research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of aqua­(1H-imidazole-κN3)[N-(2-oxido­benzyl­­idene)threonato-κ3O,N,O′]zinc(II)

crossmark logo

aDepartment of Chemistry, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
*Correspondence e-mail: akitsu2@rs.tus.ac.jp

Edited by Y. Ozawa, University of Hyogo, Japan (Received 18 February 2025; accepted 16 March 2025; online 25 March 2025)

The title complex, [Zn(C11H11NO4)(C3H4N2)(H2O)], which includes a tridentate ligand, was synthesized from L-threonine and salicyl­aldehyde. One water mol­ecule and one imidazole mol­ecule additionally coordinate the zinc(II) center in a distorted trigonal–bipyramidal geometry. The crystal structure features N—H⋯O and O—H⋯O hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions to the packing are from H⋯H/H⋯H (50.7%) and O⋯H/H⋯O (25.0%) contacts.

1. Chemical context

Amino acid Schiff bases have an azomethine (C=N) group synthesized by mixing primary amines and formyls, and are used as organic ligands (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]; Hirotsu et al., 2022[Hirotsu, M., Sanou, J., Nakae, T., Matsunaga, T. & Kinoshita, I. (2022). Acta Cryst. E78, 500-505.]; Gozdas et al., 2024[Gozdas, S., Kose, M., Mckee, V., Elmastas, M., Demirtas, I. & Kurtoglu, M. (2024). J. Mol. Struct. 1304, 137691.]; Bowman et al., 2021[Bowman, E. A., England, B. L., Patterson, M. A., Price, N. S., Stepler, K. E., Curnutte, H. A., Lease, R. E., Bradley, C. A. & Craig, P. R. (2021). Inorg. Chim. Acta, 524, 120415.]). According to a review on the synthesis of amino acid Schiff base–metal complexes (Akitsu et al., 2022[Akitsu, T., Miroslaw, B. & Sudarsan, S. (2022). Int. J. Mol. Sci. 23, 10005.]), in general, Schiff bases and their metal complexes are versatile compounds and are widely used in many research and industrial applications. For example, supra­molecular encapsulation of nanocrystalline Schiff bases in β-cyclo­dextrin (Mahato et al., 2022[Mahato, R. K., Debnath, A., Das, A., Sarkar, D., Bhattacharyya, S. & Biswas, B. (2022). Carbohydr. Polym. 291, 119614.]), photoreaction with titanium dioxide (Takeshita & Akitsu, 2015[Takeshita, Y. & Akitsu, T. (2015). Pure Appl. Chem. 3, 11-17.]), photocatalytic reduction of hexa­valent chromium (Nakagame et al., 2019[Nakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221-231.]; Miyagawa et al., 2020[Miyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665-16674.]), Schiff base ligand–SPCE (screen-printed carbon electrode) sensors (Bressi et al., 2022[Bressi, V., Akbari, Z., Montazerozohori, M., Ferlazzo, A., Iannazzo, D., Espro, C. & Neri, G. (2022). Sensors 22, 900.]), and flexible ruthenium(II) Schiff base complexes, which have been shown to play a key role in drug activity upon photoirradiation (Gillard et al., 2020[Gillard, M., Weynand, J., Bonnet, H., Loiseau, F., Decottignies, A., Dejeu, J., Defrancq, E. & Elias, B. (2020). Chem. A Eur. J. 26, 13849-13860.]).

Furthermore, Schiff base complexes are considered an important class of organic compounds with a wide range of biological properties, including free-radical-scavenging activity, anti­bacterial activity, and anti­tumor activity (Kumar, 2022[Kumar, K. S. (2022). Results Chem. 4, 100463.]). In our laboratory, we synthesized novel mono-chlorinated Schiff base copper(II) complexes and tested their anti­bacterial activity against Gram-positive and Gram-negative bacteria. The most active compounds were then tested for anti­oxidant activity, and it was found that E. coli absorbed these compounds with very high affinity (Otani et al., 2022[Otani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438-448.]). We are also conducting research using microfluidic devices to efficiently synthesize amino acid Schiff base copper(II) complexes (Kobayashi et al., 2023[Kobayashi, M., Akitsu, T., Furuya, M., Sekiguchi, T., Shoji, S., Tanii, T. & Tanaka, D. (2023). Micromachines 14, 890.]), and synthesis of amino acid Schiff base copper(II) complexes containing azo­benzene moiety (Kaneda et al., 2024[Kaneda, A., Suzuki, S., Nakane, D., Kashiwagi, Y. & Akitsu, T. (2024). Acta Cryst. E80, 468-471.]). Our goal is to evaluate the SOD activity of artificial metalloproteins made by conjugating these Schiff base copper(II) complexes with proteins such as lysozyme (Furuya et al., 2023[Furuya, T., Nakane, D., Kitanishi, K., Katsuumi, N., Tsaturyan, A., Shcherbakov, I. N., Unno, M. & Akitsu, T. (2023). Sci. Rep. 13, 6892.]; Nakane et al., 2024[Nakane, D., Akiyama, Y., Suzuki, S., Miyazaki, R. & Akitsu, T. (2024). Front. Chem. 11, 1330833.]).

Therefore, we have been studying the bioactivity of Schiff base complexes derived from amino acids and decided to synthesize a zinc complex of this ligand to compare its bioactivity with that of the copper complex. In this report, we describe the crystal structure and inter­molecular inter­actions of the zinc(II) complex, coordinated with imidazole as a model for histidine residues in proteins.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound consists of one imidazole mol­ecule, one water mol­ecule and a tridentate ligand, which is synthesized from L-threonine and salicyl­aldehyde, coordinating to a zinc(II) center in distorted trigonal–bipyramidal geometry (Fig. 1[link]). The two largest coordination angles O1—Zn01—O2 and N1—Zn01—O5 are 166.60 (11), 130.65 (13)°, and the τ value derived from them, which is five-coordinated geometry index, is 0.599 (Addison et al., 1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]). The C7—N1 distance is 1.276 (5) Å, which is close to a typical C=N double-bond length for an imine (Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]). The Zn01—O1, Zn01—O2 and Zn01—O5 coordination lengths are 2.061 (2), 2.117 (3) and 1.996 (3) Å, respectively, close to a typical Zn—O bond length (Noor et al., 2021[Noor, S., Suda, S., Haraguchi, T., Khatoon, F. & Akitsu, T. (2021). Acta Cryst. E77, 542-546.]). The Zn01—N1 and Zn1—N2 bonds of 2.038 (3) and 2.015 (3) Å corresponds to a typical Zn—N bond length (Noor et al., 2021[Noor, S., Suda, S., Haraguchi, T., Khatoon, F. & Akitsu, T. (2021). Acta Cryst. E77, 542-546.]). These five atoms coordinating to Zn1 have similar bond distances.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound with ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

Four inter­molecular hydrogen bonds are observed in the crystal (Fig. 2[link]); two hydrogen bonds (O5—H16A⋯O1 and O5H—H16B⋯O3) lead to the formation of a chain structure along the a-axis direction. One hydrogen bond (O4—H15⋯O2) is formed along the c-axis direction (Table 1[link]). In addition, an inter­molecular N3—H17⋯O1 inter­action is found (symmetry codes given in Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H15⋯O2i 0.79 (7) 1.89 (7) 2.678 (4) 170 (8)
O5—H16A⋯O1ii 0.79 (7) 1.91 (7) 2.708 (4) 178 (6)
O5—H16B⋯O3i 0.72 (8) 2.02 (8) 2.724 (4) 165 (7)
N3—H17⋯O1iii 0.88 2.06 2.830 (6) 145
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z]; (ii) [-x+1, y, -z]; (iii) [x, y+1, z].
[Figure 2]
Figure 2
A view of the O—H⋯O and N—H⋯O hydrogen bonds, shown as dashed lines. [Symmetry codes: (i) −x + [{3\over 2}], y − [{1\over 2}], −z; (ii) −x + 1, y, −z; (iii) x, y + 1, z.]

A Hirshfeld surface analysis (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was performed to further investigate the inter­molecular inter­actions and contacts. The inter­molecular O—H⋯O hydrogen bonds are indicated by bright red spots appearing near O on the Hirshfeld surfaces mapped over dnorm and by two sharp spikes of almost the same length in the region 1.6 Å < (de + di) < 2.0 Å in the 2D fingerprint plots (Fig. 3[link]).

[Figure 3]
Figure 3
Hirshfeld surfaces mapped over dnorm and the two-dimensional fingerprint plots.

The contributions to the packing from H⋯H, C⋯C, C⋯H/H⋯C, N⋯H/H⋯N, and H⋯O/O⋯H contacts are 50.7, 3.3, 14.9, 4.3 and 25.0%, respectively. The structure is characterized by high proportion of H⋯H inter­actions, where H⋯H are van der Waals inter­actions. The high value of C⋯H/H⋯C is thought to arise from C—H⋯π inter­actions due to the presence of aromatic rings in the compound. The low value of C⋯C is the result of the low contribution of ππ stacking due to non-overlapping aromatic rings in the structure.

4. Database survey

A search in the Cambridge Structural Database (CSD, Version 5.43, update of November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for similar structures returned four relevant entries: aqua-[N-{[2-oxyphen­yl]methyl­idene}threoninato]-(methanol)copper(II) (YUYFUW; Katsuumi et al., 2020[Katsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539-1542.]), oxonium bis­{2-[(tetra­hydro­furan-2-ylmeth­yl)carbonoimido­yl]phenolato}zinc(II) perchlorate (KOVRAQ; Mandal et al., 2014[Mandal, H., Chakrabartty, S. & Ray, D. (2014). RSC Adv. 4, 65044-65055.]), (3-(4-hy­droxy­phen­yl)-2-{[(2-oxidophen­yl)methyl­idene]amino}­propano­ato)(1H-imidazole)­copper(II) (GIQWUC; Suzuki et al., 2023[Suzuki, S., Akiyama, Y., Nakane, D. & Akitsu, T. (2023). Acta Cryst. E79, 596-599.]), mono/bis­(aqua-κO)[N-(2-oxido­benz­ylidene)valinato-κ3O,N,O′]copper(II) (VEXZIL; Akiyama et al., 2023[Akiyama, Y., Suzuki, S., Suda, S., Takiguchi, Y., Nakane, D. & Akitsu, T. (2023). Acta Cryst. E79, 361-366.]).

5. Synthesis and crystallization

L-threonine (11.912 mg, 0.10 mmol) was reacted with salicyl­aldehyde (12.212 mg, 0.10 mmol) in methanol (5 mL) and water (2 mL), and the resulting mixture was stirred at 313 K for 1 h to afford a yellow solution. To this solution, zinc(II) acetate dihydrate (21.951 mg, 0.100 mmol) was added and it was stirred at 313 K for 1 h. Then imidazole (6.808 mg, 0.10 mmol) was added, yielding a pale-yellow solution. For crystallization, the solution was placed in air at 300 K for several days, and the title complex was obtained as pale yellow columnar-shaped single crystals suitable for single-crystal X-ray diffraction structure analysis. All reagents are commercially available, but L-threonine moiety may partially racemize during synthesis. IR (ATR): 1070 cm−1(w), 1284 cm−1(m), 1376 cm−1(m), 1473 cm−1(m), 1475 cm−1(m), 1548 cm−1(w, C=C double bond), 1622 cm−1(s, C=O double bond), 1634 cm−1(s, C=N double bond), 3251 cm−1(br, O—H). UV-vis (H2O): 270 nm (ɛ = 38000 L mol−1 cm−1, ππ*); 359 nm (ɛ = 18000 L mol−1 cm−1, nπ*).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All C-bound H atoms were placed in geometrically calculated positions (C—H = 0.94–1.00 Å) and were constrained using a riding model with Uiso(H) = 1.2Ueq(C) for R2CH and R3CH H atoms and 1.5Ueq(C) for the methyl H atoms. The N-bound H atom H17 was constrained using a riding model with Uiso(H) = 1.2Ueq(N), and the O-bound H atoms H15, H16A, H16B were located based on a difference-Fourier map and refined freely.

Table 2
Experimental details

Crystal data
Chemical formula [Zn(C11H11NO4)(C3H4N2)(H2O)]
Mr 372.67
Crystal system, space group Monoclinic, C2
Temperature (K) 173
a, b, c (Å) 18.3835 (7), 7.7141 (3), 13.3800 (5)
β (°) 123.787 (1)
V3) 1576.99 (11)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.59
Crystal size (mm) 0.10 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker-AXS D8 QUEST
Absorption correction Multi-scan
Tmin, Tmax 0.64, 0.86
No. of measured, independent and observed [I > 2σ(I)] reflections 10846, 2752, 2701
Rint 0.073
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.07
No. of reflections 2752
No. of parameters 218
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.29
Absolute structure Flack x determined using 1180 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.143 (11)
Computer programs: APEX2 and SAINT (Bruker, 2019[Bruker (2019). APEX2 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/1 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]).

Supporting information


Computing details top

Aqua(1H-imidazole-κN3)[N-(2-oxidobenzylidene)threonato-κ3O,N,O']zinc(II) top
Crystal data top
[Zn(C11H11NO4)(C3H4N2)(H2O)]F(000) = 768
Mr = 372.67Dx = 1.570 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 18.3835 (7) ÅCell parameters from 6515 reflections
b = 7.7141 (3) Åθ = 3.0–25.0°
c = 13.3800 (5) ŵ = 1.59 mm1
β = 123.787 (1)°T = 173 K
V = 1576.99 (11) Å3Prism, yellow
Z = 40.10 × 0.10 × 0.10 mm
Data collection top
Bruker-AXS D8 QUEST
diffractometer
2701 reflections with I > 2σ(I)
Detector resolution: 7.3910 pixels mm-1Rint = 0.073
profile data from θ/2θ scansθmax = 25.1°, θmin = 3.0°
Absorption correction: multi-scanh = 2121
Tmin = 0.64, Tmax = 0.86k = 99
10846 measured reflectionsl = 1515
2752 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0364P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.074(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.35 e Å3
2752 reflectionsΔρmin = 0.29 e Å3
218 parametersAbsolute structure: Flack x determined using 1180 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.143 (11)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn010.65438 (2)0.42759 (7)0.11898 (3)0.01670 (17)
O10.59603 (16)0.2984 (3)0.1916 (2)0.0174 (5)
O20.74153 (18)0.5370 (4)0.0799 (3)0.0323 (7)
O30.8834 (2)0.5634 (5)0.1533 (3)0.0391 (8)
O40.7676 (2)0.1327 (5)0.1191 (3)0.0372 (8)
O50.5804 (2)0.3045 (4)0.0380 (3)0.0276 (7)
H16A0.529 (5)0.302 (8)0.085 (6)0.041000*
N10.7722 (2)0.3625 (4)0.2698 (3)0.0196 (7)
N20.6124 (2)0.6638 (4)0.1298 (3)0.0241 (7)
N30.6028 (3)0.9438 (6)0.1430 (3)0.0420 (10)
H170.6119491.0554980.1416120.050000*
H150.768 (5)0.115 (10)0.061 (6)0.063000*
C10.6293 (2)0.2935 (5)0.3089 (3)0.0187 (7)
C20.5734 (3)0.2624 (6)0.3481 (4)0.0273 (9)
H20.5126020.2462200.2903520.033000*
C30.6056 (3)0.2549 (7)0.4692 (4)0.0365 (11)
H30.5662290.2358030.4929340.044000*
C40.6946 (3)0.2747 (7)0.5573 (4)0.0372 (11)
H40.7161900.2690670.6403310.045000*
C50.7501 (3)0.3026 (7)0.5208 (4)0.0339 (10)
H50.8109690.3147470.5801870.041000*
C60.7204 (3)0.3139 (5)0.3988 (3)0.0221 (8)
C70.7866 (3)0.3359 (6)0.3735 (3)0.0230 (8)
H70.8459660.3301180.4396970.028000*
C80.8438 (2)0.3703 (5)0.2529 (3)0.0225 (8)
H80.8996180.4020410.3300260.027000*
C90.8220 (3)0.5031 (6)0.1559 (4)0.0268 (9)
C100.8523 (3)0.1890 (6)0.2094 (4)0.0297 (9)
H100.8876250.2010590.1738510.036000*
C110.8964 (4)0.0585 (8)0.3105 (6)0.0507 (14)
H11A0.9553930.0992460.3722800.076000*
H11B0.9003540.0532880.2790210.076000*
H11C0.8621700.0450040.3457270.076000*
C120.5546 (3)0.6991 (6)0.1608 (4)0.0295 (9)
H120.5237200.6137290.1742950.035000*
C130.5472 (3)0.8718 (6)0.1695 (4)0.0381 (11)
H130.5115490.9303430.1896030.046000*
C140.6408 (3)0.8169 (7)0.1196 (4)0.0346 (10)
H140.6819650.8336810.0988420.041000*
H16B0.599 (5)0.243 (10)0.059 (6)0.052000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn010.0144 (2)0.0149 (2)0.0197 (2)0.00040 (18)0.00884 (17)0.00248 (17)
O10.0165 (12)0.0172 (13)0.0178 (11)0.0024 (11)0.0091 (10)0.0005 (10)
O20.0171 (14)0.0431 (19)0.0350 (15)0.0022 (13)0.0133 (12)0.0193 (14)
O30.0215 (15)0.045 (2)0.0486 (18)0.0046 (14)0.0184 (13)0.0176 (16)
O40.0358 (17)0.045 (2)0.0399 (17)0.0091 (15)0.0269 (15)0.0134 (16)
O50.0164 (14)0.0383 (19)0.0231 (14)0.0040 (14)0.0080 (12)0.0115 (13)
N10.0190 (15)0.0173 (14)0.0238 (15)0.0012 (13)0.0127 (13)0.0015 (12)
N20.0222 (16)0.0146 (17)0.0257 (16)0.0017 (13)0.0073 (13)0.0010 (13)
N30.048 (2)0.0124 (18)0.0373 (18)0.0022 (19)0.0066 (16)0.0011 (18)
C10.0222 (18)0.0121 (17)0.0214 (17)0.0030 (15)0.0119 (15)0.0014 (14)
C20.025 (2)0.034 (2)0.029 (2)0.0011 (18)0.0186 (17)0.0006 (18)
C30.037 (2)0.050 (3)0.034 (2)0.002 (2)0.027 (2)0.001 (2)
C40.038 (2)0.057 (3)0.0196 (19)0.007 (2)0.0182 (18)0.002 (2)
C50.030 (2)0.045 (3)0.0198 (19)0.004 (2)0.0099 (17)0.0006 (19)
C60.0226 (18)0.024 (2)0.0195 (17)0.0026 (16)0.0113 (15)0.0012 (15)
C70.0178 (17)0.024 (2)0.0192 (18)0.0008 (15)0.0053 (15)0.0020 (15)
C80.0116 (16)0.027 (2)0.0259 (18)0.0022 (15)0.0085 (15)0.0012 (15)
C90.022 (2)0.026 (2)0.034 (2)0.0045 (18)0.0170 (18)0.0028 (18)
C100.025 (2)0.033 (2)0.039 (2)0.0010 (18)0.0230 (19)0.0036 (19)
C110.062 (3)0.036 (3)0.066 (3)0.023 (3)0.042 (3)0.018 (3)
C120.024 (2)0.021 (2)0.033 (2)0.0022 (17)0.0095 (18)0.0052 (17)
C130.035 (2)0.026 (2)0.039 (2)0.0076 (18)0.0116 (19)0.0052 (18)
C140.036 (2)0.023 (3)0.030 (2)0.003 (2)0.0088 (19)0.0024 (17)
Geometric parameters (Å, º) top
Zn01—O51.996 (3)N3—C141.337 (7)
Zn01—N22.015 (3)N3—C131.371 (7)
Zn01—N12.038 (3)C1—C21.410 (6)
Zn01—O12.060 (2)C1—C61.427 (5)
Zn01—O22.117 (3)C2—C31.383 (6)
O1—C11.331 (4)C3—C41.394 (7)
O2—C91.272 (5)C4—C51.371 (7)
O3—C91.238 (5)C5—C61.407 (6)
O4—C101.408 (6)C6—C71.443 (6)
N1—C71.276 (5)C8—C91.522 (6)
N1—C81.456 (5)C8—C101.556 (6)
N2—C141.327 (6)C10—C111.509 (7)
N2—C121.366 (6)C12—C131.351 (7)
O5—Zn01—N2116.22 (13)C2—C1—C6117.4 (3)
O5—Zn01—N1130.65 (13)C3—C2—C1121.2 (4)
N2—Zn01—N1112.96 (13)C2—C3—C4121.5 (4)
O5—Zn01—O192.14 (12)C5—C4—C3118.1 (4)
N2—Zn01—O194.77 (12)C4—C5—C6122.5 (4)
N1—Zn01—O187.64 (11)C5—C6—C1119.2 (4)
O5—Zn01—O295.52 (13)C5—C6—C7116.4 (4)
N2—Zn01—O291.69 (14)C1—C6—C7124.2 (3)
N1—Zn01—O279.03 (12)N1—C7—C6125.5 (4)
O1—Zn01—O2166.60 (11)N1—C8—C9109.2 (3)
C1—O1—Zn01123.4 (2)N1—C8—C10108.0 (3)
C9—O2—Zn01115.1 (3)C9—C8—C10108.7 (3)
C7—N1—C8121.1 (3)O3—C9—O2124.9 (4)
C7—N1—Zn01125.5 (3)O3—C9—C8117.8 (4)
C8—N1—Zn01113.0 (2)O2—C9—C8117.2 (3)
C14—N2—C12105.7 (4)O4—C10—C11110.5 (4)
C14—N2—Zn01127.5 (3)O4—C10—C8107.7 (3)
C12—N2—Zn01126.5 (3)C11—C10—C8112.3 (4)
C14—N3—C13108.9 (5)C13—C12—N2110.8 (5)
O1—C1—C2119.4 (3)C12—C13—N3104.6 (5)
O1—C1—C6123.1 (3)N2—C14—N3110.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H15···O2i0.79 (7)1.89 (7)2.678 (4)170 (8)
O5—H16A···O1ii0.79 (7)1.91 (7)2.708 (4)178 (6)
O5—H16B···O3i0.72 (8)2.02 (8)2.724 (4)165 (7)
N3—H17···O1iii0.882.062.830 (6)145
C14—H14···O20.952.613.077 (6)111
C13—H13···O3iv0.952.363.253 (6)156
C2—H2···O3v0.952.483.351 (5)152
Symmetry codes: (i) x+3/2, y1/2, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x1/2, y+1/2, z; (v) x1/2, y1/2, z.
 

Funding information

Funding for this research was provided by: Grant-in-Aid for Scientific Research (B) KAKENHI (24K00912).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAkitsu, T., Miroslaw, B. & Sudarsan, S. (2022). Int. J. Mol. Sci. 23, 10005.  Web of Science CrossRef PubMed Google Scholar
First citationAkiyama, Y., Suzuki, S., Suda, S., Takiguchi, Y., Nakane, D. & Akitsu, T. (2023). Acta Cryst. E79, 361–366.  CSD CrossRef IUCr Journals Google Scholar
First citationBowman, E. A., England, B. L., Patterson, M. A., Price, N. S., Stepler, K. E., Curnutte, H. A., Lease, R. E., Bradley, C. A. & Craig, P. R. (2021). Inorg. Chim. Acta, 524, 120415.  Google Scholar
First citationBressi, V., Akbari, Z., Montazerozohori, M., Ferlazzo, A., Iannazzo, D., Espro, C. & Neri, G. (2022). Sensors 22, 900.  PubMed Google Scholar
First citationBruker (2019). APEX2 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFuruya, T., Nakane, D., Kitanishi, K., Katsuumi, N., Tsaturyan, A., Shcherbakov, I. N., Unno, M. & Akitsu, T. (2023). Sci. Rep. 13, 6892.  PubMed Google Scholar
First citationGillard, M., Weynand, J., Bonnet, H., Loiseau, F., Decottignies, A., Dejeu, J., Defrancq, E. & Elias, B. (2020). Chem. A Eur. J. 26, 13849–13860.  CAS Google Scholar
First citationGozdas, S., Kose, M., Mckee, V., Elmastas, M., Demirtas, I. & Kurtoglu, M. (2024). J. Mol. Struct. 1304, 137691.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHirotsu, M., Sanou, J., Nakae, T., Matsunaga, T. & Kinoshita, I. (2022). Acta Cryst. E78, 500–505.  CSD CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKaneda, A., Suzuki, S., Nakane, D., Kashiwagi, Y. & Akitsu, T. (2024). Acta Cryst. E80, 468–471.  CSD CrossRef IUCr Journals Google Scholar
First citationKatsuumi, N., Onami, Y., Pradhan, S., Haraguchi, T. & Akitsu, T. (2020). Acta Cryst. E76, 1539–1542.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKobayashi, M., Akitsu, T., Furuya, M., Sekiguchi, T., Shoji, S., Tanii, T. & Tanaka, D. (2023). Micromachines 14, 890.  PubMed Google Scholar
First citationKumar, K. S. (2022). Results Chem. 4, 100463.  Google Scholar
First citationMahato, R. K., Debnath, A., Das, A., Sarkar, D., Bhattacharyya, S. & Biswas, B. (2022). Carbohydr. Polym. 291, 119614.  PubMed Google Scholar
First citationMandal, H., Chakrabartty, S. & Ray, D. (2014). RSC Adv. 4, 65044–65055.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMiyagawa, Y., Tsatsuryan, A., Haraguchi, T., Shcherbakov, I. & Akitsu, T. (2020). New J. Chem. 44, 16665–16674.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakagame, R., Tsaturyan, A., Haraguchi, T., Pimonova, Y., Lastovina, T., Akitsu, T. & Shcherbakov, I. (2019). Inorg. Chim. Acta, 486, 221–231.  Web of Science CSD CrossRef CAS Google Scholar
First citationNakane, D., Akiyama, Y., Suzuki, S., Miyazaki, R. & Akitsu, T. (2024). Front. Chem. 11, 1330833.  PubMed Google Scholar
First citationNoor, S., Suda, S., Haraguchi, T., Khatoon, F. & Akitsu, T. (2021). Acta Cryst. E77, 542–546.  CSD CrossRef IUCr Journals Google Scholar
First citationOtani, N., Fayeulle, A., Nakane, D., Léonard, E. & Akitsu, T. (2022). Appl. Microbiol. 2, 438–448.  CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSuzuki, S., Akiyama, Y., Nakane, D. & Akitsu, T. (2023). Acta Cryst. E79, 596–599.  CSD CrossRef IUCr Journals Google Scholar
First citationTakeshita, Y. & Akitsu, T. (2015). Pure Appl. Chem. 3, 11–17.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds