

research communications
H-inden-3-yl)acetonitrile
of the possible sulindac impurity 2-(5-fluoro-2-methyl-1aTechnique Center, Jinling Pharmaceutical Company Limited, 58 Xingang Road Qixia, district, Nanjing, Jiangsu 210046, People's Republic of China
*Correspondence e-mail: 2351897844@qq.com
The title compound,C12H10FN, was identified as a possible critical degradation impurity of sulindac, a therapeutic COX-2 inhibitor for rheumatoid arthritis. Single-crystal X-ray analysis revealed two conformationally slightly different molecules in the (Z′ = 2), each containing an indene ring system. In the [100] chains formed through C—H⋯N interactions are connected into a tri-periodic supramolecular structure by further C—H⋯F and C—H⋯π interactions through P21/n symmetry operations.
Keywords: sulindac; impurity; 2-(5-fluoro-2-methyl-1H-inden-3-yl)acetonitrile; synthesis; crystal structure.
CCDC reference: 2219596
1. Chemical context
Sulindac {systematic name [(Z)-2-methyl-1-[(4-methylsulfinylphenyl)methylene]-5-fluoro-1H-inden-3-acetic acid]} is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits selective cyclooxygenase-2 (COX-2) inhibitory activity, effectively suppressing COX-2 overexpression through It is applied for clinical management of rheumatoid arthritis and degenerative joint disorders (Boolbol, 1996).
While impurity profiling represents a critical component of pharmaceutical development, the present investigation focuses on the characterization of a key process-related impurity compound in sulindac synthesis, namely 2-(5-fluoro-2-methyl-1H-inden-3-yl)acetonitrile (1). Based on single-crystal X-ray we have now unambiguously determined its configuration, representing novel structural data in pharmaceutical crystallography and report the results here.
2. Structural commentary
The 1) comprises two molecules and is illustrated in Fig. 1a; an overlay plot of the two molecules (one of which is inverted relative to the other) is shown in Fig. 1
b. The root-mean-square-deviation between the two molecules is only 0.009 Å, with dmax of 0.020 Å between N1 and N2. The angles C7—C10—C11 and C19—C22—C23 are 112.47 (10) and 112.65 (10)°, respectively (Fig. 2
a), and the torsion angles between the cyanide group and its corresponding indene ring plane is 64.09 (16) and 64.72 (14)° in the two independent molecules (Fig. 2
b). The bond lengths in the two molecules are all within normal range.
![]() | Figure 1 (a) The of (1) with displacement ellipsoids drawn at the 50% probability level; (b) overlay plot of the two independent molecules. |
![]() | Figure 2 (a) The angle between the cyanide group and adjacent atoms in each of the two independent molecules; (b) the cyanide group and its dihedral angle with the corresponding indene ring plane in each of the two independent molecules. |
3. Supramolecular features
As shown in Fig. 3, the methylene groups (C10, C22) attached to the —C≡N moiety act as hydrogen-bond donors to the cyanide N atoms (N2, N1) of adjacent molecules. These interactions (Table 1
) link the molecules into an infinite supramolecular chain extending parallel to [100]. Other interactions shown in Fig. 3
include C—H⋯F interactions (Table 1
) as well as C—H⋯π interactions [C22–H22A⋯π (2.780 Å) and C12—H12B⋯π (2.958 Å)], which connect the molecules into a tri-periodic supramolecular structure. A packing plot of (1) is shown in Fig. 4
.
|
![]() | Figure 3 Intermolecular interactions (C—H⋯N, C—H⋯F and C—H⋯π) between adjacent molecules shown as red dashed lines. Color codes: C (gray), N (blue), F(green) and H (white). |
![]() | Figure 4 Packing plot of (1) approximately along [100]. C—H⋯N and C—H⋯F interactions are shown as red dotted lines. |
4. Database survey
A search of the Cambridge Structural Database (CSD, version 2024.1.0; Groom et al., 2016) was conducted using the keyword methylindene, which retrieved eleven relevant entries: BANNUA (Tsuno et al., 2003
), CIRMIA (Santi et al., 2007
), DOBVIZ (Biali & Rappoport, 1986
), FUNPAG (Xu et al., 2010
), HEXRAD (Bonifaci et al., 1994
), ICEXOD (Halterman et al., 2000
), SUZYER (Stenzel et al., 2001
), MIJKIZ (Enders et al., 2002
), NOYTOK (Brase et al., 1998
), XAWFEG (Shapiro et al., 1999
), and RESZEU (Herrmann et al., 1997
). The primary distinction among these compounds lies in the substitution patterns of the methyl group on the indene ring. Notably, an indene derivative bearing both fluorine and cyano substituents has been obtained and reported exclusively in the present work. This comparative analysis underscores the structural novelty of the title compound, particularly its unique combination of hydrogen-bonding patterns (C—H⋯N and C—H⋯F).
5. Synthesis and crystallization
Compound (1) was prepared according to a literature method (Xu et al., 2020; Dai et al., 2009
). The preparation procedure is schematically shown in Fig. 5
. A 100 ml round-bottomed flask equipped with a magnetic stirring bar was charged with a mixture of 6-fluoro-2-methyl-2,3-dihydro-1H-inden-1-one, (2), (20.35 g, 124 mmol), cyanoacetic acid (13.65 g, 160.4 mmol), acetic acid (7.8 g, 129.9 mmol) and ammonium acetate (3.1 g, 40.2 mmol) in toluene (50 ml). The mixture was refluxed for 24 h and then cooled to room temperature. The solvent was removed in vacuo, and the residue (3) was dissolved in ethanol without further purification. The resulting solution was added to a potassium hydroxide solution (165 g, 25%wt, w/w, 735.2 mmol) and heated to reflux for 13 h. Then, the ethanol was removed in vacuo, followed by the addition of 300 ml of water. The pH value was adjusted to 8 using concentrated hydrochloric acid, and the mixture was then extracted with dichloromethane (150 ml). The aqueous layer was collected and further adjusted to a pH value of 2 with concentrated hydrochloric acid, resulting in the precipitation of a significant amount of a yellow solid of (1). The solid was then filtered off, washed with water, and dried in air. Yield: 17.25 g, 85.2%. 1H NMR spectrum (Varian Unity Inova 500 MHz, DMSO-d6, ppm): δ: 7.38 (dd, 1H, J1 = 5.55 Hz, J2 = 7.85 Hz), 7.23 (dd, 1H, J1 = 2.2 Hz, J2 = 9.5 Hz), 6.94 (m, 1H), 3.87 (s, 2H), 3.35 (s, 2H), 2.13 (s, 3H). Single crystals were obtained by slow evaporation of a of (1) in a dichloromethane–ethanol mixture (4:1, v/v) at room temperature over 20 d.
![]() | Figure 5 Synthesis scheme of the title compound (1). |
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms attached to carbon atoms were placed in calculated positions and constrained with AFIX instructions.
|
7. Authorship contribution statement
The submitted manuscript includes contributions from eight authors. Yun-Deng Wu conceptualized and designed the research framework, conducted comprehensive data analysis, and drafted the manuscript. Yun-Deng Wu, Hui Wan, Yun Xia and Jie Ni performed the synthesis, isolation, purification, and characterization of the title compound. Jian Li, Hui Zhang, Xiangyang Xu and Jun Xie contributed to the single-crystal cultivation and associated experimental evaluations. All co-authors participated in the critical revision and final approval of the manuscript for publication.
Supporting information
CCDC reference: 2219596
https://doi.org/10.1107/S2056989025002622/wm5750sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002622/wm5750Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025002622/wm5750Isup3.cml
C12H10FN | F(000) = 784 |
Mr = 187.21 | Dx = 1.283 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5248 (5) Å | Cell parameters from 9932 reflections |
b = 15.1897 (10) Å | θ = 2.7–26.7° |
c = 17.1823 (9) Å | µ = 0.09 mm−1 |
β = 99.176 (2)° | T = 170 K |
V = 1938.8 (2) Å3 | Block, colourless |
Z = 8 | 0.42 × 0.29 × 0.23 mm |
Bruker SMART APEX CCD area detector diffractometer | 4137 independent reflections |
Radiation source: sealed tube | 3530 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 8 pixels mm-1 | θmax = 26.8°, θmin = 2.4° |
ω and φ scans | h = −9→9 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −19→19 |
Tmin = 0.654, Tmax = 0.745 | l = −21→21 |
28954 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0464P)2 + 0.5292P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.105 | (Δ/σ)max = 0.001 |
S = 1.03 | Δρmax = 0.21 e Å−3 |
4137 reflections | Δρmin = −0.21 e Å−3 |
256 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0048 (7) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.08006 (14) | 0.18981 (6) | 0.05253 (6) | 0.0683 (3) | |
N1 | 0.46276 (16) | 0.13422 (7) | 0.35764 (7) | 0.0451 (3) | |
C1 | 0.16171 (16) | 0.24962 (8) | 0.17953 (8) | 0.0373 (3) | |
H1 | 0.142597 | 0.194447 | 0.202895 | 0.045* | |
C2 | 0.13519 (18) | 0.26100 (9) | 0.09871 (8) | 0.0446 (3) | |
C3 | 0.16163 (18) | 0.33907 (10) | 0.06189 (8) | 0.0468 (3) | |
H3 | 0.141755 | 0.343036 | 0.006001 | 0.056* | |
C4 | 0.21793 (17) | 0.41208 (9) | 0.10788 (7) | 0.0403 (3) | |
H4 | 0.236765 | 0.466889 | 0.083839 | 0.048* | |
C5 | 0.24625 (15) | 0.40411 (8) | 0.18899 (7) | 0.0314 (3) | |
C6 | 0.21782 (14) | 0.32325 (7) | 0.22468 (7) | 0.0296 (2) | |
C7 | 0.25771 (15) | 0.33531 (8) | 0.31024 (7) | 0.0308 (3) | |
C8 | 0.30813 (16) | 0.41860 (8) | 0.32741 (7) | 0.0343 (3) | |
C9 | 0.30565 (16) | 0.47028 (8) | 0.25250 (7) | 0.0356 (3) | |
H9A | 0.219788 | 0.519996 | 0.249653 | 0.043* | |
H9B | 0.426803 | 0.493474 | 0.248492 | 0.043* | |
C10 | 0.23961 (19) | 0.26298 (8) | 0.36817 (8) | 0.0410 (3) | |
H10A | 0.262345 | 0.287413 | 0.422263 | 0.049* | |
H10B | 0.114754 | 0.240222 | 0.358457 | 0.049* | |
C11 | 0.36465 (16) | 0.19013 (8) | 0.36265 (7) | 0.0340 (3) | |
C12 | 0.3611 (2) | 0.46070 (10) | 0.40633 (8) | 0.0503 (4) | |
H12A | 0.282934 | 0.511371 | 0.411000 | 0.075* | |
H12B | 0.486549 | 0.480414 | 0.411934 | 0.075* | |
H12C | 0.348725 | 0.417899 | 0.447807 | 0.075* | |
F2 | 0.92640 (14) | 0.55350 (6) | 0.40592 (5) | 0.0692 (3) | |
N2 | 0.52928 (17) | 0.59111 (8) | 0.10051 (8) | 0.0555 (3) | |
C13 | 0.83947 (16) | 0.48567 (8) | 0.28300 (7) | 0.0366 (3) | |
H13 | 0.857248 | 0.539097 | 0.256548 | 0.044* | |
C14 | 0.86929 (19) | 0.47951 (9) | 0.36423 (8) | 0.0450 (3) | |
C15 | 0.84553 (19) | 0.40399 (10) | 0.40560 (8) | 0.0465 (3) | |
H15 | 0.868240 | 0.403684 | 0.461595 | 0.056* | |
C16 | 0.78762 (17) | 0.32816 (9) | 0.36380 (7) | 0.0394 (3) | |
H16 | 0.769749 | 0.275137 | 0.390833 | 0.047* | |
C17 | 0.75646 (15) | 0.33098 (7) | 0.28246 (7) | 0.0310 (3) | |
C18 | 0.78197 (14) | 0.40920 (7) | 0.24219 (7) | 0.0292 (2) | |
C19 | 0.73809 (14) | 0.39234 (7) | 0.15742 (6) | 0.0280 (2) | |
C20 | 0.68786 (15) | 0.30797 (7) | 0.14500 (7) | 0.0302 (2) | |
C21 | 0.69555 (16) | 0.26085 (7) | 0.22262 (7) | 0.0328 (3) | |
H21A | 0.575673 | 0.237782 | 0.229008 | 0.039* | |
H21B | 0.782483 | 0.211482 | 0.227027 | 0.039* | |
C22 | 0.75293 (16) | 0.46131 (7) | 0.09589 (7) | 0.0336 (3) | |
H22A | 0.877380 | 0.484612 | 0.103829 | 0.040* | |
H22B | 0.729198 | 0.433713 | 0.043056 | 0.040* | |
C23 | 0.62711 (17) | 0.53441 (8) | 0.09855 (7) | 0.0370 (3) | |
C24 | 0.63087 (19) | 0.26147 (8) | 0.06865 (8) | 0.0416 (3) | |
H24A | 0.626613 | 0.303465 | 0.025088 | 0.062* | |
H24B | 0.511239 | 0.235723 | 0.068025 | 0.062* | |
H24C | 0.717319 | 0.214674 | 0.062657 | 0.062* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0791 (7) | 0.0627 (6) | 0.0581 (6) | 0.0011 (5) | −0.0044 (5) | −0.0283 (5) |
N1 | 0.0494 (6) | 0.0335 (6) | 0.0496 (7) | 0.0066 (5) | −0.0003 (5) | 0.0027 (5) |
C1 | 0.0356 (6) | 0.0331 (6) | 0.0431 (7) | 0.0031 (5) | 0.0060 (5) | −0.0015 (5) |
C2 | 0.0405 (7) | 0.0498 (8) | 0.0415 (7) | 0.0044 (6) | 0.0007 (5) | −0.0147 (6) |
C3 | 0.0435 (7) | 0.0669 (9) | 0.0291 (6) | 0.0092 (6) | 0.0035 (5) | 0.0015 (6) |
C4 | 0.0367 (6) | 0.0489 (7) | 0.0356 (6) | 0.0039 (5) | 0.0066 (5) | 0.0114 (5) |
C5 | 0.0265 (5) | 0.0343 (6) | 0.0335 (6) | 0.0033 (4) | 0.0055 (4) | 0.0064 (5) |
C6 | 0.0259 (5) | 0.0309 (6) | 0.0323 (6) | 0.0046 (4) | 0.0059 (4) | 0.0026 (4) |
C7 | 0.0315 (6) | 0.0314 (6) | 0.0306 (6) | 0.0080 (4) | 0.0078 (4) | 0.0047 (4) |
C8 | 0.0336 (6) | 0.0342 (6) | 0.0342 (6) | 0.0071 (5) | 0.0025 (5) | 0.0010 (5) |
C9 | 0.0348 (6) | 0.0300 (6) | 0.0410 (7) | 0.0001 (5) | 0.0034 (5) | 0.0050 (5) |
C10 | 0.0522 (8) | 0.0365 (7) | 0.0376 (7) | 0.0112 (6) | 0.0172 (6) | 0.0102 (5) |
C11 | 0.0418 (6) | 0.0298 (6) | 0.0284 (6) | −0.0004 (5) | −0.0001 (5) | 0.0046 (4) |
C12 | 0.0586 (9) | 0.0478 (8) | 0.0411 (7) | 0.0075 (7) | −0.0023 (6) | −0.0091 (6) |
F2 | 0.0937 (7) | 0.0482 (5) | 0.0558 (5) | 0.0070 (5) | −0.0178 (5) | −0.0238 (4) |
N2 | 0.0527 (7) | 0.0394 (6) | 0.0758 (9) | 0.0120 (6) | 0.0146 (6) | 0.0182 (6) |
C13 | 0.0369 (6) | 0.0294 (6) | 0.0410 (7) | 0.0045 (5) | −0.0011 (5) | −0.0025 (5) |
C14 | 0.0485 (8) | 0.0396 (7) | 0.0426 (7) | 0.0086 (6) | −0.0061 (6) | −0.0145 (6) |
C15 | 0.0524 (8) | 0.0559 (8) | 0.0294 (6) | 0.0127 (6) | 0.0012 (6) | −0.0034 (6) |
C16 | 0.0413 (7) | 0.0441 (7) | 0.0334 (6) | 0.0068 (5) | 0.0079 (5) | 0.0059 (5) |
C17 | 0.0291 (5) | 0.0316 (6) | 0.0330 (6) | 0.0046 (4) | 0.0067 (4) | 0.0021 (5) |
C18 | 0.0257 (5) | 0.0289 (6) | 0.0325 (6) | 0.0048 (4) | 0.0033 (4) | 0.0001 (4) |
C19 | 0.0267 (5) | 0.0268 (5) | 0.0305 (6) | 0.0035 (4) | 0.0051 (4) | 0.0015 (4) |
C20 | 0.0302 (5) | 0.0282 (6) | 0.0328 (6) | 0.0022 (4) | 0.0066 (4) | 0.0000 (4) |
C21 | 0.0356 (6) | 0.0273 (6) | 0.0363 (6) | −0.0003 (4) | 0.0083 (5) | 0.0032 (5) |
C22 | 0.0369 (6) | 0.0295 (6) | 0.0349 (6) | 0.0014 (5) | 0.0069 (5) | 0.0043 (5) |
C23 | 0.0374 (6) | 0.0312 (6) | 0.0416 (7) | −0.0018 (5) | 0.0040 (5) | 0.0100 (5) |
C24 | 0.0536 (8) | 0.0328 (6) | 0.0378 (7) | 0.0006 (5) | 0.0052 (6) | −0.0049 (5) |
F1—C2 | 1.3660 (15) | F2—C14 | 1.3648 (15) |
N1—C11 | 1.1375 (16) | N2—C23 | 1.1370 (17) |
C1—H1 | 0.9500 | C13—H13 | 0.9500 |
C1—C2 | 1.3820 (19) | C13—C14 | 1.3810 (18) |
C1—C6 | 1.3880 (17) | C13—C18 | 1.3898 (16) |
C2—C3 | 1.373 (2) | C14—C15 | 1.376 (2) |
C3—H3 | 0.9500 | C15—H15 | 0.9500 |
C3—C4 | 1.388 (2) | C15—C16 | 1.3903 (19) |
C4—H4 | 0.9500 | C16—H16 | 0.9500 |
C4—C5 | 1.3813 (17) | C16—C17 | 1.3804 (17) |
C5—C6 | 1.4044 (16) | C17—C18 | 1.4035 (16) |
C5—C9 | 1.4983 (17) | C17—C21 | 1.5006 (16) |
C6—C7 | 1.4643 (16) | C18—C19 | 1.4639 (15) |
C7—C8 | 1.3402 (17) | C19—C20 | 1.3434 (16) |
C7—C10 | 1.5032 (16) | C19—C22 | 1.5051 (15) |
C8—C9 | 1.5051 (16) | C20—C21 | 1.5065 (16) |
C8—C12 | 1.4947 (17) | C20—C24 | 1.4916 (17) |
C9—H9A | 0.9900 | C21—H21A | 0.9900 |
C9—H9B | 0.9900 | C21—H21B | 0.9900 |
C10—H10A | 0.9900 | C22—H22A | 0.9900 |
C10—H10B | 0.9900 | C22—H22B | 0.9900 |
C10—C11 | 1.4654 (17) | C22—C23 | 1.4646 (17) |
C12—H12A | 0.9800 | C24—H24A | 0.9800 |
C12—H12B | 0.9800 | C24—H24B | 0.9800 |
C12—H12C | 0.9800 | C24—H24C | 0.9800 |
C2—C1—H1 | 121.8 | C14—C13—H13 | 121.9 |
C2—C1—C6 | 116.30 (12) | C14—C13—C18 | 116.15 (12) |
C6—C1—H1 | 121.8 | C18—C13—H13 | 121.9 |
F1—C2—C1 | 117.80 (13) | F2—C14—C13 | 117.48 (13) |
F1—C2—C3 | 117.96 (12) | F2—C14—C15 | 118.12 (12) |
C3—C2—C1 | 124.24 (12) | C15—C14—C13 | 124.40 (12) |
C2—C3—H3 | 120.6 | C14—C15—H15 | 120.7 |
C2—C3—C4 | 118.76 (12) | C14—C15—C16 | 118.66 (12) |
C4—C3—H3 | 120.6 | C16—C15—H15 | 120.7 |
C3—C4—H4 | 120.4 | C15—C16—H16 | 120.5 |
C5—C4—C3 | 119.23 (12) | C17—C16—C15 | 119.08 (12) |
C5—C4—H4 | 120.4 | C17—C16—H16 | 120.5 |
C4—C5—C6 | 120.50 (12) | C16—C17—C18 | 120.72 (11) |
C4—C5—C9 | 131.01 (11) | C16—C17—C21 | 130.98 (11) |
C6—C5—C9 | 108.49 (10) | C18—C17—C21 | 108.30 (10) |
C1—C6—C5 | 120.97 (11) | C13—C18—C17 | 120.99 (11) |
C1—C6—C7 | 131.10 (11) | C13—C18—C19 | 130.62 (11) |
C5—C6—C7 | 107.93 (10) | C17—C18—C19 | 108.40 (10) |
C6—C7—C10 | 123.20 (11) | C18—C19—C22 | 123.15 (10) |
C8—C7—C6 | 110.16 (10) | C20—C19—C18 | 109.75 (10) |
C8—C7—C10 | 126.63 (11) | C20—C19—C22 | 127.09 (10) |
C7—C8—C9 | 109.85 (10) | C19—C20—C21 | 110.04 (10) |
C7—C8—C12 | 128.96 (12) | C19—C20—C24 | 128.72 (11) |
C12—C8—C9 | 121.19 (11) | C24—C20—C21 | 121.24 (10) |
C5—C9—C8 | 103.57 (9) | C17—C21—C20 | 103.51 (9) |
C5—C9—H9A | 111.0 | C17—C21—H21A | 111.1 |
C5—C9—H9B | 111.0 | C17—C21—H21B | 111.1 |
C8—C9—H9A | 111.0 | C20—C21—H21A | 111.1 |
C8—C9—H9B | 111.0 | C20—C21—H21B | 111.1 |
H9A—C9—H9B | 109.0 | H21A—C21—H21B | 109.0 |
C7—C10—H10A | 109.1 | C19—C22—H22A | 109.1 |
C7—C10—H10B | 109.1 | C19—C22—H22B | 109.1 |
H10A—C10—H10B | 107.8 | H22A—C22—H22B | 107.8 |
C11—C10—C7 | 112.47 (10) | C23—C22—C19 | 112.65 (10) |
C11—C10—H10A | 109.1 | C23—C22—H22A | 109.1 |
C11—C10—H10B | 109.1 | C23—C22—H22B | 109.1 |
N1—C11—C10 | 179.06 (14) | N2—C23—C22 | 179.90 (19) |
C8—C12—H12A | 109.5 | C20—C24—H24A | 109.5 |
C8—C12—H12B | 109.5 | C20—C24—H24B | 109.5 |
C8—C12—H12C | 109.5 | C20—C24—H24C | 109.5 |
H12A—C12—H12B | 109.5 | H24A—C24—H24B | 109.5 |
H12A—C12—H12C | 109.5 | H24A—C24—H24C | 109.5 |
H12B—C12—H12C | 109.5 | H24B—C24—H24C | 109.5 |
F1—C2—C3—C4 | −179.90 (11) | F2—C14—C15—C16 | −179.92 (12) |
C1—C2—C3—C4 | −0.3 (2) | C13—C14—C15—C16 | 0.0 (2) |
C1—C6—C7—C8 | 179.91 (12) | C13—C18—C19—C20 | −179.93 (12) |
C1—C6—C7—C10 | −1.04 (19) | C13—C18—C19—C22 | 1.14 (18) |
C2—C1—C6—C5 | −0.34 (17) | C14—C13—C18—C17 | 0.04 (17) |
C2—C1—C6—C7 | 179.76 (11) | C14—C13—C18—C19 | 179.88 (11) |
C2—C3—C4—C5 | 0.22 (19) | C14—C15—C16—C17 | 0.2 (2) |
C3—C4—C5—C6 | −0.25 (18) | C15—C16—C17—C18 | −0.24 (18) |
C3—C4—C5—C9 | −179.87 (12) | C15—C16—C17—C21 | 179.58 (12) |
C4—C5—C6—C1 | 0.32 (17) | C16—C17—C18—C13 | 0.13 (17) |
C4—C5—C6—C7 | −179.76 (10) | C16—C17—C18—C19 | −179.75 (10) |
C4—C5—C9—C8 | 179.75 (12) | C16—C17—C21—C20 | 179.62 (12) |
C5—C6—C7—C8 | 0.00 (13) | C17—C18—C19—C20 | −0.07 (13) |
C5—C6—C7—C10 | 179.05 (10) | C17—C18—C19—C22 | −179.00 (10) |
C6—C1—C2—F1 | 179.96 (11) | C18—C13—C14—F2 | 179.80 (11) |
C6—C1—C2—C3 | 0.3 (2) | C18—C13—C14—C15 | −0.1 (2) |
C6—C5—C9—C8 | 0.10 (12) | C18—C17—C21—C20 | −0.54 (12) |
C6—C7—C8—C9 | 0.06 (13) | C18—C19—C20—C21 | −0.29 (13) |
C6—C7—C8—C12 | 179.99 (12) | C18—C19—C20—C24 | 179.74 (11) |
C6—C7—C10—C11 | 64.09 (16) | C18—C19—C22—C23 | −64.72 (14) |
C7—C8—C9—C5 | −0.10 (13) | C19—C20—C21—C17 | 0.51 (12) |
C8—C7—C10—C11 | −117.02 (13) | C20—C19—C22—C23 | 116.54 (13) |
C9—C5—C6—C1 | −179.98 (10) | C21—C17—C18—C13 | −179.73 (10) |
C9—C5—C6—C7 | −0.06 (12) | C21—C17—C18—C19 | 0.40 (12) |
C10—C7—C8—C9 | −178.95 (11) | C22—C19—C20—C21 | 178.59 (11) |
C10—C7—C8—C12 | 1.0 (2) | C22—C19—C20—C24 | −1.4 (2) |
C12—C8—C9—C5 | 179.97 (11) | C24—C20—C21—C17 | −179.52 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
C10—H10B···N2i | 0.99 | 2.65 | 3.3978 (18) | 132 |
C22—H22A···N1ii | 0.99 | 2.61 | 3.4010 (16) | 137 |
C24—H24C···F2iii | 0.98 | 2.76 | 3.227 (2) | 110 |
C24—H24B···F2iii | 0.98 | 2.83 | 3.227 (2) | 105 |
Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) −x+3/2, y−1/2, −z+1/2. |
References
Biali, S. E. & Rappoport, Z. (1986). J. Org. Chem. 51, 964–970. CAS Google Scholar
Bonifaci, C., Ceccon, A., Gambaro, A., Ganis, P., Mantovani, L., Santi, S. & Venzo, A. (1994). J. Organomet. Chem. 475, 267–276. CAS Google Scholar
Boolbol, S. K. (1996). Cancer Res. 56, 2556–2560. CAS PubMed Google Scholar
Bräse, S., Rümper, J., Voigt, K., Albecq, S., Thurau, G., Villard, R., Waegell, B. & de Meijere, A. (1998). Eur. J. Org. Chem. 1998, 671–678. Google Scholar
Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dai, L. Y., Li, Q., He, D., Wang, X. Z. & Chen, Y. Q. (2009). J. Chem. Eng. Chin. Univ. 234, 673–678. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Enders, M., Fernández, P., Kaschke, M., Kohl, G., Ludwig, G., Pritzkow, H. & Rudolph, R. (2002). J. Organomet. Chem. 641, 81–89. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Halterman, R. L., Fahey, D. R., Bailly, E. F., Dockter, D. W., Stenzel, O., Shipman, J. L., Khan, M. A., Dechert, S. & Schumann, H. (2000). Organometallics, 19, 5464–5470. Web of Science CSD CrossRef CAS Google Scholar
Herrmann, W. A., Geisberger, M. R., Kühn, F. E., Artus, G. R. J. & Herdtweck, E. (1997). Z. Anorg. Allge Chem. 623, 1229–1236. CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Santi, S., Orian, L., Donoli, A., Durante, C., Bisello, A., Ganis, P., Ceccon, A., Crociani, L. & Benetollo, F. (2007). Organometallics, 26, 5867–5879. CAS Google Scholar
Shapiro, P. J., Kane, K. M., Vij, A., Stelck, D., Matare, G. J., Hubbard, R. L. & Caron, B. (1999). Organometallics, 18, 3468–3473. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stenzel, O., Esterhuysen, M. W. & Raubenheimer, H. G. (2001). Acta Cryst. C57, 1056–1059. CrossRef CAS IUCr Journals Google Scholar
Tsuno, T., Hoshino, H., Okuda, R. & Sugiyama, K. (2003). Private communication (CCDC 147456). CCDC, Cambridge, England. https://doi.org/10.5517/cc4yfn4. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xu, K., Li, B., Xu, S. S., Song, H. B. & Wang, B. Q. (2010). Private communication (CCDC 768455). CCDC, Cambridge, England. https://doi.org/10.5517/cctsmw2. Google Scholar
Xu, W. M., Li, W. M., Tao, L. Z., Zhang, P. F., Shen, H. Y. & Feng, D. X. (2020). CN Patent No. 111253294B. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.