research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-amino-3-(4-chloro­phen­yl)-2-cyano-3H-benzo[4,5]thia­zolo[3,2-a]pyridine-4-carboxamide

crossmark logo

aChemistry Department, Faculty of Science, Cairo University, Giza, Egypt, bChemistry Department, Faculty of Science, Helwan University, Cairo, Egypt, and cInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, D-38106 Braunschweig, Germany
*Correspondence e-mail: p.jones@tu-braunschweig.de

Edited by C. Schulzke, Universität Greifswald, Germany (Received 27 January 2025; accepted 20 February 2025; online 4 March 2025)

In the structure of the title compound, C19H13ClN4OS, the four atoms of the pyridinic ring that are not fused with the thia­zole, including the sp3 C atom, lie significantly outside the benzo­thia­zole plane. A short intra­molecular S⋯O contact of 2.5992 (4) Å is observed. The amide NH2 group is planar, whereas the amine NH2 group is pyramidalized. The three-dimensional packing involves two inter­connected layer structures. The first, parallel to the bc plane, involves three classical hydrogen bonds N—Hamine⋯O (one of two), N—Hamine⋯Cl and one N—Hamide ⋯Ncyano; the second, parallel to the ab plane, involves two hydrogen bonds, N—Hamide⋯O and the second N—Hamine⋯O, together with the short and linear contact Ncyano⋯Cl—C, which may be regarded as a halogen bond.

1. Chemical context

Benzo­thia­zole and its fused-ring derivatives are among the most important heterocyclic compounds used in medicinal chemistry and are essential constituents of many medicines and natural heterocyclic compounds (Ammazzalorso et al., 2020[Ammazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.]). Fused benzo­thia­zoles have a variety of established pharmacological qualities that are useful in the search for new and important therapeutic medications (Wang et al., 2009[Wang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170-180.]). Benzo­thia­zoles display noteworthy biological actions, including anti­bacterial (Kashyap et al., 2023[Kashyap, P., Verma, S., Gupta, P., Narang, R., Lal, S. & Devgun, M. (2023). Med. Chem. Res. 32, 1543-1573.]), anti­viral (Ke et al., 2013[Ke, S., Wei, Y., Yang, Z., Wang, K., Liang, Y. & Shi, L. (2013). Bioorg. Med. Chem. Lett. 23, 5131-5134.]) and anti­cancer (Irfan et al., 2020[Irfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S., Nocentini, A., Alissa, S. & Supuran, C. (2020). J. Enzyme Inhib. Med. Chem. 35, 265-279.]) effects, and are thus significant compounds for drug development (Rana et al., 2008[Rana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114-1122.]); for some ongoing studies and associated discoveries, see Abdallah et al., 2023a[Abdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441-445.],b[Abdallah, A. E. M., Abdel-Latif, S. A. & Elgemeie, G. H. (2023b). ACS Omega, 8, 19587-19602.]. The use of medications derived from benzo­thia­zole derivatives has been extensively developed in clinical practice to treat a range of illnesses with great thera­peutic efficacy (Huang et al., 2009[Huang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757-6767.]).

We are inter­ested in developing syntheses for the production of heterocycles based on benzo­thia­zoles (and other heterocycles) that may find application in medicine (Mohamed-Ezzat et al. 2024[Mohamed-Ezzat, R. A., Omar, M. A., Temirak, A., Abdelsamie, A. S., Abdel-Aziz, M. M., Galal, S. A., Elgemeie, G. H., Diwani, H. I. E., Flanagan, K. J. & Senge, M. O. (2024). J. Mol. Struct. 1311, 138415.]); in this respect, we have reported the biological activity of a range of 2-pyrimidyl- and 2-pyridyl benzo­thia­zole compounds with promising cytotoxic action (Azzam et al., 2020a[Azzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020a). J. Mol. Struct. 1201, 127194.],b[Azzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182-26194.], 2022a[Azzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022a). Antibiotics, 11, 1799 (doi: 10.3390/antibiotics11121799).],b[Azzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369-372.]).

As an extension of these results and our earlier studies (Metwally et al., 2022a[Metwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022a). Egypt. J. Chem. 65(2), 679-686.],b[Metwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022b). Acta Cryst. E78, 445-448.]), the goal of the current study was to design and produce benzo­thiazo­pyridines. The title compound 2, a substituted benzo[4,5]thia­zolo[3,2-a]pyridine-4-carboxamide, was synthesized in good yield by reacting 2-(1,3-benzo­thia­zol-2-yl)-3-(4-chloro­phen­yl)prop-2-enamide 1 with malono­nitrile in refluxing ethanol containing catalytic amounts of piperidine for 5 h (Fig. 1[link]). We postulate that the reaction proceeds via the formation of Michael inter­mediate adducts. Compound 2 was previously synthesized by us using the reaction of 1,3-benzo­thia­zole-2-acetamide with 4-chloro­benzyl­idenemalono­nitrile (Fathy & Elgemeie, 1988[Fathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189-196.]). The crystal structure of 2 was determined to establish its structure unambiguously.

[Scheme 1]
[Figure 1]
Figure 1
The synthesis of compound 2 (Pip. = piperidine).

2. Structural commentary

The structure of compound 2 is shown in Fig. 2[link], with selected mol­ecular dimensions in Table 1[link]. Bond lengths and angles may be considered normal, e.g. the wide formally sp2 external angles of ca. 125° at the junctions of five- and six-membered rings, and the bond lengths and angles around the sp3 atom C3. In the tricyclic ring system, the nine atoms C5–N13 are approximately coplanar (r.m.s. deviation = 0.04 Å); atoms C1, C2, C3 and C4 lie outside this plane by −0.474 (1), −0.234 (1), 0.492 (1) and 0.188 (1) Å, respectively. In the pyridinic ring, the atoms N13, C1, C2 and C3 are coplanar (r.m.s. deviation = 0.004 Å), with C4 and C5 lying outside this plane by 0.711 (1) and 0.556 (1) Å, respectively. The torsion angle C4—C5—N13—C1 differs markedly from zero, which may be associated with steric pressure imposed by the substituents at C1 and C4; however, N13, with its three at least formally single N—C bonds (cf. bond lengths in Table 1[link]), may not be extensively involved in the aromatic system and thus would not necessarily impose planarity on the sequence C4—C5—N13—C1. The chloro­phenyl ring is approximately perpendicular to the grouping C5–N13 [inter­planar angle = 81.60 (1)°]; this is made clear by the side-on view of the mol­ecule in Fig. 3[link]. The geometry of the nitro­gen atom N3 of the amide NH2 group is essentially planar (angle sum = 359.5°), whereas that at the amine nitro­gen N1 is pyramidalized (angle sum = 342.9°) and at N13 slightly pyramidalized (358.1°). There is a short intra­molecular contact S6⋯O1 of 2.5992 (4) Å that determines the orientation of the amide group, being associated with a synperiplanar geometry in the atom sequence S6—C5—C4—C14—O1.

Table 1
Selected geometric parameters (Å, °)

C1—N1 1.3663 (6) C5—N13 1.3998 (6)
C1—C2 1.3684 (6) C5—S6 1.7464 (4)
C1—N13 1.3970 (6) S6—C7 1.7523 (5)
C2—C15 1.4125 (6) C12—N13 1.4168 (6)
C2—C3 1.5184 (6) C14—O1 1.2567 (6)
C3—C4 1.5105 (6) C14—N3 1.3422 (6)
C4—C5 1.3597 (6) C15—N2 1.1627 (6)
       
C4—C5—S6 126.72 (3) C1—N13—C5 117.93 (4)
C5—S6—C7 90.51 (2) C1—N13—C12 126.47 (4)
C8—C7—S6 125.87 (4) C5—N13—C12 113.70 (4)
C11—C12—N13 128.37 (4)    
       
N13—C1—C2—C3 1.19 (6) C14—C4—C5—S6 −7.60 (6)
C1—C2—C3—C4 −30.53 (6) C2—C1—N13—C5 25.76 (6)
C2—C3—C4—C5 35.97 (5) C4—C5—N13—C1 −19.82 (6)
C3—C4—C5—N13 −13.42 (6) C5—C4—C14—O1 6.00 (7)
[Figure 2]
Figure 2
The mol­ecule of compound 2 in the crystal. Ellipsoids represent 50% probability levels.
[Figure 3]
Figure 3
Side-on view of mol­ecule 2.

3. Supra­molecular features

The mol­ecular packing is dominated by four classical hydrogen bonds from the hydrogen atoms of the NH2 groups (Table 2[link]), together with the short contact N2⋯Cl1(1 + x, −1 + y, z) of 3.1296 (5) Å. The angle C24—Cl1⋯N2′ is 177.86 (2)°, and the linearity indicates that the inter­action is probably to be regarded as a halogen bond (see e.g. Metrangelo et al., 2008[Metrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114-6127.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1i 0.845 (11) 2.391 (11) 3.1341 (6) 147.2 (10)
N1—H02⋯Cl1ii 0.906 (13) 2.755 (13) 3.4516 (5) 134.6 (10)
N3—H03⋯O1iii 0.837 (13) 2.016 (13) 2.8336 (6) 165.3 (12)
N3—H04⋯N2iv 0.834 (12) 2.287 (13) 3.1109 (6) 169.9 (12)
C23—H23⋯S6v 0.95 2.90 3.7631 (6) 152
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x+1, -y+1, -z]; (iii) [-x, -y, -z+1]; (iv) [-x+1, -y, -z]; (v) [-x, -y+1, -z+1].

The packing is three-dimensional, but can be analysed as two inter­connected layer structures. The first, parallel to the bc plane, involves the hydrogen bonds from H01, H02 and H04 (Fig. 4[link]). Ribbons parallel to the c axis are prominent, and these are crosslinked parallel to the b axis by the inter­actions H02⋯Cl1. The second and more complex (thicker) layer is parallel to the ab plane and involves the hydrogen bonds from H01 and H03 together with the N⋯Cl halogen bonds (Fig. 5[link]). Ribbons of mol­ecules parallel to [1[\overline{1}]0] (horizontal in Fig. 5[link]) are prominent; these are linked by the contacts H03⋯O1, which are however difficult to recognize in Fig. 5[link] because the inversion-symmetric hydrogen-bond systems are viewed approximately edge-on (they are clearer on the right-hand edge of Fig. 5[link]).

[Figure 4]
Figure 4
Packing diagram of compound 2 viewed perpendicular to the bc plane. Hydrogen bonds are indicated by thick dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.
[Figure 5]
Figure 5
Packing diagram of compound 2 viewed perpendicular to the ab plane. Hydrogen bonds are indicated by thick and halogen bonds by thin dashed lines. Hydrogen atoms not involved in hydrogen bonds are omitted for clarity.

We incorporated three different contacts in both Figs. 4[link] and 5[link]. A referee has correctly pointed out that this comes at the cost of some loss of clarity, and that a much more striking motif comes from the two hydrogen bonds H04⋯N2 and H03⋯O1. The ribbon thus generated is shown in Fig. 6[link]; it runs parallel to [10[\overline{1}]]. Neighbouring ribbons are related by the vector [111] (amongst others) and the ribbons thus lie in planes parallel to (1[\overline{2}]1).

[Figure 6]
Figure 6
Packing diagram of compound 2 showing a ribbon generated by the hydrogen bonds H04⋯N2 and H03⋯N1 (indicated by dashed lines). The view direction is perpendicular to (1[\overline{2}]1).

4. Database survey

The search employed the routine ConQuest (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]), part of Version 5.46 of the Cambridge Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]). Only one structure containing the same tricyclic ring system as that in 2 was found, namely benzyl 4-benzoyl-1-methyl-3-phenyl-3H-benzo[4,5]thia­zolo-[3,2-a]pyridine-2-carboxyl­ate 3 (Chauhan & Kumara Swamy, 2024[Chauhan, S. & Kumara Swamy, K. C. (2024). J. Org. Chem. 89, 10816-10830.]; refcode GOYRAR). This structure involves two independent mol­ecules, which are however closely similar to each other except for ring orientations of the substituents (Fig. 7[link]; r.m.s. deviation of fitted atoms = 0.029 Å). A similar fit of one mol­ecule of 3 to the mol­ecule of 2 (Fig. 8[link]) gave an r.m.s deviation of 0.118 Å. There are significant differences between the pyridinic rings C1/C2/C3/C4/C5/N13, e.g. the bond length C1—N13, which is 1.3970 (6) / 1.420 (3) / 1.420 (3) Å for 2 and the two mol­ecules in the structure of 3, in that order, and the ring torsion angles (starting with the bond C5—N13 and moving clockwise, these are −20/−28/−26, 26/28/29, 1/9/5, −30/−43/−37, 36/43/39 and −23/−11/−11, rounded to the nearest degree, for 2 and the two mol­ecules of 3, in that order).

[Figure 7]
Figure 7
Least-squares fit of the two mol­ecules of 3 (Chauhan & Kumara Swamy, 2024[Chauhan, S. & Kumara Swamy, K. C. (2024). J. Org. Chem. 89, 10816-10830.]), renumbered to be consistent with the numbering of 2. The fitted atoms are labelled.
[Figure 8]
Figure 8
Least-squares fit of 2 (full bonds, purple) to one mol­ecule of 3 (dashed bonds, green). The fitted atoms are labelled.

Similar, but not identical, ring systems were reported in the structures of 2-(1-amino-2-cyano-3-oxo-3H-pyrido[2,1-b][1,3]benzo­thia­zol-4-yl)-2,3,3-tri­methyl­cyclo­propane-1,1-dicarbo­nitrile methanol solvate (ROPSOH, Rémond et al., 2019[Rémond, M., Zheng, Z., Jeanneau, E., Andraud, C., Bretonnière, Y. & Redon, S. (2019). J. Org. Chem. 84, 9965-9974.]) and 1-amino-2-(1,3-benzo­thia­zol-2-yl)-3H-pyrido[2,1-b][1,3]ben­zo­thia­zol-3-iminium chloride methanol solvate (REZVUQ; Chen et al., 2018[Chen, Y., Zhang, W., Zhao, Z., Cai, Y., Gong, J., Kwok, R. T. K., Lam, J. W. Y., Sung, H. H. Y., Williams, I. D. & Tang, B. Z. (2018). Angew. Chem. Int. Ed. 57, 5011-5015.]), both of which have exocyclic double bonds at the atom corresponding to C3 of 2; and also tetra­methyl 4aH-pyrido[2,1-b][1,3]benzo­thia­zole-2,3,4,4a-tetra­carboxyl­ate and tetra­methyl 1H-pyrido[2,1-b][1,3]benzo­thia­zole-1,2,3,4-tetra­carboxyl­ate (VIZPIH and VIZPON; Li et al., 2023[Li, X., Li, W., Liu, X., Zhang, M., Yu, E. Y., Law, A. W. K., Ou, X., Zhang, J., Sung, H. H. Y., Tan, X., Sun, J., Lam, J. W. Y., Guo, Z. & Tang, B. Z. (2023). J. Am. Chem. Soc. 145, 26645-26656.]) and 5-imino-2,2-dimethyl-1-methyl­idene-1,2-di­hydro-5H-furo[3′,2′:3,4]pyrido[2,1-b][1,3]benzo­thia­zole-4-carbo­nitrile (ROPQAR; Rémond et al., 2019[Rémond, M., Zheng, Z., Jeanneau, E., Andraud, C., Bretonnière, Y. & Redon, S. (2019). J. Org. Chem. 84, 9965-9974.]), in which the atoms corres­ponding to C5 in 2 bear an additional substituent and the double bond positions correspond to C1—C2 and C3—C4 of 2.

5. Synthesis and crystallization

Equimolar amounts of 2-(1,3-benzo­thia­zol-2-yl)-3-(4-chloro­phen­yl) prop-2-enamide (1) (3.15 g, 1 mmol) and malono­nitrile (0.66 g, 1 mmol) were placed in a reaction flask and dissolved in 50 mL dry EtOH. A few drops of piperidine were added and the reaction mixture was heated to reflux for 5 h with stirring. After completing the reaction, the mixture was cooled to room temperature; the solid thus formed was filtered off and dried under vacuum. The product (2) was recrystallized from DMF and dried at room temperature.

Pale-yellow crystals, yield 80%, m.p. 578–580 K. IR (KBr): ν (cm−1) 3423, 3394 (NH2), 3156 (CH aromatic), 2184 (CN), 1644 (C=O); 1H-NMR (400 MHz, DMSO-d6): δ = 4.85 (s, 1H, pyridine-H), 6.43 (s, 2H, NH2), 7.16–7.29 (m, 6H, Ar-H, NH2), 7.36 (d, 2H, J = 8.4 Hz, Ar-H), 7.63 (d, 1H, J = 7.52 Hz, Ar-H), 7.74 (d, 1H, J = 8.24 Hz, Ar-H) ppm. 13C-NMR (100 MHz, DMSO-d6): δ = 19.02, 56.53, 56.19, 99.53, 116.84, 120.91, 122.77, 124.61, 126.17, 127.88, 129.45, 136.29, 146.93, 148.43, 152.01, 152.03, 167.47 ppm. Analysis calculated for C19H13ClN4OS (380.05): C 59.92, H 3.44, N 14.71, S 8.42. Found: C 60.09, H 2.92, N 14.90, S 8.24%.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The hydrogen atoms of the NH2 groups were refined freely. Other hydrogen atoms were included using a riding model starting from calculated positions (C—Hmethine = 1.00, C—Harom = 0.95 Å). The U(H) values were fixed at 1.2 × Ueq of the parent carbon atoms.

Table 3
Experimental details

Crystal data
Chemical formula C19H13ClN4OS
Mr 380.84
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 9.12784 (17), 9.29662 (17), 10.85172 (19)
α, β, γ (°) 83.0139 (14), 73.4998 (16), 71.4982 (16)
V3) 836.80 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.37
Crystal size (mm) 0.15 × 0.15 × 0.12
 
Data collection
Diffractometer XtaLAB Synergy
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.79a. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.953, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 138480, 13768, 11364
Rint 0.041
θ values (°) θmax = 45.0, θmin = 2.3
(sin θ/λ)max−1) 0.996
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.092, 1.05
No. of reflections 13768
No. of parameters 251
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.79, −0.43
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO, Version 1.171.42.79a. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) and XP (Bruker, 1998[Bruker (1998). XP. Bruker Analytical X-Ray Instruments, Madison, Wisconsin, USA.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

The program checkCIF reported a problem with badly-fitting reflections at the level ALERT B: ‘Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers. . 2’. In our experience, this is not unusual for organic structures measured to high diffraction angles. Omitting the five worst reflections in fact led (after an appropriate change of the weighting scheme) to a slight increase in wR2, so they were retained.

Supporting information


Computing details top

1-Amino-3-(4-chlorophenyl)-2-cyano-3H-benzo[4,5]thiazolo[3,2-a]pyridine-4-carboxamide top
Crystal data top
C19H13ClN4OSZ = 2
Mr = 380.84F(000) = 392
Triclinic, P1Dx = 1.511 Mg m3
a = 9.12784 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.29662 (17) ÅCell parameters from 73214 reflections
c = 10.85172 (19) Åθ = 2.3–45.1°
α = 83.0139 (14)°µ = 0.37 mm1
β = 73.4998 (16)°T = 100 K
γ = 71.4982 (16)°Block, pale yellow
V = 836.80 (3) Å30.15 × 0.15 × 0.12 mm
Data collection top
XtaLAB Synergy
diffractometer
13768 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Mo) X-ray Source11364 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.041
Detector resolution: 10.0000 pixels mm-1θmax = 45.0°, θmin = 2.3°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1818
Tmin = 0.953, Tmax = 1.000l = 2121
138480 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0873P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
13768 reflectionsΔρmax = 0.79 e Å3
251 parametersΔρmin = 0.43 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.62863 (5)0.18304 (5)0.26384 (4)0.00979 (6)
C20.55764 (5)0.15435 (5)0.17797 (4)0.00975 (6)
C30.38005 (5)0.17027 (5)0.21294 (4)0.00936 (6)
H30.3664070.0905920.1667310.011*
C40.32786 (5)0.13443 (5)0.35529 (4)0.00979 (6)
C50.39633 (5)0.17806 (5)0.43467 (4)0.00967 (6)
S60.33319 (2)0.18032 (2)0.60235 (2)0.01162 (2)
C70.48320 (6)0.25861 (5)0.60550 (4)0.01302 (7)
C80.50543 (8)0.30447 (7)0.71456 (5)0.01844 (9)
H80.4403050.2894240.7975840.022*
C90.62517 (9)0.37289 (7)0.69938 (6)0.02188 (10)
H90.6437360.4031250.7727230.026*
C100.71786 (8)0.39714 (7)0.57686 (6)0.02012 (9)
H100.7976700.4457750.5678550.024*
C110.69604 (7)0.35157 (6)0.46715 (5)0.01556 (8)
H110.7588210.3696600.3839280.019*
C120.57950 (6)0.27875 (5)0.48314 (4)0.01175 (6)
N130.53378 (5)0.22529 (5)0.38728 (4)0.01024 (5)
C140.19973 (5)0.06575 (5)0.41360 (4)0.01091 (6)
C150.65300 (5)0.10088 (5)0.05570 (4)0.01129 (6)
C210.27580 (5)0.32411 (5)0.17334 (4)0.01002 (6)
C220.12148 (6)0.38940 (6)0.24858 (5)0.01569 (8)
H220.0829930.3405240.3277280.019*
C230.02267 (6)0.52478 (6)0.21005 (5)0.01809 (9)
H230.0820330.5681940.2625280.022*
C240.07886 (6)0.59555 (6)0.09417 (5)0.01406 (7)
C250.23230 (6)0.53403 (6)0.01705 (5)0.01415 (7)
H250.2701350.5832560.0620920.017*
C260.32980 (6)0.39891 (5)0.05771 (4)0.01231 (7)
H260.4351450.3567800.0057760.015*
N10.78675 (5)0.17302 (5)0.23985 (4)0.01353 (6)
H010.8258 (14)0.1355 (13)0.3026 (11)0.023 (3)*
H020.8437 (16)0.1369 (14)0.1610 (12)0.034 (3)*
N20.72660 (6)0.05978 (6)0.04687 (4)0.01580 (7)
N30.13807 (5)0.01158 (6)0.33732 (4)0.01399 (6)
H030.0645 (15)0.0260 (14)0.3758 (12)0.031 (3)*
H040.1759 (15)0.0036 (14)0.2581 (12)0.029 (3)*
Cl10.04686 (2)0.76356 (2)0.04690 (2)0.01904 (3)
O10.14777 (5)0.06089 (5)0.53392 (3)0.01460 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.00992 (14)0.01110 (14)0.00817 (13)0.00344 (11)0.00189 (11)0.00008 (11)
C20.00965 (13)0.01188 (14)0.00725 (13)0.00326 (11)0.00126 (10)0.00066 (11)
C30.00985 (13)0.01111 (14)0.00723 (13)0.00380 (11)0.00155 (10)0.00048 (10)
C40.01045 (14)0.01187 (14)0.00733 (13)0.00455 (11)0.00160 (11)0.00026 (11)
C50.01058 (14)0.01073 (14)0.00727 (13)0.00326 (11)0.00151 (10)0.00036 (10)
S60.01369 (5)0.01322 (4)0.00677 (4)0.00345 (3)0.00127 (3)0.00071 (3)
C70.01710 (18)0.01301 (15)0.00945 (14)0.00394 (13)0.00428 (13)0.00177 (12)
C80.0267 (2)0.0196 (2)0.01145 (17)0.00738 (18)0.00704 (16)0.00321 (15)
C90.0317 (3)0.0220 (2)0.0178 (2)0.0100 (2)0.0117 (2)0.00437 (17)
C100.0265 (3)0.0193 (2)0.0211 (2)0.01052 (19)0.01112 (19)0.00304 (17)
C110.01864 (19)0.01591 (18)0.01571 (18)0.00815 (15)0.00618 (15)0.00159 (14)
C120.01476 (16)0.01154 (14)0.01035 (14)0.00424 (12)0.00459 (12)0.00149 (11)
N130.01129 (13)0.01244 (13)0.00781 (12)0.00481 (10)0.00186 (10)0.00145 (10)
C140.01048 (14)0.01328 (15)0.00875 (14)0.00461 (12)0.00140 (11)0.00065 (11)
C150.01112 (15)0.01340 (15)0.00857 (14)0.00324 (12)0.00156 (11)0.00097 (11)
C210.01000 (14)0.01172 (14)0.00826 (13)0.00336 (11)0.00222 (11)0.00002 (11)
C220.01240 (16)0.01564 (17)0.01317 (17)0.00125 (13)0.00101 (13)0.00295 (14)
C230.01289 (17)0.01701 (19)0.01685 (19)0.00025 (14)0.00087 (14)0.00324 (15)
C240.01290 (16)0.01323 (16)0.01366 (17)0.00141 (13)0.00331 (13)0.00137 (13)
C250.01363 (16)0.01496 (17)0.01114 (15)0.00240 (13)0.00235 (13)0.00258 (13)
C260.01138 (15)0.01422 (16)0.00922 (14)0.00260 (12)0.00144 (12)0.00120 (12)
N10.00978 (13)0.01948 (17)0.01153 (14)0.00498 (12)0.00243 (11)0.00033 (12)
N20.01548 (16)0.02044 (18)0.00983 (14)0.00432 (13)0.00068 (12)0.00344 (12)
N30.01429 (15)0.02009 (17)0.01006 (13)0.01010 (13)0.00136 (11)0.00046 (12)
Cl10.01564 (5)0.01623 (5)0.01936 (5)0.00067 (4)0.00360 (4)0.00431 (4)
O10.01479 (14)0.02202 (16)0.00799 (12)0.00936 (12)0.00088 (10)0.00136 (11)
Geometric parameters (Å, º) top
C1—N11.3663 (6)C11—C121.3941 (7)
C1—C21.3684 (6)C11—H110.9500
C1—N131.3970 (6)C12—N131.4168 (6)
C2—C151.4125 (6)C14—O11.2567 (6)
C2—C31.5184 (6)C14—N31.3422 (6)
C3—C41.5105 (6)C15—N21.1627 (6)
C3—C211.5345 (6)C21—C221.3942 (7)
C3—H31.0000C21—C261.3982 (6)
C4—C51.3597 (6)C22—C231.3922 (7)
C4—C141.4599 (6)C22—H220.9500
C5—N131.3998 (6)C23—C241.3870 (7)
C5—S61.7464 (4)C23—H230.9500
S6—C71.7523 (5)C24—C251.3897 (7)
C7—C81.3921 (7)C24—Cl11.7382 (5)
C7—C121.3971 (7)C25—C261.3940 (7)
C8—C91.3928 (9)C25—H250.9500
C8—H80.9500C26—H260.9500
C9—C101.3941 (10)N1—H010.845 (11)
C9—H90.9500N1—H020.906 (13)
C10—C111.3955 (7)N3—H030.837 (13)
C10—H100.9500N3—H040.834 (12)
N1—C1—C2125.51 (4)C11—C12—C7120.44 (4)
N1—C1—N13116.24 (4)C11—C12—N13128.37 (4)
C2—C1—N13118.25 (4)C7—C12—N13111.08 (4)
C1—C2—C15119.32 (4)C1—N13—C5117.93 (4)
C1—C2—C3121.78 (4)C1—N13—C12126.47 (4)
C15—C2—C3118.82 (4)C5—N13—C12113.70 (4)
C4—C3—C2107.98 (3)O1—C14—N3121.44 (4)
C4—C3—C21112.20 (3)O1—C14—C4119.33 (4)
C2—C3—C21114.45 (4)N3—C14—C4119.22 (4)
C4—C3—H3107.3N2—C15—C2177.40 (5)
C2—C3—H3107.3C22—C21—C26118.16 (4)
C21—C3—H3107.3C22—C21—C3120.83 (4)
C5—C4—C14117.99 (4)C26—C21—C3120.93 (4)
C5—C4—C3118.16 (4)C23—C22—C21121.32 (5)
C14—C4—C3123.69 (4)C23—C22—H22119.3
C4—C5—N13121.84 (4)C21—C22—H22119.3
C4—C5—S6126.72 (3)C24—C23—C22119.23 (5)
N13—C5—S6111.43 (3)C24—C23—H23120.4
C5—S6—C790.51 (2)C22—C23—H23120.4
C8—C7—C12121.12 (5)C23—C24—C25120.98 (5)
C8—C7—S6125.87 (4)C23—C24—Cl1118.59 (4)
C12—C7—S6112.95 (3)C25—C24—Cl1120.43 (4)
C7—C8—C9118.59 (5)C24—C25—C26118.92 (4)
C7—C8—H8120.7C24—C25—H25120.5
C9—C8—H8120.7C26—C25—H25120.5
C8—C9—C10120.19 (5)C25—C26—C21121.38 (4)
C8—C9—H9119.9C25—C26—H26119.3
C10—C9—H9119.9C21—C26—H26119.3
C9—C10—C11121.48 (5)C1—N1—H01113.3 (8)
C9—C10—H10119.3C1—N1—H02112.1 (8)
C11—C10—H10119.3H01—N1—H02117.5 (11)
C12—C11—C10118.12 (5)C14—N3—H03115.2 (9)
C12—C11—H11120.9C14—N3—H04124.2 (9)
C10—C11—H11120.9H03—N3—H04120.1 (12)
N1—C1—C2—C154.07 (7)N1—C1—N13—C5153.81 (4)
N13—C1—C2—C15175.46 (4)C2—C1—N13—C525.76 (6)
N1—C1—C2—C3179.29 (4)N1—C1—N13—C129.45 (7)
N13—C1—C2—C31.19 (6)C2—C1—N13—C12170.98 (4)
C1—C2—C3—C430.53 (6)C4—C5—N13—C119.82 (6)
C15—C2—C3—C4146.13 (4)S6—C5—N13—C1159.01 (3)
C1—C2—C3—C2195.20 (5)C4—C5—N13—C12174.83 (4)
C15—C2—C3—C2188.14 (5)S6—C5—N13—C126.34 (5)
C2—C3—C4—C535.97 (5)C11—C12—N13—C125.29 (8)
C21—C3—C4—C591.07 (5)C7—C12—N13—C1158.51 (4)
C2—C3—C4—C14148.76 (4)C11—C12—N13—C5170.85 (5)
C21—C3—C4—C1484.19 (5)C7—C12—N13—C55.35 (6)
C14—C4—C5—N13171.04 (4)C5—C4—C14—O16.00 (7)
C3—C4—C5—N1313.42 (6)C3—C4—C14—O1169.28 (4)
C14—C4—C5—S67.60 (6)C5—C4—C14—N3175.18 (4)
C3—C4—C5—S6167.94 (3)C3—C4—C14—N39.55 (7)
C4—C5—S6—C7176.96 (4)C4—C3—C21—C2222.43 (6)
N13—C5—S6—C74.28 (4)C2—C3—C21—C22145.92 (5)
C5—S6—C7—C8175.90 (5)C4—C3—C21—C26160.82 (4)
C5—S6—C7—C121.30 (4)C2—C3—C21—C2637.33 (6)
C12—C7—C8—C90.71 (8)C26—C21—C22—C230.40 (8)
S6—C7—C8—C9176.28 (5)C3—C21—C22—C23176.43 (5)
C7—C8—C9—C101.29 (10)C21—C22—C23—C240.31 (9)
C8—C9—C10—C111.26 (10)C22—C23—C24—C250.61 (9)
C9—C10—C11—C120.79 (9)C22—C23—C24—Cl1179.40 (5)
C10—C11—C12—C72.78 (8)C23—C24—C25—C260.19 (8)
C10—C11—C12—N13178.66 (5)Cl1—C24—C25—C26179.82 (4)
C8—C7—C12—C112.79 (8)C24—C25—C26—C210.55 (8)
S6—C7—C12—C11174.56 (4)C22—C21—C26—C250.84 (7)
C8—C7—C12—N13179.33 (5)C3—C21—C26—C25176.00 (4)
S6—C7—C12—N131.99 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H01···O1i0.845 (11)2.391 (11)3.1341 (6)147.2 (10)
N1—H02···Cl1ii0.906 (13)2.755 (13)3.4516 (5)134.6 (10)
N3—H03···O1iii0.837 (13)2.016 (13)2.8336 (6)165.3 (12)
N3—H04···N2iv0.834 (12)2.287 (13)3.1109 (6)169.9 (12)
C23—H23···S6v0.952.903.7631 (6)152
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z; (iii) x, y, z+1; (iv) x+1, y, z; (v) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge support by the Open Access Publication Funds of the Technical University of Braunschweig.

References

First citationAbdallah, A. E. M., Abdel-Latif, S. A. & Elgemeie, G. H. (2023b). ACS Omega, 8, 19587–19602.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAbdallah, A. E. M., Elgemeie, G. H. & Jones, P. G. (2023a). Acta Cryst. E79, 441–445.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAmmazzalorso, A., Carradori, S., Amoroso, R. & Fernández, I. F. (2020). Eur. J. Med. Chem. 207, 112762.  Web of Science CrossRef PubMed Google Scholar
First citationAzzam, R. A., Elboshi, H. A. & Elgemeie, G. H. (2022a). Antibiotics, 11, 1799 (doi: 10.3390/antibiotics11121799).  Web of Science CrossRef Google Scholar
First citationAzzam, R. A., Elgemeie, G. H., Elsayed, R. E., Gad, N. M. & Jones, P. G. (2022b). Acta Cryst. E78, 369–372.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAzzam, R. A., Elgemeie, G. H. & Osman, R. R. (2020a). J. Mol. Struct. 1201, 127194.  Web of Science CSD CrossRef Google Scholar
First citationAzzam, R. A., Elsayed, R. E. & Elgemeie, G. H. (2020b). ACS Omega, 5, 26182–26194.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (1998). XP. Bruker Analytical X–Ray Instruments, Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationChauhan, S. & Kumara Swamy, K. C. (2024). J. Org. Chem. 89, 10816–10830.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChen, Y., Zhang, W., Zhao, Z., Cai, Y., Gong, J., Kwok, R. T. K., Lam, J. W. Y., Sung, H. H. Y., Williams, I. D. & Tang, B. Z. (2018). Angew. Chem. Int. Ed. 57, 5011–5015.  Web of Science CrossRef CAS Google Scholar
First citationFathy, N. M. & Elgemeie, G. H. (1988). Sulfur Lett. 7, 189–196.  CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, Q., Mao, J., Wan, B., Wang, Y., Brun, R., Franzblau, S. G. & Kozikowski, A. P. (2009). J. Med. Chem. 52, 6757–6767.  Web of Science CrossRef PubMed CAS Google Scholar
First citationIrfan, A., Batool, F., Zahra Naqvi, S. A., Islam, A., Osman, S., Nocentini, A., Alissa, S. & Supuran, C. (2020). J. Enzyme Inhib. Med. Chem. 35, 265–279.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKashyap, P., Verma, S., Gupta, P., Narang, R., Lal, S. & Devgun, M. (2023). Med. Chem. Res. 32, 1543–1573.  Web of Science CrossRef CAS Google Scholar
First citationKe, S., Wei, Y., Yang, Z., Wang, K., Liang, Y. & Shi, L. (2013). Bioorg. Med. Chem. Lett. 23, 5131–5134.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLi, X., Li, W., Liu, X., Zhang, M., Yu, E. Y., Law, A. W. K., Ou, X., Zhang, J., Sung, H. H. Y., Tan, X., Sun, J., Lam, J. W. Y., Guo, Z. & Tang, B. Z. (2023). J. Am. Chem. Soc. 145, 26645–26656.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMetrangolo, P., Meyer, F., Pilati, T., Resnati, G. & Terraneo, G. (2008). Angew. Chem. Int. Ed. 47, 6114–6127.  Web of Science CrossRef CAS Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Fahmy, F. G. (2022a). Egypt. J. Chem. 65(2), 679–686.  Google Scholar
First citationMetwally, N. H., Elgemeie, G. H. & Jones, P. G. (2022b). Acta Cryst. E78, 445–448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohamed-Ezzat, R. A., Omar, M. A., Temirak, A., Abdelsamie, A. S., Abdel-Aziz, M. M., Galal, S. A., Elgemeie, G. H., Diwani, H. I. E., Flanagan, K. J. & Senge, M. O. (2024). J. Mol. Struct. 1311, 138415.  Google Scholar
First citationRana, A., Siddiqui, N., Khan, S. A., Ehtaishamul Haque, S. & Bhat, M. A. (2008). Eur. J. Med. Chem. 43, 1114–1122.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRémond, M., Zheng, Z., Jeanneau, E., Andraud, C., Bretonnière, Y. & Redon, S. (2019). J. Org. Chem. 84, 9965–9974.  Web of Science PubMed Google Scholar
First citationRigaku OD (2023). CrysAlis PRO, Version 1.171.42.79a. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, X., Sarris, K., Kage, K., Zhang, D., Brown, S. P., Kolasa, T., Surowy, C., El Kouhen, O. F., Muchmore, S. W., Brioni, J. D. & Stewart, A. O. (2009). J. Med. Chem. 52, 170–180.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds