research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure and Hirshfeld surface analysis of 6-[4-(1-cyclo­hexyl-1H-tetra­zol-5-yl)but­­oxy]-8-nitro-3,4-di­hydro­quinolin-2(1H)-one

crossmark logo

aDepartment of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri Bhopal 462066, India, and bBioneeds India Private Limited, P-3, Peenya Industrial Area, 1st Main Road, Peenya 1st stage, Bangalore 560094, Karnataka., India
*Correspondence e-mail: dchopra@iiserb.ac.in

Edited by B. Therrien, University of Neuchâtel, Switzerland (Received 3 February 2025; accepted 25 February 2025; online 4 March 2025)

The crystal structure of 6-[4-(1-cyclo­hexyl-1H-tetra­zol-5-yl)but­oxy]-8-nitro-3,4-di­hydro­quinolin-2(1H)-one, C20H26N6O4 (I), was characterized by single-crystal X-ray diffraction. The primary focus was to establish the position of the nitro group, the mol­ecular conformation, and the role of inter­molecular inter­actions towards the crystal packing of I. The crystalline structure is mainly consolidated by ππ, C—H⋯O, C—H⋯N, N⋯C(π) and O⋯C(π) inter­actions. The contributions of different inter­actions towards the crystal packing were further analyzed using Hirshfeld surface and fingerprint plots.

1. Introduction

Cilostazol is an important active pharmaceutical ingredient used to treat inter­mittent claudication associated with peripheral vascular disease (Lauters & Wilkin, 2002[Lauters, R. & Wilkin, D. (2002). Am. Fam. Physician, 105, 4, 366-367.]). However, cilostazol has the potential to generate nitroso impurities. The pharmaceutical industry is subject to stringent regulations to control genotoxic nitro­samine impurities in medications, as these compounds pose significant health risks (Vikram et al., 2024[Vikram, H. P. R., Kumar, T. P., Kumar, G., Beeraka, N. M., Deka, R., Suhail, S. M., Jat, S., Bannimath, N., Padmanabhan, G., Chandan, R. S., Kumar, P. & Gurupadayya, B. (2024). J. Pharm. Anal, 14, 5, 100919.]). Therefore, investigating the presence of nitro­samine impurities is crucial.

Given the possibility of nitroso impurity formation, it is essential to identify the specific site on cilostazol where nitro­sation may occur. In this study, we attempted to synthesize N-nitroso cilostazol using a standard method (Lopez-Rodriguez et al., 2020[Lopez-Rodriguez, R., McManus, J. A., Murphy, N. S., Ott, M. A. & Burns, M. J. (2020). Org. Process Res. Dev. 24, 9, 1812-1819.]). Unexpectedly, instead of obtaining the anti­cipated product – 6-[4-(1-cyclo­hexyl-1H-tetra­zol-5-yl)but­oxy]-1-nitroso-3,4-di­hydro­quinolin-2(1H)-one (N-nitroso cilostazol) – we isolated a different compound, referred to as I. This compound was fully characterized using 1H NMR and LC-MS, spectroscopy and single-crystal X-ray diffraction.

[Scheme 1]

2. Structural commentary

The mol­ecular structure features a di­hydro­quinolinone moiety (N2/C1–C9/O3) and a tetra­zole moiety composed of two fused six-membered rings (C1–C6, B, and C1/C6–C9/N2, A) and a five-membered ring (C14/N3/N15/N16/N4, C), respectively (Fig. 1[link]). The dihedral angle between the plane through ring B and atoms O4, C10, C11 and the mean plane through ring C and atoms C13, C12, C11 is 82.46 (6)°. The but­oxy chain exhibits rotational freedom, contributing to the conformational flexibility of the mol­ecule. The various torsions of the but­oxy chain are represented by τ2, τ3, τ4, τ5, and τ6, and listed in Table 1[link]. The C2 and C4 carbon atoms are connected to the nitro and alk­oxy substituents, respectively, and the presence of two sp3-hybridized carbon atoms (C7 and C8) makes ring A non-planar. The puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) generated by PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) were obtained for the different rings. For ring A, the puckering parameters are Q = 0.420 (2) Å, θ = 65.9 (3)° and φ = 25.1 (3)°, the value of θ indicating a screw-boat conformation (Boeyens, 1978[Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.]). Atom N4 of ring C is linked to the cyclo­hexyl ring (C17–C22, D) [Q = 0.582 (3) Å, θ = 1.1 (3)° and φ = 138 (11)°]. The value of θ is very close to zero, thus indicating a chair conformation for ring D. The most acidic hydrogen atom (H2) is involved in the formation of an intra­molecular hydrogen bond with the O1 atom of the nitro group [N2⋯O1 = 2.650 (3) Å, ∠N—H⋯O = 128°].

Table 1
Torsion angles (°) of the but­oxy chain in I, IA, IC (see Database survey)

Torsion angle I IA IC
τ1 177.7 (2) −7.9 (2) 4.1 (2)
τ2 −179.4 (2) 174.6 (1) 175.8 (1)
τ3 −74.1 (2) 174.8 (1) −174.7 (1)
τ4 −171.1 (2) 70.9 (1) 178.5 (1)
τ5 176.1 (2) 179.6 (1) −64.6 (2)
τ6 168.9 (2) −111.7 (1) −94.9 (2)
[Figure 1]
Figure 1
The mol­ecular structure of I with 50% probability level ellipsoids. The dotted line indicates the intra­molecular N2—H2⋯O1 inter­action.

3. Supra­molecular features

The crystal packing was further analysed by Mercury (Version 2024.1.0; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]). The crystal packing along the a-axis shows that the mol­ecules form three motifs by inversion symmetry, I, II and III, respectively (Fig. 2[link][link], Table 2[link]). The motifs I and II are consolidated by ππ stacking, N(π-hole)⋯C(π) and C—H⋯O hydrogen-bonding inter­actions, while motif III contains onlyC—H⋯N hydrogen bonds (involving H17 and N15 and H13A with N15). The ππ stacking occurs in a parallel offset fashion between B rings in both motifs I and II, the latter one consisting of a very short ππ inter­action between C3(π)⋯C1(π) with a distance of 3.2067 (3) Å. In the MESP map (Fig. 4[link]a), the electropositive blue region over N1 (0.0332 a.u.) shows the π hole for the N1⋯C5 inter­action. In motif III, ring C forms C—H⋯N inter­actions with the but­oxy chain and cyclo­hexyl ring D, which propagate along the a-axis direction.

Table 2
Inter­molecular inter­actions (Å, °) present in I

Motif DXY DX XY DY DXY
Ivi C8—H8A⋯O2—N1 0.99 2.71 3.467 (2) 133
  C3(π)⋯C1(π) 3.261 (3)
  N1⋯C5(π) 3.230 (3)
  C12—H12B⋯O3—C9 0.99 2.62 3.553 (3) 157
IIiii C10—H10B⋯O1—N1 0.99 2.74 3.526 (3) 136
  C3(π)⋯C1(π) 3.207 (3)
  N1⋯C5(π) 3.241 (3)
IIIii C17—H17⋯N15 1.00 2.73 3.705 (3) 165
  C13—H13A⋯N15 0.99 2.80 3.646 (3) 144
IVvii C18—H18A⋯O1—N1 0.99 2.59 3.527 (3) 157
  C14(π)⋯O2 3.146 (3)
Vi C3—H3⋯O3—C9 0.95 2.75 3.681 (3) 168
  O4⋯C8—H8B 0.99 2.55 3.453 (3) 151
VIv C8—H8A⋯O3—C9 0.99 2.57 3.409 (3) 142
VIIiv C7—H7A⋯O3—C9 0.99 2.35 3.170 (2) 140
Symmetry codes: (i) x, y + 1, z; (ii) x − 1, y, z; (iii) −x, −y, −z + 1; (iv) −x, −1 − y, 1 − z; (v) −x + 1, −y − 1, −z + 1; (vi) −x + 1, −y, −z + 1; (vii) −x + 1, −y + 1, −z + 1.
[Figure 2]
Figure 2
Crystal packing extending along the a-axis via ππ stacking, N(π-hole)⋯C(π), C—H⋯O and C—H⋯N inter­actions.
[Figure 3]
Figure 3
Crystal packing of I along the bc plane showing C—H⋯O and O⋯C(π) inter­actions.
[Figure 4]
Figure 4
The mol­ecular electrostatic potential map (a) and Hirshfeld surface mapped over dnorm (b, c, d). Non-covalent inter­actions are indicated by dashed lines.

Along the bc plane (Fig. 3[link]), motif IV forms a centrosymmetric dimer through C—H⋯O and O⋯C(π) inter­actions, while motif V consists of C3—H3⋯O3 and C8—H8B⋯O4 inter­actions. Motif V utilizes translation symmetry along the b-axis direction for the packing of mol­ecules in the crystal. The remaining motifs VI and VII are also involved in the formation of C—H⋯O hydrogen bonds, the latter one shows a significant short contact [C7⋯O3 = 3.170 (2) Å]. It is noteworthy that atoms H3 and H17, which are attached to hybridized sp2 carbons, form the most directional C—H⋯O and C—H⋯N hydrogen bonds in the crystal packing.

4. Hirshfeld surface analysis and fingerprint plots

Hirshfeld surface analysis was performed to investigate and visualize the inter­molecular inter­actions present between mol­ecules and most importantly to qu­antify the individual contributions of different inter­actions involved in the crystal packing (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The Hirshfeld surface and the 2D fingerprint plots (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]) were generated using CrystalExplorer (version: 21.5) over electrostatic potential range −0.02 a.u. to +0.02 a.u., as depicted in Figs. 4[link] and 5[link], respectively. The red spots on the Hirshfeld surface (plotted over dnorm) (Fig. 4[link]b,c,d) indicate the presence of inter­molecular ππ stacking, C—H⋯N, C—H⋯O, O⋯C(π) and N⋯C(π) short contacts. In the crystal packing, the relative contributions of the inter­actions are: O⋯H/H⋯O (22.2%), N⋯H/H⋯N (17.1%), C(π)⋯C(π) (3.7%), O⋯C(π)/C(π)⋯O (2.6%) and N⋯C(π)/C(π)⋯N (2.3%).

[Figure 5]
Figure 5
The fingerprint plot showing the overall contribution of all contacts and a diagram showing the percentage of individual contributions in the crystal packing.

5. Database survey

A CSD (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) survey for the cilostazol mol­ecule was performed using CCDC ConQuest (version 2024.1.0). The five resulting hits with refcodes OCIKIX, OCIKOD, OCIKUJ (Yoshimura et al., 2017[Yoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 2, 550-557.]) and XOSGUH, XOSGUH01 (Whittall et al., 2002[Whittall, L. B., Whittle, R. R. & Stowell, G. W. (2002). Acta Cryst. C58, o525-o527.]) report co-crystals of cilostazol and the structures of polymorphic forms of cilostazol.

OCIKIX, OCIKOD and OCIKUJ (Yoshimura et al., 2017[Yoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 2, 550-557.]) are three co-crystals of cilostazol. Cilostazol is a poorly soluble compound, and in order to increase the solubility, co-crystals of cilostazol with 4-hy­droxy­benzoic acid, 2,4-di­hydroxy­benzoic acid and 2,5-di­hydroxy­benzoic acid (1:1 stoichiometric ratio) have been prepared for different pharmaceutical applications.

XOSGUH and XOSGUH01 (Whittall et al., 2002[Whittall, L. B., Whittle, R. R. & Stowell, G. W. (2002). Acta Cryst. C58, o525-o527.]) feature two unique conformational polymorphic forms of cilostazol. The study shows how the conformational differences can possibly influence the inter­molecular forces and packing of the mol­ecules during crystallization. As a result of the conformational flexibility of the but­oxy chain, cilostazol crystallizes in two different space groups, P21/n (IC) and Pbca (IA). It is observed that I exists in two different conformations for the two reported polymorphs of cilostazol. Conformational variations were analysed by generating a mol­ecular overlay diagram, keeping the tetra­zole rings fixed for the three mol­ecules (Fig. 6[link]). It is found that I and IC have similar conformations but differ significantly from IA. The magnitudes of the torsion angles (Table 1[link]) indicate that the most significant conformational differences are observed in the but­oxy chains.

[Figure 6]
Figure 6
An overlay of structures I, IA and IC.

6. Synthesis and crystallization

Cilostazol (1.00 g, 2.7 mmol) was stirred in 5 mL of di­chloro­ethane for 15 min. Isoamyl nitrite (0.32 g, 2.7 mmol) was added at 273–278 K. The reaction mixture was slowly brought to 298 K and allowed to stir for 1h. The reaction mixture was diluted with water and extracted with di­chloro­methane twice (2 × 50 mL) and concentrated to dryness to afford 1 g of crude product. The crude product was purified by flash chroma­tography using 2% methanol:di­chloro­methane eluent system to afford the title compound (0.35 g, 33%). 1H NMR (400 MHz, dimethyl sulfoxide): δ 9.70 (s, 1H), 7.47–7.48 (d, J = 2.8 Hz, 1H), 7.36 (d, J = 2.8 Hz, 1H), 4.41–4.42 (m, 1H), 4.08–4.11 (m, 2H), 2.97–3.04 (m, 4H), 2.51–2.58 (m, 2H), 1.67–1.98 (m, 11H), 1.42-1.46 (m, 2H), 1.24–1.28 (m, 1H), LC/MS (ESI) m/e 415.2 [M + H]+ calculated for C20H27N6O4. The crude product was dissolved in iso­octane-chloro­form (1:1 mixture) and kept at low temperature. After a week, single crystals were obtained.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All of the hydrogen atoms, except H2 (attached to N2), which was located from a difference-Fourier map, were placed at their geometrically calculated positions and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C-meth­yl).

Table 3
Experimental details

Crystal data
Chemical formula C20H26N6O4
Mr 414.47
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 6.4597 (8), 9.2666 (11), 17.382 (2)
α, β, γ (°) 104.113 (5), 96.645 (5), 99.656 (5)
V3) 981.3 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.24 × 0.13 × 0.05
 
Data collection
Diffractometer Bruker D8 Quest
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.683, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 16058, 5647, 4069
Rint 0.043
(sin θ/λ)max−1) 0.705
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.141, 1.08
No. of reflections 5647
No. of parameters 275
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.36, −0.39
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-8-nitro-3,4-dihydroquinolin-2(1H)-one top
Crystal data top
C20H26N6O4Z = 2
Mr = 414.47F(000) = 440
Triclinic, P1Dx = 1.403 Mg m3
a = 6.4597 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2666 (11) ÅCell parameters from 4187 reflections
c = 17.382 (2) Åθ = 2.5–30.0°
α = 104.113 (5)°µ = 0.10 mm1
β = 96.645 (5)°T = 100 K
γ = 99.656 (5)°Plate, yellow
V = 981.3 (2) Å30.24 × 0.13 × 0.05 mm
Data collection top
Bruker D8 Quest
diffractometer
5647 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4069 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.043
Detector resolution: 7.9 pixels mm-1θmax = 30.1°, θmin = 2.3°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1213
Tmin = 0.683, Tmax = 0.746l = 2424
16058 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.069H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.036P)2 + 1.0039P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
5647 reflectionsΔρmax = 0.36 e Å3
275 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.3538 (2)0.31868 (16)0.63879 (8)0.0143 (3)
O30.2010 (2)0.53087 (16)0.43484 (9)0.0182 (3)
O10.1523 (3)0.15696 (17)0.33108 (8)0.0196 (3)
O20.2294 (2)0.08708 (17)0.35239 (9)0.0189 (3)
N10.2034 (3)0.0266 (2)0.37737 (10)0.0127 (3)
N20.1868 (3)0.28422 (19)0.45172 (10)0.0120 (3)
N31.0704 (3)0.8204 (2)0.79866 (10)0.0163 (4)
N40.9390 (3)1.01503 (19)0.85030 (10)0.0132 (3)
N151.2241 (3)0.9502 (2)0.81932 (11)0.0195 (4)
N161.1471 (3)1.0679 (2)0.85096 (11)0.0184 (4)
C40.3116 (3)0.1701 (2)0.59483 (11)0.0113 (4)
C60.2611 (3)0.1011 (2)0.58111 (11)0.0107 (4)
C30.2731 (3)0.1415 (2)0.51206 (11)0.0115 (4)
H30.2728010.2232630.4880580.014*
C10.2277 (3)0.1325 (2)0.49707 (11)0.0108 (4)
C50.3044 (3)0.0472 (2)0.62909 (11)0.0114 (4)
H50.3295200.0660150.6859330.014*
C20.2347 (3)0.0072 (2)0.46401 (11)0.0109 (4)
C140.8946 (3)0.8632 (2)0.81830 (11)0.0132 (4)
C90.2296 (3)0.4038 (2)0.48070 (12)0.0130 (4)
C170.7998 (3)1.1125 (2)0.88721 (12)0.0137 (4)
H170.6507851.0684340.8584390.016*
C100.3854 (3)0.3463 (2)0.72468 (11)0.0147 (4)
H10A0.5077980.3042160.7425820.018*
H10B0.2572210.2959820.7413870.018*
C70.2393 (3)0.2331 (2)0.61839 (12)0.0129 (4)
H7A0.0882660.2655660.6229440.015*
H7B0.3233720.1998960.6732630.015*
C130.6805 (3)0.7660 (2)0.81081 (13)0.0178 (4)
H13A0.5721940.8146520.7879450.021*
H13B0.6534910.7633060.8654030.021*
C110.4277 (3)0.5164 (2)0.76270 (12)0.0150 (4)
H11A0.4089540.5341900.8197550.018*
H11B0.3194950.5594130.7354880.018*
C80.3162 (3)0.3673 (2)0.56840 (12)0.0145 (4)
H8A0.4736620.3437600.5759420.017*
H8B0.2723990.4577460.5880160.017*
C180.8604 (4)1.2733 (2)0.87864 (13)0.0184 (4)
H18A0.8490211.2705590.8209940.022*
H18B1.0096261.3183100.9047300.022*
C120.6491 (3)0.6027 (2)0.75913 (12)0.0156 (4)
H12A0.7597480.5527950.7793820.019*
H12B0.6618400.6020300.7028390.019*
C220.8051 (4)1.1126 (2)0.97530 (13)0.0178 (4)
H22A0.7622431.0070880.9789630.021*
H22B0.9518251.1539791.0049520.021*
C210.6549 (4)1.2086 (3)1.01333 (13)0.0198 (5)
H21A0.6639141.2107301.0708550.024*
H21B0.5066521.1625450.9864060.024*
C200.7128 (4)1.3703 (3)1.00564 (13)0.0204 (5)
H20A0.6094421.4296201.0281360.024*
H20B0.8559171.4195671.0369880.024*
C190.7118 (4)1.3706 (3)0.91805 (13)0.0212 (5)
H19A0.7569911.4763310.9150330.025*
H19B0.5651431.3311790.8880350.025*
H20.150 (3)0.304 (2)0.3988 (13)0.009 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0222 (8)0.0082 (7)0.0122 (7)0.0025 (6)0.0026 (6)0.0022 (5)
O30.0195 (8)0.0090 (7)0.0240 (8)0.0019 (6)0.0062 (6)0.0001 (6)
O10.0264 (9)0.0162 (8)0.0129 (7)0.0035 (7)0.0015 (6)0.0008 (6)
O20.0257 (9)0.0179 (8)0.0157 (7)0.0047 (7)0.0037 (6)0.0092 (6)
N10.0091 (8)0.0150 (8)0.0137 (8)0.0029 (7)0.0016 (6)0.0031 (6)
N20.0133 (8)0.0093 (8)0.0116 (8)0.0009 (6)0.0013 (6)0.0009 (6)
N30.0156 (9)0.0174 (9)0.0159 (8)0.0055 (7)0.0039 (7)0.0023 (7)
N40.0120 (8)0.0123 (8)0.0151 (8)0.0027 (7)0.0035 (6)0.0024 (6)
N150.0168 (9)0.0205 (10)0.0203 (9)0.0049 (8)0.0061 (7)0.0019 (7)
N160.0123 (9)0.0189 (9)0.0225 (9)0.0002 (7)0.0046 (7)0.0039 (7)
C40.0090 (9)0.0095 (9)0.0160 (9)0.0032 (7)0.0033 (7)0.0032 (7)
C60.0088 (9)0.0110 (9)0.0143 (9)0.0035 (7)0.0045 (7)0.0049 (7)
C30.0095 (9)0.0110 (9)0.0156 (9)0.0020 (7)0.0033 (7)0.0059 (7)
C10.0077 (9)0.0100 (9)0.0151 (9)0.0015 (7)0.0038 (7)0.0033 (7)
C50.0108 (9)0.0128 (9)0.0106 (8)0.0013 (8)0.0025 (7)0.0033 (7)
C20.0075 (9)0.0139 (10)0.0112 (9)0.0014 (7)0.0014 (7)0.0035 (7)
C140.0168 (10)0.0118 (9)0.0100 (8)0.0037 (8)0.0013 (7)0.0010 (7)
C90.0093 (9)0.0093 (9)0.0215 (10)0.0020 (7)0.0066 (8)0.0046 (8)
C170.0120 (10)0.0110 (9)0.0172 (9)0.0035 (8)0.0031 (8)0.0009 (7)
C100.0205 (11)0.0117 (10)0.0111 (9)0.0021 (8)0.0025 (8)0.0026 (7)
C70.0165 (10)0.0083 (9)0.0141 (9)0.0012 (8)0.0030 (8)0.0042 (7)
C130.0150 (11)0.0139 (10)0.0213 (10)0.0015 (8)0.0043 (8)0.0008 (8)
C110.0197 (11)0.0116 (10)0.0131 (9)0.0034 (8)0.0041 (8)0.0014 (7)
C80.0157 (10)0.0108 (9)0.0186 (10)0.0025 (8)0.0040 (8)0.0064 (8)
C180.0255 (12)0.0153 (10)0.0179 (10)0.0070 (9)0.0080 (9)0.0066 (8)
C120.0185 (11)0.0104 (9)0.0174 (10)0.0043 (8)0.0041 (8)0.0016 (8)
C220.0225 (11)0.0137 (10)0.0216 (10)0.0065 (9)0.0092 (9)0.0083 (8)
C210.0213 (12)0.0216 (11)0.0209 (11)0.0097 (9)0.0086 (9)0.0077 (9)
C200.0277 (12)0.0163 (11)0.0186 (10)0.0118 (9)0.0045 (9)0.0021 (8)
C190.0309 (13)0.0162 (11)0.0203 (10)0.0096 (10)0.0065 (9)0.0078 (9)
Geometric parameters (Å, º) top
O4—C41.366 (2)C10—H10B0.9900
O4—C101.436 (2)C10—C111.517 (3)
O3—C91.221 (2)C7—H7A0.9900
O1—N11.243 (2)C7—H7B0.9900
O2—N11.228 (2)C7—C81.526 (3)
N1—C21.458 (2)C13—H13A0.9900
N2—C11.398 (2)C13—H13B0.9900
N2—C91.379 (2)C13—C121.526 (3)
N2—H20.89 (2)C11—H11A0.9900
N3—N151.367 (3)C11—H11B0.9900
N3—C141.319 (3)C11—C121.533 (3)
N4—N161.349 (2)C8—H8A0.9900
N4—C141.348 (3)C8—H8B0.9900
N4—C171.470 (3)C18—H18A0.9900
N15—N161.301 (3)C18—H18B0.9900
C4—C31.383 (3)C18—C191.531 (3)
C4—C51.404 (3)C12—H12A0.9900
C6—C11.401 (3)C12—H12B0.9900
C6—C51.386 (3)C22—H22A0.9900
C6—C71.511 (3)C22—H22B0.9900
C3—H30.9500C22—C211.523 (3)
C3—C21.391 (3)C21—H21A0.9900
C1—C21.412 (3)C21—H21B0.9900
C5—H50.9500C21—C201.525 (3)
C14—C131.491 (3)C20—H20A0.9900
C9—C81.496 (3)C20—H20B0.9900
C17—H171.0000C20—C191.522 (3)
C17—C181.524 (3)C19—H19A0.9900
C17—C221.527 (3)C19—H19B0.9900
C10—H10A0.9900
C4—O4—C10116.53 (15)C14—C13—H13A108.4
O1—N1—C2119.39 (16)C14—C13—H13B108.4
O2—N1—O1121.98 (17)C14—C13—C12115.69 (18)
O2—N1—C2118.62 (17)H13A—C13—H13B107.4
C1—N2—H2117.8 (14)C12—C13—H13A108.4
C9—N2—C1124.94 (17)C12—C13—H13B108.4
C9—N2—H2116.4 (14)C10—C11—H11A108.5
C14—N3—N15105.82 (17)C10—C11—H11B108.5
N16—N4—C17122.55 (17)C10—C11—C12114.99 (17)
C14—N4—N16108.70 (17)H11A—C11—H11B107.5
C14—N4—C17128.46 (18)C12—C11—H11A108.5
N16—N15—N3110.93 (17)C12—C11—H11B108.5
N15—N16—N4106.10 (17)C9—C8—C7112.55 (17)
O4—C4—C3117.16 (17)C9—C8—H8A109.1
O4—C4—C5123.72 (17)C9—C8—H8B109.1
C3—C4—C5119.11 (18)C7—C8—H8A109.1
C1—C6—C7118.46 (17)C7—C8—H8B109.1
C5—C6—C1120.91 (18)H8A—C8—H8B107.8
C5—C6—C7120.58 (17)C17—C18—H18A109.8
C4—C3—H3120.1C17—C18—H18B109.8
C4—C3—C2119.86 (18)C17—C18—C19109.59 (18)
C2—C3—H3120.1H18A—C18—H18B108.2
N2—C1—C6118.42 (17)C19—C18—H18A109.8
N2—C1—C2124.44 (17)C19—C18—H18B109.8
C6—C1—C2117.13 (18)C13—C12—C11108.81 (17)
C4—C5—H5119.5C13—C12—H12A109.9
C6—C5—C4120.92 (18)C13—C12—H12B109.9
C6—C5—H5119.5C11—C12—H12A109.9
C3—C2—N1116.24 (17)C11—C12—H12B109.9
C3—C2—C1122.02 (17)H12A—C12—H12B108.3
C1—C2—N1121.74 (17)C17—C22—H22A109.6
N3—C14—N4108.44 (18)C17—C22—H22B109.6
N3—C14—C13128.13 (19)H22A—C22—H22B108.1
N4—C14—C13123.40 (18)C21—C22—C17110.43 (18)
O3—C9—N2119.85 (19)C21—C22—H22A109.6
O3—C9—C8123.46 (19)C21—C22—H22B109.6
N2—C9—C8116.67 (17)C22—C21—H21A109.5
N4—C17—H17108.0C22—C21—H21B109.5
N4—C17—C18111.43 (17)C22—C21—C20110.50 (18)
N4—C17—C22109.98 (17)H21A—C21—H21B108.1
C18—C17—H17108.0C20—C21—H21A109.5
C18—C17—C22111.33 (17)C20—C21—H21B109.5
C22—C17—H17108.0C21—C20—H20A109.5
O4—C10—H10A109.9C21—C20—H20B109.5
O4—C10—H10B109.9H20A—C20—H20B108.0
O4—C10—C11108.84 (16)C19—C20—C21110.93 (18)
H10A—C10—H10B108.3C19—C20—H20A109.5
C11—C10—H10A109.9C19—C20—H20B109.5
C11—C10—H10B109.9C18—C19—H19A109.3
C6—C7—H7A109.3C18—C19—H19B109.3
C6—C7—H7B109.3C20—C19—C18111.82 (18)
C6—C7—C8111.54 (16)C20—C19—H19A109.3
H7A—C7—H7B108.0C20—C19—H19B109.3
C8—C7—H7A109.3H19A—C19—H19B107.9
C8—C7—H7B109.3
O4—C4—C3—C2178.34 (18)C1—N2—C9—C83.3 (3)
O4—C4—C5—C6179.89 (18)C1—C6—C5—C41.3 (3)
O4—C10—C11—C1274.1 (2)C1—C6—C7—C834.9 (2)
O3—C9—C8—C7151.93 (19)C5—C4—C3—C22.1 (3)
O1—N1—C2—C3174.48 (18)C5—C6—C1—N2179.37 (18)
O1—N1—C2—C16.0 (3)C5—C6—C1—C21.6 (3)
O2—N1—C2—C35.7 (3)C5—C6—C7—C8147.74 (19)
O2—N1—C2—C1173.81 (18)C14—N3—N15—N160.5 (2)
N2—C1—C2—N11.5 (3)C14—N4—N16—N150.6 (2)
N2—C1—C2—C3179.02 (19)C14—N4—C17—C18152.15 (19)
N2—C9—C8—C729.8 (2)C14—N4—C17—C2283.9 (2)
N3—N15—N16—N40.7 (2)C14—C13—C12—C11176.09 (17)
N3—C14—C13—C1213.5 (3)C9—N2—C1—C617.8 (3)
N4—C14—C13—C12168.87 (18)C9—N2—C1—C2163.28 (19)
N4—C17—C18—C19179.86 (17)C17—N4—N16—N15175.00 (17)
N4—C17—C22—C21177.90 (18)C17—N4—C14—N3174.26 (18)
N15—N3—C14—N40.1 (2)C17—N4—C14—C133.8 (3)
N15—N3—C14—C13178.08 (19)C17—C18—C19—C2055.8 (3)
N16—N4—C14—N30.3 (2)C17—C22—C21—C2057.1 (2)
N16—N4—C14—C13177.78 (18)C10—O4—C4—C3177.68 (17)
N16—N4—C17—C1834.6 (3)C10—O4—C4—C51.9 (3)
N16—N4—C17—C2289.3 (2)C10—C11—C12—C13171.11 (17)
C4—O4—C10—C11179.44 (17)C7—C6—C1—N23.3 (3)
C4—C3—C2—N1177.77 (17)C7—C6—C1—C2175.74 (17)
C4—C3—C2—C11.8 (3)C7—C6—C5—C4175.97 (18)
C6—C1—C2—N1179.61 (18)C18—C17—C22—C2158.1 (2)
C6—C1—C2—C30.1 (3)C22—C17—C18—C1956.7 (2)
C6—C7—C8—C947.1 (2)C22—C21—C20—C1956.3 (3)
C3—C4—C5—C60.5 (3)C21—C20—C19—C1856.1 (3)
C1—N2—C9—O3175.10 (18)
Torsion angles (°) of the butoxy chain in I, IA, IC top
Torsion angleIIAIC
τ1177.7 (2)-7.9 (2)4.1 (2)
τ2-179.4 (2)174.6 (1)175.8 (1)
τ3-74.1 (2)174.8 (1)-174.7 (1)
τ4-171.1 (2)70.9 (1)178.5 (1)
τ5176.1 (2)179.6 (1)-64.6 (2)
τ6168.9 (2)-111.7 (1)-94.9 (2)
Intermolecular interactions (Å, °) present in I top
MotifDX···YDXX···YD···YDX···Y
IviC8—H8A···O2—N10.992.713.467 (2)133
C3(π)···C1(π)3.261 (3)
N1···C5(π)3.230 (3)
C12—H12B···O3—C90.992.623.553 (3)157
IIiiiC10—H10B···O1—N10.992.743.526 (3)136
C3(π)···C1(π)3.207 (3)
N1···C5(π)3.241 (3)
IIIiiC17—H17···N151.002.733.705 (3)165
C13—H13A···N150.992.803.646 (3)144
IVviiC18—H18A···O1—N10.992.593.527 (3)157
O2···C14(π)3.146 (3)
ViC3—H3···O3—C90.952.753.681 (3)168
C8—H8B···O40.992.553.453 (3)151
VIvC8—H8A···O3—C90.992.573.409 (3)142
VIIivC7—H7A···O3—C90.992.353.170 (2)140
Symmetry codes: (i) x, y + 1, z; (ii) x - 1, y, z; (iii) -x, -y, -z + 1; (iv) -x, -1 - y, 1 - z; (v) -x + 1, -y - 1, -z + 1; (vi) -x + 1, -y, -z + 1; (vii) -x + 1, -y + 1, -z + 1.
 

Acknowledgements

The authors are grateful to IISERB for research facilities and infrastructure. YD thanks DST-INSPIRE for the research fellowship.

References

First citationBoeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317–320.  CrossRef Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLauters, R. & Wilkin, D. (2002). Am. Fam. Physician, 105, 4, 366–367.  Google Scholar
First citationLopez-Rodriguez, R., McManus, J. A., Murphy, N. S., Ott, M. A. & Burns, M. J. (2020). Org. Process Res. Dev. 24, 9, 1812–1819.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVikram, H. P. R., Kumar, T. P., Kumar, G., Beeraka, N. M., Deka, R., Suhail, S. M., Jat, S., Bannimath, N., Padmanabhan, G., Chandan, R. S., Kumar, P. & Gurupadayya, B. (2024). J. Pharm. Anal, 14, 5, 100919.  Google Scholar
First citationWhittall, L. B., Whittle, R. R. & Stowell, G. W. (2002). Acta Cryst. C58, o525–o527.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYoshimura, M., Miyake, M., Kawato, T., Bando, M., Toda, M., Kato, Y., Fukami, T. & Ozeki, T. (2017). Cryst. Growth Des. 17, 2, 550–557.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds