research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the possible sulindac impurity 2-(5-fluoro-2-methyl-1H-inden-3-yl)aceto­nitrile

crossmark logo

aTechnique Center, Jinling Pharmaceutical Company Limited, 58 Xingang Road Qixia, district, Nanjing, Jiangsu 210046, People's Republic of China
*Correspondence e-mail: 2351897844@qq.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 12 January 2025; accepted 22 March 2025; online 27 March 2025)

The title compound,C12H10FN, was identified as a possible critical degradation impurity of sulindac, a therapeutic COX-2 inhibitor for rheumatoid arthritis. Single-crystal X-ray analysis revealed two conformationally slightly different mol­ecules in the asymmetric unit (Z′ = 2), each containing an indene ring system. In the crystal structure, [100] chains formed through C—H⋯N inter­actions are connected into a tri-periodic supra­molecular structure by further C—H⋯F and C—H⋯π inter­actions through P21/n symmetry operations.

1. Chemical context

Sulindac {systematic name [(Z)-2-methyl-1-[(4-methyl­sulf­in­yl­phen­yl)methyl­ene]-5-fluoro-1H-inden-3-acetic acid]} is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits selective cyclo­oxygenase-2 (COX-2) inhibitory activity, effectively suppressing COX-2 overexpression through competitive inhibition. It is applied for clinical management of rheumatoid arthritis and degenerative joint disorders (Boolbol, 1996[Boolbol, S. K. (1996). Cancer Res. 56, 2556-2560.]).

While impurity profiling represents a critical component of pharmaceutical development, the present investigation focuses on the characterization of a key process-related impurity compound in sulindac synthesis, namely 2-(5-fluoro-2-methyl-1H-inden-3-yl)aceto­nitrile (1). Based on single-crystal X-ray diffraction analysis, we have now unambiguously determined its configuration, representing novel structural data in pharmaceutical crystallography and report the results here.

[Scheme 1]

2. Structural commentary

The asymmetric unit of (1) comprises two mol­ecules and is illustrated in Fig. 1[link]a; an overlay plot of the two mol­ecules (one of which is inverted relative to the other) is shown in Fig. 1[link]b. The root-mean-square-deviation between the two mol­ecules is only 0.009 Å, with dmax of 0.020 Å between N1 and N2. The angles C7—C10—C11 and C19—C22—C23 are 112.47 (10) and 112.65 (10)°, respectively (Fig. 2[link]a), and the torsion angles between the cyanide group and its corresponding indene ring plane is 64.09 (16) and 64.72 (14)° in the two independent mol­ecules (Fig. 2[link]b). The bond lengths in the two mol­ecules are all within normal range.

[Figure 1]
Figure 1
(a) The asymmetric unit of (1) with displacement ellipsoids drawn at the 50% probability level; (b) overlay plot of the two independent mol­ecules.
[Figure 2]
Figure 2
(a) The angle between the cyanide group and adjacent atoms in each of the two independent mol­ecules; (b) the cyanide group and its dihedral angle with the corresponding indene ring plane in each of the two independent mol­ecules.

3. Supra­molecular features

As shown in Fig. 3[link], the methyl­ene groups (C10, C22) attached to the —C≡N moiety act as hydrogen-bond donors to the cyanide N atoms (N2, N1) of adjacent mol­ecules. These inter­actions (Table 1[link]) link the mol­ecules into an infinite supra­molecular chain extending parallel to [100]. Other inter­actions shown in Fig. 3[link] include C—H⋯F inter­actions (Table 1[link]) as well as C—H⋯π inter­actions [C22–H22Aπ (2.780 Å) and C12—H12Bπ (2.958 Å)], which connect the mol­ecules into a tri-periodic supra­molecular structure. A packing plot of (1) is shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯N2i 0.99 2.65 3.3978 (18) 132
C22—H22A⋯N1ii 0.99 2.61 3.4010 (16) 137
C24—H24C⋯F2iii 0.98 2.76 3.227 (2) 110
C24—H24B⋯F2iii 0.98 2.83 3.227 (2) 105
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 3]
Figure 3
Inter­molecular inter­actions (C—H⋯N, C—H⋯F and C—H⋯π) between adjacent mol­ecules shown as red dashed lines. Color codes: C (gray), N (blue), F(green) and H (white).
[Figure 4]
Figure 4
Packing plot of (1) approximately along [100]. C—H⋯N and C—H⋯F inter­actions are shown as red dotted lines.

4. Database survey

A search of the Cambridge Structural Database (CSD, version 2024.1.0; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) was conducted using the keyword methyl­indene, which retrieved eleven relevant entries: BANNUA (Tsuno et al., 2003[Tsuno, T., Hoshino, H., Okuda, R. & Sugiyama, K. (2003). Private communication (CCDC 147456). CCDC, Cambridge, England. https://doi.org/10.5517/cc4yfn4.]), CIRMIA (Santi et al., 2007[Santi, S., Orian, L., Donoli, A., Durante, C., Bisello, A., Ganis, P., Ceccon, A., Crociani, L. & Benetollo, F. (2007). Organometallics, 26, 5867-5879.]), DOBVIZ (Biali & Rappoport, 1986[Biali, S. E. & Rappoport, Z. (1986). J. Org. Chem. 51, 964-970.]), FUNPAG (Xu et al., 2010[Xu, K., Li, B., Xu, S. S., Song, H. B. & Wang, B. Q. (2010). Private communication (CCDC 768455). CCDC, Cambridge, England. https://doi.org/10.5517/cctsmw2.]), HEXRAD (Bonifaci et al., 1994[Bonifaci, C., Ceccon, A., Gambaro, A., Ganis, P., Mantovani, L., Santi, S. & Venzo, A. (1994). J. Organomet. Chem. 475, 267-276.]), ICEXOD (Halterman et al., 2000[Halterman, R. L., Fahey, D. R., Bailly, E. F., Dockter, D. W., Stenzel, O., Shipman, J. L., Khan, M. A., Dechert, S. & Schumann, H. (2000). Organometallics, 19, 5464-5470.]), SUZYER (Stenzel et al., 2001[Stenzel, O., Esterhuysen, M. W. & Raubenheimer, H. G. (2001). Acta Cryst. C57, 1056-1059.]), MIJKIZ (Enders et al., 2002[Enders, M., Fernández, P., Kaschke, M., Kohl, G., Ludwig, G., Pritzkow, H. & Rudolph, R. (2002). J. Organomet. Chem. 641, 81-89.]), NOYTOK (Brase et al., 1998[Bräse, S., Rümper, J., Voigt, K., Albecq, S., Thurau, G., Villard, R., Waegell, B. & de Meijere, A. (1998). Eur. J. Org. Chem. 1998, 671-678.]), XAWFEG (Shapiro et al., 1999[Shapiro, P. J., Kane, K. M., Vij, A., Stelck, D., Matare, G. J., Hubbard, R. L. & Caron, B. (1999). Organometallics, 18, 3468-3473.]), and RESZEU (Herrmann et al., 1997[Herrmann, W. A., Geisberger, M. R., Kühn, F. E., Artus, G. R. J. & Herdtweck, E. (1997). Z. Anorg. Allge Chem. 623, 1229-1236.]). The primary distinction among these compounds lies in the substitution patterns of the methyl group on the indene ring. Notably, an indene derivative bearing both fluorine and cyano substituents has been obtained and reported exclusively in the present work. This comparative analysis underscores the structural novelty of the title compound, particularly its unique combination of hydrogen-bonding patterns (C—H⋯N and C—H⋯F).

5. Synthesis and crystallization

Compound (1) was prepared according to a literature method (Xu et al., 2020[Xu, W. M., Li, W. M., Tao, L. Z., Zhang, P. F., Shen, H. Y. & Feng, D. X. (2020). CN Patent No. 111253294B.]; Dai et al., 2009[Dai, L. Y., Li, Q., He, D., Wang, X. Z. & Chen, Y. Q. (2009). J. Chem. Eng. Chin. Univ. 234, 673-678.]). The preparation procedure is schematically shown in Fig. 5[link]. A 100 ml round-bottomed flask equipped with a magnetic stirring bar was charged with a mixture of 6-fluoro-2-methyl-2,3-di­hydro-1H-inden-1-one, (2), (20.35 g, 124 mmol), cyano­acetic acid (13.65 g, 160.4 mmol), acetic acid (7.8 g, 129.9 mmol) and ammonium acetate (3.1 g, 40.2 mmol) in toluene (50 ml). The mixture was refluxed for 24 h and then cooled to room temperature. The solvent was removed in vacuo, and the residue (3) was dissolved in ethanol without further purification. The resulting solution was added to a potassium hydroxide solution (165 g, 25%wt, w/w, 735.2 mmol) and heated to reflux for 13 h. Then, the ethanol was removed in vacuo, followed by the addition of 300 ml of water. The pH value was adjusted to 8 using concentrated hydro­chloric acid, and the mixture was then extracted with di­chloro­methane (150 ml). The aqueous layer was collected and further adjusted to a pH value of 2 with concentrated hydro­chloric acid, resulting in the precipitation of a significant amount of a yellow solid of (1). The solid was then filtered off, washed with water, and dried in air. Yield: 17.25 g, 85.2%. 1H NMR spectrum (Varian Unity Inova 500 MHz, DMSO-d6, ppm): δ: 7.38 (dd, 1H, J1 = 5.55 Hz, J2 = 7.85 Hz), 7.23 (dd, 1H, J1 = 2.2 Hz, J2 = 9.5 Hz), 6.94 (m, 1H), 3.87 (s, 2H), 3.35 (s, 2H), 2.13 (s, 3H). Single crystals were obtained by slow evaporation of a saturated solution of (1) in a di­chloro­methane–ethanol mixture (4:1, v/v) at room temperature over 20 d.

[Figure 5]
Figure 5
Synthesis scheme of the title compound (1).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Hydrogen atoms attached to carbon atoms were placed in calculated positions and constrained with AFIX instructions.

Table 2
Experimental details

Crystal data
Chemical formula C12H10FN
Mr 187.21
Crystal system, space group Monoclinic, P21/n
Temperature (K) 170
a, b, c (Å) 7.5248 (5), 15.1897 (10), 17.1823 (9)
β (°) 99.176 (2)
V3) 1938.8 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.42 × 0.29 × 0.23
 
Data collection
Diffractometer Bruker SMART APEX CCD area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.654, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 28954, 4137, 3530
Rint 0.031
(sin θ/λ)max−1) 0.634
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.105, 1.03
No. of reflections 4137
No. of parameters 256
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.21
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

7. Authorship contribution statement

The submitted manuscript includes contributions from eight authors. Yun-Deng Wu conceptualized and designed the research framework, conducted comprehensive data analysis, and drafted the manuscript. Yun-Deng Wu, Hui Wan, Yun Xia and Jie Ni performed the synthesis, isolation, purification, and characterization of the title compound. Jian Li, Hui Zhang, Xiangyang Xu and Jun Xie contributed to the single-crystal cultivation and associated experimental evaluations. All co-authors participated in the critical revision and final approval of the manuscript for publication.

Supporting information


Computing details top

2-(5-Fluoro-2-methyl-1H-inden-3-yl)acetonitrile top
Crystal data top
C12H10FNF(000) = 784
Mr = 187.21Dx = 1.283 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.5248 (5) ÅCell parameters from 9932 reflections
b = 15.1897 (10) Åθ = 2.7–26.7°
c = 17.1823 (9) ŵ = 0.09 mm1
β = 99.176 (2)°T = 170 K
V = 1938.8 (2) Å3Block, colourless
Z = 80.42 × 0.29 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area detector
diffractometer
4137 independent reflections
Radiation source: sealed tube3530 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 8 pixels mm-1θmax = 26.8°, θmin = 2.4°
ω and φ scansh = 99
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1919
Tmin = 0.654, Tmax = 0.745l = 2121
28954 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0464P)2 + 0.5292P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.105(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.21 e Å3
4137 reflectionsΔρmin = 0.21 e Å3
256 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0048 (7)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.08006 (14)0.18981 (6)0.05253 (6)0.0683 (3)
N10.46276 (16)0.13422 (7)0.35764 (7)0.0451 (3)
C10.16171 (16)0.24962 (8)0.17953 (8)0.0373 (3)
H10.1425970.1944470.2028950.045*
C20.13519 (18)0.26100 (9)0.09871 (8)0.0446 (3)
C30.16163 (18)0.33907 (10)0.06189 (8)0.0468 (3)
H30.1417550.3430360.0060010.056*
C40.21793 (17)0.41208 (9)0.10788 (7)0.0403 (3)
H40.2367650.4668890.0838390.048*
C50.24625 (15)0.40411 (8)0.18899 (7)0.0314 (3)
C60.21782 (14)0.32325 (7)0.22468 (7)0.0296 (2)
C70.25771 (15)0.33531 (8)0.31024 (7)0.0308 (3)
C80.30813 (16)0.41860 (8)0.32741 (7)0.0343 (3)
C90.30565 (16)0.47028 (8)0.25250 (7)0.0356 (3)
H9A0.2197880.5199960.2496530.043*
H9B0.4268030.4934740.2484920.043*
C100.23961 (19)0.26298 (8)0.36817 (8)0.0410 (3)
H10A0.2623450.2874130.4222630.049*
H10B0.1147540.2402220.3584570.049*
C110.36465 (16)0.19013 (8)0.36265 (7)0.0340 (3)
C120.3611 (2)0.46070 (10)0.40633 (8)0.0503 (4)
H12A0.2829340.5113710.4110000.075*
H12B0.4865490.4804140.4119340.075*
H12C0.3487250.4178990.4478070.075*
F20.92640 (14)0.55350 (6)0.40592 (5)0.0692 (3)
N20.52928 (17)0.59111 (8)0.10051 (8)0.0555 (3)
C130.83947 (16)0.48567 (8)0.28300 (7)0.0366 (3)
H130.8572480.5390970.2565480.044*
C140.86929 (19)0.47951 (9)0.36423 (8)0.0450 (3)
C150.84553 (19)0.40399 (10)0.40560 (8)0.0465 (3)
H150.8682400.4036840.4615950.056*
C160.78762 (17)0.32816 (9)0.36380 (7)0.0394 (3)
H160.7697490.2751370.3908330.047*
C170.75646 (15)0.33098 (7)0.28246 (7)0.0310 (3)
C180.78197 (14)0.40920 (7)0.24219 (7)0.0292 (2)
C190.73809 (14)0.39234 (7)0.15742 (6)0.0280 (2)
C200.68786 (15)0.30797 (7)0.14500 (7)0.0302 (2)
C210.69555 (16)0.26085 (7)0.22262 (7)0.0328 (3)
H21A0.5756730.2377820.2290080.039*
H21B0.7824830.2114820.2270270.039*
C220.75293 (16)0.46131 (7)0.09589 (7)0.0336 (3)
H22A0.8773800.4846120.1038290.040*
H22B0.7291980.4337130.0430560.040*
C230.62711 (17)0.53441 (8)0.09855 (7)0.0370 (3)
C240.63087 (19)0.26147 (8)0.06865 (8)0.0416 (3)
H24A0.6266130.3034650.0250880.062*
H24B0.5112390.2357230.0680250.062*
H24C0.7173190.2146740.0626570.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0791 (7)0.0627 (6)0.0581 (6)0.0011 (5)0.0044 (5)0.0283 (5)
N10.0494 (6)0.0335 (6)0.0496 (7)0.0066 (5)0.0003 (5)0.0027 (5)
C10.0356 (6)0.0331 (6)0.0431 (7)0.0031 (5)0.0060 (5)0.0015 (5)
C20.0405 (7)0.0498 (8)0.0415 (7)0.0044 (6)0.0007 (5)0.0147 (6)
C30.0435 (7)0.0669 (9)0.0291 (6)0.0092 (6)0.0035 (5)0.0015 (6)
C40.0367 (6)0.0489 (7)0.0356 (6)0.0039 (5)0.0066 (5)0.0114 (5)
C50.0265 (5)0.0343 (6)0.0335 (6)0.0033 (4)0.0055 (4)0.0064 (5)
C60.0259 (5)0.0309 (6)0.0323 (6)0.0046 (4)0.0059 (4)0.0026 (4)
C70.0315 (6)0.0314 (6)0.0306 (6)0.0080 (4)0.0078 (4)0.0047 (4)
C80.0336 (6)0.0342 (6)0.0342 (6)0.0071 (5)0.0025 (5)0.0010 (5)
C90.0348 (6)0.0300 (6)0.0410 (7)0.0001 (5)0.0034 (5)0.0050 (5)
C100.0522 (8)0.0365 (7)0.0376 (7)0.0112 (6)0.0172 (6)0.0102 (5)
C110.0418 (6)0.0298 (6)0.0284 (6)0.0004 (5)0.0001 (5)0.0046 (4)
C120.0586 (9)0.0478 (8)0.0411 (7)0.0075 (7)0.0023 (6)0.0091 (6)
F20.0937 (7)0.0482 (5)0.0558 (5)0.0070 (5)0.0178 (5)0.0238 (4)
N20.0527 (7)0.0394 (6)0.0758 (9)0.0120 (6)0.0146 (6)0.0182 (6)
C130.0369 (6)0.0294 (6)0.0410 (7)0.0045 (5)0.0011 (5)0.0025 (5)
C140.0485 (8)0.0396 (7)0.0426 (7)0.0086 (6)0.0061 (6)0.0145 (6)
C150.0524 (8)0.0559 (8)0.0294 (6)0.0127 (6)0.0012 (6)0.0034 (6)
C160.0413 (7)0.0441 (7)0.0334 (6)0.0068 (5)0.0079 (5)0.0059 (5)
C170.0291 (5)0.0316 (6)0.0330 (6)0.0046 (4)0.0067 (4)0.0021 (5)
C180.0257 (5)0.0289 (6)0.0325 (6)0.0048 (4)0.0033 (4)0.0001 (4)
C190.0267 (5)0.0268 (5)0.0305 (6)0.0035 (4)0.0051 (4)0.0015 (4)
C200.0302 (5)0.0282 (6)0.0328 (6)0.0022 (4)0.0066 (4)0.0000 (4)
C210.0356 (6)0.0273 (6)0.0363 (6)0.0003 (4)0.0083 (5)0.0032 (5)
C220.0369 (6)0.0295 (6)0.0349 (6)0.0014 (5)0.0069 (5)0.0043 (5)
C230.0374 (6)0.0312 (6)0.0416 (7)0.0018 (5)0.0040 (5)0.0100 (5)
C240.0536 (8)0.0328 (6)0.0378 (7)0.0006 (5)0.0052 (6)0.0049 (5)
Geometric parameters (Å, º) top
F1—C21.3660 (15)F2—C141.3648 (15)
N1—C111.1375 (16)N2—C231.1370 (17)
C1—H10.9500C13—H130.9500
C1—C21.3820 (19)C13—C141.3810 (18)
C1—C61.3880 (17)C13—C181.3898 (16)
C2—C31.373 (2)C14—C151.376 (2)
C3—H30.9500C15—H150.9500
C3—C41.388 (2)C15—C161.3903 (19)
C4—H40.9500C16—H160.9500
C4—C51.3813 (17)C16—C171.3804 (17)
C5—C61.4044 (16)C17—C181.4035 (16)
C5—C91.4983 (17)C17—C211.5006 (16)
C6—C71.4643 (16)C18—C191.4639 (15)
C7—C81.3402 (17)C19—C201.3434 (16)
C7—C101.5032 (16)C19—C221.5051 (15)
C8—C91.5051 (16)C20—C211.5065 (16)
C8—C121.4947 (17)C20—C241.4916 (17)
C9—H9A0.9900C21—H21A0.9900
C9—H9B0.9900C21—H21B0.9900
C10—H10A0.9900C22—H22A0.9900
C10—H10B0.9900C22—H22B0.9900
C10—C111.4654 (17)C22—C231.4646 (17)
C12—H12A0.9800C24—H24A0.9800
C12—H12B0.9800C24—H24B0.9800
C12—H12C0.9800C24—H24C0.9800
C2—C1—H1121.8C14—C13—H13121.9
C2—C1—C6116.30 (12)C14—C13—C18116.15 (12)
C6—C1—H1121.8C18—C13—H13121.9
F1—C2—C1117.80 (13)F2—C14—C13117.48 (13)
F1—C2—C3117.96 (12)F2—C14—C15118.12 (12)
C3—C2—C1124.24 (12)C15—C14—C13124.40 (12)
C2—C3—H3120.6C14—C15—H15120.7
C2—C3—C4118.76 (12)C14—C15—C16118.66 (12)
C4—C3—H3120.6C16—C15—H15120.7
C3—C4—H4120.4C15—C16—H16120.5
C5—C4—C3119.23 (12)C17—C16—C15119.08 (12)
C5—C4—H4120.4C17—C16—H16120.5
C4—C5—C6120.50 (12)C16—C17—C18120.72 (11)
C4—C5—C9131.01 (11)C16—C17—C21130.98 (11)
C6—C5—C9108.49 (10)C18—C17—C21108.30 (10)
C1—C6—C5120.97 (11)C13—C18—C17120.99 (11)
C1—C6—C7131.10 (11)C13—C18—C19130.62 (11)
C5—C6—C7107.93 (10)C17—C18—C19108.40 (10)
C6—C7—C10123.20 (11)C18—C19—C22123.15 (10)
C8—C7—C6110.16 (10)C20—C19—C18109.75 (10)
C8—C7—C10126.63 (11)C20—C19—C22127.09 (10)
C7—C8—C9109.85 (10)C19—C20—C21110.04 (10)
C7—C8—C12128.96 (12)C19—C20—C24128.72 (11)
C12—C8—C9121.19 (11)C24—C20—C21121.24 (10)
C5—C9—C8103.57 (9)C17—C21—C20103.51 (9)
C5—C9—H9A111.0C17—C21—H21A111.1
C5—C9—H9B111.0C17—C21—H21B111.1
C8—C9—H9A111.0C20—C21—H21A111.1
C8—C9—H9B111.0C20—C21—H21B111.1
H9A—C9—H9B109.0H21A—C21—H21B109.0
C7—C10—H10A109.1C19—C22—H22A109.1
C7—C10—H10B109.1C19—C22—H22B109.1
H10A—C10—H10B107.8H22A—C22—H22B107.8
C11—C10—C7112.47 (10)C23—C22—C19112.65 (10)
C11—C10—H10A109.1C23—C22—H22A109.1
C11—C10—H10B109.1C23—C22—H22B109.1
N1—C11—C10179.06 (14)N2—C23—C22179.90 (19)
C8—C12—H12A109.5C20—C24—H24A109.5
C8—C12—H12B109.5C20—C24—H24B109.5
C8—C12—H12C109.5C20—C24—H24C109.5
H12A—C12—H12B109.5H24A—C24—H24B109.5
H12A—C12—H12C109.5H24A—C24—H24C109.5
H12B—C12—H12C109.5H24B—C24—H24C109.5
F1—C2—C3—C4179.90 (11)F2—C14—C15—C16179.92 (12)
C1—C2—C3—C40.3 (2)C13—C14—C15—C160.0 (2)
C1—C6—C7—C8179.91 (12)C13—C18—C19—C20179.93 (12)
C1—C6—C7—C101.04 (19)C13—C18—C19—C221.14 (18)
C2—C1—C6—C50.34 (17)C14—C13—C18—C170.04 (17)
C2—C1—C6—C7179.76 (11)C14—C13—C18—C19179.88 (11)
C2—C3—C4—C50.22 (19)C14—C15—C16—C170.2 (2)
C3—C4—C5—C60.25 (18)C15—C16—C17—C180.24 (18)
C3—C4—C5—C9179.87 (12)C15—C16—C17—C21179.58 (12)
C4—C5—C6—C10.32 (17)C16—C17—C18—C130.13 (17)
C4—C5—C6—C7179.76 (10)C16—C17—C18—C19179.75 (10)
C4—C5—C9—C8179.75 (12)C16—C17—C21—C20179.62 (12)
C5—C6—C7—C80.00 (13)C17—C18—C19—C200.07 (13)
C5—C6—C7—C10179.05 (10)C17—C18—C19—C22179.00 (10)
C6—C1—C2—F1179.96 (11)C18—C13—C14—F2179.80 (11)
C6—C1—C2—C30.3 (2)C18—C13—C14—C150.1 (2)
C6—C5—C9—C80.10 (12)C18—C17—C21—C200.54 (12)
C6—C7—C8—C90.06 (13)C18—C19—C20—C210.29 (13)
C6—C7—C8—C12179.99 (12)C18—C19—C20—C24179.74 (11)
C6—C7—C10—C1164.09 (16)C18—C19—C22—C2364.72 (14)
C7—C8—C9—C50.10 (13)C19—C20—C21—C170.51 (12)
C8—C7—C10—C11117.02 (13)C20—C19—C22—C23116.54 (13)
C9—C5—C6—C1179.98 (10)C21—C17—C18—C13179.73 (10)
C9—C5—C6—C70.06 (12)C21—C17—C18—C190.40 (12)
C10—C7—C8—C9178.95 (11)C22—C19—C20—C21178.59 (11)
C10—C7—C8—C121.0 (2)C22—C19—C20—C241.4 (2)
C12—C8—C9—C5179.97 (11)C24—C20—C21—C17179.52 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···N2i0.992.653.3978 (18)132
C22—H22A···N1ii0.992.613.4010 (16)137
C24—H24C···F2iii0.982.763.227 (2)110
C24—H24B···F2iii0.982.833.227 (2)105
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x+3/2, y1/2, z+1/2.
 

References

First citationBiali, S. E. & Rappoport, Z. (1986). J. Org. Chem. 51, 964–970.  CAS Google Scholar
First citationBonifaci, C., Ceccon, A., Gambaro, A., Ganis, P., Mantovani, L., Santi, S. & Venzo, A. (1994). J. Organomet. Chem. 475, 267–276.  CAS Google Scholar
First citationBoolbol, S. K. (1996). Cancer Res. 56, 2556–2560.  CAS PubMed Google Scholar
First citationBräse, S., Rümper, J., Voigt, K., Albecq, S., Thurau, G., Villard, R., Waegell, B. & de Meijere, A. (1998). Eur. J. Org. Chem. 1998, 671–678.  Google Scholar
First citationBruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDai, L. Y., Li, Q., He, D., Wang, X. Z. & Chen, Y. Q. (2009). J. Chem. Eng. Chin. Univ. 234, 673–678.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEnders, M., Fernández, P., Kaschke, M., Kohl, G., Ludwig, G., Pritzkow, H. & Rudolph, R. (2002). J. Organomet. Chem. 641, 81–89.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHalterman, R. L., Fahey, D. R., Bailly, E. F., Dockter, D. W., Stenzel, O., Shipman, J. L., Khan, M. A., Dechert, S. & Schumann, H. (2000). Organometallics, 19, 5464–5470.  Web of Science CSD CrossRef CAS Google Scholar
First citationHerrmann, W. A., Geisberger, M. R., Kühn, F. E., Artus, G. R. J. & Herdtweck, E. (1997). Z. Anorg. Allge Chem. 623, 1229–1236.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSanti, S., Orian, L., Donoli, A., Durante, C., Bisello, A., Ganis, P., Ceccon, A., Crociani, L. & Benetollo, F. (2007). Organometallics, 26, 5867–5879.  CAS Google Scholar
First citationShapiro, P. J., Kane, K. M., Vij, A., Stelck, D., Matare, G. J., Hubbard, R. L. & Caron, B. (1999). Organometallics, 18, 3468–3473.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStenzel, O., Esterhuysen, M. W. & Raubenheimer, H. G. (2001). Acta Cryst. C57, 1056–1059.  CrossRef CAS IUCr Journals Google Scholar
First citationTsuno, T., Hoshino, H., Okuda, R. & Sugiyama, K. (2003). Private communication (CCDC 147456). CCDC, Cambridge, England. https://doi.org/10.5517/cc4yfn4.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXu, K., Li, B., Xu, S. S., Song, H. B. & Wang, B. Q. (2010). Private communication (CCDC 768455). CCDC, Cambridge, England. https://doi.org/10.5517/cctsmw2.  Google Scholar
First citationXu, W. M., Li, W. M., Tao, L. Z., Zhang, P. F., Shen, H. Y. & Feng, D. X. (2020). CN Patent No. 111253294B.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds