

research communications
Synthesis and structure of tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate
aDepartment of Chemistry, Faculty of Natural and Exact Sciences, Universidad del, Valle, Calle 13 No. 100-00, 760042 Cali, Colombia, bInstitut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany, and cDeutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
*Correspondence e-mail: jose.velazquez@desy.de
The structure of the title salt, 3C4H7N2+·C9H5O6−·C9H4O62−, 1, consists of three 2-methyl-imidazolium cations and both a single and a doubly deprotonated form of trimesic acid as anions. A detailed analysis of the bond lengths and angles reveals both differences and similarities between compound 1 and the previously reported 2-methyl-1H-imidazol-3-ium 3,5-dicarboxybenzoate structure [Baletska et al. (2023). Acta Cryst. E79, 1088–109], as well as the neutral counterpart of the ions. Examination of the crystal packing shows the formation of infinite chains by the anions, which, along with the cations, form zigzag planes parallel to the ab plane. The packing interactions are primarily driven by π–π interactions and hydrogen bonding between anions.
Keywords: crystal structure; 2-methylimidazole; trimesic acid.
CCDC reference: 2428811
1. Chemical context
Trimesic acid (H3btc, or benzene-1,2,3-tricarboxylic acid) and 2-methylimidazole (2-mIm) are two well-known organic compounds with a wide range of applications. Trimesic acid, a planar and highly symmetrical trifunctional compound, has been used for self-assembled molecular monolayers and surface functionalization (Ha et al., 2010; Lin et al., 2023
; Chen et al., 2014
; Korolkov et al., 2012
; MacLeod, 2019
; Iancu et al., 2013
). Additionally, H3btc, along with dendrimers based on it, has been employed in biomolecular delivery systems (Salamończyk, 2011
; Mat Yusuf et al., 2017
; Emani et al., 2023
). On the other hand, 2-mIm, a nitrogen-containing heterocyclic organic compound, is widely used in the preparation of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments, agricultural chemicals, and in rubber production (Hachuła et al., 2010
; Chan, 2004
). Both H3btc and 2-mIm are also well-known ligands in the syntheses of metal–organic frameworks (MOFs), such as HKUST-1 (Chui et al., 1999
), MIL-100 (Férey et al., 2004
), ZIF-8 (Park et al., 2006
), and ZIF-67 (Banerjee et al., 2008
), which have applications in gas adsorption, catalysis, and drug delivery, among others (Zhong et al., 2018a
,b
; Zhao et al., 2024
; Huang et al., 2011
; Song et al., 2024
; Abdelhamid, 2021
; Sun et al., 2012
).
In our previous studies, we synthesised hexaaquacobalt bis(2-methyl-1H-imidazol-3-ium) tetraaquabis(benzene-1,3,5-tricarboxylato-κO)cobalt (Velazquez-Garcia & Techert, 2022) and 2-methyl-1H-imidazol-3-ium 3,5-dicarboxybenzoate (Baletska et al., 2023
) using 2-mIm and H3btc as organic compounds. In this work, we used the same organic compounds to synthesise the title compound, 1.
2. Structural commentary
Compound 1 crystallizes with one H2btc−, one Hbtc2−, and three H2-mIm+ ions in the P21/n. An ellipsoid plot illustrating these ionic species is shown in Fig. 1. For clarity, the three crystallographically independent cations are labelled as A, B, and C to facilitate their identification.
![]() | Figure 1 Single-crystal X-ray structure of 1 with displacement ellipsoids drawn at the 50% probability level. |
Table 1 presents selected bond distances and angles of the H2btc− ion, while Table 2
shows those for the Hbtc2− ion. The shortest bond in the H2btc− ion is between C21 and O1 at 1.214 (2) Å, while the longest is between C9 and C20 at 1.519 (2) Å. In the Hbtc2− ion, the shortest bond is C18—O9 at 1.214 (2) Å, and the longest is C6—C17 at 1.510 (2) Å.
|
|
The C—C and C—O bond lengths in the H2btc− ion range from 1.389 (2) to 1.519 (2) Å and 1.214 (2) to 1.318 (2) Å, respectively. For the Hbtc2− ion, the C—C bond lengths span 1.388 (2) to 1.510 (2) Å, while the C—O bonds range from 1.214 (2) to 1.338 (2) Å. These values are comparable to those in the neutral H3btc molecule (Tothadi et al., 2020), where the C—C bond lengths range from 1.381 (6) to 1.494 (9) Å, and C—O bonds range from 1.229 (5) to 1.303 (5) Å. They are also consistent with the bond lengths observed in the H2btc− anion reported in our previous work (Baletska et al., 2023
), and featuring ranges of 1.388 (2)–1.511 (2) Å for C—C bonds and 1.224 (2)–1.320 (2) Å for C—O bonds.
The C—C—C angles in H2btc− in 1 range from 118.9 (2) to 120.8 (2)°, while in the Hbtc2− ion, they fall between 119.4 (2) and 120.4 (2)°. These values are comparable to the corresponding angles in H3btc [119.0 (4)–121.1 (4)°] and H2btc− reported by Baletska et al. (2023) [118.9 (2)–121.4 (4)°]. The O—C—O angles in the H2btc− ion in complex 1 span 124.3 (2) to 126.8 (2)°, and in the Hbtc2− ion, they range from 123.2 (2) to 125.4 (2)°. These values are also consistent with those found in neutral H3btc [124.4 (4)–125.0 (4)°] and in H2btc− from [123.9 (2)–126.1 (2)°; Baletska et al., 2023
].
The main difference between the anions in 1, the neutral H3btc molecule, and the H2btc− ion (Baletska et al., 2023) lies in their torsion angles. In the H3btc molecule, the oxygen atoms are nearly coplanar with the aromatic ring, with torsion angles deviating from 0 or 180° by no more than 4.2 (4)°. H2btc− (Baletska et al., 2023
) shows a wider deviation range, from 4.2 (2) to 16.6 (2)°. In comparison, the H2btc− ion in 1 exhibits intermediate values, ranging from 0.6 (2) to 7.0 (2)°, whereas the Hbtc2− ion shows the largest torsion angles, ranging from 12.6 (2) to 17.1 (2)°.
These differences are further emphasised through molecular overlays generated using Mercury software (Macrae et al., 2020). The overlays (Fig. 2
) show that the H2btc− ion in 1 resembles the neutral H3btc more closely (root-mean-square deviation, r.m.s.d. = 0.0683 Å; maximal deviation, max. d. = 0.1257 Å) than the H2btc− ion) (r.m.s.d. = 0.1039 Å; max. d. = 0.2189 Å; Baletska et al., 2023
). On the other hand, the Hbtc2− ion in 1 shows a lower resemblance to H3btc (r.m.s.d. = 0.1856 Å; max. d. = 0.3985 Å) compared to the H2btc− ion (r.m.s.d. = 0.09 Å; max. d. = 0.2344 Å; Baletska et al., 2023
). Note that hydrogen atoms were excluded from the model during the overlay process.
![]() | Figure 2 Overlay plot comparing the H2btc− (dark blue) and Hbtc2− (light blue) ions in 1 with (a) H3btc (red; Tothadi et al. 2020 ![]() ![]() |
Table 3 presents selected bond lengths, angles, and torsions for the H2-mIm+ cations. The C—C bond distances fall in the range 1.339 (3)–1.483 (3) Å, while the C—N bonds vary from 1.323 (2) to 1.383 (2) Å. These values are comparable to the corresponding distances observed in the neutral 2-mIm+ molecule reported by Hachuła et al. (2010
) [C—C = 1.367 (1)–1.488 (1) Å, C—N = 1.329 (1)–1.385 (1) Å] and in the H2-mIm+ ion reported by Baletska et al. (2023
) [C—C = 1.345 (3)–1.481 (3) Å, C—N = 1.327 (2)–1.377 (2) Å].
|
Imidazole derivatives often exhibit an asymmetry in the two endocyclic N—C bonds (Hachuła et al., 2010). However, this asymmetry is minimal in all three cations of 1, with differences between the two N—C bond lengths of 0.001 (3), 0.003 (3), and 0.0 (3) Å for cations A, B, and C, respectively. These values are comparable with the asymmetry found in the H2-mIm+ ion [0.008 (3) Å; Baletska et al., 2023
] and are significantly smaller than that reported for the neutral molecule [0.022 (1) Å]. This increased symmetry supports the idea that protonation of the imidazole reduces the disparity between the two endocyclic N—C bonds.
Protonation to an H2-mIm+ ion also leads to a more symmetrical heterocyclic ring. In the H2-mIm+ ion (Baletska et al., 2023), this increased symmetry is observed in the C—C—N and N—C—N angles of the heterocyclic ring, which closely approach the ideal pentagon angle of 108°, with a maximum deviation of 1.6 (2)°. In contrast, the neutral 2-mIm molecule shows a larger deviation of 3.4 (1)°. In compound 1, the maximum deviations from the ideal angles of a pentagon are 1.9 (2), 1.9 (2), and 1.7 (2)° for cations A, B, and C, respectively. These values confirm that the protonated imidazole exhibits a more symmetrical ring structure than its neutral counterpart.
An analysis of the torsion angles in all cations in compound 1 reveals that the methyl group in cation A is less coplanar to the ring than in other cations. This is evident from the maximum deviation from 180° of the C—N—C—CMe torsion angles (where CMe represents the carbon from the methyl group). Cation A shows a deviation of 2.3 (2)°, while cations B and C exhibit smaller deviations of 0.9 (2) and 0.3 (2)°, respectively. The deviation in cation A is also larger than that observed in the neutral molecule [0.7 (1)°] and the H2-mIm+ ion [0.5 (2)°; Baletska et al., 2023]. The root-mean-squared deviation (r. m. s. d.) and maximal deviation (max. d.) values, calculated by Mercury software for the molecular overlays of the three H2-mIm+ cations in 1 with the H2-mIm+ cation (Baletska et al., 2023
) and the neutral molecule (Fig. 3
), show a greater similarity between the protonated forms compared to the neutral molecule. The r. m. s. d. and max. d. values for the cations of 1 and the protonated H2-mIm+ (Baletska et al., 2023
) range from 0.0067 to 0.0140 Å and 0.0092 to 0.0201 Å, respectively, indicating a close resemblance. On the other hand, the values for the neutral molecule are notably higher, ranging from 0.0269 to 0.0297 Å (r.m.s.d.) and 0.0402 to 0.0474 Å (max. d.). In all cases, hydrogen atoms were omitted from the model during the overlay process.
![]() | Figure 3 Overlay plot comparing the three H2-mIm+ ions (dark blue - A, B and C) in 1 with (a) 2-mIm (pink; Hachułaet al., 2010) and (b) H2-mIm+ ion (green; Baletska et al.,, 2023 ![]() |
3. Supramolecular features
The primary intermolecular interaction contributing to the crystal packing includes hydrogen bonds between all ions, along with π–π stacking between anions. Table 4 provides a summary of the hydrogen bonds found within the compound. As shown in Fig. 4
a, infinite chains are formed along the a axis through hydrogen bonding between H2btc− and Hbtc2− anions. These chains are further linked, via hydrogen bonding, with all of the cations, forming zigzag planes parallel to the ab plane (Fig. 4
b,c). Each plane interacts with two types of neighbouring planes: one with a parallel zigzag pattern, interacting via π–π stacking between H2btc− and Hbtc2− ions [centroid-to-centroid distance of 3.5663 (12) Å, perpendicular distance between planes ∼3.3 Å and offset of 1.249 Å], and another arranged in an antiparallel configuration, with the zigzag pattern running in the opposite direction. This antiparallel plane interacts via hydrogen bonding between Hbtc2− ions (Fig. 5
). Note that the spaces observed in the planes in Fig. 4
b are filled by counter-ions from the adjacent planes with a parallel zigzag pattern, ensuring no voids within compound 1.
|
![]() | Figure 4 (a) View down the c axis showing an infinite chain of H2btc−–Hbtc2− anions running along the a axis. A plane formed by the H2-mIm+ ions (green) and the H2btc−-Hbtc2− chains, view down (b) the c axis and (c) the a axis. |
![]() | Figure 5 Crystal packing in compound 1 viewed down the a axis showing the π–π interactions and hydrogen bonding connecting the 2H-mim+–H2btc−–Hbtc2− planes that run parallel to the ab plane. The H2-mIm+ ions are highlighted in green. |
A graph-set analysis (Etter et al., 1990; Bernstein et al., 1995
) allows a more detailed examination of the intermolecular interaction patterns within 1. The analysis reveals that 1 contains nine motifs at the first-level graph set, including eight discrete D(2) motifs and one chain motif C(8), labelled as type c in Table 4
. The second-level graph set (Table 5
) reveals a complex network of intermolecular interactions within 1, featuring various patterns: C22(16) >a<b, C22(12) >d<e, several D33 such as >a>c<a, >d>c<d, >e>c<e, >f>c<f, >i>c<I and many D22, for example >a<d, >a<e and >a<f. A different pattern, rather than discrete and chain, appears in the third order graph set with formation of the rings R56(42) >a>c〈b〉a<c<b (Fig. 6
a) and R36(36) >c<d>e<c<d>e (Fig. 6
b).
|
![]() | Figure 6 View along the c axis showing the formation of hydrogen-bonded ring patterns with the graph-set descriptors: (a) R56(42) and (b) R66(36). |
4. Database survey
No reported structures of the title compound were found in the Cambridge Structural Database (CSD version 5.45, update of November 2023; Groom et al., 2016). The closest to 1 is the previously mentioned structure reported under the refcode LODSUW (Baletska et al., 2023
).
Among the various reported structures containing the H2-mIm+ cation, we highlight those with the following refcodes: BEZGEU (Dhanabal et al., 2013), BOTTEK, BOTTIO, BOTTOU (Meng et al., 2009
), BOTTEK01, BOTTIO01, BOTTOU01, VURBUG, VURCAN, VURFAQ (Callear et al., 2010
), DAMGIL (Hinokimoto et al., 2021
), DOWVUI (Shi et al., 2014
), FAMFIL, FAMFOR, FAMFUX (Zhang & Zhang, 2017
), FETDAK (Aakeröy et al., 2005
), and HILSOL (Qu, 2007
).
Organic compounds containing both H2btc− and Hbtc2- were found with the refcodes: RAVPOV (Arunachalam et al., 2012), SADKUE (Fan et al., 2003
), and TUBBAT (Melendez et al., 1996
). Some compounds with low resemblance to the title compound were reported under the refcodes CUMQUX (Basu et al., 2009
), HICSUJ (Lie et al., 2013
), ILELAO (Li & Li, 2016
), JOCBAH (Falek et al., 2019
), LUBGUM, LUBHAT, LUBHEX, LUBHIB, LUBHOH, LUBHUN, LUBJAV (Singh et al., 2015
), SUHRAR (Rajkumar et al., 2020
), YOCSIT (Habib & Janiak, 2008
), and WOGBED (Sosa-Rivadeneyra et al., 2024
).
5. Synthesis and crystallization
To obtain the title compound, 800 µl of an ethanolic solution of 2-mlm (1.57 M) was diluted in 20 ml of ethanol, followed by the addition of 1 ml of an ethanolic solution of H3btc (0.12 M). The mixture was shaken gently, but no visible changes were observed after 5 min. Crystals of 1 were obtained after 24 h.
6. Refinement
Crystal data, data collection, and structure . The positions of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C) for CH. Hydrogen atoms bonded to nitrogen atoms (N—H) and oxygen atoms (O—H) were treated with free of bond distances and isotropic displacement parameters (Uiso).
|
Supporting information
CCDC reference: 2428811
https://doi.org/10.1107/S2056989025002063/jq2038sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989025002063/jq2038Isup2.cml
3C4H7N2+·C9H4O62−·C9H5O6− | F(000) = 1392 |
Mr = 666.60 | Dx = 1.432 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 14.172 (3) Å | Cell parameters from 5589 reflections |
b = 15.902 (3) Å | θ = 2.5–26.9° |
c = 14.644 (3) Å | µ = 0.11 mm−1 |
β = 110.46 (3)° | T = 100 K |
V = 3092.0 (12) Å3 | Irregular, clear light colourless |
Z = 4 | 0.08 × 0.07 × 0.05 mm |
Bruker P4 diffractometer | Rint = 0.052 |
ω scans | θmax = 27.6°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | h = −18→18 |
Tmin = 0.695, Tmax = 0.746 | k = −17→20 |
36740 measured reflections | l = −19→19 |
7127 independent reflections | Standard reflections: not measured; every not measured reflections |
5287 reflections with I > 2σ(I) | intensity decay: not measured |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.045 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.119 | w = 1/[σ2(Fo2) + (0.0496P)2 + 1.5554P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
7127 reflections | Δρmax = 0.35 e Å−3 |
457 parameters | Δρmin = −0.27 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Hydrogen atoms bonded to nitrogen and oxygen were refined with free isotropic displacement parameters and bond lengths (AFIX 44/148) |
x | y | z | Uiso*/Ueq | ||
O1 | 0.53578 (9) | 0.64000 (8) | 0.61849 (11) | 0.0259 (3) | |
O2 | 0.61872 (9) | 0.52011 (8) | 0.62429 (10) | 0.0220 (3) | |
H2 | 0.5602 (19) | 0.4963 (7) | 0.6328 (19) | 0.053 (8)* | |
O3 | 0.68318 (10) | 0.90396 (8) | 0.54264 (10) | 0.0241 (3) | |
O4 | 0.83140 (9) | 0.89827 (8) | 0.52006 (10) | 0.0234 (3) | |
O5 | 1.02817 (8) | 0.63301 (8) | 0.58809 (9) | 0.0180 (3) | |
O6 | 0.95050 (9) | 0.51574 (8) | 0.60965 (10) | 0.0190 (3) | |
H6 | 1.0140 (19) | 0.4921 (7) | 0.6229 (19) | 0.051 (7)* | |
C7 | 0.86039 (11) | 0.64249 (11) | 0.58751 (11) | 0.0121 (3) | |
C8 | 0.85460 (12) | 0.72890 (11) | 0.57047 (11) | 0.0129 (3) | |
H8 | 0.910200 | 0.757596 | 0.562900 | 0.015* | |
C9 | 0.76831 (12) | 0.77347 (11) | 0.56445 (11) | 0.0128 (3) | |
C10 | 0.68832 (11) | 0.73080 (11) | 0.57804 (11) | 0.0124 (3) | |
H10 | 0.629504 | 0.760943 | 0.575260 | 0.015* | |
C11 | 0.69353 (11) | 0.64458 (11) | 0.59565 (11) | 0.0119 (3) | |
C12 | 0.77922 (11) | 0.60010 (11) | 0.59865 (11) | 0.0121 (3) | |
H12 | 0.782241 | 0.540944 | 0.608288 | 0.015* | |
C20 | 0.76001 (12) | 0.86677 (11) | 0.54084 (12) | 0.0152 (4) | |
C21 | 0.60758 (12) | 0.60123 (11) | 0.61338 (12) | 0.0140 (3) | |
C22 | 0.95475 (12) | 0.59710 (11) | 0.59439 (12) | 0.0137 (3) | |
O7 | 0.52944 (8) | 0.55672 (8) | 0.35759 (9) | 0.0170 (3) | |
O8 | 0.45915 (8) | 0.67838 (8) | 0.37705 (9) | 0.0168 (3) | |
O9 | 0.60022 (9) | 0.94414 (8) | 0.30521 (9) | 0.0191 (3) | |
O10 | 0.73044 (8) | 0.93889 (8) | 0.25158 (9) | 0.0168 (3) | |
H10A | 0.7044 (12) | 0.9897 (17) | 0.2214 (19) | 0.054 (8)* | |
O11 | 0.95291 (8) | 0.68773 (7) | 0.35827 (8) | 0.0146 (3) | |
O12 | 0.87752 (8) | 0.56353 (7) | 0.34820 (9) | 0.0168 (3) | |
C1 | 0.69841 (11) | 0.64122 (11) | 0.34545 (11) | 0.0110 (3) | |
H1 | 0.704556 | 0.582377 | 0.357238 | 0.013* | |
C2 | 0.77796 (11) | 0.68585 (10) | 0.33282 (11) | 0.0105 (3) | |
C3 | 0.76750 (11) | 0.77131 (10) | 0.31188 (11) | 0.0114 (3) | |
H3 | 0.820330 | 0.801448 | 0.300719 | 0.014* | |
C4 | 0.67944 (12) | 0.81258 (11) | 0.30732 (11) | 0.0121 (3) | |
C5 | 0.60164 (11) | 0.76843 (11) | 0.32292 (11) | 0.0120 (3) | |
H5 | 0.542357 | 0.797249 | 0.321299 | 0.014* | |
C6 | 0.61016 (11) | 0.68255 (10) | 0.34084 (11) | 0.0108 (3) | |
C17 | 0.52617 (11) | 0.63554 (11) | 0.35966 (11) | 0.0120 (3) | |
C18 | 0.66564 (12) | 0.90441 (11) | 0.28876 (12) | 0.0140 (3) | |
C19 | 0.87669 (11) | 0.64296 (11) | 0.34702 (11) | 0.0116 (3) | |
N1 | 0.81021 (10) | 0.86622 (9) | −0.05350 (11) | 0.0158 (3) | |
H1A | 0.8634 (15) | 0.86270 (13) | −0.0687 (4) | 0.036 (6)* | |
N2 | 0.65710 (10) | 0.85634 (9) | −0.06081 (11) | 0.0169 (3) | |
H2A | 0.5919 (19) | 0.8450 (3) | −0.0820 (6) | 0.047 (7)* | |
C13 | 0.71886 (12) | 0.84187 (12) | −0.10972 (13) | 0.0180 (4) | |
C14 | 0.80713 (13) | 0.89782 (12) | 0.03242 (13) | 0.0191 (4) | |
H14 | 0.862098 | 0.919778 | 0.085000 | 0.023* | |
C15 | 0.71066 (13) | 0.89158 (12) | 0.02759 (13) | 0.0202 (4) | |
H15 | 0.684631 | 0.908466 | 0.076363 | 0.024* | |
C16 | 0.69127 (17) | 0.80710 (16) | −0.20962 (16) | 0.0405 (6) | |
H16A | 0.652114 | 0.848892 | −0.256907 | 0.061* | |
H16B | 0.650842 | 0.756108 | −0.215027 | 0.061* | |
H16C | 0.752612 | 0.793341 | −0.222948 | 0.061* | |
N3 | 1.04278 (11) | 0.82926 (10) | 0.46433 (11) | 0.0190 (3) | |
H3A | 1.0001 (13) | 0.7868 (13) | 0.4287 (11) | 0.054 (8)* | |
N4 | 1.12129 (11) | 0.94728 (10) | 0.50099 (11) | 0.0194 (3) | |
H4 | 1.1453 (6) | 1.0059 (16) | 0.49572 (18) | 0.051 (7)* | |
C23 | 1.00047 (15) | 0.93620 (14) | 0.33006 (14) | 0.0280 (5) | |
H23A | 0.928518 | 0.941715 | 0.319353 | 0.042* | |
H23B | 1.009719 | 0.896478 | 0.282717 | 0.042* | |
H23C | 1.027755 | 0.991192 | 0.321944 | 0.042* | |
C24 | 1.05406 (13) | 0.90477 (11) | 0.43016 (13) | 0.0177 (4) | |
C25 | 1.10444 (14) | 0.82389 (12) | 0.56105 (14) | 0.0231 (4) | |
H25 | 1.111071 | 0.777215 | 0.603334 | 0.028* | |
C26 | 1.15295 (15) | 0.89749 (12) | 0.58330 (14) | 0.0253 (4) | |
H26 | 1.200691 | 0.912727 | 0.644847 | 0.030* | |
N5 | 0.38559 (11) | 0.94219 (10) | 0.51325 (11) | 0.0194 (3) | |
H5A | 0.3614 (7) | 1.0020 (16) | 0.50764 (19) | 0.054 (8)* | |
N6 | 0.43032 (11) | 0.82074 (10) | 0.47674 (12) | 0.0203 (3) | |
H6A | 0.4446 (4) | 0.7773 (13) | 0.4420 (10) | 0.049 (7)* | |
C27 | 0.37791 (15) | 0.92675 (15) | 0.34081 (14) | 0.0313 (5) | |
H27A | 0.343417 | 0.882455 | 0.294699 | 0.047* | |
H27B | 0.441827 | 0.940409 | 0.332440 | 0.047* | |
H27C | 0.335313 | 0.977045 | 0.328545 | 0.047* | |
C28 | 0.41150 (14) | 0.89349 (12) | 0.59641 (14) | 0.0223 (4) | |
H28 | 0.410189 | 0.910375 | 0.658189 | 0.027* | |
C29 | 0.43899 (13) | 0.81759 (12) | 0.57354 (13) | 0.0213 (4) | |
H29 | 0.460320 | 0.770711 | 0.616009 | 0.026* | |
C30 | 0.39781 (13) | 0.89704 (12) | 0.44175 (13) | 0.0195 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0182 (6) | 0.0143 (7) | 0.0524 (9) | 0.0038 (5) | 0.0212 (6) | 0.0053 (6) |
O2 | 0.0198 (6) | 0.0087 (7) | 0.0457 (8) | −0.0005 (5) | 0.0219 (6) | 0.0028 (6) |
O3 | 0.0297 (7) | 0.0136 (7) | 0.0334 (7) | 0.0068 (5) | 0.0167 (6) | 0.0054 (6) |
O4 | 0.0255 (6) | 0.0112 (7) | 0.0367 (8) | −0.0038 (5) | 0.0149 (6) | 0.0028 (6) |
O5 | 0.0141 (5) | 0.0155 (7) | 0.0271 (7) | 0.0002 (5) | 0.0105 (5) | 0.0017 (5) |
O6 | 0.0120 (5) | 0.0089 (7) | 0.0361 (7) | 0.0021 (5) | 0.0083 (5) | 0.0016 (5) |
C7 | 0.0131 (7) | 0.0112 (9) | 0.0118 (7) | 0.0003 (6) | 0.0039 (6) | −0.0007 (6) |
C8 | 0.0134 (7) | 0.0120 (9) | 0.0137 (8) | −0.0024 (6) | 0.0054 (6) | −0.0006 (7) |
C9 | 0.0156 (7) | 0.0103 (9) | 0.0117 (7) | −0.0005 (6) | 0.0037 (6) | −0.0003 (6) |
C10 | 0.0117 (7) | 0.0121 (9) | 0.0132 (7) | 0.0019 (6) | 0.0042 (6) | −0.0017 (6) |
C11 | 0.0124 (7) | 0.0110 (9) | 0.0127 (7) | 0.0003 (6) | 0.0048 (6) | 0.0008 (6) |
C12 | 0.0141 (7) | 0.0088 (9) | 0.0133 (7) | 0.0001 (6) | 0.0046 (6) | 0.0001 (6) |
C20 | 0.0198 (8) | 0.0107 (9) | 0.0156 (8) | −0.0004 (7) | 0.0066 (6) | −0.0006 (7) |
C21 | 0.0144 (7) | 0.0108 (9) | 0.0176 (8) | 0.0004 (6) | 0.0066 (6) | −0.0004 (7) |
C22 | 0.0145 (7) | 0.0114 (9) | 0.0153 (8) | 0.0001 (6) | 0.0051 (6) | −0.0008 (7) |
O7 | 0.0164 (6) | 0.0090 (7) | 0.0297 (7) | −0.0022 (5) | 0.0131 (5) | −0.0004 (5) |
O8 | 0.0149 (5) | 0.0150 (7) | 0.0255 (6) | 0.0011 (5) | 0.0134 (5) | 0.0003 (5) |
O9 | 0.0242 (6) | 0.0121 (7) | 0.0263 (7) | 0.0059 (5) | 0.0155 (5) | 0.0020 (5) |
O10 | 0.0162 (6) | 0.0102 (7) | 0.0252 (7) | 0.0003 (5) | 0.0086 (5) | 0.0046 (5) |
O11 | 0.0092 (5) | 0.0118 (6) | 0.0223 (6) | −0.0014 (4) | 0.0050 (5) | −0.0006 (5) |
O12 | 0.0129 (5) | 0.0075 (6) | 0.0304 (7) | 0.0010 (5) | 0.0080 (5) | −0.0024 (5) |
C1 | 0.0130 (7) | 0.0089 (9) | 0.0112 (7) | −0.0005 (6) | 0.0045 (6) | −0.0009 (6) |
C2 | 0.0112 (7) | 0.0086 (9) | 0.0118 (7) | −0.0002 (6) | 0.0041 (6) | −0.0020 (6) |
C3 | 0.0105 (7) | 0.0111 (9) | 0.0131 (7) | −0.0027 (6) | 0.0047 (6) | −0.0006 (6) |
C4 | 0.0143 (7) | 0.0101 (9) | 0.0119 (7) | 0.0012 (6) | 0.0044 (6) | 0.0004 (6) |
C5 | 0.0114 (7) | 0.0127 (9) | 0.0130 (7) | 0.0021 (6) | 0.0058 (6) | −0.0001 (6) |
C6 | 0.0117 (7) | 0.0101 (9) | 0.0118 (7) | −0.0004 (6) | 0.0055 (6) | −0.0008 (6) |
C17 | 0.0132 (7) | 0.0126 (9) | 0.0115 (7) | −0.0011 (6) | 0.0060 (6) | 0.0010 (6) |
C18 | 0.0151 (7) | 0.0120 (9) | 0.0145 (8) | −0.0007 (6) | 0.0046 (6) | 0.0000 (7) |
C19 | 0.0121 (7) | 0.0108 (9) | 0.0122 (7) | 0.0000 (6) | 0.0046 (6) | −0.0010 (6) |
N1 | 0.0130 (6) | 0.0137 (8) | 0.0243 (8) | 0.0002 (6) | 0.0111 (6) | 0.0004 (6) |
N2 | 0.0105 (6) | 0.0143 (8) | 0.0263 (8) | −0.0011 (6) | 0.0071 (6) | 0.0015 (6) |
C13 | 0.0175 (8) | 0.0144 (10) | 0.0233 (9) | 0.0017 (7) | 0.0088 (7) | −0.0002 (7) |
C14 | 0.0162 (8) | 0.0208 (10) | 0.0194 (9) | 0.0005 (7) | 0.0051 (7) | −0.0016 (7) |
C15 | 0.0200 (8) | 0.0229 (11) | 0.0210 (9) | 0.0012 (7) | 0.0114 (7) | −0.0002 (8) |
C16 | 0.0375 (12) | 0.0498 (16) | 0.0311 (12) | 0.0013 (11) | 0.0079 (9) | −0.0155 (11) |
N3 | 0.0185 (7) | 0.0134 (8) | 0.0254 (8) | −0.0034 (6) | 0.0081 (6) | −0.0021 (6) |
N4 | 0.0237 (7) | 0.0116 (8) | 0.0232 (8) | −0.0034 (6) | 0.0087 (6) | −0.0001 (6) |
C23 | 0.0291 (10) | 0.0294 (12) | 0.0227 (10) | −0.0011 (9) | 0.0055 (8) | 0.0049 (8) |
C24 | 0.0187 (8) | 0.0143 (10) | 0.0225 (9) | −0.0010 (7) | 0.0102 (7) | −0.0013 (7) |
C25 | 0.0250 (9) | 0.0177 (10) | 0.0246 (9) | −0.0021 (8) | 0.0061 (7) | 0.0048 (8) |
C26 | 0.0306 (10) | 0.0203 (11) | 0.0203 (9) | −0.0054 (8) | 0.0030 (8) | 0.0027 (8) |
N5 | 0.0235 (7) | 0.0125 (8) | 0.0245 (8) | 0.0036 (6) | 0.0113 (6) | −0.0008 (6) |
N6 | 0.0194 (7) | 0.0152 (9) | 0.0276 (8) | 0.0025 (6) | 0.0096 (6) | −0.0050 (7) |
C27 | 0.0305 (10) | 0.0392 (14) | 0.0256 (10) | 0.0070 (9) | 0.0115 (8) | 0.0062 (9) |
C28 | 0.0266 (9) | 0.0191 (11) | 0.0226 (9) | 0.0031 (8) | 0.0105 (7) | −0.0009 (8) |
C29 | 0.0222 (8) | 0.0171 (10) | 0.0247 (9) | 0.0045 (7) | 0.0083 (7) | 0.0019 (8) |
C30 | 0.0165 (8) | 0.0196 (10) | 0.0234 (9) | 0.0021 (7) | 0.0082 (7) | −0.0009 (8) |
O1—C21 | 1.214 (2) | N1—H1A | 0.86 (2) |
O2—H2 | 0.96 (3) | N1—C13 | 1.326 (2) |
O2—C21 | 1.303 (2) | N1—C14 | 1.370 (2) |
O3—C20 | 1.247 (2) | N2—H2A | 0.89 (3) |
O4—C20 | 1.258 (2) | N2—C13 | 1.330 (2) |
O5—C22 | 1.218 (2) | N2—C15 | 1.371 (2) |
O6—H6 | 0.93 (3) | C13—C16 | 1.483 (3) |
O6—C22 | 1.318 (2) | C14—H14 | 0.9500 |
C7—C8 | 1.394 (2) | C14—C15 | 1.348 (2) |
C7—C12 | 1.391 (2) | C15—H15 | 0.9500 |
C7—C22 | 1.492 (2) | C16—H16A | 0.9800 |
C8—H8 | 0.9500 | C16—H16B | 0.9800 |
C8—C9 | 1.389 (2) | C16—H16C | 0.9800 |
C9—C10 | 1.394 (2) | N3—H3A | 0.93 (3) |
C9—C20 | 1.519 (2) | N3—C24 | 1.332 (2) |
C10—H10 | 0.9500 | N3—C25 | 1.383 (2) |
C10—C11 | 1.392 (2) | N4—H4 | 1.00 (3) |
C11—C12 | 1.393 (2) | N4—C24 | 1.323 (2) |
C11—C21 | 1.499 (2) | N4—C26 | 1.380 (2) |
C12—H12 | 0.9500 | C23—H23A | 0.9800 |
O7—C17 | 1.255 (2) | C23—H23B | 0.9800 |
O8—C17 | 1.2650 (19) | C23—H23C | 0.9800 |
O9—C18 | 1.214 (2) | C23—C24 | 1.482 (3) |
O10—H10A | 0.93 (3) | C25—H25 | 0.9500 |
O10—C18 | 1.338 (2) | C25—C26 | 1.339 (3) |
O11—C19 | 1.2555 (19) | C26—H26 | 0.9500 |
O12—C19 | 1.263 (2) | N5—H5A | 1.01 (3) |
C1—H1 | 0.9500 | N5—C28 | 1.380 (2) |
C1—C2 | 1.398 (2) | N5—C30 | 1.330 (2) |
C1—C6 | 1.393 (2) | N6—H6A | 0.92 (3) |
C2—C3 | 1.390 (2) | N6—C29 | 1.380 (2) |
C2—C19 | 1.504 (2) | N6—C30 | 1.335 (2) |
C3—H3 | 0.9500 | C27—H27A | 0.9800 |
C3—C4 | 1.391 (2) | C27—H27B | 0.9800 |
C4—C5 | 1.392 (2) | C27—H27C | 0.9800 |
C4—C18 | 1.486 (2) | C27—C30 | 1.482 (3) |
C5—H5 | 0.9500 | C28—H28 | 0.9500 |
C5—C6 | 1.388 (2) | C28—C29 | 1.346 (3) |
C6—C17 | 1.510 (2) | C29—H29 | 0.9500 |
C21—O2—H2 | 109.5 | C13—N2—H2A | 125.4 |
C22—O6—H6 | 109.5 | C13—N2—C15 | 109.13 (14) |
C8—C7—C22 | 118.97 (14) | C15—N2—H2A | 125.4 |
C12—C7—C8 | 119.95 (15) | N1—C13—N2 | 107.36 (16) |
C12—C7—C22 | 121.07 (15) | N1—C13—C16 | 125.80 (17) |
C7—C8—H8 | 119.7 | N2—C13—C16 | 126.82 (17) |
C9—C8—C7 | 120.64 (15) | N1—C14—H14 | 126.8 |
C9—C8—H8 | 119.7 | C15—C14—N1 | 106.39 (15) |
C8—C9—C10 | 118.98 (16) | C15—C14—H14 | 126.8 |
C8—C9—C20 | 120.62 (15) | N2—C15—H15 | 126.4 |
C10—C9—C20 | 120.39 (15) | C14—C15—N2 | 107.24 (16) |
C9—C10—H10 | 119.6 | C14—C15—H15 | 126.4 |
C11—C10—C9 | 120.84 (15) | C13—C16—H16A | 109.5 |
C11—C10—H10 | 119.6 | C13—C16—H16B | 109.5 |
C10—C11—C12 | 119.68 (15) | C13—C16—H16C | 109.5 |
C10—C11—C21 | 119.43 (14) | H16A—C16—H16B | 109.5 |
C12—C11—C21 | 120.88 (15) | H16A—C16—H16C | 109.5 |
C7—C12—C11 | 119.86 (16) | H16B—C16—H16C | 109.5 |
C7—C12—H12 | 120.1 | C24—N3—H3A | 125.5 |
C11—C12—H12 | 120.1 | C24—N3—C25 | 108.95 (15) |
O3—C20—O4 | 126.72 (17) | C25—N3—H3A | 125.5 |
O3—C20—C9 | 117.21 (15) | C24—N4—H4 | 125.8 |
O4—C20—C9 | 116.06 (15) | C24—N4—C26 | 108.48 (16) |
O1—C21—O2 | 124.30 (16) | C26—N4—H4 | 125.8 |
O1—C21—C11 | 121.75 (16) | H23A—C23—H23B | 109.5 |
O2—C21—C11 | 113.94 (14) | H23A—C23—H23C | 109.5 |
O5—C22—O6 | 124.31 (15) | H23B—C23—H23C | 109.5 |
O5—C22—C7 | 122.51 (16) | C24—C23—H23A | 109.5 |
O6—C22—C7 | 113.17 (14) | C24—C23—H23B | 109.5 |
C18—O10—H10A | 109.5 | C24—C23—H23C | 109.5 |
C2—C1—H1 | 119.8 | N3—C24—C23 | 126.04 (17) |
C6—C1—H1 | 119.8 | N4—C24—N3 | 108.31 (16) |
C6—C1—C2 | 120.38 (16) | N4—C24—C23 | 125.65 (17) |
C1—C2—C19 | 120.38 (15) | N3—C25—H25 | 126.8 |
C3—C2—C1 | 119.79 (14) | C26—C25—N3 | 106.40 (17) |
C3—C2—C19 | 119.76 (14) | C26—C25—H25 | 126.8 |
C2—C3—H3 | 120.1 | N4—C26—H26 | 126.1 |
C2—C3—C4 | 119.79 (15) | C25—C26—N4 | 107.85 (16) |
C4—C3—H3 | 120.1 | C25—C26—H26 | 126.1 |
C3—C4—C5 | 120.21 (16) | C28—N5—H5A | 125.5 |
C3—C4—C18 | 122.08 (15) | C30—N5—H5A | 125.5 |
C5—C4—C18 | 117.69 (14) | C30—N5—C28 | 108.92 (16) |
C4—C5—H5 | 119.8 | C29—N6—H6A | 125.6 |
C6—C5—C4 | 120.39 (15) | C30—N6—H6A | 125.6 |
C6—C5—H5 | 119.8 | C30—N6—C29 | 108.78 (16) |
C1—C6—C17 | 120.59 (15) | H27A—C27—H27B | 109.5 |
C5—C6—C1 | 119.38 (15) | H27A—C27—H27C | 109.5 |
C5—C6—C17 | 119.97 (14) | H27B—C27—H27C | 109.5 |
O7—C17—O8 | 125.41 (15) | C30—C27—H27A | 109.5 |
O7—C17—C6 | 116.86 (14) | C30—C27—H27B | 109.5 |
O8—C17—C6 | 117.73 (15) | C30—C27—H27C | 109.5 |
O9—C18—O10 | 123.24 (16) | N5—C28—H28 | 126.4 |
O9—C18—C4 | 122.42 (15) | C29—C28—N5 | 107.12 (17) |
O10—C18—C4 | 114.33 (14) | C29—C28—H28 | 126.4 |
O11—C19—O12 | 124.16 (14) | N6—C29—H29 | 126.5 |
O11—C19—C2 | 118.50 (15) | C28—C29—N6 | 107.06 (17) |
O12—C19—C2 | 117.33 (14) | C28—C29—H29 | 126.5 |
C13—N1—H1A | 125.1 | N5—C30—N6 | 108.11 (16) |
C13—N1—C14 | 109.87 (15) | N5—C30—C27 | 125.55 (18) |
C14—N1—H1A | 125.1 | N6—C30—C27 | 126.33 (17) |
C7—C8—C9—C10 | 1.5 (2) | C3—C4—C5—C6 | −1.5 (2) |
C7—C8—C9—C20 | −176.91 (14) | C3—C4—C18—O9 | −163.64 (16) |
C8—C7—C12—C11 | −1.9 (2) | C3—C4—C18—O10 | 17.1 (2) |
C8—C7—C22—O5 | 1.9 (2) | C4—C5—C6—C1 | 1.6 (2) |
C8—C7—C22—O6 | −179.37 (14) | C4—C5—C6—C17 | 178.78 (14) |
C8—C9—C10—C11 | −1.2 (2) | C5—C4—C18—O9 | 14.6 (2) |
C8—C9—C20—O3 | −175.60 (15) | C5—C4—C18—O10 | −164.63 (14) |
C8—C9—C20—O4 | 5.4 (2) | C5—C6—C17—O7 | 167.31 (14) |
C9—C10—C11—C12 | −0.7 (2) | C5—C6—C17—O8 | −13.4 (2) |
C9—C10—C11—C21 | 177.89 (14) | C6—C1—C2—C3 | −2.4 (2) |
C10—C9—C20—O3 | 6.0 (2) | C6—C1—C2—C19 | 174.27 (14) |
C10—C9—C20—O4 | −173.05 (15) | C18—C4—C5—C6 | −179.87 (14) |
C10—C11—C12—C7 | 2.3 (2) | C19—C2—C3—C4 | −174.28 (14) |
C10—C11—C21—O1 | −4.4 (2) | N1—C14—C15—N2 | 0.1 (2) |
C10—C11—C21—O2 | 176.85 (15) | C13—N1—C14—C15 | 0.4 (2) |
C12—C7—C8—C9 | 0.0 (2) | C13—N2—C15—C14 | −0.5 (2) |
C12—C7—C22—O5 | −177.56 (16) | C14—N1—C13—N2 | −0.8 (2) |
C12—C7—C22—O6 | 1.2 (2) | C14—N1—C13—C16 | 177.78 (19) |
C12—C11—C21—O1 | 174.23 (16) | C15—N2—C13—N1 | 0.8 (2) |
C12—C11—C21—O2 | −4.5 (2) | C15—N2—C13—C16 | −177.7 (2) |
C20—C9—C10—C11 | 177.28 (14) | N3—C25—C26—N4 | 0.0 (2) |
C21—C11—C12—C7 | −176.33 (14) | C24—N3—C25—C26 | −0.4 (2) |
C22—C7—C8—C9 | −179.44 (14) | C24—N4—C26—C25 | 0.5 (2) |
C22—C7—C12—C11 | 177.51 (14) | C25—N3—C24—N4 | 0.7 (2) |
C1—C2—C3—C4 | 2.5 (2) | C25—N3—C24—C23 | −179.16 (18) |
C1—C2—C19—O11 | −163.18 (15) | C26—N4—C24—N3 | −0.7 (2) |
C1—C2—C19—O12 | 15.8 (2) | C26—N4—C24—C23 | 179.13 (18) |
C1—C6—C17—O7 | −15.5 (2) | N5—C28—C29—N6 | 0.4 (2) |
C1—C6—C17—O8 | 163.84 (14) | C28—N5—C30—N6 | 0.3 (2) |
C2—C1—C6—C5 | 0.4 (2) | C28—N5—C30—C27 | 179.94 (17) |
C2—C1—C6—C17 | −176.77 (14) | C29—N6—C30—N5 | 0.0 (2) |
C2—C3—C4—C5 | −0.5 (2) | C29—N6—C30—C27 | −179.67 (18) |
C2—C3—C4—C18 | 177.76 (14) | C30—N5—C28—C29 | −0.5 (2) |
C3—C2—C19—O11 | 13.5 (2) | C30—N6—C29—C28 | −0.2 (2) |
C3—C2—C19—O12 | −167.44 (15) |
C10—C11 | 1.392 (2) | C7—C12 | 1.391 (2) | C8—C9 | 1.389 (2) |
C11—C12 | 1.393 (2) | C7—C8 | 1.394 (2) | C9—C10 | 1.394 (2) |
C11—C21 | 1.499 (2) | C7—C22 | 1.492 (2) | C9—C20 | 1.519 (2) |
O1—C21 | 1.214 (2) | O3—C20 | 1.247 (2) | O5—C22 | 1.218 (2) |
O2—C21 | 1.303 (2) | O4—C20 | 1.258 (2) | O6—C22 | 1.318 (2) |
C10—C11—C12 | 119.68 (15) | C7—C12—C11 | 119.86 (16) | O1—C21—O2 | 124.30 (16) |
C9—C8—C7 | 120.68 (15) | C12—C7—C8 | 119.93 (15) | O3—C20—O4 | 126.76 (17) |
C8—C9—C10 | 118.98 (16) | C11—C10—C9 | 120.84 (15) | O5—C22—O6 | 124.31 (15) |
C10—C11—C21—O1 | -4.4 (2) | C10—C9—C20—O4 | -173.05 (15) | C10—C11—C12—-C7 | 2.3 (2) |
C12—C11—C21—O1 | 174.23 (16) | C8—C9—C20—O4 | 5.4 (2) | C12—C7—C8—C9 | 0.0 (2) |
C10—C11—C21—O2 | 176.85 (15) | C12—C7—C22—O5 | -177.56 (16) | C7—C8—C9—C10 | 1.5 (2) |
C12—C11—C21—O2 | -4.5 (2) | C8—C7—C22—O5 | 1.9 (2) | C8—C9—C10—C11 | -1.2 (2) |
C10—C9—C20—O3 | 6.0 (2) | C12—C7—C22—O6 | 1.2 (2) | C8—C7—C12—C11 | -1.9 (2) |
C8—C9—C20—O3 | -175.60 (15) | C8—C7—C22—O6 | -179.37 (15) | C9—C10—C11—C12 | -0.7 (2) |
C1—C6 | 1.393 (2) | C2—C3 | 1.39 (2) | C4—C5 | 1.392 (2) |
C1—C2 | 1.398 (2) | C3—C4 | 1.391 (2) | C5—C6 | 1.388 (2) |
C2—C19 | 1.504 (2) | C4—C18 | 1.486 (2) | C6—C17 | 1.510 (2) |
O7—C17 | 1.255 (2) | O9—C18 | 1.214 (2) | O11—C19 | 1.2555 (19) |
O8—C17 | 1.2650 (19) | O10—C18 | 1.338 (2) | O12—C19 | 1.263 (2) |
C2—C3—C4 | 119.79 (15) | C6—C1—C2 | 120.38 (16) | O7—C17—O8 | 125.41 (15) |
C6—C5—C4 | 120.39 (15) | C3—C2—C1 | 119.79 (14) | O9—C18—O10 | 123.24 (16) |
C3—C4—C5 | 120.21 (16) | C5—C6—C1 | 119.38 (15) | O11—C19—O12 | 124.16 (15) |
C1—C6—C17—O7 | 15.5 (2) | C3—C4—C18—O10 | 17.1 (2) | C1—C2—C3—C4 | 2.5 (2) |
C5—C6—C17—O7 | 167.31 (14) | C5—C4—C18—O10 | 164.63 (14) | C2—C3—C4—C5 | -0.5 (2) |
C1—C6—C17—O8 | 163.84 (15) | C1—C2—C19—O11 | -163.18 (15) | C2—C1—C6—C5 | -0.4 (2) |
C5—C6—C17—O8 | -13.4 (2) | C3—C2—C19—O11 | 13.5 (2) | C3—C4—C5—C6 | -1.5 (2) |
C3—C4—C18—O9 | -163.64 (16) | C1—C2—C19—O12 | 15.8 (2) | C4—C5—C6—C1 | 1.6 (2) |
C5—C4—C18—O9 | 14.6 (2) | C3—C2—C19—O12 | -167.44 (15) | C6—C1—C2—C3 | -2.4 (2) |
A | B | C | |||
C13—C16 | 1.483 (3) | C23—C24 | 1.482 (3) | C27—C30 | 1.482 (3) |
C14—C15 | 1.348 (2) | C25—C26 | 1.339 (3) | C28—C29 | 1.346 (3) |
N1—C13 | 1.326 (2) | N3—C24 | 1.332 (2) | N5—C30 | 1.330 (2) |
N1—C14 | 1.370 (2) | N3—C25 | 1.383 (2) | N5—C28 | 1.380 (2) |
N2—C13 | 1.330 (2) | N4—C24 | 1.323 (2) | N6—C30 | 1.335 (2) |
N2—C15 | 1.371 (2) | N4—C26 | 1.380 (2) | N6—C29 | 1.380 (2) |
C13—N2—C15 | 109.13 (14) | C28—C29—N6 | 106.06 (17) | C24—N4—C26 | 108.48 (16) |
C13—N1—C14 | 109.87 (15) | C29—C28—N5 | 107.12 (17) | C24—N3—C25 | 109.08 (15) |
C14—C15—N2 | 107.24 (16) | C30—N5—C28 | 109.18 (16) | C25—C26—N4 | 107.85 (16) |
C15—C14—N1 | 106.39 (15) | C30—N6—C29 | 108.92 (16) | C26—C25—N3 | 106.35 (17) |
N1—C13—N2 | 107.36 (16) | N4—C24—N3 | 108.31 (16) | N5—C30—N6 | 107.91 (16) |
N1—C14—C15—N2 | 0.1 (2) | N3—C25—C26—N4 | 0.0 (2) | N5—C28—C29—N6 | -0.5 (2) |
C13—N1—C14—C15 | 0.4 (2) | C24—N3—C25—C26 | 0.4 (2) | C30—N5—C28—C29 | 0.5 (2) |
C14—N1—C13—N2 | -0.8 (2) | C25—N3—C24—N4 | 0.7 (2) | C28—N5—C30—N6 | -0.2 (2) |
C13—N2—C15—C14 | -0.5 (2) | C24—N4—C26—C25 | -0.5 (2) | C30—N6—C29—C28 | 0.4 (2) |
C15—N2—C13—N1 | 0.8 (2) | C26—N4—C24—N3 | 0.7 (2) | C29—N6—C30—N5 | 0.0 (2) |
C14—N1—C13—C16 | 177.8 (2) | C26—N4—C24—C23 | 179.13 (18) | C28—N5—C30—C27 | -179.94 (17) |
C15—N2—C13—C16 | -177.7 (2) | C25—N3—C24—C23 | 179.12 (18) | C29—N6—C30—C27 | 179.67 (18) |
Graph-set descriptor | type | D—H | H···A | D···A | D—H···A | |
N1—H1A···O8V | D(2) | d | 0.86 (2) | 1.911 (18) | 2.737 (2) | 160.8 (7) |
O2—H2···O7i | D(2) | a | 0.96 (3) | 1.57 (2) | 2.5222 (19) | 170.7 (17) |
N2—H2A···O11iv | D(2) | e | 0.88 (3) | 1.93 (2) | 2.806 (2) | 172.5 (13) |
N3—H3A···O11 | D(2) | f | 0.935 (19) | 1.874 (19) | 2.778 (2) | 162.1 (18) |
N4—H4···O4vi | D(2) | g | 1.01 (2) | 1.59 (2) | 2.593 (2) | 172.6 (9) |
N5—H5A···O3vii | D(2) | h | 1.01 (2) | 1.69 (2) | 2.655 (2) | 159.9 (5) |
O6—H6···O12ii | D(2) | b | 0.93 (3) | 1.69 (2) | 2.6189 (19) | 171.7 (16) |
N6—H6A···O8 | D(2) | i | 0.921 (17) | 1.886 (19) | 2.800 (2) | 170.9 (13) |
O10—H10A···O12iii | C(8) | c | 0.93 (3) | 1.71 (3) | 2.6156 (18) | 162 (2) |
C14—H14···O1v | 0.95 | 2.52 | 3.098 (2) | 119 | ||
C15—H15···O10 | 0.95 | 2.46 | 3.280 (2) | 144 | ||
C15—H15···O5iv | 0.95 | 2.38 | 3.038 (2) | 126 | ||
C25—H25···O5 | 0.95 | 2.55 | 3.292 (2) | 135 | ||
C27—H27B···O9 | 0.98 | 2.41 | 3.380 (3) | 168 | ||
C28—H28···O9vii | 0.95 | 2.39 | 2.990 (2) | 121 | ||
C29—H29···O1 | 0.95 | 2.33 | 3.108 (2) | 138 |
(i) 1 - x, 1 - y, 1 - z; (ii) 2 - x, 1 - y, 1 - z; (iii) 3/2 - x, 1/2 + y, 1/2 - z; (iv) -1/2 + x, 3/2 - y, -1/2 + z; (v) 1/2 + x, 3/2 - y, -1/2 + z; (vi) 2 - x, 2 - y, 1 - z; (vii 1 - x, 2 - y, 1 - z. |
Second-level | Third-level | ||||
C22(16) | >a<b | C23(18) | >a>c<b | D33(17) | >d<b<h |
D33(17) | >a>c<a | C33(24) | >a<c<b | D33(13) | >e<b<g |
D22(5) | >a<d | R56(42) | >a>c〈b〉a<c<b | D33(13) | >e<b<h |
D22(9) | >a<e | D33(17) | >a<c<d | C33(16) | >b<f>g |
D22(9) | >a<f | D33(17) | >a>c<d | D33(13) | >f<b<h |
D22(10) | >g>a | D33(13) | >a>c<e | D33(17) | >g>b<i |
D22(10) | >h>a | D33(17) | >a<c<e | C33(20) | >b〈i〉h |
D22(5) | >a<i | D33(13) | >a>c<f | C33(16) | >c<e>d |
D23 (11) | >b>c<b | D33(17) | >a<c<f | C33(20) | >c<d>e |
D22(9) | >b<d | D33(17) | >a<c<i | R66(36) | >c<d>e<c<d>e |
D22(5) | >b<e | D33(17) | >a>c<i | D33(13) | >d>c<f |
D22(5) | >b<f | D33(13) | >d<a<g | D33(17) | >d<c<f |
D22(10) | >g>b | D33(13) | >d<a<h | D33(17) | >d<c<i |
D22(10) | >h>b | D33(17) | >e<a<g | D33(17) | >d>c<i |
D22(9) | >b<i | D33(17) | >e<a<h | D33(13) | >e<c<f |
D33(17) | >d>c<d | C33(20) | >a<f>g | D33(13) | >e>c<f |
D33(13) | >e>c<e | D33(17) | >f<a<h | D33(13) | >e<c<i |
D33(13) | >f>c<f | D33(13) | >g>a<i | D33(17) | >e>c<i |
D33(17) | >i>c<i | C33(16) | >a〈i〉h | D33(13) | >f<c<i |
C22(12) | >d<e | D23(11) | >b<c<d | D33(17) | >f>c<i |
D22(9) | >d<f | D33(17) | >b>c<d | D33(14) | >d<f>g |
D12(3) | >d<i | D23(11) | >b<c<e | D23(8) | >d〈i〉h |
D12(3) | >e<f | D33(13) | >b>c<e | D23(8) | >e<f>g |
D22(9) | >e<i | D23(11) | >b<c<f | D33(14) | >e〈i〉h |
D22(7) | <f>g | D33(13) | >b>c<f | D33(10) | >h<g>f |
D22(9) | >f<i | D23(11) | >b<c<i | D33(14) | >i<f>g |
D22(5) | >g<h | D33(17) | >b>c<i | D33(14) | >f〈i〉h |
D22(7) | <h>i | D33 (17) | >d<b<g | D33(10) | >g<h>i |
Funding information
Funding for this research was provided by: HG-recruitment, HG-Innovation ‘ECRAPS’, HG-Innovation DSF/DASHH and CMWS (grant to ST); LMAH thanks the DESY-Helmholtz-Summer student fund for financial support.
References
Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107. Google Scholar
Abdelhamid, H. N. (2021). Curr. Med. Chem. 28, 7023–7075. Web of Science CrossRef CAS PubMed Google Scholar
Arunachalam, M., Chakraborty, S., Marivel, S. & Ghosh, P. (2012). Cryst. Growth Des. 12, 2097–2108. Web of Science CSD CrossRef CAS Google Scholar
Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088–1092. Web of Science CSD CrossRef IUCr Journals Google Scholar
Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O'Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943. Web of Science CSD CrossRef PubMed CAS Google Scholar
Basu, T., Sparkes, H. A. & Mondal, R. (2009). Cryst. Growth Des. 9, 5164–5175. Web of Science CSD CrossRef CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898–908. Web of Science CSD CrossRef CAS Google Scholar
Chan, P. C. (2004). TOXIC Rep Ser, 1–G12. Google Scholar
Chen, Z., Zhang, Q., Huang, L., Li, R., Li, W., Xu, G. & Cheng, H. (2014). J. Phys. Chem. C, 118, 21244–21249. Web of Science CrossRef CAS Google Scholar
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150. Web of Science CSD CrossRef PubMed CAS Google Scholar
Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct. 1045, 112–123. Web of Science CSD CrossRef CAS Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Emani, S., Vangala, A., Buonocore, F., Yarandi, N. & Calabrese, G. (2023). Pharmaceutics 15, 1084. Web of Science CrossRef PubMed Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Falek, W., Benali-Cherif, R., Golea, L., Samai, S., Benali-Cherif, N., Bendeif, E.-E. & Daoud, I. (2019). J. Mol. Struct. 1192, 132–144. Web of Science CSD CrossRef CAS Google Scholar
Fan, Q.-R., Shi, X., Xin, M.-H., Wu, G., Tian, G., Zhu, G. S., Li, Y.-F., Ye, L., Wang, C.-L., Zhang, Z. D., Tang, L. L. & Qiu, S.-L. (2003). Gaodeng Xuexiao Huaxue Xuebao, 24, 28. Google Scholar
Férey, G., Serre, C., Mellot–Draznieks, C., Millange, F., Surblé, S., Dutour, J. & Margiolaki, I. (2004). Angew. Chem. Int. Ed. 43, 6296–6301. Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Ha, N. T. N., Gopakumar, T. G., Gutzler, R., Lackinger, M., Tang, H. & Hietschold, M. (2010). J. Phys. Chem. C, 114, 3531–3536. Web of Science CrossRef Google Scholar
Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr. 40, 201–206. Google Scholar
Hinokimoto, A., Izu, H., Wei, Y.-S., Nakajo, T., Matsuda, R. & Horike, S. (2021). Cryst. Growth Des. 21, 6031–6036. Web of Science CSD CrossRef CAS Google Scholar
Huang, H., Zhang, W., Liu, D., Liu, B., Chen, G. & Zhong, C. (2011). Chem. Eng. Sci. 66, 6297–6305. Web of Science CrossRef CAS Google Scholar
Iancu, V., Braun, K.-F., Schouteden, K. & Van Haesendonck, C. (2013). Langmuir, 29, 11593–11599. Web of Science CrossRef CAS PubMed Google Scholar
Korolkov, V. V., Allen, S., Roberts, C. J. & Tendler, S. J. B. (2012). J. Phys. Chem. C, 116, 11519–11525. Web of Science CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Li, S.-Y. & Li, P. (2016). Z. Kristallogr. 231, 525–528. CAS Google Scholar
Lie, S., Maris, T., Malveau, C., Beaudoin, D., Helzy, F. & Wuest, J. D. (2013). Cryst. Growth Des. 13, 1872–1877. Web of Science CSD CrossRef CAS Google Scholar
Lin, X., Wang, Z., Cao, S., Hu, Y., Liu, S., Chen, X., Chen, H., Zhang, X., Wei, S., Xu, H., Cheng, Z., Hou, Q., Sun, D. & Lu, X. (2023). Nat. Commun. 14, 6714. Web of Science CrossRef PubMed Google Scholar
MacLeod, J. (2019). J. Phys. D Appl. Phys. 53, 043002. Web of Science CrossRef Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311. Web of Science CrossRef PubMed Google Scholar
Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl. 35, 2213–2215. CSD CrossRef CAS Web of Science Google Scholar
Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217–o221. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O'Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191. Web of Science CSD CrossRef PubMed CAS Google Scholar
Qu, S. (2007). Acta Cryst. E63, o4071. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rajkumar, M., Muthuraja, P., Dhandapani, M. & Chandramohan, A. (2020). Opt. Laser Technol. 124, 105970. Web of Science CSD CrossRef Google Scholar
Salamończyk, G. M. (2011). Tetrahedron Lett. 52, 155–158. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Shi, C., Wei, B. & Zhang, W. (2014). Cryst. Growth Des. 14, 6570–6580. Web of Science CSD CrossRef CAS Google Scholar
Singh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421–1433. Web of Science CSD CrossRef CAS Google Scholar
Song, Y., Yu, C., Ma, D. & Liu, K. (2024). Coord. Chem. Rev. 499, 215492. Web of Science CrossRef Google Scholar
Sosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct. 1308, 138118. Google Scholar
Sun, C.-Y., Qin, C., Wang, X.-L., Yang, G.-S., Shao, K.-Z., Lan, Y.-Q., Su, Z.-M., Huang, P., Wang, C.-G. & Wang, E.-B. (2012). Dalton Trans. 41, 6906–6909. Web of Science CrossRef CAS PubMed Google Scholar
Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). ACS Appl. Mater. 12, 15588–15594. Web of Science CSD CrossRef CAS Google Scholar
Velazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814–817. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zhang, X.-R. & Zhang, L. (2017). J. Mol. Struct. 1137, 320–327. Web of Science CSD CrossRef CAS Google Scholar
Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024). J. Alloys Compd. 974, 172897. Web of Science CrossRef Google Scholar
Zhong, G., Liu, D. & Zhang, J. (2018a). Cryst. Growth Des. 18, 7730–7744. Web of Science CrossRef CAS Google Scholar
Zhong, G., Liu, D. & Zhang, J. (2018b). J. Mater. Chem. A, 6, 1887–1899. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.