research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Fluorine–hydrogen inter­actions observed in a helix structure having an orn-free gramicidin S sequence incorporating 4-trans-fluoro­proline

crossmark logo

aOsaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
*Correspondence e-mail: mitsunobu.doi@ompu.ac.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 29 January 2025; accepted 21 March 2025; online 27 March 2025)

The deca­peptide Boc-(D-Phe-tFPro-Val-Leu-Leu)2—OMe (1) (Boc is tert-but­oxy­carbonyl, tFPro is 4-trans-fluoro-L-proline D-Phe is D-phenyl­alanine, Val is valine and Leu is leucine) crystallized in a methanol-solvated form (C68H104F2N10O13·CH4O). Peptide 1 has a sequence similar to gramicidin S (GS) incorporating tFPro. GS is a cyclic peptide, with the D-Phe-Pro unit known as a strong β-turn inducer in previous studies. Thus, it was initially assumed that 1 would bend at the D-Phe6-tFPro7 position, potentially forming a sheet-like structure. However, the structure of 1 was a helix, a surprising finding in GS-related structural studies. A factor enabling this helical formation could be the fluorine–H inter­actions between tFPro and the aromatic rings of D-Phe residues.

1. Chemical context

Gramicidin S (GS) is a cyclic deca­peptide [cyclo­(Val-Orn-Leu-D-Phe-Pro)2] known for forming β-sheets and turns (Hodgkin & Oughton, 1957[Hodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 752-756.]; Schmidt et al., 1957[Schmidt, G. M. J., Hodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 744-750.]). The Orn residues in GS contribute to its amphiphilicity, but the amino­propyl group causes high flexibility, hindering structural homogeneity (Asano & Doi, 2019[Asano, A. & Doi, M. (2019). X-ray Struct. Anal. Online, 35, 1-2.]). Previously reported Orn-free GS (LGS) mitigates this issue, providing an excellent scaffold for studying sheet and turn structures (Asano et al., 2019[Asano, A., Matsuoka, S., Minami, C., Kato, T. & Doi, M. (2019). Acta Cryst. C75, 1336-1343.]; Asano et al., 2021[Asano, A., Minami, C., Matsuoka, S., Kato, T. & Doi, M. (2021). Chem. Pharm. Bull. 69, 1097-1103.]). Recently, we reported the structures of three LGS derivatives containing fluorinated proline (Asano et al., 2023[Asano, A., Sakata, M., Kato, T. & Doi, M. (2023). Chem. Lett. 52, 246-248.]). During the synthesis, several linear deca­peptides were obtained before cyclization. One such derivative, Boc-(D-Phe-tFPro-Val-Leu-Leu)2-OMe (1), includes 4-trans-fluoro­proline (tFPro). Given the historical association of GS structures with turns and sheets (Balasubramanian, 1967[Balasubramanian, D. (1967). J. Am. Chem. Soc. 89, 5445-5449.]; Tishchenko et al., 1997[Tishchenko, G. N., Andrianov, V. I., Vainstein, B. K., Woolfson, M. M. & Dodson, E. (1997). Acta Cryst. D53, 151-159.]; Doi et al., 2001[Doi, M., Fujita, S., Katsuya, Y., Sasaki, M., Taniguchi, T. & Hasegawa, H. (2001). Arch. Biochem. Biophys. 395, 85-93.]; Llamas-Saiz et al., 2007[Llamas-Saiz, A. L., Grotenbreg, G. M., Overhand, M. & van Raaij, M. J. (2007). Acta Cryst. D63, 401-407.]), we anti­cipated that peptide 1 might bend at the central D-Phe-Pro moiety or form an anti­parallel sheet structure.

[Scheme 1]

2. Structural commentary

Fig. 1[link] shows that peptide 1 forms a helix structure. To enhance the clarity of the helical structure, a ribbon model is presented in Fig. 2[link]. It is well known that gramicidin A (GA) containing D-amino acids forms the helix penetrating cell membranes (Hawkes et al., 1987[Hawkes, G. E., Lian, L. Y., Randall, E. W., Sales, K. D. & Curzon, E. H. (1987). Eur. J. Biochem. 166, 437-445.]; Reddy et al., 2018[Reddy, D. N., Singh, S., Ho, C. M. W., Patel, J., Schlesinger, P., Rodgers, S., Doctor, A. & Marshall, G. R. (2018). Eur. J. Med. Chem. 149, 193-210.]). It is quite different from the present helix. The torsion angles (Table 1[link]) show the differences from the standard (φ,ψ) angles of the α-helix at the terminal residues (D-Phe1 and Leu10), and also at φ of Leu4 [−90.6 (2)°] and tFPro7 [169.2 (1)°]. Although the Pro residue is known as a helix breaker (Rohl et al., 1996[Rohl, C. A., Chakrabartty, A. & Baldwin, R. L. (1996). Protein Sci. 5, 2623-2637.]), tFPro7 leads to only small distortions to the helix structure. Such a case resembles Buforin-II having a Pro hinge, which forms the amphipathic helix (Yi, et al., 1996[Yi, G. S., Park, C. B., Kim, S. C. & Cheong, C. (1996). FEBS Lett. 398, 87-90.]; Park et al., 2000[Park, C. B., Yi, K., Matsuzaki, K., Kim, S. C. & Kim, S. C. (2000). Proc. Natl Acad. Sci. 97, 8245-8250.]). Moreover, it is notable that the (φ,ψ) angles of 6th residue is standard in α-helix, regardless of D-amino acid. The D-Phe-Pro moiety has been a pivot of turn in past studies of GS derivatives, but the central D-Phe6-tFPro7 remained a helix.

Table 1
Backbone torsion angles (°)

The values deviate from the standard α-helix (φ, ψ) = (−60°, −45°).

  i   i+5  
Residue φ ψ φ ψ
D-Phe1,6 75.0 (2)* −129.2 (1)* −52.2 (2) −55.5 (2)
tFPro2,7 −56.4 (2) −31.7 (2) 169.2 (1)* −24.8 (2)
Val3,8 −50.5 (2) −42.3 (2) −73.6 (2) −48.2 (2)
Leu4,9 −90.6 (2)* −48.8 (2) −89.0 (2)* −44.4 (2)
Leu5,10 −64.6 (2) −39.0 (2) −93.0 (2)* −8.3 (2)*
[Figure 1]
Figure 1
Peptide 1, with displacement drawn at the 50% probability level.
[Figure 2]
Figure 2
Ribbon models to enhance the helical structure. Projection views to (a) the side and (b) the top of the helix. Hydrogen atoms and solvent mol­ecule are omitted for clarity.

Hydrogen-bonded networks relating the backbone are shown in Fig. 3[link] and Table 2[link]. Hydrogen bonds are formed between C=O and the H—N group of four residues upstream (i+4 and i), and thirteen atoms are involved in the ring formed by the hydrogen bond in the α-helix. Five hydrogen bonds, namely N51⋯O12, N61⋯O22, N81⋯O42, N91⋯O52 and N101⋯O62, involve thirteen atoms. However, atom N41 inter­acts with O12 [N41⋯O12 = 2.968 (2) Å] forming a ten-atom ring (H41–N41–C32–C31–N31–C22–C21–N21–C12–O12), which is characteristic for a 310-helix. The features of the two helix types coexist through O12. It would relate to the inter­action between the fluorine atom of tFPro2 and the phenyl ring of D-Phe1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N41—H41⋯O12 0.88 2.29 2.968 (2) 134
N51—H51⋯O12 0.88 1.95 2.828 (2) 179
N61—H61⋯O22 0.88 2.09 2.907 (2) 154
N81—H81⋯O42 0.88 2.34 3.132 (2) 149
N91—H91⋯O52 0.88 2.05 2.913 (2) 168
N101—H101⋯O62 0.88 2.16 2.924 (2) 144
O1M—H1M⋯O32 0.84 1.88 2.703 (2) 164
N11—H11⋯O1Mi 0.88 2.01 2.880 (2) 170
Symmetry code: (i) [x+1, y, z].
[Figure 3]
Figure 3
Hydrogen-bond networks of the helix. The backbone and hydrogen atoms involved in hydrogen bonds are drawn.

The structure around the F24 atom is shown in Fig. 4[link], where the phenyl rings of D-Phe1 and D-Phe6 flank the F24 atom. While F24 is not positioned directly above the phenyl ring, it is close to the hydrogen atoms, with distances of F24⋯H18 = 3.09 Å and F24⋯H67 = 2.85 Å. Given that F⋯H inter­actions typically occur at < 2.90 Å (Thalladi, et al.,1998[Thalladi, V. R., Weiss, H., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702-8710.]), it can be assumed that F24 engages in F⋯H inter­actions with both phenyl rings. This inter­action likely contributes to the cohesion of the helical structure, despite the presence of two D-amino acids in the peptide. Furthermore, the trans configuration of the fluorine atom in tFPro2 may facilitate its proximity to the phenyl rings within the helix

[Figure 4]
Figure 4
F⋯H inter­actions around atom F24. F24⋯H18(D-Phe1), F24⋯H26(D-Phe6) and F24⋯H2C[Boc translated by (x, y, z + 1)].

The puckering parameters of Pro are listed in Table 3[link]. The signs of (χ1, χ2, χ3, χ4,θ) were approximately (−, +, −, +, ∼0) in both tFPro, which exhibits the Cγ-exo form (up form). In the GS analogues, the ‘down' form (+, −, +, −, ∼0) is stable and often observed. The trans configuration of fluorine atom forces the puckering ‘up' in 1. A similar ‘up' form has also been observed in tFPro residues of cyclic GS analogue (Asano et al., 2023[Asano, A., Sakata, M., Kato, T. & Doi, M. (2023). Chem. Lett. 52, 246-248.]).

Table 3
Puckering parameters (Å, °) of the pyrrolidine rings

Q(2) and φ2 are defined by Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) and calculated by PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Residue Q(2) φ2 χ1 χ2 χ3 χ4 θ
tFPro2 0.351 (2) 275.8 (3) −26.6 (2) 36.5 (2) −31.5 (2) 14.9 (2) 7.2 (2)
tFPro7 0.382 (2) 275.4 (2) −29.1 (2) 39.6 (2) −34.0 (2) 16.0 (2) 8.1 (2)

3. Supra­molecular features

Fig. 5[link] illustrates the inter­actions between the original mol­ecule and its symmetry-related counterpart translated by (x − 1, y, z). The methanol mol­ecule (O1M) acts as a bridge between adjacent peptides, forming hydrogen bonds with O32 of Val3 [O1M⋯O32(Val3) = 2.703 (2) Å] and N1 of D-Phe1 [N1(D-Phe1)⋯O1M = 2.880 (2) Å]. An inter­molecular F⋯H inter­action is observed between F74 and H53A of the Leu5 methyl­ene group. Additionally, another F⋯H inter­action occurs between the original mol­ecule and its (x, y, z + 1)-translated mol­ecule, involving F24 and H2C from the Boc methyl group [F24⋯H2C(Boc) = 2.63 Å]. Since the methyl group can rotate, any of its three hydrogen atoms could potentially inter­act with the F24 atom. These inter­actions contribute to the expansion along the a-axis direction. Furthermore, the peptides align along the b-axis direction in a head-to-tail arrangement (Fig. 6[link]).

[Figure 5]
Figure 5
Inter­molecular inter­actions. Hydrogen bonds through the methanol mol­ecule bridge the original and its (x − 1, y, z)-translated mol­ecule. An F⋯H inter­action is formed, F74 ⋯H53A (Leu5).
[Figure 6]
Figure 6
Head-to-tail arrangement formed along b-axis.

4. Database survey

A search of the the CSD (WebCSD accessed February 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) and FIZ Karlsruhe's free service indicates 43 records, but all records show the cyclic peptide. A search for the sequence D–Phe–Pro–Val–Leu–Leu using Google Scholar gave one hit, which is also the cyclic peptide. Compound 1 is unprecedented.

5. Synthesis and crystallization

Compound 1 was synthesized by a conventional liquid method using Boc (tert-but­oxy­carbon­yl) protection and purified by silicagel column chromatography. Crystals of 1 were grown in aqueous methanol (> 80%) solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were located in difference maps and were treated as riding in geometrically idealized positions with constrained distances set to 0.93 Å (Csp2—H), 0.98 Å (R3—CH), 0.97 Å (R2—CH2), 0.96 Å (R—CH3), 0.82 Å (R—OH) and 0.86 Å (Nsp2—H). Uiso(H) parameters were set to either 1.2 or 1.5 (methyl and hy­droxy groups) time those of the attached atom.

Table 4
Experimental details

Crystal data
Chemical formula C68H104F2N10O13·CH4O
Mr 1339.65
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 10.1248 (1), 28.7263 (1), 12.6378 (1)
β (°) 96.484 (1)
V3) 3652.17 (5)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.73
Crystal size (mm) 0.20 × 0.20 × 0.15
 
Data collection
Diffractometer XtaLAB AFC12 (RINC): Kappa single
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.])
Tmin, Tmax 0.902, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 66224, 14120, 14063
Rint 0.016
(sin θ/λ)max−1) 0.622
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.02
No. of reflections 14120
No. of parameters 858
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.21
Absolute structure Flack x determined using 6582 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.003 (16)
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.] and pyMOL (DeLano, 2002[DeLano, W. L. (2002). CCP4 Newsletter On Protein Crystallography, 40, 82-92.]).

Supporting information


Computing details top

Boc-(D-Phe-tFPro-Val-Leu-Leu)2-OMe top
Crystal data top
C68H104F2N10O13·CH4OF(000) = 1444
Mr = 1339.65Dx = 1.218 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 10.1248 (1) ÅCell parameters from 50791 reflections
b = 28.7263 (1) Åθ = 4.4–73.5°
c = 12.6378 (1) ŵ = 0.73 mm1
β = 96.484 (1)°T = 100 K
V = 3652.17 (5) Å3Recutangular, colorless
Z = 20.20 × 0.20 × 0.15 mm
Data collection top
XtaLAB AFC12 (RINC): Kappa single
diffractometer
14120 independent reflections
Radiation source: Rotating-anode X-ray tube14063 reflections with I > 2σ(I)
Detector resolution: 5.8140 pixels mm-1Rint = 0.016
multi–scanθmax = 73.7°, θmin = 3.5°
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
h = 1212
Tmin = 0.902, Tmax = 1.000k = 3434
66224 measured reflectionsl = 1515
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.5472P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.067(Δ/σ)max = 0.001
S = 1.02Δρmax = 0.17 e Å3
14120 reflectionsΔρmin = 0.21 e Å3
858 parametersAbsolute structure: Flack x determined using 6582 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.003 (16)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1M0.10896 (13)0.57492 (5)0.04468 (10)0.0321 (3)
H1M0.1922440.5733550.0553940.048*
C1M0.0683 (2)0.57447 (7)0.06624 (15)0.0329 (4)
H1M10.0289010.5729510.0786560.049*
H1M20.1064120.5472490.0983540.049*
H1M30.0992850.6029020.0984970.049*
C10.89151 (18)0.71439 (6)0.06208 (13)0.0264 (4)
O10.93266 (14)0.67532 (5)0.00979 (9)0.0306 (3)
C20.9498 (2)0.70048 (8)0.16328 (14)0.0343 (4)
H2A0.9284160.7243290.2179700.051*
H2B1.0465520.6975580.1482140.051*
H2C0.9120450.6705770.1888380.051*
C30.9547 (2)0.75919 (7)0.01717 (17)0.0370 (4)
H3A0.9271310.7850760.0651470.056*
H3B0.9260670.7652270.0530740.056*
H3C1.0517050.7561720.0104560.056*
C40.7419 (2)0.71763 (8)0.08178 (17)0.0381 (5)
H4A0.7168660.7437950.1296680.057*
H4B0.7060720.6886710.1144810.057*
H4C0.7055190.7225410.0139920.057*
C50.90994 (18)0.67612 (7)0.11290 (13)0.0260 (3)
O50.83288 (16)0.70154 (6)0.15264 (11)0.0400 (4)
N110.98566 (13)0.64363 (5)0.16738 (10)0.0201 (3)
H111.0329650.6240540.1335810.024*
C110.98855 (15)0.64121 (5)0.28205 (12)0.0174 (3)
H11A0.9986050.6732580.3127790.021*
C120.85924 (15)0.61941 (5)0.31143 (11)0.0158 (3)
O120.82044 (11)0.58219 (4)0.26970 (9)0.0194 (2)
C131.10720 (15)0.61089 (6)0.32765 (12)0.0215 (3)
H13A1.0864780.5777160.3124610.026*
H13B1.1864090.6191930.2923280.026*
C141.13766 (15)0.61769 (6)0.44643 (13)0.0196 (3)
C151.22967 (16)0.65118 (6)0.48600 (14)0.0253 (3)
H151.2781700.6678190.4381360.030*
C161.25166 (18)0.66064 (6)0.59418 (15)0.0285 (4)
H161.3150620.6834840.6201270.034*
C171.18063 (18)0.63659 (7)0.66429 (14)0.0294 (4)
H171.1940080.6433990.7382860.035*
C181.09024 (18)0.60266 (7)0.62648 (14)0.0304 (4)
H181.0423790.5859240.6746080.036*
C191.06950 (17)0.59308 (6)0.51769 (13)0.0244 (3)
H191.0082090.5695130.4921220.029*
N210.79029 (12)0.64112 (4)0.38130 (10)0.0164 (2)
C210.66912 (15)0.61953 (5)0.41439 (12)0.0171 (3)
H210.6938820.5904910.4555730.020*
C220.56390 (15)0.60807 (5)0.32236 (12)0.0164 (3)
O220.48835 (11)0.57497 (4)0.32883 (8)0.0190 (2)
C230.61858 (16)0.65603 (6)0.48916 (13)0.0222 (3)
H23A0.5534460.6772070.4496350.027*
H23B0.5764500.6409220.5472530.027*
C240.74280 (17)0.68210 (7)0.53261 (14)0.0264 (4)
H240.7216720.7137950.5587880.032*
F240.81264 (11)0.65515 (5)0.61320 (8)0.0355 (3)
C250.82585 (16)0.68455 (6)0.44015 (13)0.0221 (3)
H25A0.8024510.7122310.3952590.026*
H25B0.9219440.6854710.4655930.026*
N310.55629 (12)0.63611 (5)0.23661 (10)0.0174 (2)
H310.6094370.6603410.2364100.021*
C310.46039 (15)0.62662 (5)0.14377 (12)0.0177 (3)
H31A0.3688730.6320620.1637980.021*
C320.47066 (15)0.57592 (5)0.10836 (11)0.0176 (3)
O320.37026 (11)0.55339 (4)0.07621 (9)0.0230 (2)
C330.48421 (16)0.66028 (6)0.05265 (12)0.0206 (3)
H330.5789470.6572150.0382930.025*
C340.3951 (2)0.64805 (7)0.04927 (14)0.0365 (4)
H34A0.4107620.6156590.0687490.055*
H34B0.3017350.6519640.0374700.055*
H34C0.4156580.6686820.1069590.055*
C350.46008 (19)0.71061 (6)0.08311 (14)0.0279 (4)
H35A0.5173190.7183950.1484950.042*
H35B0.4806670.7312700.0254810.042*
H35C0.3667440.7145530.0949710.042*
N410.59407 (13)0.55876 (5)0.10842 (10)0.0179 (3)
H410.6629190.5770190.1256520.022*
C410.61575 (15)0.51035 (5)0.08037 (12)0.0182 (3)
H41A0.5373940.4999860.0306640.022*
C420.62647 (15)0.47832 (6)0.17797 (12)0.0176 (3)
O420.56513 (11)0.44117 (4)0.17630 (9)0.0219 (2)
C430.73975 (16)0.50583 (6)0.02176 (12)0.0205 (3)
H43A0.8169420.5187890.0673870.025*
H43B0.7268770.5247390.0440910.025*
C440.77150 (16)0.45562 (6)0.00784 (13)0.0223 (3)
H440.7911060.4374640.0596170.027*
C450.89539 (17)0.45470 (7)0.06642 (15)0.0292 (4)
H45A0.9692810.4696720.0223820.044*
H45B0.9188820.4223580.0804160.044*
H45C0.8775170.4714720.1340410.044*
C460.65390 (17)0.43247 (6)0.07443 (14)0.0264 (3)
H46A0.5756680.4334640.0353530.040*
H46B0.6346780.4491240.1420940.040*
H46C0.6760440.4000100.0884700.040*
N510.70908 (13)0.49181 (5)0.26313 (10)0.0181 (3)
H510.7447600.5197730.2655670.022*
C510.73863 (15)0.45960 (6)0.35103 (13)0.0191 (3)
H51A0.7716920.4300250.3216160.023*
C520.61595 (15)0.44790 (5)0.40613 (12)0.0168 (3)
O520.60186 (11)0.40807 (4)0.44008 (9)0.0212 (2)
C530.84952 (16)0.47914 (6)0.43106 (13)0.0216 (3)
H53A0.9270630.4865900.3929140.026*
H53B0.8183190.5085870.4604930.026*
C540.89461 (16)0.44627 (6)0.52354 (14)0.0233 (3)
H540.8150250.4389180.5607100.028*
C550.9494 (2)0.40043 (7)0.48672 (17)0.0350 (4)
H55A0.8828220.3854890.4354500.053*
H55B1.0301800.4064020.4528060.053*
H55C0.9706530.3798880.5482060.053*
C560.9957 (2)0.47046 (7)0.60338 (16)0.0329 (4)
H56A0.9583090.4998250.6259390.049*
H56B1.0171300.4503070.6655210.049*
H56C1.0766580.4768210.5701210.049*
N610.53000 (12)0.48232 (4)0.41914 (10)0.0164 (2)
H610.5449540.5103660.3951330.020*
C610.41174 (15)0.47387 (6)0.47269 (12)0.0185 (3)
H61A0.3533590.5019290.4615780.022*
C620.33382 (15)0.43200 (5)0.42126 (12)0.0172 (3)
O620.30644 (11)0.39776 (4)0.47288 (9)0.0212 (2)
C630.44372 (17)0.46661 (6)0.59353 (12)0.0228 (3)
H63A0.3601260.4607020.6250560.027*
H63B0.5011680.4388460.6066300.027*
C640.51300 (17)0.50829 (6)0.64742 (12)0.0218 (3)
C650.64968 (18)0.50827 (7)0.67462 (14)0.0293 (4)
H650.6997830.4815190.6601470.035*
C660.7144 (2)0.54671 (8)0.72264 (16)0.0372 (4)
H660.8081360.5461340.7401440.045*
C670.6433 (2)0.58569 (7)0.74503 (15)0.0386 (5)
H670.6872180.6118610.7788590.046*
C680.5085 (3)0.58616 (8)0.71782 (17)0.0435 (5)
H680.4589040.6129830.7326480.052*
C690.4433 (2)0.54798 (7)0.66884 (16)0.0355 (4)
H690.3498320.5491270.6498620.043*
N710.29783 (13)0.43468 (5)0.31474 (10)0.0175 (3)
C710.22225 (15)0.39610 (6)0.26077 (13)0.0190 (3)
H710.1414600.3902780.2976190.023*
C720.29742 (15)0.35035 (5)0.25423 (12)0.0180 (3)
O720.23391 (12)0.31421 (4)0.24196 (10)0.0275 (3)
C730.17819 (19)0.41632 (6)0.14947 (14)0.0284 (4)
H73A0.2448080.4097690.0998020.034*
H73B0.0913160.4033460.1196010.034*
C740.16796 (17)0.46789 (6)0.16981 (14)0.0260 (3)
H740.1708800.4864960.1032350.031*
F740.05056 (10)0.47617 (4)0.21698 (11)0.0390 (3)
C750.28595 (16)0.47786 (6)0.25075 (13)0.0208 (3)
H75A0.3671470.4835140.2157440.025*
H75B0.2692270.5051280.2952410.025*
N810.43076 (13)0.35202 (5)0.25851 (10)0.0178 (3)
H810.4719850.3790340.2622750.021*
C810.50681 (15)0.30893 (5)0.25692 (12)0.0180 (3)
H81A0.4603440.2884110.2005790.022*
C820.51262 (15)0.28270 (6)0.36357 (13)0.0181 (3)
O820.49500 (12)0.24057 (4)0.36649 (10)0.0243 (2)
C830.64772 (15)0.31843 (6)0.22692 (12)0.0197 (3)
H830.6889570.3435340.2745590.024*
C840.64158 (19)0.33527 (6)0.11155 (14)0.0267 (3)
H84A0.5853700.3630750.1021770.040*
H84B0.7314000.3428590.0951120.040*
H84C0.6040270.3106750.0635120.040*
C850.73525 (17)0.27504 (6)0.24229 (15)0.0261 (3)
H85A0.7388180.2644240.3162520.039*
H85B0.6978370.2503590.1944380.039*
H85C0.8252110.2825430.2260390.039*
N910.54605 (13)0.30876 (5)0.45172 (10)0.0188 (3)
H910.5505290.3392330.4459420.023*
C910.57471 (15)0.28714 (5)0.55599 (12)0.0181 (3)
H91A0.6127920.2555890.5453600.022*
C920.45133 (15)0.28084 (6)0.61433 (12)0.0172 (3)
O920.43563 (11)0.24499 (4)0.66468 (9)0.0230 (2)
C930.68087 (15)0.31586 (6)0.62367 (13)0.0204 (3)
H93A0.7615630.3171360.5862200.025*
H93B0.6476650.3481130.6286940.025*
C940.72014 (15)0.29749 (6)0.73664 (13)0.0216 (3)
H940.6396120.2978830.7757430.026*
C950.77299 (17)0.24771 (6)0.73656 (14)0.0251 (3)
H95A0.7968760.2373250.8100940.038*
H95B0.7042510.2271630.7013870.038*
H95C0.8517730.2466880.6981300.038*
C960.82464 (17)0.33006 (7)0.79417 (15)0.0297 (4)
H96A0.7893400.3618390.7935800.044*
H96B0.8462880.3196650.8679460.044*
H96C0.9051100.3295120.7577600.044*
N1010.36769 (13)0.31742 (5)0.61189 (11)0.0202 (3)
H1010.3869840.3431380.5790640.024*
C1010.24628 (15)0.31498 (6)0.66261 (13)0.0203 (3)
H10A0.2602440.2913190.7208310.024*
C1020.12640 (16)0.29962 (6)0.58694 (13)0.0211 (3)
O1020.02025 (12)0.29105 (5)0.61682 (10)0.0308 (3)
C1030.21605 (15)0.36172 (6)0.71397 (13)0.0207 (3)
H10B0.2117790.3861960.6585320.025*
H10C0.1271140.3597070.7391430.025*
C1040.31611 (17)0.37686 (7)0.80731 (14)0.0269 (4)
H1040.4049550.3805060.7808370.032*
C1050.27440 (19)0.42400 (7)0.84827 (15)0.0315 (4)
H10D0.2663750.4465610.7897300.047*
H10E0.1885500.4208910.8764600.047*
H10F0.3414890.4348060.9049060.047*
C1060.3291 (3)0.34142 (9)0.89682 (19)0.0533 (7)
H10G0.3558800.3113450.8695200.080*
H10H0.3963470.3519710.9536180.080*
H10I0.2434080.3380560.9251730.080*
O1070.15034 (11)0.29707 (4)0.48560 (9)0.0240 (2)
C1070.03710 (17)0.28447 (6)0.41077 (14)0.0259 (3)
H10J0.0638480.2834550.3386600.039*
H10K0.0042530.2537920.4293870.039*
H10L0.0334670.3076390.4135980.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1M0.0289 (6)0.0416 (8)0.0257 (6)0.0140 (6)0.0026 (5)0.0022 (5)
C1M0.0348 (9)0.0346 (10)0.0283 (9)0.0014 (8)0.0009 (7)0.0003 (7)
C10.0318 (9)0.0269 (9)0.0198 (8)0.0034 (7)0.0001 (7)0.0099 (7)
O10.0439 (7)0.0322 (7)0.0160 (5)0.0147 (6)0.0048 (5)0.0078 (5)
C20.0455 (11)0.0389 (11)0.0185 (8)0.0016 (9)0.0033 (7)0.0076 (7)
C30.0431 (11)0.0338 (10)0.0330 (10)0.0004 (9)0.0004 (8)0.0003 (8)
C40.0318 (10)0.0433 (12)0.0383 (10)0.0011 (8)0.0008 (8)0.0216 (9)
C50.0304 (9)0.0295 (9)0.0184 (7)0.0050 (7)0.0039 (6)0.0051 (6)
O50.0499 (8)0.0475 (9)0.0236 (6)0.0287 (7)0.0094 (6)0.0083 (6)
N110.0223 (6)0.0237 (7)0.0148 (6)0.0027 (5)0.0037 (5)0.0030 (5)
C110.0182 (7)0.0187 (7)0.0151 (7)0.0001 (6)0.0015 (5)0.0013 (5)
C120.0171 (7)0.0154 (7)0.0141 (6)0.0009 (5)0.0013 (5)0.0019 (5)
O120.0202 (5)0.0164 (5)0.0215 (5)0.0009 (4)0.0019 (4)0.0031 (4)
C130.0176 (7)0.0280 (8)0.0186 (8)0.0031 (6)0.0007 (6)0.0022 (6)
C140.0164 (7)0.0223 (8)0.0198 (8)0.0022 (6)0.0002 (6)0.0030 (6)
C150.0218 (8)0.0259 (9)0.0273 (8)0.0042 (6)0.0016 (6)0.0061 (7)
C160.0282 (8)0.0238 (9)0.0314 (9)0.0019 (7)0.0062 (7)0.0016 (7)
C170.0295 (9)0.0374 (10)0.0204 (8)0.0031 (7)0.0015 (7)0.0048 (7)
C180.0264 (9)0.0441 (11)0.0209 (8)0.0038 (7)0.0033 (7)0.0057 (7)
C190.0220 (8)0.0282 (9)0.0221 (8)0.0058 (6)0.0014 (6)0.0045 (6)
N210.0166 (6)0.0155 (6)0.0170 (6)0.0010 (5)0.0017 (5)0.0015 (5)
C210.0182 (7)0.0172 (7)0.0161 (7)0.0001 (5)0.0031 (5)0.0018 (5)
C220.0177 (7)0.0156 (7)0.0164 (7)0.0028 (5)0.0039 (5)0.0015 (5)
O220.0205 (5)0.0174 (5)0.0193 (5)0.0019 (4)0.0033 (4)0.0003 (4)
C230.0217 (7)0.0257 (8)0.0198 (7)0.0007 (6)0.0046 (6)0.0051 (6)
C240.0252 (8)0.0292 (9)0.0248 (8)0.0001 (7)0.0032 (6)0.0092 (7)
F240.0296 (5)0.0580 (8)0.0178 (5)0.0026 (5)0.0020 (4)0.0041 (5)
C250.0234 (8)0.0186 (8)0.0242 (8)0.0027 (6)0.0030 (6)0.0067 (6)
N310.0187 (6)0.0154 (6)0.0176 (6)0.0014 (5)0.0002 (5)0.0014 (5)
C310.0188 (7)0.0175 (7)0.0164 (7)0.0013 (6)0.0002 (5)0.0008 (6)
C320.0205 (7)0.0186 (7)0.0137 (6)0.0003 (6)0.0013 (5)0.0031 (5)
O320.0204 (5)0.0211 (6)0.0262 (6)0.0015 (4)0.0025 (4)0.0001 (4)
C330.0250 (8)0.0196 (8)0.0170 (7)0.0033 (6)0.0019 (6)0.0021 (6)
C340.0560 (12)0.0294 (10)0.0212 (8)0.0050 (9)0.0084 (8)0.0054 (7)
C350.0390 (10)0.0208 (9)0.0238 (8)0.0055 (7)0.0030 (7)0.0035 (6)
N410.0188 (6)0.0167 (6)0.0182 (6)0.0014 (5)0.0014 (5)0.0012 (5)
C410.0201 (7)0.0178 (7)0.0166 (7)0.0003 (6)0.0021 (5)0.0030 (6)
C420.0177 (7)0.0174 (7)0.0186 (7)0.0005 (6)0.0059 (5)0.0023 (6)
O420.0244 (6)0.0187 (6)0.0232 (6)0.0043 (4)0.0052 (4)0.0040 (4)
C430.0211 (7)0.0236 (8)0.0172 (7)0.0017 (6)0.0041 (6)0.0017 (6)
C440.0224 (8)0.0250 (8)0.0200 (7)0.0007 (6)0.0048 (6)0.0037 (6)
C450.0217 (8)0.0383 (10)0.0282 (9)0.0016 (7)0.0054 (7)0.0086 (7)
C460.0256 (8)0.0285 (9)0.0255 (8)0.0018 (7)0.0051 (7)0.0092 (7)
N510.0210 (6)0.0156 (6)0.0179 (6)0.0033 (5)0.0027 (5)0.0009 (5)
C510.0189 (7)0.0167 (7)0.0218 (7)0.0007 (6)0.0032 (6)0.0019 (6)
C520.0173 (7)0.0166 (7)0.0157 (7)0.0020 (5)0.0013 (5)0.0002 (5)
O520.0203 (5)0.0158 (5)0.0273 (6)0.0015 (4)0.0022 (4)0.0046 (4)
C530.0192 (7)0.0218 (8)0.0237 (8)0.0019 (6)0.0015 (6)0.0001 (6)
C540.0201 (7)0.0225 (8)0.0264 (8)0.0028 (6)0.0008 (6)0.0000 (6)
C550.0317 (9)0.0307 (10)0.0407 (11)0.0105 (8)0.0046 (8)0.0054 (8)
C560.0321 (9)0.0316 (10)0.0325 (9)0.0023 (7)0.0079 (7)0.0015 (8)
N610.0193 (6)0.0143 (6)0.0158 (6)0.0007 (5)0.0026 (5)0.0020 (5)
C610.0207 (7)0.0190 (7)0.0162 (7)0.0003 (6)0.0036 (6)0.0003 (6)
C620.0157 (7)0.0186 (7)0.0176 (7)0.0013 (5)0.0036 (5)0.0014 (6)
O620.0204 (5)0.0220 (6)0.0215 (5)0.0022 (4)0.0033 (4)0.0046 (4)
C630.0292 (8)0.0241 (9)0.0153 (7)0.0023 (6)0.0039 (6)0.0005 (6)
C640.0291 (8)0.0236 (8)0.0131 (7)0.0004 (6)0.0035 (6)0.0004 (6)
C650.0289 (9)0.0350 (10)0.0247 (8)0.0028 (7)0.0059 (7)0.0062 (7)
C660.0335 (10)0.0498 (13)0.0285 (9)0.0112 (9)0.0042 (8)0.0074 (8)
C670.0602 (13)0.0315 (10)0.0223 (8)0.0120 (9)0.0034 (8)0.0034 (7)
C680.0647 (14)0.0297 (11)0.0330 (10)0.0140 (10)0.0083 (9)0.0101 (8)
C690.0367 (10)0.0371 (11)0.0303 (9)0.0119 (8)0.0060 (8)0.0094 (8)
N710.0188 (6)0.0156 (6)0.0180 (6)0.0006 (5)0.0015 (5)0.0009 (5)
C710.0168 (7)0.0193 (7)0.0206 (7)0.0014 (6)0.0003 (6)0.0003 (6)
C720.0199 (7)0.0195 (8)0.0145 (7)0.0017 (6)0.0013 (5)0.0006 (6)
O720.0232 (6)0.0222 (6)0.0376 (7)0.0055 (5)0.0058 (5)0.0064 (5)
C730.0314 (9)0.0267 (9)0.0244 (8)0.0003 (7)0.0089 (7)0.0023 (7)
C740.0231 (8)0.0270 (9)0.0268 (8)0.0027 (6)0.0020 (7)0.0041 (7)
F740.0208 (5)0.0378 (6)0.0583 (7)0.0086 (4)0.0034 (5)0.0083 (5)
C750.0227 (8)0.0192 (8)0.0200 (7)0.0016 (6)0.0000 (6)0.0045 (6)
N810.0174 (6)0.0147 (6)0.0209 (6)0.0009 (5)0.0006 (5)0.0002 (5)
C810.0182 (7)0.0157 (7)0.0199 (7)0.0009 (5)0.0021 (6)0.0014 (6)
C820.0146 (6)0.0167 (7)0.0235 (7)0.0000 (5)0.0042 (5)0.0008 (6)
O820.0278 (6)0.0162 (6)0.0286 (6)0.0028 (4)0.0027 (5)0.0017 (5)
C830.0199 (7)0.0190 (8)0.0208 (7)0.0017 (6)0.0048 (6)0.0023 (6)
C840.0335 (9)0.0247 (8)0.0235 (8)0.0001 (7)0.0095 (7)0.0007 (6)
C850.0226 (8)0.0255 (9)0.0310 (9)0.0032 (6)0.0067 (7)0.0009 (7)
N910.0227 (6)0.0141 (6)0.0203 (6)0.0002 (5)0.0053 (5)0.0019 (5)
C910.0169 (7)0.0170 (7)0.0209 (7)0.0016 (6)0.0036 (6)0.0011 (6)
C920.0162 (7)0.0179 (7)0.0171 (7)0.0016 (5)0.0004 (5)0.0008 (6)
O920.0230 (5)0.0206 (6)0.0259 (6)0.0004 (4)0.0048 (4)0.0061 (5)
C930.0172 (7)0.0193 (8)0.0252 (8)0.0003 (6)0.0038 (6)0.0003 (6)
C940.0164 (7)0.0266 (8)0.0221 (8)0.0017 (6)0.0037 (6)0.0029 (6)
C950.0224 (7)0.0282 (9)0.0244 (8)0.0033 (6)0.0022 (6)0.0031 (7)
C960.0230 (8)0.0361 (10)0.0298 (9)0.0001 (7)0.0022 (7)0.0109 (7)
N1010.0171 (6)0.0207 (7)0.0235 (7)0.0020 (5)0.0057 (5)0.0052 (5)
C1010.0163 (7)0.0230 (8)0.0220 (7)0.0016 (6)0.0039 (6)0.0035 (6)
C1020.0199 (7)0.0194 (8)0.0244 (8)0.0010 (6)0.0045 (6)0.0006 (6)
O1020.0199 (6)0.0418 (8)0.0316 (6)0.0046 (5)0.0072 (5)0.0049 (6)
C1030.0166 (7)0.0248 (8)0.0209 (7)0.0020 (6)0.0024 (6)0.0010 (6)
C1040.0189 (7)0.0336 (9)0.0275 (9)0.0006 (7)0.0006 (6)0.0033 (7)
C1050.0292 (9)0.0383 (11)0.0273 (9)0.0036 (8)0.0051 (7)0.0060 (7)
C1060.0786 (18)0.0422 (13)0.0323 (11)0.0032 (12)0.0229 (11)0.0042 (9)
O1070.0223 (5)0.0272 (6)0.0228 (6)0.0026 (5)0.0036 (4)0.0019 (5)
C1070.0255 (8)0.0266 (9)0.0248 (8)0.0020 (7)0.0008 (6)0.0020 (7)
Geometric parameters (Å, º) top
O1M—C1M1.416 (2)C54—C551.522 (2)
O1M—H1M0.8400C54—H541.0000
C1M—H1M10.9800C55—H55A0.9800
C1M—H1M20.9800C55—H55B0.9800
C1M—H1M30.9800C55—H55C0.9800
C1—O11.4740 (19)C56—H56A0.9800
C1—C41.510 (3)C56—H56B0.9800
C1—C21.521 (3)C56—H56C0.9800
C1—C31.518 (3)N61—C611.4607 (19)
O1—C51.349 (2)N61—H610.8800
C2—H2A0.9800C61—C631.539 (2)
C2—H2B0.9800C61—C621.541 (2)
C2—H2C0.9800C61—H61A1.0000
C3—H3A0.9800C62—O621.229 (2)
C3—H3B0.9800C62—N711.356 (2)
C3—H3C0.9800C63—C641.510 (2)
C4—H4A0.9800C63—H63A0.9900
C4—H4B0.9800C63—H63B0.9900
C4—H4C0.9800C64—C691.384 (3)
C5—O51.218 (2)C64—C651.388 (3)
C5—N111.347 (2)C65—C661.388 (3)
N11—C111.4479 (19)C65—H650.9500
N11—H110.8800C66—C671.377 (3)
C11—C121.534 (2)C66—H660.9500
C11—C131.542 (2)C67—C681.370 (3)
C11—H11A1.0000C67—H670.9500
C12—O121.2366 (19)C68—C691.389 (3)
C12—N211.340 (2)C68—H680.9500
C13—C141.511 (2)C69—H690.9500
C13—H13A0.9900N71—C711.470 (2)
C13—H13B0.9900N71—C751.478 (2)
C14—C191.388 (2)C71—C721.526 (2)
C14—C151.392 (2)C71—C731.541 (2)
C15—C161.387 (3)C71—H711.0000
C15—H150.9500C72—O721.222 (2)
C16—C171.387 (3)C72—N811.346 (2)
C16—H160.9500C73—C741.509 (3)
C17—C181.385 (3)C73—H73A0.9900
C17—H170.9500C73—H73B0.9900
C18—C191.395 (2)C74—F741.409 (2)
C18—H180.9500C74—C751.510 (2)
C19—H190.9500C74—H741.0000
N21—C251.4760 (19)C75—H75A0.9900
N21—C211.4768 (19)C75—H75B0.9900
C21—C221.522 (2)N81—C811.459 (2)
C21—C231.537 (2)N81—H810.8800
C21—H211.0000C81—C821.539 (2)
C22—O221.2289 (19)C81—C831.541 (2)
C22—N311.345 (2)C81—H81A1.0000
C23—C241.513 (2)C82—O821.225 (2)
C23—H23A0.9900C82—N911.353 (2)
C23—H23B0.9900C83—C851.529 (2)
C24—F241.405 (2)C83—C841.531 (2)
C24—C251.516 (2)C83—H831.0000
C24—H241.0000C84—H84A0.9800
C25—H25A0.9900C84—H84B0.9800
C25—H25B0.9900C84—H84C0.9800
N31—C311.4616 (19)C85—H85A0.9800
N31—H310.8800C85—H85B0.9800
C31—C321.531 (2)C85—H85C0.9800
C31—C331.543 (2)N91—C911.456 (2)
C31—H31A1.0000N91—H910.8800
C32—O321.235 (2)C91—C921.531 (2)
C32—N411.343 (2)C91—C931.536 (2)
C33—C351.523 (2)C91—H91A1.0000
C33—C341.528 (2)C92—O921.230 (2)
C33—H331.0000C92—N1011.348 (2)
C34—H34A0.9800C93—C941.532 (2)
C34—H34B0.9800C93—H93A0.9900
C34—H34C0.9800C93—H93B0.9900
C35—H35A0.9800C94—C951.527 (2)
C35—H35B0.9800C94—C961.533 (2)
C35—H35C0.9800C94—H941.0000
N41—C411.458 (2)C95—H95A0.9800
N41—H410.8800C95—H95B0.9800
C41—C421.533 (2)C95—H95C0.9800
C41—C431.534 (2)C96—H96A0.9800
C41—H41A1.0000C96—H96B0.9800
C42—O421.234 (2)C96—H96C0.9800
C42—N511.343 (2)N101—C1011.4508 (19)
C43—C441.533 (2)N101—H1010.8800
C43—H43A0.9900C101—C1021.523 (2)
C43—H43B0.9900C101—C1031.537 (2)
C44—C451.527 (2)C101—H10A1.0000
C44—C461.530 (2)C102—O1021.204 (2)
C44—H441.0000C102—O1071.332 (2)
C45—H45A0.9800C103—C1041.529 (2)
C45—H45B0.9800C103—H10B0.9900
C45—H45C0.9800C103—H10C0.9900
C46—H46A0.9800C104—C1061.516 (3)
C46—H46B0.9800C104—C1051.526 (3)
C46—H46C0.9800C104—H1041.0000
N51—C511.451 (2)C105—H10D0.9800
N51—H510.8800C105—H10E0.9800
C51—C521.528 (2)C105—H10F0.9800
C51—C531.530 (2)C106—H10G0.9800
C51—H51A1.0000C106—H10H0.9800
C52—O521.2360 (19)C106—H10I0.9800
C52—N611.339 (2)O107—C1071.447 (2)
C53—C541.532 (2)C107—H10J0.9800
C53—H53A0.9900C107—H10K0.9800
C53—H53B0.9900C107—H10L0.9800
C54—C561.521 (2)
C1M—O1M—H1M109.5C55—C54—H54107.6
O1M—C1M—H1M1109.5C53—C54—H54107.6
O1M—C1M—H1M2109.5C54—C55—H55A109.5
H1M1—C1M—H1M2109.5C54—C55—H55B109.5
O1M—C1M—H1M3109.5H55A—C55—H55B109.5
H1M1—C1M—H1M3109.5C54—C55—H55C109.5
H1M2—C1M—H1M3109.5H55A—C55—H55C109.5
O1—C1—C4110.92 (15)H55B—C55—H55C109.5
O1—C1—C2102.03 (14)C54—C56—H56A109.5
C4—C1—C2110.79 (16)C54—C56—H56B109.5
O1—C1—C3109.70 (14)H56A—C56—H56B109.5
C4—C1—C3112.45 (17)C54—C56—H56C109.5
C2—C1—C3110.47 (16)H56A—C56—H56C109.5
C5—O1—C1121.01 (14)H56B—C56—H56C109.5
C1—C2—H2A109.5C52—N61—C61120.81 (13)
C1—C2—H2B109.5C52—N61—H61119.6
H2A—C2—H2B109.5C61—N61—H61119.6
C1—C2—H2C109.5N61—C61—C63112.99 (13)
H2A—C2—H2C109.5N61—C61—C62109.97 (12)
H2B—C2—H2C109.5C63—C61—C62110.67 (13)
C1—C3—H3A109.5N61—C61—H61A107.7
C1—C3—H3B109.5C63—C61—H61A107.7
H3A—C3—H3B109.5C62—C61—H61A107.7
C1—C3—H3C109.5O62—C62—N71121.38 (14)
H3A—C3—H3C109.5O62—C62—C61122.41 (14)
H3B—C3—H3C109.5N71—C62—C61116.21 (13)
C1—C4—H4A109.5C64—C63—C61112.02 (13)
C1—C4—H4B109.5C64—C63—H63A109.2
H4A—C4—H4B109.5C61—C63—H63A109.2
C1—C4—H4C109.5C64—C63—H63B109.2
H4A—C4—H4C109.5C61—C63—H63B109.2
H4B—C4—H4C109.5H63A—C63—H63B107.9
O5—C5—N11124.00 (15)C69—C64—C65117.92 (17)
O5—C5—O1126.56 (16)C69—C64—C63121.34 (16)
N11—C5—O1109.44 (15)C65—C64—C63120.72 (16)
C5—N11—C11119.41 (13)C66—C65—C64121.09 (18)
C5—N11—H11120.3C66—C65—H65119.5
C11—N11—H11120.3C64—C65—H65119.5
N11—C11—C12109.91 (12)C67—C66—C65120.31 (19)
N11—C11—C13109.16 (12)C67—C66—H66119.8
C12—C11—C13109.22 (12)C65—C66—H66119.8
N11—C11—H11A109.5C68—C67—C66119.04 (19)
C12—C11—H11A109.5C68—C67—H67120.5
C13—C11—H11A109.5C66—C67—H67120.5
O12—C12—N21121.30 (14)C67—C68—C69120.95 (19)
O12—C12—C11119.23 (13)C67—C68—H68119.5
N21—C12—C11119.46 (13)C69—C68—H68119.5
C14—C13—C11111.19 (13)C64—C69—C68120.68 (19)
C14—C13—H13A109.4C64—C69—H69119.7
C11—C13—H13A109.4C68—C69—H69119.7
C14—C13—H13B109.4C62—N71—C71119.02 (13)
C11—C13—H13B109.4C62—N71—C75125.92 (13)
H13A—C13—H13B108.0C71—N71—C75111.89 (12)
C19—C14—C15118.71 (15)N71—C71—C72115.97 (13)
C19—C14—C13121.21 (15)N71—C71—C73102.79 (13)
C15—C14—C13119.96 (15)C72—C71—C73111.72 (13)
C14—C15—C16121.05 (16)N71—C71—H71108.7
C14—C15—H15119.5C72—C71—H71108.7
C16—C15—H15119.5C73—C71—H71108.7
C17—C16—C15119.67 (17)O72—C72—N81123.13 (15)
C17—C16—H16120.2O72—C72—C71118.70 (14)
C15—C16—H16120.2N81—C72—C71118.12 (13)
C16—C17—C18120.03 (16)C74—C73—C71103.48 (14)
C16—C17—H17120.0C74—C73—H73A111.1
C18—C17—H17120.0C71—C73—H73A111.1
C17—C18—C19119.95 (16)C74—C73—H73B111.1
C17—C18—H18120.0C71—C73—H73B111.1
C19—C18—H18120.0H73A—C73—H73B109.0
C14—C19—C18120.56 (16)F74—C74—C75108.79 (14)
C14—C19—H19119.7F74—C74—C73108.38 (15)
C18—C19—H19119.7C75—C74—C73103.72 (13)
C12—N21—C25127.59 (13)F74—C74—H74111.9
C12—N21—C21120.16 (13)C75—C74—H74111.9
C25—N21—C21112.05 (12)C73—C74—H74111.9
N21—C21—C22114.00 (12)N71—C75—C74102.76 (13)
N21—C21—C23103.43 (12)N71—C75—H75A111.2
C22—C21—C23111.37 (12)C74—C75—H75A111.2
N21—C21—H21109.3N71—C75—H75B111.2
C22—C21—H21109.3C74—C75—H75B111.2
C23—C21—H21109.3H75A—C75—H75B109.1
O22—C22—N31122.50 (14)C72—N81—C81119.85 (13)
O22—C22—C21120.24 (13)C72—N81—H81120.1
N31—C22—C21117.24 (13)C81—N81—H81120.1
C24—C23—C21103.89 (13)N81—C81—C82111.78 (12)
C24—C23—H23A111.0N81—C81—C83110.97 (12)
C21—C23—H23A111.0C82—C81—C83110.92 (12)
C24—C23—H23B111.0N81—C81—H81A107.7
C21—C23—H23B111.0C82—C81—H81A107.7
H23A—C23—H23B109.0C83—C81—H81A107.7
F24—C24—C23108.67 (15)O82—C82—N91123.07 (15)
F24—C24—C25107.85 (13)O82—C82—C81121.25 (14)
C23—C24—C25104.71 (13)N91—C82—C81115.56 (13)
F24—C24—H24111.8C85—C83—C84109.83 (13)
C23—C24—H24111.8C85—C83—C81111.33 (13)
C25—C24—H24111.8C84—C83—C81110.55 (13)
N21—C25—C24102.96 (13)C85—C83—H83108.3
N21—C25—H25A111.2C84—C83—H83108.3
C24—C25—H25A111.2C81—C83—H83108.3
N21—C25—H25B111.2C83—C84—H84A109.5
C24—C25—H25B111.2C83—C84—H84B109.5
H25A—C25—H25B109.1H84A—C84—H84B109.5
C22—N31—C31120.49 (13)C83—C84—H84C109.5
C22—N31—H31119.8H84A—C84—H84C109.5
C31—N31—H31119.8H84B—C84—H84C109.5
N31—C31—C32110.57 (12)C83—C85—H85A109.5
N31—C31—C33109.66 (12)C83—C85—H85B109.5
C32—C31—C33110.88 (12)H85A—C85—H85B109.5
N31—C31—H31A108.6C83—C85—H85C109.5
C32—C31—H31A108.6H85A—C85—H85C109.5
C33—C31—H31A108.6H85B—C85—H85C109.5
O32—C32—N41122.61 (15)C82—N91—C91121.00 (13)
O32—C32—C31120.97 (14)C82—N91—H91119.5
N41—C32—C31116.30 (13)C91—N91—H91119.5
C35—C33—C34109.59 (14)N91—C91—C92113.34 (12)
C35—C33—C31111.29 (13)N91—C91—C93109.28 (13)
C34—C33—C31110.96 (14)C92—C91—C93110.67 (12)
C35—C33—H33108.3N91—C91—H91A107.8
C34—C33—H33108.3C92—C91—H91A107.8
C31—C33—H33108.3C93—C91—H91A107.8
C33—C34—H34A109.5O92—C92—N101123.16 (14)
C33—C34—H34B109.5O92—C92—C91120.53 (14)
H34A—C34—H34B109.5N101—C92—C91116.20 (13)
C33—C34—H34C109.5C94—C93—C91115.18 (13)
H34A—C34—H34C109.5C94—C93—H93A108.5
H34B—C34—H34C109.5C91—C93—H93A108.5
C33—C35—H35A109.5C94—C93—H93B108.5
C33—C35—H35B109.5C91—C93—H93B108.5
H35A—C35—H35B109.5H93A—C93—H93B107.5
C33—C35—H35C109.5C95—C94—C93112.09 (13)
H35A—C35—H35C109.5C95—C94—C96110.42 (14)
H35B—C35—H35C109.5C93—C94—C96108.92 (14)
C32—N41—C41121.05 (13)C95—C94—H94108.4
C32—N41—H41119.5C93—C94—H94108.4
C41—N41—H41119.5C96—C94—H94108.4
N41—C41—C42112.08 (12)C94—C95—H95A109.5
N41—C41—C43110.61 (13)C94—C95—H95B109.5
C42—C41—C43110.52 (12)H95A—C95—H95B109.5
N41—C41—H41A107.8C94—C95—H95C109.5
C42—C41—H41A107.8H95A—C95—H95C109.5
C43—C41—H41A107.8H95B—C95—H95C109.5
O42—C42—N51121.99 (15)C94—C96—H96A109.5
O42—C42—C41121.04 (14)C94—C96—H96B109.5
N51—C42—C41116.93 (13)H96A—C96—H96B109.5
C41—C43—C44113.77 (13)C94—C96—H96C109.5
C41—C43—H43A108.8H96A—C96—H96C109.5
C44—C43—H43A108.8H96B—C96—H96C109.5
C41—C43—H43B108.8C92—N101—C101120.92 (13)
C44—C43—H43B108.8C92—N101—H101119.5
H43A—C43—H43B107.7C101—N101—H101119.5
C45—C44—C46110.90 (14)N101—C101—C102113.04 (13)
C45—C44—C43109.93 (14)N101—C101—C103111.32 (13)
C46—C44—C43111.80 (14)C102—C101—C103109.61 (13)
C45—C44—H44108.0N101—C101—H10A107.5
C46—C44—H44108.0C102—C101—H10A107.5
C43—C44—H44108.0C103—C101—H10A107.5
C44—C45—H45A109.5O102—C102—O107123.78 (15)
C44—C45—H45B109.5O102—C102—C101122.58 (15)
H45A—C45—H45B109.5O107—C102—C101113.63 (13)
C44—C45—H45C109.5C104—C103—C101115.35 (14)
H45A—C45—H45C109.5C104—C103—H10B108.4
H45B—C45—H45C109.5C101—C103—H10B108.4
C44—C46—H46A109.5C104—C103—H10C108.4
C44—C46—H46B109.5C101—C103—H10C108.4
H46A—C46—H46B109.5H10B—C103—H10C107.5
C44—C46—H46C109.5C106—C104—C105110.28 (17)
H46A—C46—H46C109.5C106—C104—C103112.25 (16)
H46B—C46—H46C109.5C105—C104—C103109.23 (14)
C42—N51—C51119.05 (13)C106—C104—H104108.3
C42—N51—H51120.5C105—C104—H104108.3
C51—N51—H51120.5C103—C104—H104108.3
N51—C51—C52112.40 (12)C104—C105—H10D109.5
N51—C51—C53110.16 (13)C104—C105—H10E109.5
C52—C51—C53110.65 (13)H10D—C105—H10E109.5
N51—C51—H51A107.8C104—C105—H10F109.5
C52—C51—H51A107.8H10D—C105—H10F109.5
C53—C51—H51A107.8H10E—C105—H10F109.5
O52—C52—N61122.59 (14)C104—C106—H10G109.5
O52—C52—C51119.56 (14)C104—C106—H10H109.5
N61—C52—C51117.80 (13)H10G—C106—H10H109.5
C54—C53—C51114.29 (14)C104—C106—H10I109.5
C54—C53—H53A108.7H10G—C106—H10I109.5
C51—C53—H53A108.7H10H—C106—H10I109.5
C54—C53—H53B108.7C102—O107—C107115.16 (13)
C51—C53—H53B108.7O107—C107—H10J109.5
H53A—C53—H53B107.6O107—C107—H10K109.5
C56—C54—C55110.89 (15)H10J—C107—H10K109.5
C56—C54—C53110.16 (15)O107—C107—H10L109.5
C55—C54—C53112.81 (15)H10J—C107—H10L109.5
C56—C54—H54107.6H10K—C107—H10L109.5
C4—C1—O1—C567.7 (2)C51—C53—C54—C5560.54 (19)
C2—C1—O1—C5174.22 (16)O52—C52—N61—C611.6 (2)
C3—C1—O1—C557.1 (2)C51—C52—N61—C61178.98 (13)
C1—O1—C5—O516.7 (3)C52—N61—C61—C6371.94 (18)
C1—O1—C5—N11163.82 (15)C52—N61—C61—C6252.27 (17)
O5—C5—N11—C116.9 (3)N61—C61—C62—O62123.82 (15)
O1—C5—N11—C11173.63 (14)C63—C61—C62—O621.7 (2)
C5—N11—C11—C1274.94 (18)N61—C61—C62—N7155.49 (17)
C5—N11—C11—C13165.29 (15)C63—C61—C62—N71178.96 (13)
N11—C11—C12—O1250.57 (18)N61—C61—C63—C6459.55 (18)
C13—C11—C12—O1269.16 (17)C62—C61—C63—C64176.62 (13)
N11—C11—C12—N21129.12 (14)C61—C63—C64—C6977.8 (2)
C13—C11—C12—N21111.15 (15)C61—C63—C64—C65100.59 (18)
N11—C11—C13—C14164.46 (13)C69—C64—C65—C660.5 (3)
C12—C11—C13—C1475.34 (16)C63—C64—C65—C66178.97 (16)
C11—C13—C14—C1984.19 (19)C64—C65—C66—C670.5 (3)
C11—C13—C14—C1591.77 (18)C65—C66—C67—C680.9 (3)
C19—C14—C15—C161.2 (3)C66—C67—C68—C690.3 (3)
C13—C14—C15—C16174.85 (16)C65—C64—C69—C681.1 (3)
C14—C15—C16—C170.3 (3)C63—C64—C69—C68179.56 (18)
C15—C16—C17—C181.3 (3)C67—C68—C69—C640.7 (3)
C16—C17—C18—C190.8 (3)O62—C62—N71—C711.2 (2)
C15—C14—C19—C181.7 (3)C61—C62—N71—C71179.47 (12)
C13—C14—C19—C18174.27 (16)O62—C62—N71—C75159.38 (14)
C17—C18—C19—C140.8 (3)C61—C62—N71—C7521.3 (2)
O12—C12—N21—C25177.70 (14)C62—N71—C71—C7268.58 (18)
C11—C12—N21—C252.6 (2)C75—N71—C71—C72130.36 (14)
O12—C12—N21—C213.3 (2)C62—N71—C71—C73169.24 (14)
C11—C12—N21—C21177.06 (13)C75—N71—C71—C738.17 (16)
C12—N21—C21—C2256.44 (18)N71—C71—C72—O72157.41 (14)
C25—N21—C21—C22128.32 (14)C73—C71—C72—O7285.27 (18)
C12—N21—C21—C23177.53 (13)N71—C71—C72—N8124.9 (2)
C25—N21—C21—C237.23 (16)C73—C71—C72—N8192.43 (17)
N21—C21—C22—O22149.83 (14)N71—C71—C73—C7429.13 (16)
C23—C21—C22—O2293.60 (17)C72—C71—C73—C74154.14 (14)
N21—C21—C22—N3131.60 (19)C71—C73—C74—F7475.89 (16)
C23—C21—C22—N3184.96 (16)C71—C73—C74—C7539.61 (17)
N21—C21—C23—C2426.60 (16)C62—N71—C75—C74143.55 (15)
C22—C21—C23—C24149.45 (13)C71—N71—C75—C7415.93 (16)
C21—C23—C24—F2478.57 (15)F74—C74—C75—N7181.25 (15)
C21—C23—C24—C2536.47 (17)C73—C74—C75—N7133.96 (16)
C12—N21—C25—C24159.85 (15)O72—C72—N81—C814.9 (2)
C21—N21—C25—C2414.95 (16)C71—C72—N81—C81177.49 (13)
F24—C24—C25—N2184.12 (15)C72—N81—C81—C8273.56 (17)
C23—C24—C25—N2131.49 (17)C72—N81—C81—C83162.04 (13)
O22—C22—N31—C313.2 (2)N81—C81—C82—O82135.54 (15)
C21—C22—N31—C31178.24 (13)C83—C81—C82—O82100.04 (17)
C22—N31—C31—C3250.62 (18)N81—C81—C82—N9148.28 (18)
C22—N31—C31—C33173.19 (13)C83—C81—C82—N9176.14 (16)
N31—C31—C32—O32141.57 (14)N81—C81—C83—C85170.89 (13)
C33—C31—C32—O3296.58 (17)C82—C81—C83—C8546.01 (17)
N31—C31—C32—N4142.26 (17)N81—C81—C83—C8466.74 (16)
C33—C31—C32—N4179.60 (16)C82—C81—C83—C84168.38 (13)
N31—C31—C33—C3563.52 (17)O82—C82—N91—C915.5 (2)
C32—C31—C33—C35174.09 (13)C81—C82—N91—C91170.62 (13)
N31—C31—C33—C34174.16 (14)C82—N91—C91—C9288.93 (17)
C32—C31—C33—C3451.78 (18)C82—N91—C91—C93147.14 (14)
O32—C32—N41—C416.4 (2)N91—C91—C92—O92139.31 (15)
C31—C32—N41—C41177.47 (13)C93—C91—C92—O9297.52 (17)
C32—N41—C41—C4290.60 (16)N91—C91—C92—N10144.39 (19)
C32—N41—C41—C43145.58 (13)C93—C91—C92—N10178.78 (16)
N41—C41—C42—O42133.46 (15)N91—C91—C93—C94179.32 (13)
C43—C41—C42—O42102.66 (16)C92—C91—C93—C9453.84 (17)
N41—C41—C42—N5148.94 (18)C91—C93—C94—C9558.34 (17)
C43—C41—C42—N5174.94 (17)C91—C93—C94—C96179.18 (13)
N41—C41—C43—C44178.43 (12)O92—C92—N101—C1015.1 (2)
C42—C41—C43—C4453.71 (17)C91—C92—N101—C101178.71 (13)
C41—C43—C44—C45179.55 (13)C92—N101—C101—C10293.02 (17)
C41—C43—C44—C4655.94 (18)C92—N101—C101—C103143.10 (14)
O42—C42—N51—C517.0 (2)N101—C101—C102—O102172.30 (15)
C41—C42—N51—C51170.57 (13)C103—C101—C102—O10262.9 (2)
C42—N51—C51—C5264.51 (18)N101—C101—C102—O1078.2 (2)
C42—N51—C51—C53171.59 (13)C103—C101—C102—O107116.57 (15)
N51—C51—C52—O52143.48 (14)N101—C101—C103—C10465.50 (18)
C53—C51—C52—O5292.89 (17)C102—C101—C103—C104168.69 (14)
N51—C51—C52—N6139.04 (19)C101—C103—C104—C10658.4 (2)
C53—C51—C52—N6184.59 (17)C101—C103—C104—C105178.95 (14)
N51—C51—C53—C54176.21 (13)O102—C102—O107—C1071.9 (2)
C52—C51—C53—C5458.88 (18)C101—C102—O107—C107177.52 (14)
C51—C53—C54—C56174.94 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N41—H41···O120.882.292.968 (2)134
N51—H51···O120.881.952.828 (2)179
N61—H61···O220.882.092.907 (2)154
N81—H81···O420.882.343.132 (2)149
N91—H91···O520.882.052.913 (2)168
N101—H101···O620.882.162.924 (2)144
O1M—H1M···O320.841.882.703 (2)164
N11—H11···O1Mi0.882.012.880 (2)170
Symmetry code: (i) x+1, y, z.
Backbone torsion angles (°) top
The values deviate from the standard α-helix (φ, ψ) = (-60°, -45°).
ii+5
Residueφψφψ
D-Phe1,675.0 (2)*-129.2 (1)*-52.2 (2)-55.5 (2)
tFPro2,7-56.4 (2)-31.7 (2)169.2 (1)*-24.8 (2)
Val3,8-50.5 (2)-42.3 (2)-73.6 (2)-48.2 (2)
Leu4,9-90.6 (2)*-48.8 (2)-89.0 (2)*-44.4 (2)
Leu5,10-64.6 (2)-39.0 (2)-93.0 (2)*-8.3 (2)*
Puckering parameters (Å, °) of the pyrrolidine rings top
Q(2) and φ2 are defined by Cremer & Pople (1975) and calculated by PLATON (Spek, 2009).
ResidueQ(2)φ2χ1χ2χ3χ4θ
tFPro20.351 (2)275.8 (3)-26.6 (2)36.5 (2)-31.5 (2)14.9 (2)7.2 (2)
tFPro70.382 (2)275.4 (2)-29.1 (2)39.6 (2)-34.0 (2)16.0 (2)8.1 (2)
 

References

First citationAsano, A. & Doi, M. (2019). X-ray Struct. Anal. Online, 35, 1–2.  CSD CrossRef CAS Google Scholar
First citationAsano, A., Matsuoka, S., Minami, C., Kato, T. & Doi, M. (2019). Acta Cryst. C75, 1336–1343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsano, A., Minami, C., Matsuoka, S., Kato, T. & Doi, M. (2021). Chem. Pharm. Bull. 69, 1097–1103.  CSD CrossRef CAS Google Scholar
First citationAsano, A., Sakata, M., Kato, T. & Doi, M. (2023). Chem. Lett. 52, 246–248.  Web of Science CSD CrossRef CAS Google Scholar
First citationBalasubramanian, D. (1967). J. Am. Chem. Soc. 89, 5445–5449.  CrossRef CAS PubMed Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDeLano, W. L. (2002). CCP4 Newsletter On Protein Crystallography, 40, 82–92.  Google Scholar
First citationDoi, M., Fujita, S., Katsuya, Y., Sasaki, M., Taniguchi, T. & Hasegawa, H. (2001). Arch. Biochem. Biophys. 395, 85–93.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHawkes, G. E., Lian, L. Y., Randall, E. W., Sales, K. D. & Curzon, E. H. (1987). Eur. J. Biochem. 166, 437–445.  CAS PubMed Google Scholar
First citationHodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 752–756.  CrossRef PubMed CAS Web of Science Google Scholar
First citationLlamas-Saiz, A. L., Grotenbreg, G. M., Overhand, M. & van Raaij, M. J. (2007). Acta Cryst. D63, 401–407.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPark, C. B., Yi, K., Matsuzaki, K., Kim, S. C. & Kim, S. C. (2000). Proc. Natl Acad. Sci. 97, 8245–8250.  PubMed CAS Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationReddy, D. N., Singh, S., Ho, C. M. W., Patel, J., Schlesinger, P., Rodgers, S., Doctor, A. & Marshall, G. R. (2018). Eur. J. Med. Chem. 149, 193–210.  CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, The Woodlands, Texas, USA.  Google Scholar
First citationRohl, C. A., Chakrabartty, A. & Baldwin, R. L. (1996). Protein Sci. 5, 2623–2637.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSchmidt, G. M. J., Hodgkin, D. C. & Oughton, B. M. (1957). Biochem. J. 65, 744–750.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThalladi, V. R., Weiss, H., Bläser, D., Boese, R., Nangia, A. & Desiraju, G. R. (1998). J. Am. Chem. Soc. 120, 8702–8710.  Web of Science CSD CrossRef CAS Google Scholar
First citationTishchenko, G. N., Andrianov, V. I., Vainstein, B. K., Woolfson, M. M. & Dodson, E. (1997). Acta Cryst. D53, 151–159.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationYi, G. S., Park, C. B., Kim, S. C. & Cheong, C. (1996). FEBS Lett. 398, 87–90.  CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds