

research communications
H-benzo[4,5]thiazolo[3,2-a]pyridine-4-carboxamide
of 1-amino-3-(4-chlorophenyl)-2-cyano-3aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de
In the structure of the title compound, C19H13ClN4OS, the four atoms of the pyridinic ring that are not fused with the thiazole, including the sp3 C atom, lie significantly outside the benzothiazole plane. A short intramolecular S⋯O contact of 2.5992 (4) Å is observed. The amide NH2 group is planar, whereas the amine NH2 group is pyramidalized. The three-dimensional packing involves two interconnected layer structures. The first, parallel to the bc plane, involves three classical hydrogen bonds N—Hamine⋯O (one of two), N—Hamine⋯Cl and one N—Hamide ⋯Ncyano; the second, parallel to the ab plane, involves two hydrogen bonds, N—Hamide⋯O and the second N—Hamine⋯O, together with the short and linear contact Ncyano⋯Cl—C, which may be regarded as a halogen bond.
Keywords: benzothiazole; hydrogen bonds; halogen bonds; crystal structure.
CCDC reference: 2425470
1. Chemical context
Benzothiazole and its fused-ring derivatives are among the most important et al., 2020). Fused benzothiazoles have a variety of established pharmacological qualities that are useful in the search for new and important therapeutic medications (Wang et al., 2009
). Benzothiazoles display noteworthy biological actions, including antibacterial (Kashyap et al., 2023
), antiviral (Ke et al., 2013
) and anticancer (Irfan et al., 2020
) effects, and are thus significant compounds for drug development (Rana et al., 2008
); for some ongoing studies and associated discoveries, see Abdallah et al., 2023a
,b
. The use of medications derived from benzothiazole derivatives has been extensively developed in clinical practice to treat a range of illnesses with great therapeutic efficacy (Huang et al., 2009
).
We are interested in developing syntheses for the production of heterocycles based on benzothiazoles (and other heterocycles) that may find application in medicine (Mohamed-Ezzat et al. 2024); in this respect, we have reported the biological activity of a range of 2-pyrimidyl- and 2-pyridyl benzothiazole compounds with promising cytotoxic action (Azzam et al., 2020a
,b
, 2022a
,b
).
As an extension of these results and our earlier studies (Metwally et al., 2022a,b
), the goal of the current study was to design and produce benzothiazopyridines. The title compound 2, a substituted benzo[4,5]thiazolo[3,2-a]pyridine-4-carboxamide, was synthesized in good yield by reacting 2-(1,3-benzothiazol-2-yl)-3-(4-chlorophenyl)prop-2-enamide 1 with malononitrile in refluxing ethanol containing catalytic amounts of piperidine for 5 h (Fig. 1
). We postulate that the reaction proceeds via the formation of Michael intermediate adducts. Compound 2 was previously synthesized by us using the reaction of 1,3-benzothiazole-2-acetamide with 4-chlorobenzylidenemalononitrile (Fathy & Elgemeie, 1988
). The of 2 was determined to establish its structure unambiguously.
![]() | Figure 1 The synthesis of compound 2 (Pip. = piperidine). |
2. Structural commentary
The structure of compound 2 is shown in Fig. 2, with selected molecular dimensions in Table 1
. Bond lengths and angles may be considered normal, e.g. the wide formally sp2 external angles of ca. 125° at the junctions of five- and six-membered rings, and the bond lengths and angles around the sp3 atom C3. In the tricyclic ring system, the nine atoms C5–N13 are approximately coplanar (r.m.s. deviation = 0.04 Å); atoms C1, C2, C3 and C4 lie outside this plane by −0.474 (1), −0.234 (1), 0.492 (1) and 0.188 (1) Å, respectively. In the pyridinic ring, the atoms N13, C1, C2 and C3 are coplanar (r.m.s. deviation = 0.004 Å), with C4 and C5 lying outside this plane by 0.711 (1) and 0.556 (1) Å, respectively. The torsion angle C4—C5—N13—C1 differs markedly from zero, which may be associated with steric pressure imposed by the substituents at C1 and C4; however, N13, with its three at least formally single N—C bonds (cf. bond lengths in Table 1
), may not be extensively involved in the aromatic system and thus would not necessarily impose planarity on the sequence C4—C5—N13—C1. The chlorophenyl ring is approximately perpendicular to the grouping C5–N13 [interplanar angle = 81.60 (1)°]; this is made clear by the side-on view of the molecule in Fig. 3
. The geometry of the nitrogen atom N3 of the amide NH2 group is essentially planar (angle sum = 359.5°), whereas that at the amine nitrogen N1 is pyramidalized (angle sum = 342.9°) and at N13 slightly pyramidalized (358.1°). There is a short intramolecular contact S6⋯O1 of 2.5992 (4) Å that determines the orientation of the amide group, being associated with a geometry in the atom sequence S6—C5—C4—C14—O1.
|
![]() | Figure 2 The molecule of compound 2 in the crystal. Ellipsoids represent 50% probability levels. |
![]() | Figure 3 Side-on view of molecule 2. |
3. Supramolecular features
The molecular packing is dominated by four classical hydrogen bonds from the hydrogen atoms of the NH2 groups (Table 2), together with the short contact N2⋯Cl1(1 + x, −1 + y, z) of 3.1296 (5) Å. The angle C24—Cl1⋯N2′ is 177.86 (2)°, and the linearity indicates that the interaction is probably to be regarded as a halogen bond (see e.g. Metrangelo et al., 2008
).
|
The packing is three-dimensional, but can be analysed as two interconnected layer structures. The first, parallel to the bc plane, involves the hydrogen bonds from H01, H02 and H04 (Fig. 4). Ribbons parallel to the c axis are prominent, and these are crosslinked parallel to the b axis by the interactions H02⋯Cl1. The second and more complex (thicker) layer is parallel to the ab plane and involves the hydrogen bonds from H01 and H03 together with the N⋯Cl halogen bonds (Fig. 5
). Ribbons of molecules parallel to [1
0] (horizontal in Fig. 5
) are prominent; these are linked by the contacts H03⋯O1, which are however difficult to recognize in Fig. 5
because the inversion-symmetric hydrogen-bond systems are viewed approximately edge-on (they are clearer on the right-hand edge of Fig. 5
).
![]() | Figure 4 Packing diagram of compound 2 viewed perpendicular to the bc plane. Hydrogen bonds are indicated by thick dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. |
![]() | Figure 5 Packing diagram of compound 2 viewed perpendicular to the ab plane. Hydrogen bonds are indicated by thick and halogen bonds by thin dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity. |
We incorporated three different contacts in both Figs. 4 and 5
. A referee has correctly pointed out that this comes at the cost of some loss of clarity, and that a much more striking motif comes from the two hydrogen bonds H04⋯N2 and H03⋯O1. The ribbon thus generated is shown in Fig. 6
; it runs parallel to [10
]. Neighbouring ribbons are related by the vector [111] (amongst others) and the ribbons thus lie in planes parallel to (1
1).
![]() | Figure 6 Packing diagram of compound 2 showing a ribbon generated by the hydrogen bonds H04⋯N2 and H03⋯N1 (indicated by dashed lines). The view direction is perpendicular to (1 |
4. Database survey
The search employed the routine ConQuest (Bruno et al., 2002), part of Version 5.46 of the Cambridge Database (Groom et al., 2016
). Only one structure containing the same tricyclic ring system as that in 2 was found, namely benzyl 4-benzoyl-1-methyl-3-phenyl-3H-benzo[4,5]thiazolo-[3,2-a]pyridine-2-carboxylate 3 (Chauhan & Kumara Swamy, 2024
; refcode GOYRAR). This structure involves two independent molecules, which are however closely similar to each other except for ring orientations of the substituents (Fig. 7
; r.m.s. deviation of fitted atoms = 0.029 Å). A similar fit of one molecule of 3 to the molecule of 2 (Fig. 8
) gave an r.m.s deviation of 0.118 Å. There are significant differences between the pyridinic rings C1/C2/C3/C4/C5/N13, e.g. the bond length C1—N13, which is 1.3970 (6) / 1.420 (3) / 1.420 (3) Å for 2 and the two molecules in the structure of 3, in that order, and the ring torsion angles (starting with the bond C5—N13 and moving clockwise, these are −20/−28/−26, 26/28/29, 1/9/5, −30/−43/−37, 36/43/39 and −23/−11/−11, rounded to the nearest degree, for 2 and the two molecules of 3, in that order).
![]() | Figure 7 Least-squares fit of the two molecules of 3 (Chauhan & Kumara Swamy, 2024 ![]() |
![]() | Figure 8 Least-squares fit of 2 (full bonds, purple) to one molecule of 3 (dashed bonds, green). The fitted atoms are labelled. |
Similar, but not identical, ring systems were reported in the structures of 2-(1-amino-2-cyano-3-oxo-3H-pyrido[2,1-b][1,3]benzothiazol-4-yl)-2,3,3-trimethylcyclopropane-1,1-dicarbonitrile methanol solvate (ROPSOH, Rémond et al., 2019) and 1-amino-2-(1,3-benzothiazol-2-yl)-3H-pyrido[2,1-b][1,3]benzothiazol-3-iminium chloride methanol solvate (REZVUQ; Chen et al., 2018
), both of which have exocyclic double bonds at the atom corresponding to C3 of 2; and also tetramethyl 4aH-pyrido[2,1-b][1,3]benzothiazole-2,3,4,4a-tetracarboxylate and tetramethyl 1H-pyrido[2,1-b][1,3]benzothiazole-1,2,3,4-tetracarboxylate (VIZPIH and VIZPON; Li et al., 2023
) and 5-imino-2,2-dimethyl-1-methylidene-1,2-dihydro-5H-furo[3′,2′:3,4]pyrido[2,1-b][1,3]benzothiazole-4-carbonitrile (ROPQAR; Rémond et al., 2019
), in which the atoms corresponding to C5 in 2 bear an additional substituent and the double bond positions correspond to C1—C2 and C3—C4 of 2.
5. Synthesis and crystallization
Equimolar amounts of 2-(1,3-benzothiazol-2-yl)-3-(4-chlorophenyl) prop-2-enamide (1) (3.15 g, 1 mmol) and malononitrile (0.66 g, 1 mmol) were placed in a reaction flask and dissolved in 50 mL dry EtOH. A few drops of piperidine were added and the reaction mixture was heated to reflux for 5 h with stirring. After completing the reaction, the mixture was cooled to room temperature; the solid thus formed was filtered off and dried under vacuum. The product (2) was recrystallized from DMF and dried at room temperature.
Pale-yellow crystals, yield 80%, m.p. 578–580 K. IR (KBr): ν (cm−1) 3423, 3394 (NH2), 3156 (CH aromatic), 2184 (CN), 1644 (C=O); 1H-NMR (400 MHz, DMSO-d6): δ = 4.85 (s, 1H, pyridine-H), 6.43 (s, 2H, NH2), 7.16–7.29 (m, 6H, Ar-H, NH2), 7.36 (d, 2H, J = 8.4 Hz, Ar-H), 7.63 (d, 1H, J = 7.52 Hz, Ar-H), 7.74 (d, 1H, J = 8.24 Hz, Ar-H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 19.02, 56.53, 56.19, 99.53, 116.84, 120.91, 122.77, 124.61, 126.17, 127.88, 129.45, 136.29, 146.93, 148.43, 152.01, 152.03, 167.47 ppm. Analysis calculated for C19H13ClN4OS (380.05): C 59.92, H 3.44, N 14.71, S 8.42. Found: C 60.09, H 2.92, N 14.90, S 8.24%.
6. Refinement
Crystal data, data collection and structure . The hydrogen atoms of the NH2 groups were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.2 × Ueq of the parent carbon atoms.
|
The program checkCIF reported a problem with badly-fitting reflections at the level ALERT B: ‘Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers. . 2’. In our experience, this is not unusual for organic structures measured to high diffraction angles. Omitting the five worst reflections in fact led (after an appropriate change of the weighting scheme) to a slight increase in wR2, so they were retained.
Supporting information
CCDC reference: 2425470
https://doi.org/10.1107/S2056989025001562/yz2064sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025001562/yz2064Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025001562/yz2064Isup3.cml
C19H13ClN4OS | Z = 2 |
Mr = 380.84 | F(000) = 392 |
Triclinic, P1 | Dx = 1.511 Mg m−3 |
a = 9.12784 (17) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.29662 (17) Å | Cell parameters from 73214 reflections |
c = 10.85172 (19) Å | θ = 2.3–45.1° |
α = 83.0139 (14)° | µ = 0.37 mm−1 |
β = 73.4998 (16)° | T = 100 K |
γ = 71.4982 (16)° | Block, pale yellow |
V = 836.80 (3) Å3 | 0.15 × 0.15 × 0.12 mm |
XtaLAB Synergy diffractometer | 13768 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source | 11364 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.041 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 45.0°, θmin = 2.3° |
ω scans | h = −18→18 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −18→18 |
Tmin = 0.953, Tmax = 1.000 | l = −21→21 |
138480 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0873P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
13768 reflections | Δρmax = 0.79 e Å−3 |
251 parameters | Δρmin = −0.43 e Å−3 |
0 restraints |
x | y | z | Uiso*/Ueq | ||
C1 | 0.62863 (5) | 0.18304 (5) | 0.26384 (4) | 0.00979 (6) | |
C2 | 0.55764 (5) | 0.15435 (5) | 0.17797 (4) | 0.00975 (6) | |
C3 | 0.38005 (5) | 0.17027 (5) | 0.21294 (4) | 0.00936 (6) | |
H3 | 0.366407 | 0.090592 | 0.166731 | 0.011* | |
C4 | 0.32786 (5) | 0.13443 (5) | 0.35529 (4) | 0.00979 (6) | |
C5 | 0.39633 (5) | 0.17806 (5) | 0.43467 (4) | 0.00967 (6) | |
S6 | 0.33319 (2) | 0.18032 (2) | 0.60235 (2) | 0.01162 (2) | |
C7 | 0.48320 (6) | 0.25861 (5) | 0.60550 (4) | 0.01302 (7) | |
C8 | 0.50543 (8) | 0.30447 (7) | 0.71456 (5) | 0.01844 (9) | |
H8 | 0.440305 | 0.289424 | 0.797584 | 0.022* | |
C9 | 0.62517 (9) | 0.37289 (7) | 0.69938 (6) | 0.02188 (10) | |
H9 | 0.643736 | 0.403125 | 0.772723 | 0.026* | |
C10 | 0.71786 (8) | 0.39714 (7) | 0.57686 (6) | 0.02012 (9) | |
H10 | 0.797670 | 0.445775 | 0.567855 | 0.024* | |
C11 | 0.69604 (7) | 0.35157 (6) | 0.46715 (5) | 0.01556 (8) | |
H11 | 0.758821 | 0.369660 | 0.383928 | 0.019* | |
C12 | 0.57950 (6) | 0.27875 (5) | 0.48314 (4) | 0.01175 (6) | |
N13 | 0.53378 (5) | 0.22529 (5) | 0.38728 (4) | 0.01024 (5) | |
C14 | 0.19973 (5) | 0.06575 (5) | 0.41360 (4) | 0.01091 (6) | |
C15 | 0.65300 (5) | 0.10088 (5) | 0.05570 (4) | 0.01129 (6) | |
C21 | 0.27580 (5) | 0.32411 (5) | 0.17334 (4) | 0.01002 (6) | |
C22 | 0.12148 (6) | 0.38940 (6) | 0.24858 (5) | 0.01569 (8) | |
H22 | 0.082993 | 0.340524 | 0.327728 | 0.019* | |
C23 | 0.02267 (6) | 0.52478 (6) | 0.21005 (5) | 0.01809 (9) | |
H23 | −0.082033 | 0.568194 | 0.262528 | 0.022* | |
C24 | 0.07886 (6) | 0.59555 (6) | 0.09417 (5) | 0.01406 (7) | |
C25 | 0.23230 (6) | 0.53403 (6) | 0.01705 (5) | 0.01415 (7) | |
H25 | 0.270135 | 0.583256 | −0.062092 | 0.017* | |
C26 | 0.32980 (6) | 0.39891 (5) | 0.05771 (4) | 0.01231 (7) | |
H26 | 0.435145 | 0.356780 | 0.005776 | 0.015* | |
N1 | 0.78675 (5) | 0.17302 (5) | 0.23985 (4) | 0.01353 (6) | |
H01 | 0.8258 (14) | 0.1355 (13) | 0.3026 (11) | 0.023 (3)* | |
H02 | 0.8437 (16) | 0.1369 (14) | 0.1610 (12) | 0.034 (3)* | |
N2 | 0.72660 (6) | 0.05978 (6) | −0.04687 (4) | 0.01580 (7) | |
N3 | 0.13807 (5) | 0.01158 (6) | 0.33732 (4) | 0.01399 (6) | |
H03 | 0.0645 (15) | −0.0260 (14) | 0.3758 (12) | 0.031 (3)* | |
H04 | 0.1759 (15) | 0.0036 (14) | 0.2581 (12) | 0.029 (3)* | |
Cl1 | −0.04686 (2) | 0.76356 (2) | 0.04690 (2) | 0.01904 (3) | |
O1 | 0.14777 (5) | 0.06089 (5) | 0.53392 (3) | 0.01460 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.00992 (14) | 0.01110 (14) | 0.00817 (13) | −0.00344 (11) | −0.00189 (11) | 0.00008 (11) |
C2 | 0.00965 (13) | 0.01188 (14) | 0.00725 (13) | −0.00326 (11) | −0.00126 (10) | −0.00066 (11) |
C3 | 0.00985 (13) | 0.01111 (14) | 0.00723 (13) | −0.00380 (11) | −0.00155 (10) | −0.00048 (10) |
C4 | 0.01045 (14) | 0.01187 (14) | 0.00733 (13) | −0.00455 (11) | −0.00160 (11) | 0.00026 (11) |
C5 | 0.01058 (14) | 0.01073 (14) | 0.00727 (13) | −0.00326 (11) | −0.00151 (10) | −0.00036 (10) |
S6 | 0.01369 (5) | 0.01322 (4) | 0.00677 (4) | −0.00345 (3) | −0.00127 (3) | −0.00071 (3) |
C7 | 0.01710 (18) | 0.01301 (15) | 0.00945 (14) | −0.00394 (13) | −0.00428 (13) | −0.00177 (12) |
C8 | 0.0267 (2) | 0.0196 (2) | 0.01145 (17) | −0.00738 (18) | −0.00704 (16) | −0.00321 (15) |
C9 | 0.0317 (3) | 0.0220 (2) | 0.0178 (2) | −0.0100 (2) | −0.0117 (2) | −0.00437 (17) |
C10 | 0.0265 (3) | 0.0193 (2) | 0.0211 (2) | −0.01052 (19) | −0.01112 (19) | −0.00304 (17) |
C11 | 0.01864 (19) | 0.01591 (18) | 0.01571 (18) | −0.00815 (15) | −0.00618 (15) | −0.00159 (14) |
C12 | 0.01476 (16) | 0.01154 (14) | 0.01035 (14) | −0.00424 (12) | −0.00459 (12) | −0.00149 (11) |
N13 | 0.01129 (13) | 0.01244 (13) | 0.00781 (12) | −0.00481 (10) | −0.00186 (10) | −0.00145 (10) |
C14 | 0.01048 (14) | 0.01328 (15) | 0.00875 (14) | −0.00461 (12) | −0.00140 (11) | 0.00065 (11) |
C15 | 0.01112 (15) | 0.01340 (15) | 0.00857 (14) | −0.00324 (12) | −0.00156 (11) | −0.00097 (11) |
C21 | 0.01000 (14) | 0.01172 (14) | 0.00826 (13) | −0.00336 (11) | −0.00222 (11) | −0.00002 (11) |
C22 | 0.01240 (16) | 0.01564 (17) | 0.01317 (17) | −0.00125 (13) | 0.00101 (13) | 0.00295 (14) |
C23 | 0.01289 (17) | 0.01701 (19) | 0.01685 (19) | 0.00025 (14) | 0.00087 (14) | 0.00324 (15) |
C24 | 0.01290 (16) | 0.01323 (16) | 0.01366 (17) | −0.00141 (13) | −0.00331 (13) | 0.00137 (13) |
C25 | 0.01363 (16) | 0.01496 (17) | 0.01114 (15) | −0.00240 (13) | −0.00235 (13) | 0.00258 (13) |
C26 | 0.01138 (15) | 0.01422 (16) | 0.00922 (14) | −0.00260 (12) | −0.00144 (12) | 0.00120 (12) |
N1 | 0.00978 (13) | 0.01948 (17) | 0.01153 (14) | −0.00498 (12) | −0.00243 (11) | −0.00033 (12) |
N2 | 0.01548 (16) | 0.02044 (18) | 0.00983 (14) | −0.00432 (13) | −0.00068 (12) | −0.00344 (12) |
N3 | 0.01429 (15) | 0.02009 (17) | 0.01006 (13) | −0.01010 (13) | −0.00136 (11) | −0.00046 (12) |
Cl1 | 0.01564 (5) | 0.01623 (5) | 0.01936 (5) | 0.00067 (4) | −0.00360 (4) | 0.00431 (4) |
O1 | 0.01479 (14) | 0.02202 (16) | 0.00799 (12) | −0.00936 (12) | −0.00088 (10) | 0.00136 (11) |
C1—N1 | 1.3663 (6) | C11—C12 | 1.3941 (7) |
C1—C2 | 1.3684 (6) | C11—H11 | 0.9500 |
C1—N13 | 1.3970 (6) | C12—N13 | 1.4168 (6) |
C2—C15 | 1.4125 (6) | C14—O1 | 1.2567 (6) |
C2—C3 | 1.5184 (6) | C14—N3 | 1.3422 (6) |
C3—C4 | 1.5105 (6) | C15—N2 | 1.1627 (6) |
C3—C21 | 1.5345 (6) | C21—C22 | 1.3942 (7) |
C3—H3 | 1.0000 | C21—C26 | 1.3982 (6) |
C4—C5 | 1.3597 (6) | C22—C23 | 1.3922 (7) |
C4—C14 | 1.4599 (6) | C22—H22 | 0.9500 |
C5—N13 | 1.3998 (6) | C23—C24 | 1.3870 (7) |
C5—S6 | 1.7464 (4) | C23—H23 | 0.9500 |
S6—C7 | 1.7523 (5) | C24—C25 | 1.3897 (7) |
C7—C8 | 1.3921 (7) | C24—Cl1 | 1.7382 (5) |
C7—C12 | 1.3971 (7) | C25—C26 | 1.3940 (7) |
C8—C9 | 1.3928 (9) | C25—H25 | 0.9500 |
C8—H8 | 0.9500 | C26—H26 | 0.9500 |
C9—C10 | 1.3941 (10) | N1—H01 | 0.845 (11) |
C9—H9 | 0.9500 | N1—H02 | 0.906 (13) |
C10—C11 | 1.3955 (7) | N3—H03 | 0.837 (13) |
C10—H10 | 0.9500 | N3—H04 | 0.834 (12) |
N1—C1—C2 | 125.51 (4) | C11—C12—C7 | 120.44 (4) |
N1—C1—N13 | 116.24 (4) | C11—C12—N13 | 128.37 (4) |
C2—C1—N13 | 118.25 (4) | C7—C12—N13 | 111.08 (4) |
C1—C2—C15 | 119.32 (4) | C1—N13—C5 | 117.93 (4) |
C1—C2—C3 | 121.78 (4) | C1—N13—C12 | 126.47 (4) |
C15—C2—C3 | 118.82 (4) | C5—N13—C12 | 113.70 (4) |
C4—C3—C2 | 107.98 (3) | O1—C14—N3 | 121.44 (4) |
C4—C3—C21 | 112.20 (3) | O1—C14—C4 | 119.33 (4) |
C2—C3—C21 | 114.45 (4) | N3—C14—C4 | 119.22 (4) |
C4—C3—H3 | 107.3 | N2—C15—C2 | 177.40 (5) |
C2—C3—H3 | 107.3 | C22—C21—C26 | 118.16 (4) |
C21—C3—H3 | 107.3 | C22—C21—C3 | 120.83 (4) |
C5—C4—C14 | 117.99 (4) | C26—C21—C3 | 120.93 (4) |
C5—C4—C3 | 118.16 (4) | C23—C22—C21 | 121.32 (5) |
C14—C4—C3 | 123.69 (4) | C23—C22—H22 | 119.3 |
C4—C5—N13 | 121.84 (4) | C21—C22—H22 | 119.3 |
C4—C5—S6 | 126.72 (3) | C24—C23—C22 | 119.23 (5) |
N13—C5—S6 | 111.43 (3) | C24—C23—H23 | 120.4 |
C5—S6—C7 | 90.51 (2) | C22—C23—H23 | 120.4 |
C8—C7—C12 | 121.12 (5) | C23—C24—C25 | 120.98 (5) |
C8—C7—S6 | 125.87 (4) | C23—C24—Cl1 | 118.59 (4) |
C12—C7—S6 | 112.95 (3) | C25—C24—Cl1 | 120.43 (4) |
C7—C8—C9 | 118.59 (5) | C24—C25—C26 | 118.92 (4) |
C7—C8—H8 | 120.7 | C24—C25—H25 | 120.5 |
C9—C8—H8 | 120.7 | C26—C25—H25 | 120.5 |
C8—C9—C10 | 120.19 (5) | C25—C26—C21 | 121.38 (4) |
C8—C9—H9 | 119.9 | C25—C26—H26 | 119.3 |
C10—C9—H9 | 119.9 | C21—C26—H26 | 119.3 |
C9—C10—C11 | 121.48 (5) | C1—N1—H01 | 113.3 (8) |
C9—C10—H10 | 119.3 | C1—N1—H02 | 112.1 (8) |
C11—C10—H10 | 119.3 | H01—N1—H02 | 117.5 (11) |
C12—C11—C10 | 118.12 (5) | C14—N3—H03 | 115.2 (9) |
C12—C11—H11 | 120.9 | C14—N3—H04 | 124.2 (9) |
C10—C11—H11 | 120.9 | H03—N3—H04 | 120.1 (12) |
N1—C1—C2—C15 | 4.07 (7) | N1—C1—N13—C5 | −153.81 (4) |
N13—C1—C2—C15 | −175.46 (4) | C2—C1—N13—C5 | 25.76 (6) |
N1—C1—C2—C3 | −179.29 (4) | N1—C1—N13—C12 | 9.45 (7) |
N13—C1—C2—C3 | 1.19 (6) | C2—C1—N13—C12 | −170.98 (4) |
C1—C2—C3—C4 | −30.53 (6) | C4—C5—N13—C1 | −19.82 (6) |
C15—C2—C3—C4 | 146.13 (4) | S6—C5—N13—C1 | 159.01 (3) |
C1—C2—C3—C21 | 95.20 (5) | C4—C5—N13—C12 | 174.83 (4) |
C15—C2—C3—C21 | −88.14 (5) | S6—C5—N13—C12 | −6.34 (5) |
C2—C3—C4—C5 | 35.97 (5) | C11—C12—N13—C1 | 25.29 (8) |
C21—C3—C4—C5 | −91.07 (5) | C7—C12—N13—C1 | −158.51 (4) |
C2—C3—C4—C14 | −148.76 (4) | C11—C12—N13—C5 | −170.85 (5) |
C21—C3—C4—C14 | 84.19 (5) | C7—C12—N13—C5 | 5.35 (6) |
C14—C4—C5—N13 | 171.04 (4) | C5—C4—C14—O1 | 6.00 (7) |
C3—C4—C5—N13 | −13.42 (6) | C3—C4—C14—O1 | −169.28 (4) |
C14—C4—C5—S6 | −7.60 (6) | C5—C4—C14—N3 | −175.18 (4) |
C3—C4—C5—S6 | 167.94 (3) | C3—C4—C14—N3 | 9.55 (7) |
C4—C5—S6—C7 | −176.96 (4) | C4—C3—C21—C22 | −22.43 (6) |
N13—C5—S6—C7 | 4.28 (4) | C2—C3—C21—C22 | −145.92 (5) |
C5—S6—C7—C8 | 175.90 (5) | C4—C3—C21—C26 | 160.82 (4) |
C5—S6—C7—C12 | −1.30 (4) | C2—C3—C21—C26 | 37.33 (6) |
C12—C7—C8—C9 | 0.71 (8) | C26—C21—C22—C23 | 0.40 (8) |
S6—C7—C8—C9 | −176.28 (5) | C3—C21—C22—C23 | −176.43 (5) |
C7—C8—C9—C10 | 1.29 (10) | C21—C22—C23—C24 | 0.31 (9) |
C8—C9—C10—C11 | −1.26 (10) | C22—C23—C24—C25 | −0.61 (9) |
C9—C10—C11—C12 | −0.79 (9) | C22—C23—C24—Cl1 | 179.40 (5) |
C10—C11—C12—C7 | 2.78 (8) | C23—C24—C25—C26 | 0.19 (8) |
C10—C11—C12—N13 | 178.66 (5) | Cl1—C24—C25—C26 | −179.82 (4) |
C8—C7—C12—C11 | −2.79 (8) | C24—C25—C26—C21 | 0.55 (8) |
S6—C7—C12—C11 | 174.56 (4) | C22—C21—C26—C25 | −0.84 (7) |
C8—C7—C12—N13 | −179.33 (5) | C3—C21—C26—C25 | 176.00 (4) |
S6—C7—C12—N13 | −1.99 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H01···O1i | 0.845 (11) | 2.391 (11) | 3.1341 (6) | 147.2 (10) |
N1—H02···Cl1ii | 0.906 (13) | 2.755 (13) | 3.4516 (5) | 134.6 (10) |
N3—H03···O1iii | 0.837 (13) | 2.016 (13) | 2.8336 (6) | 165.3 (12) |
N3—H04···N2iv | 0.834 (12) | 2.287 (13) | 3.1109 (6) | 169.9 (12) |
C23—H23···S6v | 0.95 | 2.90 | 3.7631 (6) | 152 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z; (iii) −x, −y, −z+1; (iv) −x+1, −y, −z; (v) −x, −y+1, −z+1. |
Acknowledgements
The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.
References
Abdallah, A. E. M., Abdel-Latif, S. A. & Elgemeie, G. H. (2023b). ACS Omega, 8, 19587–19602. Web of Science CrossRef CAS PubMed Google Scholar
Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441–445. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762. Web of Science CrossRef PubMed Google Scholar
Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022a). Antibiotics, 11, 1799 (doi: 10.3390/antibiotics11121799). Web of Science CrossRef Google Scholar
Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372. Web of Science CSD CrossRef IUCr Journals Google Scholar
Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020a). J. Mol. Struct. 1201, 127194. Web of Science CSD CrossRef Google Scholar
Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Chauhan, S. & Kumara Swamy, K. C. (2024). J. Org. Chem. 89, 10816–10830. Web of Science CSD CrossRef CAS PubMed Google Scholar
Chen, Y., Zhang, W., Zhao, Z., Cai, Y., Gong, J., Kwok, R. T. K., Lam, J. W. Y., Sung, H. H. Y., Williams, I. D. & Tang, B. Z. (2018). Angew. Chem. Int. Ed. 57, 5011–5015. Web of Science CrossRef CAS Google Scholar
Fathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189–196. CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767. Web of Science CrossRef PubMed CAS Google Scholar
Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S., Nocentini, A., Alissa, S. & Supuran, C. (2020). J. Enzyme Inhib. Med. Chem. 35, 265–279. Web of Science CrossRef CAS PubMed Google Scholar
Kashyap, P., Verma, S., Gupta, P., Narang, R., Lal, S. & Devgun, M. (2023). Med. Chem. Res. 32, 1543–1573. Web of Science CrossRef CAS Google Scholar
Ke, S., Wei, Y., Yang, Z., Wang, K., Liang, Y. & Shi, L. (2013). Bioorg. Med. Chem. Lett. 23, 5131–5134. Web of Science CrossRef CAS PubMed Google Scholar
Li, X., Li, W., Liu, X., Zhang, M., Yu, E. Y., Law, A. W. K., Ou, X., Zhang, J., Sung, H. H. Y., Tan, X., Sun, J., Lam, J. W. Y., Guo, Z. & Tang, B. Z. (2023). J. Am. Chem. Soc. 145, 26645–26656. Web of Science CSD CrossRef CAS PubMed Google Scholar
Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127. Web of Science CrossRef CAS Google Scholar
Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022a). Egypt. J. Chem. 65(2), 679–686. Google Scholar
Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022b). Acta Cryst. E78, 445–448. Web of Science CSD CrossRef IUCr Journals Google Scholar
Mohamed-Ezzat, R. A., Omar, M. A., Temirak, A., Abdelsamie, A. S., Abdel-Aziz, M. M., Galal, S. A., Elgemeie, G. H., Diwani, H. I. E., Flanagan, K. J. & Senge, M. O. (2024). J. Mol. Struct. 1311, 138415. Google Scholar
Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122. Web of Science CrossRef PubMed CAS Google Scholar
Rémond, M., Zheng, Z., Jeanneau, E., Andraud, C., Bretonnière, Y. & Redon, S. (2019). J. Org. Chem. 84, 9965–9974. Web of Science PubMed Google Scholar
Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.79a. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180. Web of Science CrossRef PubMed CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.