

research communications
H-tetrazol-5-yl)butoxy]-8-nitro-3,4-dihydroquinolin-2(1H)-one
and Hirshfeld surface analysis of 6-[4-(1-cyclohexyl-1aDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri Bhopal 462066, India, and bBioneeds India Private Limited, P-3, Peenya Industrial Area, 1st Main Road, Peenya 1st stage, Bangalore 560094, Karnataka., India
*Correspondence e-mail: dchopra@iiserb.ac.in
The H-tetrazol-5-yl)butoxy]-8-nitro-3,4-dihydroquinolin-2(1H)-one, C20H26N6O4 (I), was characterized by single-crystal X-ray diffraction. The primary focus was to establish the position of the nitro group, the molecular conformation, and the role of intermolecular interactions towards the crystal packing of I. The crystalline structure is mainly consolidated by π–π, C—H⋯O, C—H⋯N, N⋯C(π) and O⋯C(π) interactions. The contributions of different interactions towards the crystal packing were further analyzed using Hirshfeld surface and fingerprint plots.
of 6-[4-(1-cyclohexyl-1Keywords: crystal structure; intermolecular interaction; crystal packing; molecular conformation; Hirshfeld surface.
CCDC reference: 2426771
1. Introduction
Cilostazol is an important active pharmaceutical ingredient used to treat intermittent claudication associated with peripheral vascular disease (Lauters & Wilkin, 2002). However, cilostazol has the potential to generate nitroso impurities. The pharmaceutical industry is subject to stringent regulations to control genotoxic nitrosamine impurities in medications, as these compounds pose significant health risks (Vikram et al., 2024
). Therefore, investigating the presence of nitrosamine impurities is crucial.
Given the possibility of nitroso impurity formation, it is essential to identify the specific site on cilostazol where nitrosation may occur. In this study, we attempted to synthesize N-nitroso cilostazol using a standard method (Lopez-Rodriguez et al., 2020). Unexpectedly, instead of obtaining the anticipated product – 6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-1-nitroso-3,4-dihydroquinolin-2(1H)-one (N-nitroso cilostazol) – we isolated a different compound, referred to as I. This compound was fully characterized using 1H NMR and LC-MS, spectroscopy and single-crystal X-ray diffraction.
2. Structural commentary
The molecular structure features a dihydroquinolinone moiety (N2/C1–C9/O3) and a tetrazole moiety composed of two fused six-membered rings (C1–C6, B, and C1/C6–C9/N2, A) and a five-membered ring (C14/N3/N15/N16/N4, C), respectively (Fig. 1). The dihedral angle between the plane through ring B and atoms O4, C10, C11 and the mean plane through ring C and atoms C13, C12, C11 is 82.46 (6)°. The butoxy chain exhibits rotational freedom, contributing to the conformational flexibility of the molecule. The various torsions of the butoxy chain are represented by τ2, τ3, τ4, τ5, and τ6, and listed in Table 1
. The C2 and C4 carbon atoms are connected to the nitro and alkoxy substituents, respectively, and the presence of two sp3-hybridized carbon atoms (C7 and C8) makes ring A non-planar. The puckering parameters (Cremer & Pople, 1975
) generated by PLATON (Spek, 2020
) were obtained for the different rings. For ring A, the puckering parameters are Q = 0.420 (2) Å, θ = 65.9 (3)° and φ = 25.1 (3)°, the value of θ indicating a screw-boat conformation (Boeyens, 1978
). Atom N4 of ring C is linked to the cyclohexyl ring (C17–C22, D) [Q = 0.582 (3) Å, θ = 1.1 (3)° and φ = 138 (11)°]. The value of θ is very close to zero, thus indicating a chair conformation for ring D. The most acidic hydrogen atom (H2) is involved in the formation of an intramolecular hydrogen bond with the O1 atom of the nitro group [N2⋯O1 = 2.650 (3) Å, ∠N—H⋯O = 128°].
|
![]() | Figure 1 The molecular structure of I with 50% probability level ellipsoids. The dotted line indicates the intramolecular N2—H2⋯O1 interaction. |
3. Supramolecular features
The crystal packing was further analysed by Mercury (Version 2024.1.0; Macrae et al., 2020). The crystal packing along the a-axis shows that the molecules form three motifs by inversion symmetry, I, II and III, respectively (Fig. 2
, Table 2
). The motifs I and II are consolidated by π–π stacking, N(π-hole)⋯C(π) and C—H⋯O hydrogen-bonding interactions, while motif III contains onlyC—H⋯N hydrogen bonds (involving H17 and N15 and H13A with N15). The π–π stacking occurs in a parallel offset fashion between B rings in both motifs I and II, the latter one consisting of a very short π–π interaction between C3(π)⋯C1(π) with a distance of 3.2067 (3) Å. In the MESP map (Fig. 4
a), the electropositive blue region over N1 (0.0332 a.u.) shows the π hole for the N1⋯C5 interaction. In motif III, ring C forms C—H⋯N interactions with the butoxy chain and cyclohexyl ring D, which propagate along the a-axis direction.
|
![]() | Figure 2 Crystal packing extending along the a-axis via π–π stacking, N(π-hole)⋯C(π), C—H⋯O and C—H⋯N interactions. |
![]() | Figure 3 Crystal packing of I along the bc plane showing C—H⋯O and O⋯C(π) interactions. |
![]() | Figure 4 The molecular electrostatic potential map (a) and Hirshfeld surface mapped over dnorm (b, c, d). Non-covalent interactions are indicated by dashed lines. |
Along the bc plane (Fig. 3), motif IV forms a centrosymmetric dimer through C—H⋯O and O⋯C(π) interactions, while motif V consists of C3—H3⋯O3 and C8—H8B⋯O4 interactions. Motif V utilizes translation symmetry along the b-axis direction for the packing of molecules in the crystal. The remaining motifs VI and VII are also involved in the formation of C—H⋯O hydrogen bonds, the latter one shows a significant short contact [C7⋯O3 = 3.170 (2) Å]. It is noteworthy that atoms H3 and H17, which are attached to hybridized sp2 carbons, form the most directional C—H⋯O and C—H⋯N hydrogen bonds in the crystal packing.
4. Hirshfeld surface analysis and fingerprint plots
Hirshfeld surface analysis was performed to investigate and visualize the intermolecular interactions present between molecules and most importantly to quantify the individual contributions of different interactions involved in the crystal packing (Spackman et al., 2021). The Hirshfeld surface and the 2D fingerprint plots (Spackman & McKinnon, 2002
) were generated using CrystalExplorer (version: 21.5) over electrostatic potential range −0.02 a.u. to +0.02 a.u., as depicted in Figs. 4
and 5
, respectively. The red spots on the Hirshfeld surface (plotted over dnorm) (Fig. 4
b,c,d) indicate the presence of intermolecular π–π stacking, C—H⋯N, C—H⋯O, O⋯C(π) and N⋯C(π) short contacts. In the crystal packing, the relative contributions of the interactions are: O⋯H/H⋯O (22.2%), N⋯H/H⋯N (17.1%), C(π)⋯C(π) (3.7%), O⋯C(π)/C(π)⋯O (2.6%) and N⋯C(π)/C(π)⋯N (2.3%).
![]() | Figure 5 The fingerprint plot showing the overall contribution of all contacts and a diagram showing the percentage of individual contributions in the crystal packing. |
5. Database survey
A CSD (Groom et al., 2016) survey for the cilostazol molecule was performed using CCDC ConQuest (version 2024.1.0). The five resulting hits with refcodes OCIKIX, OCIKOD, OCIKUJ (Yoshimura et al., 2017
) and XOSGUH, XOSGUH01 (Whittall et al., 2002
) report co-crystals of cilostazol and the structures of polymorphic forms of cilostazol.
OCIKIX, OCIKOD and OCIKUJ (Yoshimura et al., 2017) are three co-crystals of cilostazol. Cilostazol is a poorly soluble compound, and in order to increase the solubility, co-crystals of cilostazol with 4-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and 2,5-dihydroxybenzoic acid (1:1 stoichiometric ratio) have been prepared for different pharmaceutical applications.
XOSGUH and XOSGUH01 (Whittall et al., 2002) feature two unique conformational polymorphic forms of cilostazol. The study shows how the conformational differences can possibly influence the intermolecular forces and packing of the molecules during crystallization. As a result of the conformational flexibility of the butoxy chain, cilostazol crystallizes in two different space groups, P21/n (IC) and Pbca (IA). It is observed that I exists in two different conformations for the two reported polymorphs of cilostazol. Conformational variations were analysed by generating a molecular overlay diagram, keeping the tetrazole rings fixed for the three molecules (Fig. 6
). It is found that I and IC have similar conformations but differ significantly from IA. The magnitudes of the torsion angles (Table 1
) indicate that the most significant conformational differences are observed in the butoxy chains.
![]() | Figure 6 An overlay of structures I, IA and IC. |
6. Synthesis and crystallization
Cilostazol (1.00 g, 2.7 mmol) was stirred in 5 mL of dichloroethane for 15 min. Isoamyl nitrite (0.32 g, 2.7 mmol) was added at 273–278 K. The reaction mixture was slowly brought to 298 K and allowed to stir for 1h. The reaction mixture was diluted with water and extracted with dichloromethane twice (2 × 50 mL) and concentrated to dryness to afford 1 g of crude product. The crude product was purified by flash chromatography using 2% methanol:dichloromethane 1H NMR (400 MHz, dimethyl sulfoxide): δ 9.70 (s, 1H), 7.47–7.48 (d, J = 2.8 Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), 4.41–4.42 (m, 1H), 4.08–4.11 (m, 2H), 2.97–3.04 (m, 4H), 2.51–2.58 (m, 2H), 1.67–1.98 (m, 11H), 1.42-1.46 (m, 2H), 1.24–1.28 (m, 1H), LC/MS (ESI) m/e 415.2 [M + H]+ calculated for C20H27N6O4. The crude product was dissolved in isooctane-chloroform (1:1 mixture) and kept at low temperature. After a week, single crystals were obtained.
system to afford the title compound (0.35 g, 33%).7. Refinement
Crystal data, data collection and structure . All of the hydrogen atoms, except H2 (attached to N2), which was located from a difference-Fourier map, were placed at their geometrically calculated positions and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-methyl).
|
Supporting information
CCDC reference: 2426771
https://doi.org/10.1107/S2056989025001793/tx2094sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001793/tx2094Isup5.hkl
C20H26N6O4 | Z = 2 |
Mr = 414.47 | F(000) = 440 |
Triclinic, P1 | Dx = 1.403 Mg m−3 |
a = 6.4597 (8) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2666 (11) Å | Cell parameters from 4187 reflections |
c = 17.382 (2) Å | θ = 2.5–30.0° |
α = 104.113 (5)° | µ = 0.10 mm−1 |
β = 96.645 (5)° | T = 100 K |
γ = 99.656 (5)° | Plate, yellow |
V = 981.3 (2) Å3 | 0.24 × 0.13 × 0.05 mm |
Bruker D8 Quest diffractometer | 5647 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 4069 reflections with I > 2σ(I) |
Mirror optics monochromator | Rint = 0.043 |
Detector resolution: 7.9 pixels mm-1 | θmax = 30.1°, θmin = 2.3° |
ω and φ scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→13 |
Tmin = 0.683, Tmax = 0.746 | l = −24→24 |
16058 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.036P)2 + 1.0039P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
5647 reflections | Δρmax = 0.36 e Å−3 |
275 parameters | Δρmin = −0.39 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O4 | 0.3538 (2) | 0.31868 (16) | 0.63879 (8) | 0.0143 (3) | |
O3 | 0.2010 (2) | −0.53087 (16) | 0.43484 (9) | 0.0182 (3) | |
O1 | 0.1523 (3) | −0.15696 (17) | 0.33108 (8) | 0.0196 (3) | |
O2 | 0.2294 (2) | 0.08708 (17) | 0.35239 (9) | 0.0189 (3) | |
N1 | 0.2034 (3) | −0.0266 (2) | 0.37737 (10) | 0.0127 (3) | |
N2 | 0.1868 (3) | −0.28422 (19) | 0.45172 (10) | 0.0120 (3) | |
N3 | 1.0704 (3) | 0.8204 (2) | 0.79866 (10) | 0.0163 (4) | |
N4 | 0.9390 (3) | 1.01503 (19) | 0.85030 (10) | 0.0132 (3) | |
N15 | 1.2241 (3) | 0.9502 (2) | 0.81932 (11) | 0.0195 (4) | |
N16 | 1.1471 (3) | 1.0679 (2) | 0.85096 (11) | 0.0184 (4) | |
C4 | 0.3116 (3) | 0.1701 (2) | 0.59483 (11) | 0.0113 (4) | |
C6 | 0.2611 (3) | −0.1011 (2) | 0.58111 (11) | 0.0107 (4) | |
C3 | 0.2731 (3) | 0.1415 (2) | 0.51206 (11) | 0.0115 (4) | |
H3 | 0.272801 | 0.223263 | 0.488058 | 0.014* | |
C1 | 0.2277 (3) | −0.1325 (2) | 0.49707 (11) | 0.0108 (4) | |
C5 | 0.3044 (3) | 0.0472 (2) | 0.62909 (11) | 0.0114 (4) | |
H5 | 0.329520 | 0.066015 | 0.685933 | 0.014* | |
C2 | 0.2347 (3) | −0.0072 (2) | 0.46401 (11) | 0.0109 (4) | |
C14 | 0.8946 (3) | 0.8632 (2) | 0.81830 (11) | 0.0132 (4) | |
C9 | 0.2296 (3) | −0.4038 (2) | 0.48070 (12) | 0.0130 (4) | |
C17 | 0.7998 (3) | 1.1125 (2) | 0.88721 (12) | 0.0137 (4) | |
H17 | 0.650785 | 1.068434 | 0.858439 | 0.016* | |
C10 | 0.3854 (3) | 0.3463 (2) | 0.72468 (11) | 0.0147 (4) | |
H10A | 0.507798 | 0.304216 | 0.742582 | 0.018* | |
H10B | 0.257221 | 0.295982 | 0.741387 | 0.018* | |
C7 | 0.2393 (3) | −0.2331 (2) | 0.61839 (12) | 0.0129 (4) | |
H7A | 0.088266 | −0.265566 | 0.622944 | 0.015* | |
H7B | 0.323372 | −0.199896 | 0.673263 | 0.015* | |
C13 | 0.6805 (3) | 0.7660 (2) | 0.81081 (13) | 0.0178 (4) | |
H13A | 0.572194 | 0.814652 | 0.787945 | 0.021* | |
H13B | 0.653491 | 0.763306 | 0.865403 | 0.021* | |
C11 | 0.4277 (3) | 0.5164 (2) | 0.76270 (12) | 0.0150 (4) | |
H11A | 0.408954 | 0.534190 | 0.819755 | 0.018* | |
H11B | 0.319495 | 0.559413 | 0.735488 | 0.018* | |
C8 | 0.3162 (3) | −0.3673 (2) | 0.56840 (12) | 0.0145 (4) | |
H8A | 0.473662 | −0.343760 | 0.575942 | 0.017* | |
H8B | 0.272399 | −0.457746 | 0.588016 | 0.017* | |
C18 | 0.8604 (4) | 1.2733 (2) | 0.87864 (13) | 0.0184 (4) | |
H18A | 0.849021 | 1.270559 | 0.820994 | 0.022* | |
H18B | 1.009626 | 1.318310 | 0.904730 | 0.022* | |
C12 | 0.6491 (3) | 0.6027 (2) | 0.75913 (12) | 0.0156 (4) | |
H12A | 0.759748 | 0.552795 | 0.779382 | 0.019* | |
H12B | 0.661840 | 0.602030 | 0.702839 | 0.019* | |
C22 | 0.8051 (4) | 1.1126 (2) | 0.97530 (13) | 0.0178 (4) | |
H22A | 0.762243 | 1.007088 | 0.978963 | 0.021* | |
H22B | 0.951825 | 1.153979 | 1.004952 | 0.021* | |
C21 | 0.6549 (4) | 1.2086 (3) | 1.01333 (13) | 0.0198 (5) | |
H21A | 0.663914 | 1.210730 | 1.070855 | 0.024* | |
H21B | 0.506652 | 1.162545 | 0.986406 | 0.024* | |
C20 | 0.7128 (4) | 1.3703 (3) | 1.00564 (13) | 0.0204 (5) | |
H20A | 0.609442 | 1.429620 | 1.028136 | 0.024* | |
H20B | 0.855917 | 1.419567 | 1.036988 | 0.024* | |
C19 | 0.7118 (4) | 1.3706 (3) | 0.91805 (13) | 0.0212 (5) | |
H19A | 0.756991 | 1.476331 | 0.915033 | 0.025* | |
H19B | 0.565143 | 1.331179 | 0.888035 | 0.025* | |
H2 | 0.150 (3) | −0.304 (2) | 0.3988 (13) | 0.009 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O4 | 0.0222 (8) | 0.0082 (7) | 0.0122 (7) | 0.0025 (6) | 0.0026 (6) | 0.0022 (5) |
O3 | 0.0195 (8) | 0.0090 (7) | 0.0240 (8) | 0.0019 (6) | 0.0062 (6) | 0.0001 (6) |
O1 | 0.0264 (9) | 0.0162 (8) | 0.0129 (7) | 0.0035 (7) | 0.0015 (6) | −0.0008 (6) |
O2 | 0.0257 (9) | 0.0179 (8) | 0.0157 (7) | 0.0047 (7) | 0.0037 (6) | 0.0092 (6) |
N1 | 0.0091 (8) | 0.0150 (8) | 0.0137 (8) | 0.0029 (7) | 0.0016 (6) | 0.0031 (6) |
N2 | 0.0133 (8) | 0.0093 (8) | 0.0116 (8) | 0.0009 (6) | 0.0013 (6) | 0.0009 (6) |
N3 | 0.0156 (9) | 0.0174 (9) | 0.0159 (8) | 0.0055 (7) | 0.0039 (7) | 0.0023 (7) |
N4 | 0.0120 (8) | 0.0123 (8) | 0.0151 (8) | 0.0027 (7) | 0.0035 (6) | 0.0024 (6) |
N15 | 0.0168 (9) | 0.0205 (10) | 0.0203 (9) | 0.0049 (8) | 0.0061 (7) | 0.0019 (7) |
N16 | 0.0123 (9) | 0.0189 (9) | 0.0225 (9) | 0.0002 (7) | 0.0046 (7) | 0.0039 (7) |
C4 | 0.0090 (9) | 0.0095 (9) | 0.0160 (9) | 0.0032 (7) | 0.0033 (7) | 0.0032 (7) |
C6 | 0.0088 (9) | 0.0110 (9) | 0.0143 (9) | 0.0035 (7) | 0.0045 (7) | 0.0049 (7) |
C3 | 0.0095 (9) | 0.0110 (9) | 0.0156 (9) | 0.0020 (7) | 0.0033 (7) | 0.0059 (7) |
C1 | 0.0077 (9) | 0.0100 (9) | 0.0151 (9) | 0.0015 (7) | 0.0038 (7) | 0.0033 (7) |
C5 | 0.0108 (9) | 0.0128 (9) | 0.0106 (8) | 0.0013 (8) | 0.0025 (7) | 0.0033 (7) |
C2 | 0.0075 (9) | 0.0139 (10) | 0.0112 (9) | 0.0014 (7) | 0.0014 (7) | 0.0035 (7) |
C14 | 0.0168 (10) | 0.0118 (9) | 0.0100 (8) | 0.0037 (8) | 0.0013 (7) | 0.0010 (7) |
C9 | 0.0093 (9) | 0.0093 (9) | 0.0215 (10) | 0.0020 (7) | 0.0066 (8) | 0.0046 (8) |
C17 | 0.0120 (10) | 0.0110 (9) | 0.0172 (9) | 0.0035 (8) | 0.0031 (8) | 0.0009 (7) |
C10 | 0.0205 (11) | 0.0117 (10) | 0.0111 (9) | 0.0021 (8) | 0.0025 (8) | 0.0026 (7) |
C7 | 0.0165 (10) | 0.0083 (9) | 0.0141 (9) | 0.0012 (8) | 0.0030 (8) | 0.0042 (7) |
C13 | 0.0150 (11) | 0.0139 (10) | 0.0213 (10) | 0.0015 (8) | 0.0043 (8) | −0.0008 (8) |
C11 | 0.0197 (11) | 0.0116 (10) | 0.0131 (9) | 0.0034 (8) | 0.0041 (8) | 0.0014 (7) |
C8 | 0.0157 (10) | 0.0108 (9) | 0.0186 (10) | 0.0025 (8) | 0.0040 (8) | 0.0064 (8) |
C18 | 0.0255 (12) | 0.0153 (10) | 0.0179 (10) | 0.0070 (9) | 0.0080 (9) | 0.0066 (8) |
C12 | 0.0185 (11) | 0.0104 (9) | 0.0174 (10) | 0.0043 (8) | 0.0041 (8) | 0.0016 (8) |
C22 | 0.0225 (11) | 0.0137 (10) | 0.0216 (10) | 0.0065 (9) | 0.0092 (9) | 0.0083 (8) |
C21 | 0.0213 (12) | 0.0216 (11) | 0.0209 (11) | 0.0097 (9) | 0.0086 (9) | 0.0077 (9) |
C20 | 0.0277 (12) | 0.0163 (11) | 0.0186 (10) | 0.0118 (9) | 0.0045 (9) | 0.0021 (8) |
C19 | 0.0309 (13) | 0.0162 (11) | 0.0203 (10) | 0.0096 (10) | 0.0065 (9) | 0.0078 (9) |
O4—C4 | 1.366 (2) | C10—H10B | 0.9900 |
O4—C10 | 1.436 (2) | C10—C11 | 1.517 (3) |
O3—C9 | 1.221 (2) | C7—H7A | 0.9900 |
O1—N1 | 1.243 (2) | C7—H7B | 0.9900 |
O2—N1 | 1.228 (2) | C7—C8 | 1.526 (3) |
N1—C2 | 1.458 (2) | C13—H13A | 0.9900 |
N2—C1 | 1.398 (2) | C13—H13B | 0.9900 |
N2—C9 | 1.379 (2) | C13—C12 | 1.526 (3) |
N2—H2 | 0.89 (2) | C11—H11A | 0.9900 |
N3—N15 | 1.367 (3) | C11—H11B | 0.9900 |
N3—C14 | 1.319 (3) | C11—C12 | 1.533 (3) |
N4—N16 | 1.349 (2) | C8—H8A | 0.9900 |
N4—C14 | 1.348 (3) | C8—H8B | 0.9900 |
N4—C17 | 1.470 (3) | C18—H18A | 0.9900 |
N15—N16 | 1.301 (3) | C18—H18B | 0.9900 |
C4—C3 | 1.383 (3) | C18—C19 | 1.531 (3) |
C4—C5 | 1.404 (3) | C12—H12A | 0.9900 |
C6—C1 | 1.401 (3) | C12—H12B | 0.9900 |
C6—C5 | 1.386 (3) | C22—H22A | 0.9900 |
C6—C7 | 1.511 (3) | C22—H22B | 0.9900 |
C3—H3 | 0.9500 | C22—C21 | 1.523 (3) |
C3—C2 | 1.391 (3) | C21—H21A | 0.9900 |
C1—C2 | 1.412 (3) | C21—H21B | 0.9900 |
C5—H5 | 0.9500 | C21—C20 | 1.525 (3) |
C14—C13 | 1.491 (3) | C20—H20A | 0.9900 |
C9—C8 | 1.496 (3) | C20—H20B | 0.9900 |
C17—H17 | 1.0000 | C20—C19 | 1.522 (3) |
C17—C18 | 1.524 (3) | C19—H19A | 0.9900 |
C17—C22 | 1.527 (3) | C19—H19B | 0.9900 |
C10—H10A | 0.9900 | ||
C4—O4—C10 | 116.53 (15) | C14—C13—H13A | 108.4 |
O1—N1—C2 | 119.39 (16) | C14—C13—H13B | 108.4 |
O2—N1—O1 | 121.98 (17) | C14—C13—C12 | 115.69 (18) |
O2—N1—C2 | 118.62 (17) | H13A—C13—H13B | 107.4 |
C1—N2—H2 | 117.8 (14) | C12—C13—H13A | 108.4 |
C9—N2—C1 | 124.94 (17) | C12—C13—H13B | 108.4 |
C9—N2—H2 | 116.4 (14) | C10—C11—H11A | 108.5 |
C14—N3—N15 | 105.82 (17) | C10—C11—H11B | 108.5 |
N16—N4—C17 | 122.55 (17) | C10—C11—C12 | 114.99 (17) |
C14—N4—N16 | 108.70 (17) | H11A—C11—H11B | 107.5 |
C14—N4—C17 | 128.46 (18) | C12—C11—H11A | 108.5 |
N16—N15—N3 | 110.93 (17) | C12—C11—H11B | 108.5 |
N15—N16—N4 | 106.10 (17) | C9—C8—C7 | 112.55 (17) |
O4—C4—C3 | 117.16 (17) | C9—C8—H8A | 109.1 |
O4—C4—C5 | 123.72 (17) | C9—C8—H8B | 109.1 |
C3—C4—C5 | 119.11 (18) | C7—C8—H8A | 109.1 |
C1—C6—C7 | 118.46 (17) | C7—C8—H8B | 109.1 |
C5—C6—C1 | 120.91 (18) | H8A—C8—H8B | 107.8 |
C5—C6—C7 | 120.58 (17) | C17—C18—H18A | 109.8 |
C4—C3—H3 | 120.1 | C17—C18—H18B | 109.8 |
C4—C3—C2 | 119.86 (18) | C17—C18—C19 | 109.59 (18) |
C2—C3—H3 | 120.1 | H18A—C18—H18B | 108.2 |
N2—C1—C6 | 118.42 (17) | C19—C18—H18A | 109.8 |
N2—C1—C2 | 124.44 (17) | C19—C18—H18B | 109.8 |
C6—C1—C2 | 117.13 (18) | C13—C12—C11 | 108.81 (17) |
C4—C5—H5 | 119.5 | C13—C12—H12A | 109.9 |
C6—C5—C4 | 120.92 (18) | C13—C12—H12B | 109.9 |
C6—C5—H5 | 119.5 | C11—C12—H12A | 109.9 |
C3—C2—N1 | 116.24 (17) | C11—C12—H12B | 109.9 |
C3—C2—C1 | 122.02 (17) | H12A—C12—H12B | 108.3 |
C1—C2—N1 | 121.74 (17) | C17—C22—H22A | 109.6 |
N3—C14—N4 | 108.44 (18) | C17—C22—H22B | 109.6 |
N3—C14—C13 | 128.13 (19) | H22A—C22—H22B | 108.1 |
N4—C14—C13 | 123.40 (18) | C21—C22—C17 | 110.43 (18) |
O3—C9—N2 | 119.85 (19) | C21—C22—H22A | 109.6 |
O3—C9—C8 | 123.46 (19) | C21—C22—H22B | 109.6 |
N2—C9—C8 | 116.67 (17) | C22—C21—H21A | 109.5 |
N4—C17—H17 | 108.0 | C22—C21—H21B | 109.5 |
N4—C17—C18 | 111.43 (17) | C22—C21—C20 | 110.50 (18) |
N4—C17—C22 | 109.98 (17) | H21A—C21—H21B | 108.1 |
C18—C17—H17 | 108.0 | C20—C21—H21A | 109.5 |
C18—C17—C22 | 111.33 (17) | C20—C21—H21B | 109.5 |
C22—C17—H17 | 108.0 | C21—C20—H20A | 109.5 |
O4—C10—H10A | 109.9 | C21—C20—H20B | 109.5 |
O4—C10—H10B | 109.9 | H20A—C20—H20B | 108.0 |
O4—C10—C11 | 108.84 (16) | C19—C20—C21 | 110.93 (18) |
H10A—C10—H10B | 108.3 | C19—C20—H20A | 109.5 |
C11—C10—H10A | 109.9 | C19—C20—H20B | 109.5 |
C11—C10—H10B | 109.9 | C18—C19—H19A | 109.3 |
C6—C7—H7A | 109.3 | C18—C19—H19B | 109.3 |
C6—C7—H7B | 109.3 | C20—C19—C18 | 111.82 (18) |
C6—C7—C8 | 111.54 (16) | C20—C19—H19A | 109.3 |
H7A—C7—H7B | 108.0 | C20—C19—H19B | 109.3 |
C8—C7—H7A | 109.3 | H19A—C19—H19B | 107.9 |
C8—C7—H7B | 109.3 | ||
O4—C4—C3—C2 | 178.34 (18) | C1—N2—C9—C8 | 3.3 (3) |
O4—C4—C5—C6 | −179.89 (18) | C1—C6—C5—C4 | 1.3 (3) |
O4—C10—C11—C12 | −74.1 (2) | C1—C6—C7—C8 | 34.9 (2) |
O3—C9—C8—C7 | −151.93 (19) | C5—C4—C3—C2 | −2.1 (3) |
O1—N1—C2—C3 | −174.48 (18) | C5—C6—C1—N2 | 179.37 (18) |
O1—N1—C2—C1 | 6.0 (3) | C5—C6—C1—C2 | −1.6 (3) |
O2—N1—C2—C3 | 5.7 (3) | C5—C6—C7—C8 | −147.74 (19) |
O2—N1—C2—C1 | −173.81 (18) | C14—N3—N15—N16 | 0.5 (2) |
N2—C1—C2—N1 | −1.5 (3) | C14—N4—N16—N15 | 0.6 (2) |
N2—C1—C2—C3 | 179.02 (19) | C14—N4—C17—C18 | −152.15 (19) |
N2—C9—C8—C7 | 29.8 (2) | C14—N4—C17—C22 | 83.9 (2) |
N3—N15—N16—N4 | −0.7 (2) | C14—C13—C12—C11 | 176.09 (17) |
N3—C14—C13—C12 | −13.5 (3) | C9—N2—C1—C6 | −17.8 (3) |
N4—C14—C13—C12 | 168.87 (18) | C9—N2—C1—C2 | 163.28 (19) |
N4—C17—C18—C19 | −179.86 (17) | C17—N4—N16—N15 | 175.00 (17) |
N4—C17—C22—C21 | −177.90 (18) | C17—N4—C14—N3 | −174.26 (18) |
N15—N3—C14—N4 | −0.1 (2) | C17—N4—C14—C13 | 3.8 (3) |
N15—N3—C14—C13 | −178.08 (19) | C17—C18—C19—C20 | 55.8 (3) |
N16—N4—C14—N3 | −0.3 (2) | C17—C22—C21—C20 | −57.1 (2) |
N16—N4—C14—C13 | 177.78 (18) | C10—O4—C4—C3 | 177.68 (17) |
N16—N4—C17—C18 | 34.6 (3) | C10—O4—C4—C5 | −1.9 (3) |
N16—N4—C17—C22 | −89.3 (2) | C10—C11—C12—C13 | −171.11 (17) |
C4—O4—C10—C11 | −179.44 (17) | C7—C6—C1—N2 | −3.3 (3) |
C4—C3—C2—N1 | −177.77 (17) | C7—C6—C1—C2 | 175.74 (17) |
C4—C3—C2—C1 | 1.8 (3) | C7—C6—C5—C4 | −175.97 (18) |
C6—C1—C2—N1 | 179.61 (18) | C18—C17—C22—C21 | 58.1 (2) |
C6—C1—C2—C3 | 0.1 (3) | C22—C17—C18—C19 | −56.7 (2) |
C6—C7—C8—C9 | −47.1 (2) | C22—C21—C20—C19 | 56.3 (3) |
C3—C4—C5—C6 | 0.5 (3) | C21—C20—C19—C18 | −56.1 (3) |
C1—N2—C9—O3 | −175.10 (18) |
Torsion angle | I | IA | IC |
τ1 | 177.7 (2) | -7.9 (2) | 4.1 (2) |
τ2 | -179.4 (2) | 174.6 (1) | 175.8 (1) |
τ3 | -74.1 (2) | 174.8 (1) | -174.7 (1) |
τ4 | -171.1 (2) | 70.9 (1) | 178.5 (1) |
τ5 | 176.1 (2) | 179.6 (1) | -64.6 (2) |
τ6 | 168.9 (2) | -111.7 (1) | -94.9 (2) |
Motif | D—X···Y | D—X | X···Y | D···Y | ∠D—X···Y |
Ivi | C8—H8A···O2—N1 | 0.99 | 2.71 | 3.467 (2) | 133 |
C3(π)···C1(π) | – | 3.261 (3) | – | – | |
N1···C5(π) | – | 3.230 (3) | – | – | |
C12—H12B···O3—C9 | 0.99 | 2.62 | 3.553 (3) | 157 | |
IIiii | C10—H10B···O1—N1 | 0.99 | 2.74 | 3.526 (3) | 136 |
C3(π)···C1(π) | – | 3.207 (3) | – | – | |
N1···C5(π) | – | 3.241 (3) | – | – | |
IIIii | C17—H17···N15 | 1.00 | 2.73 | 3.705 (3) | 165 |
C13—H13A···N15 | 0.99 | 2.80 | 3.646 (3) | 144 | |
IVvii | C18—H18A···O1—N1 | 0.99 | 2.59 | 3.527 (3) | 157 |
O2···C14(π) | – | 3.146 (3) | – | – | |
Vi | C3—H3···O3—C9 | 0.95 | 2.75 | 3.681 (3) | 168 |
C8—H8B···O4 | 0.99 | 2.55 | 3.453 (3) | 151 | |
VIv | C8—H8A···O3—C9 | 0.99 | 2.57 | 3.409 (3) | 142 |
VIIiv | C7—H7A···O3—C9 | 0.99 | 2.35 | 3.170 (2) | 140 |
Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y, z; (iii) -x, -y, -z + 1; (iv) -x, -1 - y, 1 - z; (v) -x + 1, -y - 1, -z + 1; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y + 1, -z + 1. |
Acknowledgements
The authors are grateful to IISERB for research facilities and infrastructure. YD thanks DST-INSPIRE for the research fellowship.
References
Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320. CrossRef Web of Science Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lauters, R. & Wilkin, D. (2002). Am. Fam. Physician, 105, 4, 366–367. Google Scholar
Lopez-Rodriguez, R., McManus, J. A., Murphy, N. S., Ott, M. A. & Burns, M. J. (2020). Org. Process Res. Dev. 24, 9, 1812–1819. Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Vikram, H. P. R., Kumar, T. P., Kumar, G., Beeraka, N. M., Deka, R., Suhail, S. M., Jat, S., Bannimath, N., Padmanabhan, G., Chandan, R. S., Kumar, P. & Gurupadayya, B. (2024). J. Pharm. Anal, 14, 5, 100919. Google Scholar
Whittall, L. B., Whittle, R. R. & Stowell, G. W. (2002). Acta Cryst. C58, o525–o527. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Yoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 2, 550–557. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.