—H17B | 109.5 |
C2—C3—H3 | 119.5 | O2—C17—H17C | 109.5 |
C4—C3—H3 | 119.5 | H17A—C17—H17C | 109.5 |
C5—C4—C3 | 121.9 (4) | H17B—C17—H17C | 109.5 |
C5—C4—H4 | 119.0 | C19—C18—S1 | 113.9 (3) |
C3—C4—H4 | 119.0 | C19—C18—H18A | 108.8 |
C4—C5—C6 | 118.6 (4) | S1—C18—H18A | 108.8 |
C4—C5—H5 | 120.7 | C19—C18—H18B | 108.8 |
C6—C5—H5 | 120.7 | S1—C18—H18B | 108.8 |
C5—C6—C1 | 118.8 (3) | H18A—C18—H18B | 107.7 |
C5—C6—C7 | 135.0 (3) | C20—C19—C18 | 113.5 (4) |
C1—C6—C7 | 106.1 (3) | C20—C19—H19A | 108.9 |
C8—C7—C6 | 106.3 (3) | C18—C19—H19A | 108.9 |
C8—C7—C9 | 126.9 (3) | C20—C19—H19B | 108.9 |
C6—C7—C9 | 126.7 (3) | C18—C19—H19B | 108.9 |
N1—C8—C7 | 109.9 (3) | H19A—C19—H19B | 107.7 |
N1—C8—H8 | 125.0 | C19—C20—H20A | 109.5 |
C7—C8—H8 | 125.0 | C19—C20—H20B | 109.5 |
O1—C9—N2 | 122.3 (3) | H20A—C20—H20B | 109.5 |
O1—C9—C7 | 122.4 (3) | C19—C20—H20C | 109.5 |
N2—C9—C7 | 115.3 (3) | H20A—C20—H20C | 109.5 |
N3—C10—C11 | 120.3 (3) | H20B—C20—H20C | 109.5 |
N3—C10—H10 | 119.8 | C8—N1—C1 | 109.7 (3) |
C11—C10—H10 | 119.8 | C8—N1—H1 | 117 (4) |
C16—C11—C12 | 118.1 (3) | C1—N1—H1 | 131 (4) |
C16—C11—C10 | 120.3 (3) | C9—N2—N3 | 119.5 (3) |
C12—C11—C10 | 121.6 (3) | C9—N2—H2A | 124 (3) |
C13—C12—C11 | 120.2 (3) | N3—N2—H2A | 115 (3) |
C13—C12—H12 | 119.9 | C10—N3—N2 | 116.1 (3) |
C11—C12—H12 | 119.9 | C14—O2—C17 | 117.6 (3) |
C12—C13—C14 | 122.1 (3) | C13—O3—S1 | 117.6 (2) |
C12—C13—O3 | 119.4 (3) | O5—S1—O4 | 117.3 (3) |
C14—C13—O3 | 118.6 (3) | O5—S1—O3 | 108.98 (19) |
O2—C14—C15 | 125.1 (3) | O4—S1—O3 | 108.43 (17) |
O2—C14—C13 | 116.9 (3) | O5—S1—C18 | 111.2 (2) |
C15—C14—C13 | 117.9 (3) | O4—S1—C18 | 109.37 (19) |
C14—C15—C16 | 120.2 (3) | O3—S1—C18 | 100.09 (16) |
C14—C15—H15 | 119.9 | ||
C20—C19—C18—S1 | 168.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10···O1i | 0.93 | 2.51 | 3.325 (4) | 146 |
C18—H18A···O1ii | 0.97 | 2.52 | 3.467 (5) | 164 |
N2—H2A···O1i | 0.86 (1) | 2.22 (2) | 3.048 (4) | 163 (4) |
N1—H1···O4iii | 0.86 (1) | 2.07 (3) | 2.870 (5) | 156 (5) |
Symmetry codes: (i) x−1/2, −y+1, z; (ii) −x+1, −y+1, z−1/2; (iii) −x, −y+1, z+1/2. |
Acknowledgements
We are grateful for support by the National Research Center, Cairo, Egypt, project ID: 13010155 and Cardiff University.
Funding information
Funding for this research was provided by: National Research Centre (grant No. 13010155).
References
Batool, Z., Ullah, S., Khan, A., Mali, S. N., Gurav, S. S., Jawarkar, R. D., Alshammari, A., Albekairi, N. A., Al-Harrasi, A. & Shafiq, Z. (2024). Sci. Rep. 14, 25754. Web of Science CrossRef PubMed Google Scholar
Chen, X. & Yu, M. (2006). Acta Cryst. E62, o5503–o5504. Web of Science CSD CrossRef IUCr Journals Google Scholar
Citarella, A., Moi, D., Pedrini, M., Pérez-Peña, H., Pieraccini, S., Dimasi, A., Stagno, C., Micale, N., Schirmeister, T., Sibille, G., Gribaudo, G., Silvani, A., Giannini, C. & Passarella, D. (2023). Org. Biomol. Chem. 21, 3811–3824. Web of Science CrossRef CAS PubMed Google Scholar
Elgemeie, G. H. & Mohamed, R. A. (2014). Heterocycl. Commun. 20, 257–269. Web of Science CrossRef CAS Google Scholar
Facen, E., Assoni, G., Donati, G., Paladino, D., Carreira, A., Bonomo, I., Pietra, V. L., La, , Lotti, R., Houser, J., Fava, L. L., Seneci, P., Marinelli, L., Arosio, D. & Provenzani, A. (2024). Sci. Rep. 14, 24501. Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Kaushik, N. K., Kaushik, N., Attri, P., Kumar, N., Kim, C. H., Verma, A. K. & Choi, E. H. (2013). Molecules, 18, 6620–6662. Web of Science CrossRef CAS PubMed Google Scholar
Li, M., Li, N., Shao, F., Wang, R., Chen, M., Liu, Y.-J., Zhao, Y. & Li, R. (2024). Spectrochim. Acta A Mol. Biomol. Spectrosc. 308, 123676. Web of Science CSD CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2023). Egypt. J. Chem. 66(13), 167–185. Google Scholar
Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2024a). Nucleosides Nucleotides Nucleic Acids, 43, 1511–1528. CAS PubMed Google Scholar
Mohamed-Ezzat, R. A. & Elgemeie, G. H. (2024b). BMC Chem. 18, 58. Google Scholar
Mohamed-Ezzat, R. A., Elgemeie, G. H. & Jones, P. G. (2024a). Acta Cryst. E80, 120–124. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A., Hashem, A. H. & Dacrory, S. (2023d). BMC Chem. 17, 88. Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2022). IUCrData, 7, x221033. Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Azzam, R. A. (2023a). Acta Cryst. E79, 331–334. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2023b). Egypt. J. Chem. 66, 225–239. Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Elgemeie, G. H. (2024b). Acta Cryst. E80, 392–395. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A., Kariuki, B. M. & Srour, A. M. (2023c). Acta Cryst. E79, 999–1002. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A. & Srour, A. M. (2024). Anticancer Agents Med. Chem. 24, 544–557. Web of Science CAS PubMed Google Scholar
Omar, M. A., El-Shiekh, R. A., Dawood, D. H., Temirak, A. & Srour, A. M. (2023). Future Med. Chem. 15, 2269–2287. Web of Science CrossRef CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Pingaew, R., Mandi, P., Prachayasittikul, V., Thongnum, A., Prachayasittikul, S., Ruchirawat, S. & Prachayasittikul, V. (2021). ACS Omega, 6, 31854–31868. Web of Science CrossRef CAS PubMed Google Scholar
Ragab, S. S., Sweed, A. M. & Srour, A. (2024). ChemistrySelect, 9, e202400161. Web of Science CrossRef Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sá Alves, F. R. de, Barreiro, E. J. & Fraga, C. A. (2009). Mini Rev. Med. Chem. 9, 782–793. Web of Science PubMed Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Suzen, S. (2017). Curr. Org. Chem. 21, 2068–2076. CAS Google Scholar
Ubeid, A. A., Do, S., Nye, C. & Hantash, B. M. (2012). Biochim. Biophys. Acta, 1820, 1481–1489. Web of Science CrossRef CAS PubMed Google Scholar
Varun, B. V., Vaithegi, K., Yi, S. & Park, S. B. (2020). Nat. Commun. 11, 6308. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.