research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of tris­­(2-methyl-1H-imidazol-3-ium) 5-carb­­oxy­benzene-1,3-di­carboxyl­ate 3,5-di­carb­­oxy­benzoate

crossmark logo

aDepartment of Chemistry, Faculty of Natural and Exact Sciences, Universidad del, Valle, Calle 13 No. 100-00, 760042 Cali, Colombia, bInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and cDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
*Correspondence e-mail: jose.velazquez@desy.de

Edited by V. Jancik, Universidad Nacional Autónoma de México, México (Received 21 October 2024; accepted 4 March 2025; online 11 March 2025)

The structure of the title salt, 3C4H7N2+·C9H5O6·C9H4O62−, 1, consists of three 2-methyl-imidazolium cations and both a single and a doubly deprotonated form of trimesic acid as anions. A detailed analysis of the bond lengths and angles reveals both differences and similarities between compound 1 and the previously reported 2-methyl-1H-imidazol-3-ium 3,5-di­carb­oxy­benzoate structure [Baletska et al. (2023). Acta Cryst. E79, 1088–109], as well as the neutral counterpart of the ions. Examination of the crystal packing shows the formation of infinite chains by the anions, which, along with the cations, form zigzag planes parallel to the ab plane. The packing inter­actions are primarily driven by ππ inter­actions and hydrogen bonding between anions.

1. Chemical context

Trimesic acid (H3btc, or benzene-1,2,3-tri­carb­oxy­lic acid) and 2-meth­ylimidazole (2-mIm) are two well-known organic compounds with a wide range of applications. Trimesic acid, a planar and highly symmetrical trifunctional compound, has been used for self-assembled mol­ecular monolayers and surface functionalization (Ha et al., 2010[Ha, N. T. N., Gopakumar, T. G., Gutzler, R., Lackinger, M., Tang, H. & Hietschold, M. (2010). J. Phys. Chem. C, 114, 3531-3536.]; Lin et al., 2023[Lin, X., Wang, Z., Cao, S., Hu, Y., Liu, S., Chen, X., Chen, H., Zhang, X., Wei, S., Xu, H., Cheng, Z., Hou, Q., Sun, D. & Lu, X. (2023). Nat. Commun. 14, 6714.]; Chen et al., 2014[Chen, Z., Zhang, Q., Huang, L., Li, R., Li, W., Xu, G. & Cheng, H. (2014). J. Phys. Chem. C, 118, 21244-21249.]; Korolkov et al., 2012[Korolkov, V. V., Allen, S., Roberts, C. J. & Tendler, S. J. B. (2012). J. Phys. Chem. C, 116, 11519-11525.]; MacLeod, 2019[MacLeod, J. (2019). J. Phys. D Appl. Phys. 53, 043002.]; Iancu et al., 2013[Iancu, V., Braun, K.-F., Schouteden, K. & Van Haesendonck, C. (2013). Langmuir, 29, 11593-11599.]). Additionally, H3btc, along with dendrimers based on it, has been employed in biomolecular delivery systems (Salamończyk, 2011[Salamończyk, G. M. (2011). Tetrahedron Lett. 52, 155-158.]; Mat Yusuf et al., 2017[Mat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311.]; Emani et al., 2023[Emani, S., Vangala, A., Buonocore, F., Yarandi, N. & Calabrese, G. (2023). Pharmaceutics 15, 1084.]). On the other hand, 2-mIm, a nitro­gen-containing heterocyclic organic compound, is widely used in the preparation of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments, agricultural chemicals, and in rubber production (Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]; Chan, 2004[Chan, P. C. (2004). TOXIC Rep Ser, 1-G12.]). Both H3btc and 2-mIm are also well-known ligands in the syntheses of metal–organic frameworks (MOFs), such as HKUST-1 (Chui et al., 1999[Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]), MIL-100 (Férey et al., 2004[Férey, G., Serre, C., Mellot-Draznieks, C., Millange, F., Surblé, S., Dutour, J. & Margiolaki, I. (2004). Angew. Chem. Int. Ed. 43, 6296-6301.]), ZIF-8 (Park et al., 2006[Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186-10191.]), and ZIF-67 (Banerjee et al., 2008[Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939-943.]), which have applications in gas adsorption, catalysis, and drug delivery, among others (Zhong et al., 2018a[Zhong, G., Liu, D. & Zhang, J. (2018a). Cryst. Growth Des. 18, 7730-7744.],b[Zhong, G., Liu, D. & Zhang, J. (2018b). J. Mater. Chem. A, 6, 1887-1899.]; Zhao et al., 2024[Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024). J. Alloys Compd. 974, 172897.]; Huang et al., 2011[Huang, H., Zhang, W., Liu, D., Liu, B., Chen, G. & Zhong, C. (2011). Chem. Eng. Sci. 66, 6297-6305.]; Song et al., 2024[Song, Y., Yu, C., Ma, D. & Liu, K. (2024). Coord. Chem. Rev. 499, 215492.]; Abdelhamid, 2021[Abdelhamid, H. N. (2021). Curr. Med. Chem. 28, 7023-7075.]; Sun et al., 2012[Sun, C.-Y., Qin, C., Wang, X.-L., Yang, G.-S., Shao, K.-Z., Lan, Y.-Q., Su, Z.-M., Huang, P., Wang, C.-G. & Wang, E.-B. (2012). Dalton Trans. 41, 6906-6909.]).

In our previous studies, we synthesised hexa­aqua­cobalt bis­(2-methyl-1H-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato-κO)cobalt (Velazquez-Garcia & Techert, 2022[Velazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814-817.]) and 2-methyl-1H-imidazol-3-ium 3,5-di­carb­oxy­benzoate (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) using 2-mIm and H3btc as organic compounds. In this work, we used the same organic compounds to synthesise the title compound, 1.

[Scheme 1]

2. Structural commentary

Compound 1 crystallizes with one H2btc, one Hbtc2−, and three H2-mIm+ ions in the asymmetric unit, space group P21/n. An ellipsoid plot illustrating these ionic species is shown in Fig. 1[link]. For clarity, the three crystallographically independent cations are labelled as A, B, and C to facilitate their identification.

[Figure 1]
Figure 1
Single-crystal X-ray structure of 1 with displacement ellipsoids drawn at the 50% probability level.

Table 1[link] presents selected bond distances and angles of the H2btc ion, while Table 2[link] shows those for the Hbtc2− ion. The shortest bond in the H2btc ion is between C21 and O1 at 1.214 (2) Å, while the longest is between C9 and C20 at 1.519 (2) Å. In the Hbtc2− ion, the shortest bond is C18—O9 at 1.214 (2) Å, and the longest is C6—C17 at 1.510 (2) Å.

Table 1
Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2btc anion in 1

C10—C11 1.392 (2) C7—C12 1.391 (2) C8—C9 1.389 (2)
C11—C12 1.393 (2) C7—C8 1.394 (2) C9—C10 1.394 (2)
C11—C21 1.499 (2) C7—C22 1.492 (2) C9—C20 1.519 (2)
O1—C21 1.214 (2) O3—C20 1.247 (2) O5—C22 1.218 (2)
O2—C21 1.303 (2) O4—C20 1.258 (2) O6—C22 1.318 (2)
C10—C11—C12 119.68 (15) C7—C12—C11 119.86 (16) O1—C21—O2 124.30 (16)
C9—C8—C7 120.68 (15) C12—C7—C8 119.93 (15) O3—C20—O4 126.76 (17)
C8—C9—C10 118.98 (16) C11—C10—C9 120.84 (15) O5—C22—O6 124.31 (15)
C10—C11—C21—O1 −4.4 (2) C10—C9—C20—O4 −173.05 (15) C10—C11—C12—-C7 2.3 (2)
C12—C11—C21—O1 174.23 (16) C8—C9—C20—O4 5.4 (2) C12—C7—C8—C9 0.0 (2)
C10—C11—C21—O2 176.85 (15) C12—C7—C22—O5 −177.56 (16) C7—C8—C9—C10 1.5 (2)
C12—C11—C21—O2 −4.5 (2) C8—C7—C22—O5 1.9 (2) C8—C9—C10—C11 −1.2 (2)
C10—C9—C20—O3 6.0 (2) C12—C7—C22—O6 1.2 (2) C8—C7—C12—C11 −1.9 (2)
C8—C9—C20—O3 −175.60 (15) C8—C7—C22—O6 −179.37 (15) C9—C10—C11—C12 −0.7 (2)

Table 2
Selected bond lengths (Å), angles (°) and torsion angles (°) of the Hbtc2− anion in 1

C1—C6 1.393 (2) C2—C3 1.39 (2) C4—C5 1.392 (2)
C1—C2 1.398 (2) C3—C4 1.391 (2) C5—C6 1.388 (2)
C2—C19 1.504 (2) C4—C18 1.486 (2) C6—C17 1.510 (2)
O7—C17 1.255 (2) O9—C18 1.214 (2) O11—C19 1.2555 (19)
O8—C17 1.2650 (19) O10—C18 1.338 (2) O12—C19 1.263 (2)
C2—C3—C4 119.79 (15) C6—C1—C2 120.38 (16) O7—C17—O8 125.41 (15)
C6—C5—C4 120.39 (15) C3—C2—C1 119.79 (14) O9—C18—O10 123.24 (16)
C3—C4—C5 120.21 (16) C5—C6—C1 119.38 (15) O11—C19—O12 124.16 (15)
C1—C6—C17—O7 15.5 (2) C3—C4—C18—O10 17.1 (2) C1—C2—C3—C4 2.5 (2)
C5—C6—C17—O7 167.31 (14) C5—C4—C18—O10 164.63 (14) C2—C3—C4—C5 −0.5 (2)
C1—C6—C17—O8 163.84 (15) C1—C2—C19—O11 −163.18 (15) C2—C1—C6—C5 −0.4 (2)
C5—C6—C17—O8 −13.4 (2) C3—C2—C19—O11 13.5 (2) C3—C4—C5—C6 −1.5 (2)
C3—C4—C18—O9 −163.64 (16) C1—C2—C19—O12 15.8 (2) C4—C5—C6—C1 1.6 (2)
C5—C4—C18—O9 14.6 (2) C3—C2—C19—O12 −167.44 (15) C6—C1—C2—C3 −2.4 (2)

The C—C and C—O bond lengths in the H2btc ion range from 1.389 (2) to 1.519 (2) Å and 1.214 (2) to 1.318 (2) Å, respectively. For the Hbtc2− ion, the C—C bond lengths span 1.388 (2) to 1.510 (2) Å, while the C—O bonds range from 1.214 (2) to 1.338 (2) Å. These values are comparable to those in the neutral H3btc mol­ecule (Tothadi et al., 2020[Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). ACS Appl. Mater. 12, 15588-15594.]), where the C—C bond lengths range from 1.381 (6) to 1.494 (9) Å, and C—O bonds range from 1.229 (5) to 1.303 (5) Å. They are also consistent with the bond lengths observed in the H2btc anion reported in our previous work (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]), and featuring ranges of 1.388 (2)–1.511 (2) Å for C—C bonds and 1.224 (2)–1.320 (2) Å for C—O bonds.

The C—C—C angles in H2btc in 1 range from 118.9 (2) to 120.8 (2)°, while in the Hbtc2− ion, they fall between 119.4 (2) and 120.4 (2)°. These values are comparable to the corresponding angles in H3btc [119.0 (4)–121.1 (4)°] and H2btc reported by Baletska et al. (2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) [118.9 (2)–121.4 (4)°]. The O—C—O angles in the H2btc ion in complex 1 span 124.3 (2) to 126.8 (2)°, and in the Hbtc2− ion, they range from 123.2 (2) to 125.4 (2)°. These values are also consistent with those found in neutral H3btc [124.4 (4)–125.0 (4)°] and in H2btc from [123.9 (2)–126.1 (2)°; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]].

The main difference between the anions in 1, the neutral H3btc mol­ecule, and the H2btc ion (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) lies in their torsion angles. In the H3btc mol­ecule, the oxygen atoms are nearly coplanar with the aromatic ring, with torsion angles deviating from 0 or 180° by no more than 4.2 (4)°. H2btc (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) shows a wider deviation range, from 4.2 (2) to 16.6 (2)°. In comparison, the H2btc ion in 1 exhibits inter­mediate values, ranging from 0.6 (2) to 7.0 (2)°, whereas the Hbtc2− ion shows the largest torsion angles, ranging from 12.6 (2) to 17.1 (2)°.

These differences are further emphasised through mol­ecular overlays generated using Mercury software (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The overlays (Fig. 2[link]) show that the H2btc ion in 1 resembles the neutral H3btc more closely (root-mean-square deviation, r.m.s.d. = 0.0683 Å; maximal deviation, max. d. = 0.1257 Å) than the H2btc ion) (r.m.s.d. = 0.1039 Å; max. d. = 0.2189 Å; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]). On the other hand, the Hbtc2− ion in 1 shows a lower resemblance to H3btc (r.m.s.d. = 0.1856 Å; max. d. = 0.3985 Å) compared to the H2btc ion (r.m.s.d. = 0.09 Å; max. d. = 0.2344 Å; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]). Note that hydrogen atoms were excluded from the model during the overlay process.

[Figure 2]
Figure 2
Overlay plot comparing the H2btc (dark blue) and Hbtc2− (light blue) ions in 1 with (a) H3btc (red; Tothadi et al. 2020[Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). ACS Appl. Mater. 12, 15588-15594.]) and (b) H2btc (green; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]). Hydrogen atoms are omitted for clarity.

Table 3[link] presents selected bond lengths, angles, and torsions for the H2-mIm+ cations. The C—C bond distances fall in the range 1.339 (3)–1.483 (3) Å, while the C—N bonds vary from 1.323 (2) to 1.383 (2) Å. These values are comparable to the corresponding distances observed in the neutral 2-mIm+ mol­ecule reported by Hachuła et al. (2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]) [C—C = 1.367 (1)–1.488 (1) Å, C—N = 1.329 (1)–1.385 (1) Å] and in the H2-mIm+ ion reported by Baletska et al. (2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) [C—C = 1.345 (3)–1.481 (3) Å, C—N = 1.327 (2)–1.377 (2) Å].

Table 3
Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2-mIm+ cations in 1

A   B   C  
C13—C16 1.483 (3) C23—C24 1.482 (3) C27—C30 1.482 (3)
C14—C15 1.348 (2) C25—C26 1.339 (3) C28—C29 1.346 (3)
N1—C13 1.326 (2) N3—C24 1.332 (2) N5—C30 1.330 (2)
N1—C14 1.370 (2) N3—C25 1.383 (2) N5—C28 1.380 (2)
N2—C13 1.330 (2) N4—C24 1.323 (2) N6—C30 1.335 (2)
N2—C15 1.371 (2) N4—C26 1.380 (2) N6—C29 1.380 (2)
C13—N2—C15 109.13 (14) C28—C29—N6 106.06 (17) C24—N4—C26 108.48 (16)
C13—N1—C14 109.87 (15) C29—C28—N5 107.12 (17) C24—N3—C25 109.08 (15)
C14—C15—N2 107.24 (16) C30—N5—C28 109.18 (16) C25—C26—N4 107.85 (16)
C15—C14—N1 106.39 (15) C30—N6—C29 108.92 (16) C26—C25—N3 106.35 (17)
N1—C13—N2 107.36 (16) N4—C24—N3 108.31 (16) N5—C30—N6 107.91 (16)
N1—C14—C15—N2 0.1 (2) N3—C25—C26—N4 0.0 (2) N5—C28—C29—N6 −0.5 (2)
C13—N1—C14—C15 0.4 (2) C24—N3—C25—C26 0.4 (2) C30—N5—C28—C29 0.5 (2)
C14—N1—C13—N2 −0.8 (2) C25—N3—C24—N4 0.7 (2) C28—N5—C30—N6 −0.2 (2)
C13—N2—C15—C14 −0.5 (2) C24—N4—C26—C25 −0.5 (2) C30—N6—C29—C28 0.4 (2)
C15—N2—C13—N1 0.8 (2) C26—N4—C24—N3 0.7 (2) C29—N6—C30—N5 0.0 (2)
C14—N1—C13—C16 177.8 (2) C26—N4—C24—C23 179.13 (18) C28—N5—C30—C27 −179.94 (17)
C15—N2—C13—C16 −177.7 (2) C25—N3—C24—C23 179.12 (18) C29—N6—C30—C27 179.67 (18)

Imidazole derivatives often exhibit an asymmetry in the two endocyclic N—C bonds (Hachuła et al., 2010[Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201-206.]). However, this asymmetry is minimal in all three cations of 1, with differences between the two N—C bond lengths of 0.001 (3), 0.003 (3), and 0.0 (3) Å for cations A, B, and C, respectively. These values are comparable with the asymmetry found in the H2-mIm+ ion [0.008 (3) Å; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]] and are significantly smaller than that reported for the neutral mol­ecule [0.022 (1) Å]. This increased symmetry supports the idea that protonation of the imidazole reduces the disparity between the two endocyclic N—C bonds.

Protonation to an H2-mIm+ ion also leads to a more symmetrical heterocyclic ring. In the H2-mIm+ ion (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]), this increased symmetry is observed in the C—C—N and N—C—N angles of the heterocyclic ring, which closely approach the ideal penta­gon angle of 108°, with a maximum deviation of 1.6 (2)°. In contrast, the neutral 2-mIm mol­ecule shows a larger deviation of 3.4 (1)°. In compound 1, the maximum deviations from the ideal angles of a penta­gon are 1.9 (2), 1.9 (2), and 1.7 (2)° for cations A, B, and C, respectively. These values confirm that the protonated imidazole exhibits a more symmetrical ring structure than its neutral counterpart.

An analysis of the torsion angles in all cations in compound 1 reveals that the methyl group in cation A is less coplanar to the ring than in other cations. This is evident from the maximum deviation from 180° of the C—N—C—CMe torsion angles (where CMe represents the carbon from the methyl group). Cation A shows a deviation of 2.3 (2)°, while cations B and C exhibit smaller deviations of 0.9 (2) and 0.3 (2)°, respectively. The deviation in cation A is also larger than that observed in the neutral mol­ecule [0.7 (1)°] and the H2-mIm+ ion [0.5 (2)°; Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]]. The root-mean-squared deviation (r. m. s. d.) and maximal deviation (max. d.) values, calculated by Mercury software for the mol­ecular overlays of the three H2-mIm+ cations in 1 with the H2-mIm+ cation (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) and the neutral mol­ecule (Fig. 3[link]), show a greater similarity between the protonated forms compared to the neutral mol­ecule. The r. m. s. d. and max. d. values for the cations of 1 and the protonated H2-mIm+ (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]) range from 0.0067 to 0.0140 Å and 0.0092 to 0.0201 Å, respectively, indicating a close resemblance. On the other hand, the values for the neutral mol­ecule are notably higher, ranging from 0.0269 to 0.0297 Å (r.m.s.d.) and 0.0402 to 0.0474 Å (max. d.). In all cases, hydrogen atoms were omitted from the model during the overlay process.

[Figure 3]
Figure 3
Overlay plot comparing the three H2-mIm+ ions (dark blue - A, B and C) in 1 with (a) 2-mIm (pink; Hachułaet al., 2010) and (b) H2-mIm+ ion (green; Baletska et al.,, 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]). Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

The primary inter­molecular inter­action contributing to the crystal packing includes hydrogen bonds between all ions, along with ππ stacking between anions. Table 4[link] provides a summary of the hydrogen bonds found within the compound. As shown in Fig. 4[link]a, infinite chains are formed along the a axis through hydrogen bonding between H2btc and Hbtc2− anions. These chains are further linked, via hydrogen bonding, with all of the cations, forming zigzag planes parallel to the ab plane (Fig. 4[link]b,c). Each plane inter­acts with two types of neighbouring planes: one with a parallel zigzag pattern, inter­acting via ππ stacking between H2btc and Hbtc2− ions [centroid-to-centroid distance of 3.5663 (12) Å, perpendicular distance between planes ∼3.3 Å and offset of 1.249 Å], and another arranged in an anti­parallel configuration, with the zigzag pattern running in the opposite direction. This anti­parallel plane inter­acts via hydrogen bonding between Hbtc2− ions (Fig. 5[link]). Note that the spaces observed in the planes in Fig. 4[link]b are filled by counter-ions from the adjacent planes with a parallel zigzag pattern, ensuring no voids within compound 1.

Table 4
Hydrogen-bond geometry (Å, °).

  Graph-set descriptor type D—H H⋯A DA D—H⋯A
N1—H1A⋯O8V D(2) d 0.86 (2) 1.911 (18) 2.737 (2) 160.8 (7)
O2—H2⋯O7i D(2) a 0.96 (3) 1.57 (2) 2.5222 (19) 170.7 (17)
N2—H2A⋯O11iv D(2) e 0.88 (3) 1.93 (2) 2.806 (2) 172.5 (13)
N3—H3A⋯O11 D(2) f 0.935 (19) 1.874 (19) 2.778 (2) 162.1 (18)
N4—H4⋯O4vi D(2) g 1.01 (2) 1.59 (2) 2.593 (2) 172.6 (9)
N5—H5A⋯O3vii D(2) h 1.01 (2) 1.69 (2) 2.655 (2) 159.9 (5)
O6—H6⋯O12ii D(2) b 0.93 (3) 1.69 (2) 2.6189 (19) 171.7 (16)
N6—H6A⋯O8 D(2) i 0.921 (17) 1.886 (19) 2.800 (2) 170.9 (13)
O10—H10A⋯O12iii C(8) c 0.93 (3) 1.71 (3) 2.6156 (18) 162 (2)
             
C14—H14⋯O1v     0.95 2.52 3.098 (2) 119
C15—H15⋯O10     0.95 2.46 3.280 (2) 144
C15—H15⋯O5iv     0.95 2.38 3.038 (2) 126
C25—H25⋯O5     0.95 2.55 3.292 (2) 135
C27—H27B⋯O9     0.98 2.41 3.380 (3) 168
C28—H28⋯O9vii     0.95 2.39 2.990 (2) 121
C29—H29⋯O1     0.95 2.33 3.108 (2) 138
(i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) [{3\over 2}] − x, [{1\over 2}] + y, [{1\over 2}] − z; (iv) −[{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (v) [{1\over 2}] + x, [{3\over 2}] − y, −[{1\over 2}] + z; (vi) 2 − x, 2 − y, 1 − z; (vii 1 − x, 2 − y, 1 − z.
[Figure 4]
Figure 4
(a) View down the c axis showing an infinite chain of H2btc–Hbtc2− anions running along the a axis. A plane formed by the H2-mIm+ ions (green) and the H2btc-Hbtc2− chains, view down (b) the c axis and (c) the a axis.
[Figure 5]
Figure 5
Crystal packing in compound 1 viewed down the a axis showing the ππ inter­actions and hydrogen bonding connecting the 2H-mim+–H2btc–Hbtc2− planes that run parallel to the ab plane. The H2-mIm+ ions are highlighted in green.

A graph-set analysis (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]; Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) allows a more detailed examination of the inter­molecular inter­action patterns within 1. The analysis reveals that 1 contains nine motifs at the first-level graph set, including eight discrete D(2) motifs and one chain motif C(8), labelled as type c in Table 4[link]. The second-level graph set (Table 5[link]) reveals a complex network of inter­molecular inter­actions within 1, featuring various patterns: C22(16) >a<b, C22(12) >d<e, several D33 such as >a>c<a, >d>c<d, >e>c<e, >f>c<f, >i>c<I and many D22, for example >a<d, >a<e and >a<f. A different pattern, rather than discrete and chain, appears in the third order graph set with formation of the rings R56(42) >a>cba<c<b (Fig. 6[link]a) and R36(36) >c<d>e<c<d>e (Fig. 6[link]b).

Table 5
Second- and third-level graph sets

  Second-level   Third-level    
C22(16) >a<b C23(18) >a>c<b D33(17) >d<b<h
D33(17) >a>c<a C33(24) >a<c<b D33(13) >e<b<g
D22(5) >a<d R56(42) >a>cba<c<b D33(13) >e<b<h
D22(9) >a<e D33(17) >a<c<d C33(16) >b<f>g
D22(9) >a<f D33(17) >a>c<d D33(13) >f<b<h
D22(10) >g>a D33(13) >a>c<e D33(17) >g>b<i
D22(10) >h>a D33(17) >a<c<e C33(20) >bih
D22(5) >a<i D33(13) >a>c<f C33(16) >c<e>d
D23 (11) >b>c<b D33(17) >a<c<f C33(20) >c<d>e
D22(9) >b<d D33(17) >a<c<i R66(36) >c<d>e<c<d>e
D22(5) >b<e D33(17) >a>c<i D33(13) >d>c<f
D22(5) >b<f D33(13) >d<a<g D33(17) >d<c<f
D22(10) >g>b D33(13) >d<a<h D33(17) >d<c<i
D22(10) >h>b D33(17) >e<a<g D33(17) >d>c<i
D22(9) >b<i D33(17) >e<a<h D33(13) >e<c<f
D33(17) >d>c<d C33(20) >a<f>g D33(13) >e>c<f
D33(13) >e>c<e D33(17) >f<a<h D33(13) >e<c<i
D33(13) >f>c<f D33(13) >g>a<i D33(17) >e>c<i
D33(17) >i>c<i C33(16) >aih D33(13) >f<c<i
C22(12) >d<e D23(11) >b<c<d D33(17) >f>c<i
D22(9) >d<f D33(17) >b>c<d D33(14) >d<f>g
D12(3) >d<i D23(11) >b<c<e D23(8) >dih
D12(3) >e<f D33(13) >b>c<e D23(8) >e<f>g
D22(9) >e<i D23(11) >b<c<f D33(14) >eih
D22(7) <f>g D33(13) >b>c<f D33(10) >h<g>f
D22(9) >f<i D23(11) >b<c<i D33(14) >i<f>g
D22(5) >g<h D33(17) >b>c<i D33(14) >fih
D22(7) <h>i D33 (17) >d<b<g D33(10) >g<h>i
[Figure 6]
Figure 6
View along the c axis showing the formation of hydrogen-bonded ring patterns with the graph-set descriptors: (a) R56(42) and (b) R66(36).

4. Database survey

No reported structures of the title compound were found in the Cambridge Structural Database (CSD version 5.45, update of November 2023; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). The closest to 1 is the previously mentioned structure reported under the refcode LODSUW (Baletska et al., 2023[Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088-1092.]).

Among the various reported structures containing the H2-mIm+ cation, we highlight those with the following refcodes: BEZGEU (Dhanabal et al., 2013[Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112-123.]), BOTTEK, BOTTIO, BOTTOU (Meng et al., 2009[Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217-o221.]), BOTTEK01, BOTTIO01, BOTTOU01, VURBUG, VURCAN, VURFAQ (Callear et al., 2010[Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898-908.]), DAMGIL (Hinokimoto et al., 2021[Hinokimoto, A., Izu, H., Wei, Y.-S., Nakajo, T., Matsuda, R. & Horike, S. (2021). Cryst. Growth Des. 21, 6031-6036.]), DOWVUI (Shi et al., 2014[Shi, C., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570-6580.]), FAMFIL, FAMFOR, FAMFUX (Zhang & Zhang, 2017[Zhang, X.-R. & Zhang, L. (2017). J. Mol. Struct. 1137, 320-327.]), FETDAK (Aakeröy et al., 2005[Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102-107.]), and HILSOL (Qu, 2007[Qu, S. (2007). Acta Cryst. E63, o4071.]).

Organic compounds containing both H2btc and Hbtc2- were found with the refcodes: RAVPOV (Arunachalam et al., 2012[Arunachalam, M., Chakraborty, S., Marivel, S. & Ghosh, P. (2012). Cryst. Growth Des. 12, 2097-2108.]), SADKUE (Fan et al., 2003[Fan, Q.-R., Shi, X., Xin, M.-H., Wu, G., Tian, G., Zhu, G. S., Li, Y.-F., Ye, L., Wang, C.-L., Zhang, Z. D., Tang, L. L. & Qiu, S.-L. (2003). Gaodeng Xuexiao Huaxue Xuebao, 24, 28.]), and TUBBAT (Melendez et al., 1996[Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213-2215.]). Some compounds with low resemblance to the title compound were reported under the refcodes CUMQUX (Basu et al., 2009[Basu, T., Sparkes, H. A. & Mondal, R. (2009). Cryst. Growth Des. 9, 5164-5175.]), HICSUJ (Lie et al., 2013[Lie, S., Maris, T., Malveau, C., Beaudoin, D., Helzy, F. & Wuest, J. D. (2013). Cryst. Growth Des. 13, 1872-1877.]), ILELAO (Li & Li, 2016[Li, S.-Y. & Li, P. (2016). Z. Kristallogr. 231, 525-528.]), JOCBAH (Falek et al., 2019[Falek, W., Benali-Cherif, R., Golea, L., Samai, S., Benali-Cherif, N., Bendeif, E.-E. & Daoud, I. (2019). J. Mol. Struct. 1192, 132-144.]), LUBGUM, LUBHAT, LUBHEX, LUBHIB, LUBHOH, LUBHUN, LUBJAV (Singh et al., 2015[Singh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421-1433.]), SUHRAR (Rajkumar et al., 2020[Rajkumar, M., Muthuraja, P., Dhandapani, M. & Chandramohan, A. (2020). Opt. Laser Technol. 124, 105970.]), YOCSIT (Habib & Janiak, 2008[Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.]), and WOGBED (Sosa-Rivadeneyra et al., 2024[Sosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118.]).

5. Synthesis and crystallization

To obtain the title compound, 800 µl of an ethano­lic solution of 2-mlm (1.57 M) was diluted in 20 ml of ethanol, followed by the addition of 1 ml of an ethano­lic solution of H3btc (0.12 M). The mixture was shaken gently, but no visible changes were observed after 5 min. Crystals of 1 were obtained after 24 h.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 6[link]. The positions of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C) for CH. Hydrogen atoms bonded to nitro­gen atoms (N—H) and oxygen atoms (O—H) were treated with free refinement of bond distances and isotropic displacement parameters (Uiso).

Table 6
Experimental details

Crystal data
Chemical formula 3C4H7N2+·C9H4O62−·C9H5O6
Mr 666.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 14.172 (3), 15.902 (3), 14.644 (3)
β (°) 110.46 (3)
V3) 3092.0 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.08 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.695, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36740, 7127, 5287
Rint 0.052
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.05
No. of reflections 7127
No. of parameters 457
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.27
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate top
Crystal data top
3C4H7N2+·C9H4O62·C9H5O6F(000) = 1392
Mr = 666.60Dx = 1.432 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.172 (3) ÅCell parameters from 5589 reflections
b = 15.902 (3) Åθ = 2.5–26.9°
c = 14.644 (3) ŵ = 0.11 mm1
β = 110.46 (3)°T = 100 K
V = 3092.0 (12) Å3Irregular, clear light colourless
Z = 40.08 × 0.07 × 0.05 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.052
ω scansθmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.695, Tmax = 0.746k = 1720
36740 measured reflectionsl = 1919
7127 independent reflectionsStandard reflections: not measured; every not measured reflections
5287 reflections with I > 2σ(I) intensity decay: not measured
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.5554P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
7127 reflectionsΔρmax = 0.35 e Å3
457 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Hydrogen atoms bonded to nitrogen and oxygen were refined with free isotropic displacement parameters and bond lengths (AFIX 44/148)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53578 (9)0.64000 (8)0.61849 (11)0.0259 (3)
O20.61872 (9)0.52011 (8)0.62429 (10)0.0220 (3)
H20.5602 (19)0.4963 (7)0.6328 (19)0.053 (8)*
O30.68318 (10)0.90396 (8)0.54264 (10)0.0241 (3)
O40.83140 (9)0.89827 (8)0.52006 (10)0.0234 (3)
O51.02817 (8)0.63301 (8)0.58809 (9)0.0180 (3)
O60.95050 (9)0.51574 (8)0.60965 (10)0.0190 (3)
H61.0140 (19)0.4921 (7)0.6229 (19)0.051 (7)*
C70.86039 (11)0.64249 (11)0.58751 (11)0.0121 (3)
C80.85460 (12)0.72890 (11)0.57047 (11)0.0129 (3)
H80.9102000.7575960.5629000.015*
C90.76831 (12)0.77347 (11)0.56445 (11)0.0128 (3)
C100.68832 (11)0.73080 (11)0.57804 (11)0.0124 (3)
H100.6295040.7609430.5752600.015*
C110.69353 (11)0.64458 (11)0.59565 (11)0.0119 (3)
C120.77922 (11)0.60010 (11)0.59865 (11)0.0121 (3)
H120.7822410.5409440.6082880.015*
C200.76001 (12)0.86677 (11)0.54084 (12)0.0152 (4)
C210.60758 (12)0.60123 (11)0.61338 (12)0.0140 (3)
C220.95475 (12)0.59710 (11)0.59439 (12)0.0137 (3)
O70.52944 (8)0.55672 (8)0.35759 (9)0.0170 (3)
O80.45915 (8)0.67838 (8)0.37705 (9)0.0168 (3)
O90.60022 (9)0.94414 (8)0.30521 (9)0.0191 (3)
O100.73044 (8)0.93889 (8)0.25158 (9)0.0168 (3)
H10A0.7044 (12)0.9897 (17)0.2214 (19)0.054 (8)*
O110.95291 (8)0.68773 (7)0.35827 (8)0.0146 (3)
O120.87752 (8)0.56353 (7)0.34820 (9)0.0168 (3)
C10.69841 (11)0.64122 (11)0.34545 (11)0.0110 (3)
H10.7045560.5823770.3572380.013*
C20.77796 (11)0.68585 (10)0.33282 (11)0.0105 (3)
C30.76750 (11)0.77131 (10)0.31188 (11)0.0114 (3)
H30.8203300.8014480.3007190.014*
C40.67944 (12)0.81258 (11)0.30732 (11)0.0121 (3)
C50.60164 (11)0.76843 (11)0.32292 (11)0.0120 (3)
H50.5423570.7972490.3212990.014*
C60.61016 (11)0.68255 (10)0.34084 (11)0.0108 (3)
C170.52617 (11)0.63554 (11)0.35966 (11)0.0120 (3)
C180.66564 (12)0.90441 (11)0.28876 (12)0.0140 (3)
C190.87669 (11)0.64296 (11)0.34702 (11)0.0116 (3)
N10.81021 (10)0.86622 (9)0.05350 (11)0.0158 (3)
H1A0.8634 (15)0.86270 (13)0.0687 (4)0.036 (6)*
N20.65710 (10)0.85634 (9)0.06081 (11)0.0169 (3)
H2A0.5919 (19)0.8450 (3)0.0820 (6)0.047 (7)*
C130.71886 (12)0.84187 (12)0.10972 (13)0.0180 (4)
C140.80713 (13)0.89782 (12)0.03242 (13)0.0191 (4)
H140.8620980.9197780.0850000.023*
C150.71066 (13)0.89158 (12)0.02759 (13)0.0202 (4)
H150.6846310.9084660.0763630.024*
C160.69127 (17)0.80710 (16)0.20962 (16)0.0405 (6)
H16A0.6521140.8488920.2569070.061*
H16B0.6508420.7561080.2150270.061*
H16C0.7526120.7933410.2229480.061*
N31.04278 (11)0.82926 (10)0.46433 (11)0.0190 (3)
H3A1.0001 (13)0.7868 (13)0.4287 (11)0.054 (8)*
N41.12129 (11)0.94728 (10)0.50099 (11)0.0194 (3)
H41.1453 (6)1.0059 (16)0.49572 (18)0.051 (7)*
C231.00047 (15)0.93620 (14)0.33006 (14)0.0280 (5)
H23A0.9285180.9417150.3193530.042*
H23B1.0097190.8964780.2827170.042*
H23C1.0277550.9911920.3219440.042*
C241.05406 (13)0.90477 (11)0.43016 (13)0.0177 (4)
C251.10444 (14)0.82389 (12)0.56105 (14)0.0231 (4)
H251.1110710.7772150.6033340.028*
C261.15295 (15)0.89749 (12)0.58330 (14)0.0253 (4)
H261.2006910.9127270.6448470.030*
N50.38559 (11)0.94219 (10)0.51325 (11)0.0194 (3)
H5A0.3614 (7)1.0020 (16)0.50764 (19)0.054 (8)*
N60.43032 (11)0.82074 (10)0.47674 (12)0.0203 (3)
H6A0.4446 (4)0.7773 (13)0.4420 (10)0.049 (7)*
C270.37791 (15)0.92675 (15)0.34081 (14)0.0313 (5)
H27A0.3434170.8824550.2946990.047*
H27B0.4418270.9404090.3324400.047*
H27C0.3353130.9770450.3285450.047*
C280.41150 (14)0.89349 (12)0.59641 (14)0.0223 (4)
H280.4101890.9103750.6581890.027*
C290.43899 (13)0.81759 (12)0.57354 (13)0.0213 (4)
H290.4603200.7707110.6160090.026*
C300.39781 (13)0.89704 (12)0.44175 (13)0.0195 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0182 (6)0.0143 (7)0.0524 (9)0.0038 (5)0.0212 (6)0.0053 (6)
O20.0198 (6)0.0087 (7)0.0457 (8)0.0005 (5)0.0219 (6)0.0028 (6)
O30.0297 (7)0.0136 (7)0.0334 (7)0.0068 (5)0.0167 (6)0.0054 (6)
O40.0255 (6)0.0112 (7)0.0367 (8)0.0038 (5)0.0149 (6)0.0028 (6)
O50.0141 (5)0.0155 (7)0.0271 (7)0.0002 (5)0.0105 (5)0.0017 (5)
O60.0120 (5)0.0089 (7)0.0361 (7)0.0021 (5)0.0083 (5)0.0016 (5)
C70.0131 (7)0.0112 (9)0.0118 (7)0.0003 (6)0.0039 (6)0.0007 (6)
C80.0134 (7)0.0120 (9)0.0137 (8)0.0024 (6)0.0054 (6)0.0006 (7)
C90.0156 (7)0.0103 (9)0.0117 (7)0.0005 (6)0.0037 (6)0.0003 (6)
C100.0117 (7)0.0121 (9)0.0132 (7)0.0019 (6)0.0042 (6)0.0017 (6)
C110.0124 (7)0.0110 (9)0.0127 (7)0.0003 (6)0.0048 (6)0.0008 (6)
C120.0141 (7)0.0088 (9)0.0133 (7)0.0001 (6)0.0046 (6)0.0001 (6)
C200.0198 (8)0.0107 (9)0.0156 (8)0.0004 (7)0.0066 (6)0.0006 (7)
C210.0144 (7)0.0108 (9)0.0176 (8)0.0004 (6)0.0066 (6)0.0004 (7)
C220.0145 (7)0.0114 (9)0.0153 (8)0.0001 (6)0.0051 (6)0.0008 (7)
O70.0164 (6)0.0090 (7)0.0297 (7)0.0022 (5)0.0131 (5)0.0004 (5)
O80.0149 (5)0.0150 (7)0.0255 (6)0.0011 (5)0.0134 (5)0.0003 (5)
O90.0242 (6)0.0121 (7)0.0263 (7)0.0059 (5)0.0155 (5)0.0020 (5)
O100.0162 (6)0.0102 (7)0.0252 (7)0.0003 (5)0.0086 (5)0.0046 (5)
O110.0092 (5)0.0118 (6)0.0223 (6)0.0014 (4)0.0050 (5)0.0006 (5)
O120.0129 (5)0.0075 (6)0.0304 (7)0.0010 (5)0.0080 (5)0.0024 (5)
C10.0130 (7)0.0089 (9)0.0112 (7)0.0005 (6)0.0045 (6)0.0009 (6)
C20.0112 (7)0.0086 (9)0.0118 (7)0.0002 (6)0.0041 (6)0.0020 (6)
C30.0105 (7)0.0111 (9)0.0131 (7)0.0027 (6)0.0047 (6)0.0006 (6)
C40.0143 (7)0.0101 (9)0.0119 (7)0.0012 (6)0.0044 (6)0.0004 (6)
C50.0114 (7)0.0127 (9)0.0130 (7)0.0021 (6)0.0058 (6)0.0001 (6)
C60.0117 (7)0.0101 (9)0.0118 (7)0.0004 (6)0.0055 (6)0.0008 (6)
C170.0132 (7)0.0126 (9)0.0115 (7)0.0011 (6)0.0060 (6)0.0010 (6)
C180.0151 (7)0.0120 (9)0.0145 (8)0.0007 (6)0.0046 (6)0.0000 (7)
C190.0121 (7)0.0108 (9)0.0122 (7)0.0000 (6)0.0046 (6)0.0010 (6)
N10.0130 (6)0.0137 (8)0.0243 (8)0.0002 (6)0.0111 (6)0.0004 (6)
N20.0105 (6)0.0143 (8)0.0263 (8)0.0011 (6)0.0071 (6)0.0015 (6)
C130.0175 (8)0.0144 (10)0.0233 (9)0.0017 (7)0.0088 (7)0.0002 (7)
C140.0162 (8)0.0208 (10)0.0194 (9)0.0005 (7)0.0051 (7)0.0016 (7)
C150.0200 (8)0.0229 (11)0.0210 (9)0.0012 (7)0.0114 (7)0.0002 (8)
C160.0375 (12)0.0498 (16)0.0311 (12)0.0013 (11)0.0079 (9)0.0155 (11)
N30.0185 (7)0.0134 (8)0.0254 (8)0.0034 (6)0.0081 (6)0.0021 (6)
N40.0237 (7)0.0116 (8)0.0232 (8)0.0034 (6)0.0087 (6)0.0001 (6)
C230.0291 (10)0.0294 (12)0.0227 (10)0.0011 (9)0.0055 (8)0.0049 (8)
C240.0187 (8)0.0143 (10)0.0225 (9)0.0010 (7)0.0102 (7)0.0013 (7)
C250.0250 (9)0.0177 (10)0.0246 (9)0.0021 (8)0.0061 (7)0.0048 (8)
C260.0306 (10)0.0203 (11)0.0203 (9)0.0054 (8)0.0030 (8)0.0027 (8)
N50.0235 (7)0.0125 (8)0.0245 (8)0.0036 (6)0.0113 (6)0.0008 (6)
N60.0194 (7)0.0152 (9)0.0276 (8)0.0025 (6)0.0096 (6)0.0050 (7)
C270.0305 (10)0.0392 (14)0.0256 (10)0.0070 (9)0.0115 (8)0.0062 (9)
C280.0266 (9)0.0191 (11)0.0226 (9)0.0031 (8)0.0105 (7)0.0009 (8)
C290.0222 (8)0.0171 (10)0.0247 (9)0.0045 (7)0.0083 (7)0.0019 (8)
C300.0165 (8)0.0196 (10)0.0234 (9)0.0021 (7)0.0082 (7)0.0009 (8)
Geometric parameters (Å, º) top
O1—C211.214 (2)N1—H1A0.86 (2)
O2—H20.96 (3)N1—C131.326 (2)
O2—C211.303 (2)N1—C141.370 (2)
O3—C201.247 (2)N2—H2A0.89 (3)
O4—C201.258 (2)N2—C131.330 (2)
O5—C221.218 (2)N2—C151.371 (2)
O6—H60.93 (3)C13—C161.483 (3)
O6—C221.318 (2)C14—H140.9500
C7—C81.394 (2)C14—C151.348 (2)
C7—C121.391 (2)C15—H150.9500
C7—C221.492 (2)C16—H16A0.9800
C8—H80.9500C16—H16B0.9800
C8—C91.389 (2)C16—H16C0.9800
C9—C101.394 (2)N3—H3A0.93 (3)
C9—C201.519 (2)N3—C241.332 (2)
C10—H100.9500N3—C251.383 (2)
C10—C111.392 (2)N4—H41.00 (3)
C11—C121.393 (2)N4—C241.323 (2)
C11—C211.499 (2)N4—C261.380 (2)
C12—H120.9500C23—H23A0.9800
O7—C171.255 (2)C23—H23B0.9800
O8—C171.2650 (19)C23—H23C0.9800
O9—C181.214 (2)C23—C241.482 (3)
O10—H10A0.93 (3)C25—H250.9500
O10—C181.338 (2)C25—C261.339 (3)
O11—C191.2555 (19)C26—H260.9500
O12—C191.263 (2)N5—H5A1.01 (3)
C1—H10.9500N5—C281.380 (2)
C1—C21.398 (2)N5—C301.330 (2)
C1—C61.393 (2)N6—H6A0.92 (3)
C2—C31.390 (2)N6—C291.380 (2)
C2—C191.504 (2)N6—C301.335 (2)
C3—H30.9500C27—H27A0.9800
C3—C41.391 (2)C27—H27B0.9800
C4—C51.392 (2)C27—H27C0.9800
C4—C181.486 (2)C27—C301.482 (3)
C5—H50.9500C28—H280.9500
C5—C61.388 (2)C28—C291.346 (3)
C6—C171.510 (2)C29—H290.9500
C21—O2—H2109.5C13—N2—H2A125.4
C22—O6—H6109.5C13—N2—C15109.13 (14)
C8—C7—C22118.97 (14)C15—N2—H2A125.4
C12—C7—C8119.95 (15)N1—C13—N2107.36 (16)
C12—C7—C22121.07 (15)N1—C13—C16125.80 (17)
C7—C8—H8119.7N2—C13—C16126.82 (17)
C9—C8—C7120.64 (15)N1—C14—H14126.8
C9—C8—H8119.7C15—C14—N1106.39 (15)
C8—C9—C10118.98 (16)C15—C14—H14126.8
C8—C9—C20120.62 (15)N2—C15—H15126.4
C10—C9—C20120.39 (15)C14—C15—N2107.24 (16)
C9—C10—H10119.6C14—C15—H15126.4
C11—C10—C9120.84 (15)C13—C16—H16A109.5
C11—C10—H10119.6C13—C16—H16B109.5
C10—C11—C12119.68 (15)C13—C16—H16C109.5
C10—C11—C21119.43 (14)H16A—C16—H16B109.5
C12—C11—C21120.88 (15)H16A—C16—H16C109.5
C7—C12—C11119.86 (16)H16B—C16—H16C109.5
C7—C12—H12120.1C24—N3—H3A125.5
C11—C12—H12120.1C24—N3—C25108.95 (15)
O3—C20—O4126.72 (17)C25—N3—H3A125.5
O3—C20—C9117.21 (15)C24—N4—H4125.8
O4—C20—C9116.06 (15)C24—N4—C26108.48 (16)
O1—C21—O2124.30 (16)C26—N4—H4125.8
O1—C21—C11121.75 (16)H23A—C23—H23B109.5
O2—C21—C11113.94 (14)H23A—C23—H23C109.5
O5—C22—O6124.31 (15)H23B—C23—H23C109.5
O5—C22—C7122.51 (16)C24—C23—H23A109.5
O6—C22—C7113.17 (14)C24—C23—H23B109.5
C18—O10—H10A109.5C24—C23—H23C109.5
C2—C1—H1119.8N3—C24—C23126.04 (17)
C6—C1—H1119.8N4—C24—N3108.31 (16)
C6—C1—C2120.38 (16)N4—C24—C23125.65 (17)
C1—C2—C19120.38 (15)N3—C25—H25126.8
C3—C2—C1119.79 (14)C26—C25—N3106.40 (17)
C3—C2—C19119.76 (14)C26—C25—H25126.8
C2—C3—H3120.1N4—C26—H26126.1
C2—C3—C4119.79 (15)C25—C26—N4107.85 (16)
C4—C3—H3120.1C25—C26—H26126.1
C3—C4—C5120.21 (16)C28—N5—H5A125.5
C3—C4—C18122.08 (15)C30—N5—H5A125.5
C5—C4—C18117.69 (14)C30—N5—C28108.92 (16)
C4—C5—H5119.8C29—N6—H6A125.6
C6—C5—C4120.39 (15)C30—N6—H6A125.6
C6—C5—H5119.8C30—N6—C29108.78 (16)
C1—C6—C17120.59 (15)H27A—C27—H27B109.5
C5—C6—C1119.38 (15)H27A—C27—H27C109.5
C5—C6—C17119.97 (14)H27B—C27—H27C109.5
O7—C17—O8125.41 (15)C30—C27—H27A109.5
O7—C17—C6116.86 (14)C30—C27—H27B109.5
O8—C17—C6117.73 (15)C30—C27—H27C109.5
O9—C18—O10123.24 (16)N5—C28—H28126.4
O9—C18—C4122.42 (15)C29—C28—N5107.12 (17)
O10—C18—C4114.33 (14)C29—C28—H28126.4
O11—C19—O12124.16 (14)N6—C29—H29126.5
O11—C19—C2118.50 (15)C28—C29—N6107.06 (17)
O12—C19—C2117.33 (14)C28—C29—H29126.5
C13—N1—H1A125.1N5—C30—N6108.11 (16)
C13—N1—C14109.87 (15)N5—C30—C27125.55 (18)
C14—N1—H1A125.1N6—C30—C27126.33 (17)
C7—C8—C9—C101.5 (2)C3—C4—C5—C61.5 (2)
C7—C8—C9—C20176.91 (14)C3—C4—C18—O9163.64 (16)
C8—C7—C12—C111.9 (2)C3—C4—C18—O1017.1 (2)
C8—C7—C22—O51.9 (2)C4—C5—C6—C11.6 (2)
C8—C7—C22—O6179.37 (14)C4—C5—C6—C17178.78 (14)
C8—C9—C10—C111.2 (2)C5—C4—C18—O914.6 (2)
C8—C9—C20—O3175.60 (15)C5—C4—C18—O10164.63 (14)
C8—C9—C20—O45.4 (2)C5—C6—C17—O7167.31 (14)
C9—C10—C11—C120.7 (2)C5—C6—C17—O813.4 (2)
C9—C10—C11—C21177.89 (14)C6—C1—C2—C32.4 (2)
C10—C9—C20—O36.0 (2)C6—C1—C2—C19174.27 (14)
C10—C9—C20—O4173.05 (15)C18—C4—C5—C6179.87 (14)
C10—C11—C12—C72.3 (2)C19—C2—C3—C4174.28 (14)
C10—C11—C21—O14.4 (2)N1—C14—C15—N20.1 (2)
C10—C11—C21—O2176.85 (15)C13—N1—C14—C150.4 (2)
C12—C7—C8—C90.0 (2)C13—N2—C15—C140.5 (2)
C12—C7—C22—O5177.56 (16)C14—N1—C13—N20.8 (2)
C12—C7—C22—O61.2 (2)C14—N1—C13—C16177.78 (19)
C12—C11—C21—O1174.23 (16)C15—N2—C13—N10.8 (2)
C12—C11—C21—O24.5 (2)C15—N2—C13—C16177.7 (2)
C20—C9—C10—C11177.28 (14)N3—C25—C26—N40.0 (2)
C21—C11—C12—C7176.33 (14)C24—N3—C25—C260.4 (2)
C22—C7—C8—C9179.44 (14)C24—N4—C26—C250.5 (2)
C22—C7—C12—C11177.51 (14)C25—N3—C24—N40.7 (2)
C1—C2—C3—C42.5 (2)C25—N3—C24—C23179.16 (18)
C1—C2—C19—O11163.18 (15)C26—N4—C24—N30.7 (2)
C1—C2—C19—O1215.8 (2)C26—N4—C24—C23179.13 (18)
C1—C6—C17—O715.5 (2)N5—C28—C29—N60.4 (2)
C1—C6—C17—O8163.84 (14)C28—N5—C30—N60.3 (2)
C2—C1—C6—C50.4 (2)C28—N5—C30—C27179.94 (17)
C2—C1—C6—C17176.77 (14)C29—N6—C30—N50.0 (2)
C2—C3—C4—C50.5 (2)C29—N6—C30—C27179.67 (18)
C2—C3—C4—C18177.76 (14)C30—N5—C28—C290.5 (2)
C3—C2—C19—O1113.5 (2)C30—N6—C29—C280.2 (2)
C3—C2—C19—O12167.44 (15)
Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2btc- anion in 1 top
C10—C111.392 (2)C7—C121.391 (2)C8—C91.389 (2)
C11—C121.393 (2)C7—C81.394 (2)C9—C101.394 (2)
C11—C211.499 (2)C7—C221.492 (2)C9—C201.519 (2)
O1—C211.214 (2)O3—C201.247 (2)O5—C221.218 (2)
O2—C211.303 (2)O4—C201.258 (2)O6—C221.318 (2)
C10—C11—C12119.68 (15)C7—C12—C11119.86 (16)O1—C21—O2124.30 (16)
C9—C8—C7120.68 (15)C12—C7—C8119.93 (15)O3—C20—O4126.76 (17)
C8—C9—C10118.98 (16)C11—C10—C9120.84 (15)O5—C22—O6124.31 (15)
C10—C11—C21—O1-4.4 (2)C10—C9—C20—O4-173.05 (15)C10—C11—C12—-C72.3 (2)
C12—C11—C21—O1174.23 (16)C8—C9—C20—O45.4 (2)C12—C7—C8—C90.0 (2)
C10—C11—C21—O2176.85 (15)C12—C7—C22—O5-177.56 (16)C7—C8—C9—C101.5 (2)
C12—C11—C21—O2-4.5 (2)C8—C7—C22—O51.9 (2)C8—C9—C10—C11-1.2 (2)
C10—C9—C20—O36.0 (2)C12—C7—C22—O61.2 (2)C8—C7—C12—C11-1.9 (2)
C8—C9—C20—O3-175.60 (15)C8—C7—C22—O6-179.37 (15)C9—C10—C11—C12-0.7 (2)
Selected bond lengths (Å), angles (°) and torsion angles (°) of the Hbtc2- anion in 1 top
C1—C61.393 (2)C2—C31.39 (2)C4—C51.392 (2)
C1—C21.398 (2)C3—C41.391 (2)C5—C61.388 (2)
C2—C191.504 (2)C4—C181.486 (2)C6—C171.510 (2)
O7—C171.255 (2)O9—C181.214 (2)O11—C191.2555 (19)
O8—C171.2650 (19)O10—C181.338 (2)O12—C191.263 (2)
C2—C3—C4119.79 (15)C6—C1—C2120.38 (16)O7—C17—O8125.41 (15)
C6—C5—C4120.39 (15)C3—C2—C1119.79 (14)O9—C18—O10123.24 (16)
C3—C4—C5120.21 (16)C5—C6—C1119.38 (15)O11—C19—O12124.16 (15)
C1—C6—C17—O715.5 (2)C3—C4—C18—O1017.1 (2)C1—C2—C3—C42.5 (2)
C5—C6—C17—O7167.31 (14)C5—C4—C18—O10164.63 (14)C2—C3—C4—C5-0.5 (2)
C1—C6—C17—O8163.84 (15)C1—C2—C19—O11-163.18 (15)C2—C1—C6—C5-0.4 (2)
C5—C6—C17—O8-13.4 (2)C3—C2—C19—O1113.5 (2)C3—C4—C5—C6-1.5 (2)
C3—C4—C18—O9-163.64 (16)C1—C2—C19—O1215.8 (2)C4—C5—C6—C11.6 (2)
C5—C4—C18—O914.6 (2)C3—C2—C19—O12-167.44 (15)C6—C1—C2—C3-2.4 (2)
Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2-mIm+ cations in 1 top
ABC
C13—C161.483 (3)C23—C241.482 (3)C27—C301.482 (3)
C14—C151.348 (2)C25—C261.339 (3)C28—C291.346 (3)
N1—C131.326 (2)N3—C241.332 (2)N5—C301.330 (2)
N1—C141.370 (2)N3—C251.383 (2)N5—C281.380 (2)
N2—C131.330 (2)N4—C241.323 (2)N6—C301.335 (2)
N2—C151.371 (2)N4—C261.380 (2)N6—C291.380 (2)
C13—N2—C15109.13 (14)C28—C29—N6106.06 (17)C24—N4—C26108.48 (16)
C13—N1—C14109.87 (15)C29—C28—N5107.12 (17)C24—N3—C25109.08 (15)
C14—C15—N2107.24 (16)C30—N5—C28109.18 (16)C25—C26—N4107.85 (16)
C15—C14—N1106.39 (15)C30—N6—C29108.92 (16)C26—C25—N3106.35 (17)
N1—C13—N2107.36 (16)N4—C24—N3108.31 (16)N5—C30—N6107.91 (16)
N1—C14—C15—N20.1 (2)N3—C25—C26—N40.0 (2)N5—C28—C29—N6-0.5 (2)
C13—N1—C14—C150.4 (2)C24—N3—C25—C260.4 (2)C30—N5—C28—C290.5 (2)
C14—N1—C13—N2-0.8 (2)C25—N3—C24—N40.7 (2)C28—N5—C30—N6-0.2 (2)
C13—N2—C15—C14-0.5 (2)C24—N4—C26—C25-0.5 (2)C30—N6—C29—C280.4 (2)
C15—N2—C13—N10.8 (2)C26—N4—C24—N30.7 (2)C29—N6—C30—N50.0 (2)
C14—N1—C13—C16177.8 (2)C26—N4—C24—C23179.13 (18)C28—N5—C30—C27-179.94 (17)
C15—N2—C13—C16-177.7 (2)C25—N3—C24—C23179.12 (18)C29—N6—C30—C27179.67 (18)
Hydrogen-bond geometry (Å, °). top
Graph-set descriptortypeD—HH···AD···AD—H···A
N1—H1A···O8VD(2)d0.86 (2)1.911 (18)2.737 (2)160.8 (7)
O2—H2···O7iD(2)a0.96 (3)1.57 (2)2.5222 (19)170.7 (17)
N2—H2A···O11ivD(2)e0.88 (3)1.93 (2)2.806 (2)172.5 (13)
N3—H3A···O11D(2)f0.935 (19)1.874 (19)2.778 (2)162.1 (18)
N4—H4···O4viD(2)g1.01 (2)1.59 (2)2.593 (2)172.6 (9)
N5—H5A···O3viiD(2)h1.01 (2)1.69 (2)2.655 (2)159.9 (5)
O6—H6···O12iiD(2)b0.93 (3)1.69 (2)2.6189 (19)171.7 (16)
N6—H6A···O8D(2)i0.921 (17)1.886 (19)2.800 (2)170.9 (13)
O10—H10A···O12iiiC(8)c0.93 (3)1.71 (3)2.6156 (18)162 (2)
C14—H14···O1v0.952.523.098 (2)119
C15—H15···O100.952.463.280 (2)144
C15—H15···O5iv0.952.383.038 (2)126
C25—H25···O50.952.553.292 (2)135
C27—H27B···O90.982.413.380 (3)168
C28—H28···O9vii0.952.392.990 (2)121
C29—H29···O10.952.333.108 (2)138
(i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) 3/2 - x, 1/2 + y, 1/2 - z; (iv) -1/2 + x, 3/2 - y, -1/2 + z; (v) 1/2 + x, 3/2 - y, -1/2 + z; (vi) 2 - x, 2 - y, 1 - z; (vii 1 - x, 2 - y, 1 - z.
Second- and third-level graph sets top
Second-levelThird-level
C22(16)>a<bC23(18)>a>c<bD33(17)>d<b<h
D33(17)>a>c<aC33(24)>a<c<bD33(13)>e<b<g
D22(5)>a<dR56(42)>a>cba<c<bD33(13)>e<b<h
D22(9)>a<eD33(17)>a<c<dC33(16)>b<f>g
D22(9)>a<fD33(17)>a>c<dD33(13)>f<b<h
D22(10)>g>aD33(13)>a>c<eD33(17)>g>b<i
D22(10)>h>aD33(17)>a<c<eC33(20)>bih
D22(5)>a<iD33(13)>a>c<fC33(16)>c<e>d
D23 (11)>b>c<bD33(17)>a<c<fC33(20)>c<d>e
D22(9)>b<dD33(17)>a<c<iR66(36)>c<d>e<c<d>e
D22(5)>b<eD33(17)>a>c<iD33(13)>d>c<f
D22(5)>b<fD33(13)>d<a<gD33(17)>d<c<f
D22(10)>g>bD33(13)>d<a<hD33(17)>d<c<i
D22(10)>h>bD33(17)>e<a<gD33(17)>d>c<i
D22(9)>b<iD33(17)>e<a<hD33(13)>e<c<f
D33(17)>d>c<dC33(20)>a<f>gD33(13)>e>c<f
D33(13)>e>c<eD33(17)>f<a<hD33(13)>e<c<i
D33(13)>f>c<fD33(13)>g>a<iD33(17)>e>c<i
D33(17)>i>c<iC33(16)>aihD33(13)>f<c<i
C22(12)>d<eD23(11)>b<c<dD33(17)>f>c<i
D22(9)>d<fD33(17)>b>c<dD33(14)>d<f>g
D12(3)>d<iD23(11)>b<c<eD23(8)>dih
D12(3)>e<fD33(13)>b>c<eD23(8)>e<f>g
D22(9)>e<iD23(11)>b<c<fD33(14)>eih
D22(7)<f>gD33(13)>b>c<fD33(10)>h<g>f
D22(9)>f<iD23(11)>b<c<iD33(14)>i<f>g
D22(5)>g<hD33(17)>b>c<iD33(14)>fih
D22(7)<h>iD33 (17)>d<b<gD33(10)>g<h>i
 

Funding information

Funding for this research was provided by: HG-recruitment, HG-Innovation ‘ECRAPS’, HG-Innovation DSF/DASHH and CMWS (grant to ST); LMAH thanks the DESY-Helmholtz-Summer student fund for financial support.

References

First citationAakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.  Google Scholar
First citationAbdelhamid, H. N. (2021). Curr. Med. Chem. 28, 7023–7075.  Web of Science CrossRef CAS PubMed Google Scholar
First citationArunachalam, M., Chakraborty, S., Marivel, S. & Ghosh, P. (2012). Cryst. Growth Des. 12, 2097–2108.  Web of Science CSD CrossRef CAS Google Scholar
First citationBaletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088–1092.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBanerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBasu, T., Sparkes, H. A. & Mondal, R. (2009). Cryst. Growth Des. 9, 5164–5175.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCallear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898–908.  Web of Science CSD CrossRef CAS Google Scholar
First citationChan, P. C. (2004). TOXIC Rep Ser, 1–G12.  Google Scholar
First citationChen, Z., Zhang, Q., Huang, L., Li, R., Li, W., Xu, G. & Cheng, H. (2014). J. Phys. Chem. C, 118, 21244–21249.  Web of Science CrossRef CAS Google Scholar
First citationChui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112–123.  Web of Science CSD CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEmani, S., Vangala, A., Buonocore, F., Yarandi, N. & Calabrese, G. (2023). Pharmaceutics 15, 1084.  Web of Science CrossRef PubMed Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFalek, W., Benali-Cherif, R., Golea, L., Samai, S., Benali-Cherif, N., Bendeif, E.-E. & Daoud, I. (2019). J. Mol. Struct. 1192, 132–144.  Web of Science CSD CrossRef CAS Google Scholar
First citationFan, Q.-R., Shi, X., Xin, M.-H., Wu, G., Tian, G., Zhu, G. S., Li, Y.-F., Ye, L., Wang, C.-L., Zhang, Z. D., Tang, L. L. & Qiu, S.-L. (2003). Gaodeng Xuexiao Huaxue Xuebao, 24, 28.  Google Scholar
First citationFérey, G., Serre, C., Mellot–Draznieks, C., Millange, F., Surblé, S., Dutour, J. & Margiolaki, I. (2004). Angew. Chem. Int. Ed. 43, 6296–6301.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHa, N. T. N., Gopakumar, T. G., Gutzler, R., Lackinger, M., Tang, H. & Hietschold, M. (2010). J. Phys. Chem. C, 114, 3531–3536.  Web of Science CrossRef Google Scholar
First citationHabib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201–206.  Google Scholar
First citationHinokimoto, A., Izu, H., Wei, Y.-S., Nakajo, T., Matsuda, R. & Horike, S. (2021). Cryst. Growth Des. 21, 6031–6036.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, H., Zhang, W., Liu, D., Liu, B., Chen, G. & Zhong, C. (2011). Chem. Eng. Sci. 66, 6297–6305.  Web of Science CrossRef CAS Google Scholar
First citationIancu, V., Braun, K.-F., Schouteden, K. & Van Haesendonck, C. (2013). Langmuir, 29, 11593–11599.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKorolkov, V. V., Allen, S., Roberts, C. J. & Tendler, S. J. B. (2012). J. Phys. Chem. C, 116, 11519–11525.  Web of Science CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, S.-Y. & Li, P. (2016). Z. Kristallogr. 231, 525–528.  CAS Google Scholar
First citationLie, S., Maris, T., Malveau, C., Beaudoin, D., Helzy, F. & Wuest, J. D. (2013). Cryst. Growth Des. 13, 1872–1877.  Web of Science CSD CrossRef CAS Google Scholar
First citationLin, X., Wang, Z., Cao, S., Hu, Y., Liu, S., Chen, X., Chen, H., Zhang, X., Wei, S., Xu, H., Cheng, Z., Hou, Q., Sun, D. & Lu, X. (2023). Nat. Commun. 14, 6714.  Web of Science CrossRef PubMed Google Scholar
First citationMacLeod, J. (2019). J. Phys. D Appl. Phys. 53, 043002.  Web of Science CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311.  Web of Science CrossRef PubMed Google Scholar
First citationMelendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215.  CSD CrossRef CAS Web of Science Google Scholar
First citationMeng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217–o221.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPark, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQu, S. (2007). Acta Cryst. E63, o4071.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRajkumar, M., Muthuraja, P., Dhandapani, M. & Chandramohan, A. (2020). Opt. Laser Technol. 124, 105970.  Web of Science CSD CrossRef Google Scholar
First citationSalamończyk, G. M. (2011). Tetrahedron Lett. 52, 155–158.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, C., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580.  Web of Science CSD CrossRef CAS Google Scholar
First citationSingh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421–1433.  Web of Science CSD CrossRef CAS Google Scholar
First citationSong, Y., Yu, C., Ma, D. & Liu, K. (2024). Coord. Chem. Rev. 499, 215492.  Web of Science CrossRef Google Scholar
First citationSosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118.  Google Scholar
First citationSun, C.-Y., Qin, C., Wang, X.-L., Yang, G.-S., Shao, K.-Z., Lan, Y.-Q., Su, Z.-M., Huang, P., Wang, C.-G. & Wang, E.-B. (2012). Dalton Trans. 41, 6906–6909.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). ACS Appl. Mater. 12, 15588–15594.  Web of Science CSD CrossRef CAS Google Scholar
First citationVelazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814–817.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, X.-R. & Zhang, L. (2017). J. Mol. Struct. 1137, 320–327.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024). J. Alloys Compd. 974, 172897.  Web of Science CrossRef Google Scholar
First citationZhong, G., Liu, D. & Zhang, J. (2018a). Cryst. Growth Des. 18, 7730–7744.  Web of Science CrossRef CAS Google Scholar
First citationZhong, G., Liu, D. & Zhang, J. (2018b). J. Mater. Chem. A, 6, 1887–1899.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds