research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis, crystal structure, and in silico mol­ecular docking studies of 4-hy­dr­oxy-3,5-di­meth­­oxy­benzaldehyde (6-chloro­pyridazin-3-yl)hydrazone monohydrate

crossmark logo

aPost-Graduate and Research Department of Chemistry, The New College, University of Madras, Chennai 600 014, Tamilnadu, India, and bDepartment of Physics, The New College, Chennai 600 014, University of Madras, Tamil Nadu, India
*Correspondence e-mail: muhammedrafi@thenewcollege.edu.in

Edited by C. Schulzke, Universität Greifswald, Germany (Received 10 February 2025; accepted 19 March 2025; online 25 March 2025)

In the title compound, C13H13ClN4O3·H2O, the organic mol­ecule has an E configuration with regard to the C=N bond of the hydrazone bridge. The phenyl and pyridazine rings subtend a dihedral angle of 2.1 (1)° between their mean planes, while the hydrazone moiety makes dihedral angles of 1.6 (2) and 3.0 (2)°, respectively, with these aromatic rings. This renders the entire mol­ecule comparably flat. A C—H⋯N hydrogen bond generates an inversion dimer with a large R22(14) ring motif. Within this ring, a further C—H⋯N hydrogen bond establishes a smaller R22(8) ring. The mol­ecules of a dimer are thereby firmly linked by four hydrogen bonds. A bifurcated O—H⋯(O,O) hydrogen bond is formed between a water hydrogen atom and the hydroxyl and meth­oxy oxygen atoms of an adjacent mol­ecule, leading to the formation of an R21(5) membered ring. C—H⋯π and face-to-face ππ stacking inter­actions are also present in the two-dimensional framework, which may be of relevance for the packing. In a complementary analysis, the compound was docked in silico to EGFR and HER2 receptors and the results imply that the compound targets EGFR preferentially over HER2.

1. Chemical context

Hydrazone compounds are known to be associated with a wide spectrum of biological and medicinal applications, such as anti­microbial, anti­convulsant, analgesic and anti-inflammatory activities (NizamMohideen et al., 2019[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Abiraman, T. & Balasubramanian, S. (2019). Acta Cryst. E75, 655-661.]). Compounds that target the epidermal growth factor receptor (EGFR) and the human epidermal growth factor receptor 2 (HER2) are known as tyrosine kinase inhibitors (TKIs) include gefitinib, erlotinib, neratinib, and afatinib, which act as anti­cancer agents (Uribe et al., 2021[Uribe, M. L., Marrocco, I. & Yarden, Y. (2021). Cancers, 13, 2748.]; Weinberg et al., 2020[Weinberg, F., Peckys, D. B. & de Jonge, N. (2020). Int. J. Mol. Sci. 21, 9008.]). However, these inhibitors show side effects and have adverse negative impacts on the patient's health (Riecke & Witzel, 2020[Riecke, K. & Witzel, I. (2020). Breast Care 15, 579-585.]). As a result, new EGFR inhibitors need to be developed that would be more effective with less toxicity. Pyridazine derivatives have been the subject of extensive study in recent years, and the results have demonstrated a broad spectrum of pharmacological actions, including anti­depressant (Komkov et al., 2015[Komkov, A. V., Komendantova, A. S., Menchikov, L. G., Chernoburova, E. I., Volkova, Y. A. & Zavarzin, I. V. (2015). Org. Lett. 17, 3734-3737.]), COX-2 inhibitor (Harris et al., 2004[Harris, R. R., Black, L., Surapaneni, S., Kolasa, T., Majest, S., Namovic, M. T., Grayson, G., Komater, V., Wilcox, D., King, L., Marsh, K., Jarvis, M. F., Nuss, N., Nellans, H., Pruesser, L., Reinhart, G. A., Cox, B., Jacobson, P., Stewart, A., Coghlan, M., Carter, G. & Bell, R. L. (2004). J. Pharmacol. Exp. Ther. 311, 904-912.]) and anti­cancer properties (Rafi et al., 2019[Rafi, U. M., Mahendiran, D., Kumar, R. S. & Rahiman, A. K. (2019). Appl. Organom Chem. 33, e4946.]; Ahmad et al., 2010[Ahmad, S., Rathish, I. G., Bano, S., Alam, M. S. & Javed, K. K. (2010). J. Enzyme Inhib. Med. Chem. 25, 266-271.]). Commercially available physiologically active compounds with pyridazine as a structural component are hydralazine (vasodilator), minaprine (anti­depressant), and azelastine (bronchodilator) (Contreras et al., 1999[Contreras, J. M., Rival, Y. M., Chayer, S., Bourguignon, J. J. & Wermuth, C. G. (1999). J. Med. Chem. 42, 730-741.]; del Olmo et al., 2006[Olmo, E. del, Barboza, B., Ybarra, M. I., López-Pérez, J. L., Carrón, R., Sevilla, M. A., Boselli, C. & San Feliciano, A. (2006). Bioorg. Med. Chem. Lett. 16, 2786-2790.]). Our current research is focused on the synthesis of a new compound containing a pyridazine unit and a syringaldehyde derived moiety linked by a hydrazone motif, which may potentially act as a better TKI.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The organic mol­ecule features a central, essentially planar region flanked on either side by a chlorine-substituted pyridazine, and a tris­ubstituted phenyl ring and it crystallized together with a water mol­ecule. The phenyl and pyridazine rings (C6–C11 and N1/N2/C1–C4, respectively) are each planar with a dihedral angle of 2.1 (1)° between their mean planes. The mean plane through the hydrazone unit (N3/N4/C5) forms angles of 1.6 (2) and 3.0 (2)° with the phenyl and pyridazine rings, respectively. In the title compound, the hydrazone mol­ecule adopts an E configuration with regard to the hydrazone bridge N4=C5, with torsion angles N3—N4—C5—C6 of −178.3 (2)° and C4—N3—N4—C5 of 178.5 (2)°, which are consistent with the trans relationship in the central moiety (Table 1[link]). The bond lengths and angles in the hydrazone functional group of the title compound are comparable with the values reported for related structures (NizamMohideen et al., 2019[Syed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Abiraman, T. & Balasubramanian, S. (2019). Acta Cryst. E75, 655-661.]; Prabhu et al., 2011[Prabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.]). The chlorine and hy­droxy oxygen atoms deviate by −0.05 and 0.15 Å, respectively, from their pyridazine and phenyl ring mean planes. The C4—N3 and C5=N4 bond lengths differ by 0.075 Å, whereby these two bonds may be assigned as localized single and double bonds, respectively, while some resonance effects cannot be firmly excluded. One of the two meth­oxy groups is more coplanar with the C5–C11 phenyl ring than the other one, which deviates somewhat from the benzene ring plane, with torsion angles C12—O3—C10—C11 of 5.9 (3) Å and C13—O1—C8—C7 of 8.3 (3) Å.

Table 1
Selected geometric parameters (Å, °)

C4—N3 1.353 (2) N1—N2 1.350 (2)
C5—N4 1.278 (2) N3—N4 1.3769 (17)
       
C4—N3—N4 121.38 (15) C5—N4—N3 113.84 (14)
       
N4—C5—C6—C11 1.3 (2) C4—N3—N4—C5 −178.52 (15)
C3—C4—N3—N4 −2.2 (3) C7—C8—O1—C13 8.3 (3)
C6—C5—N4—N3 −178.31 (14) C11—C10—O3—C12 5.9 (3)
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

3. Supra­molecular features

Extensive hydrogen bonding plus some van der Waals contacts are the dominant inter­actions in the crystal packing (Table 2[link]). The C5—H5⋯N1 hydrogen bond generates an inversion dimer with an R22 (14) ring motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); within this larger ring the C3—H3N⋯N2 hydrogen bond links the mol­ecules into an R22(8) ring motif. The two mol­ecules of one dimer are therefore firmly connected by four hydrogen bonds. In addition, a bifurcated O4—H4W⋯(O2, O1)(−x + 1, −y + 1, −z + 2) hydrogen bond is formed between the water hydrogen atom and the hydroxyl and meth­oxy oxygen atoms of an adjacent organic mol­ecule, leading to the formation of an R21(5) ring. The same water mol­ecule forms another hydrogen bond to the hydroxyl oxygen atom [O4—H5W⋯O2(x, y + 1, z)] of a different adjacent mol­ecule. As acceptor, the water forms a hydrogen bond within the asymmetric unit: O2—H2O⋯O4. All in all, the water mol­ecules link the hydrogen-bonded dimers throughout the crystal structure into a 3D network, one dimension of which is shown in Fig. 2[link]. Potentially C—H⋯π inter­actions (Table 2[link]) and/or off-centre face-to-face ππ stacking inter­action [Cg1⋯Cg1([{1\over 2}] − x, −[{1\over 2}] − y, 1 − z) = 4.374 (2) with slippage of 2.929 Å, where Cg1 is the centroid of the N1/N2/C1–C4 ring] may contribute to a two-dimensional substructure. As a result of the presence of a twofold screw axis ([{1\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z), which does not lie in the plane of the organic mol­ecule, the latter appears in two orientations relative to the cell dimensions, resulting in a folded sheet arrangement with an inter-planar angle of 88.45°, when all atoms of the two aromatic rings and the hydrazone moiety are used to calculate the planes.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯N1i 0.93 2.60 3.519 (2) 172
C12—H12A⋯N4ii 0.96 2.66 3.369 (2) 132
O2—H2O⋯O4 0.85 (2) 1.84 (2) 2.668 (2) 164 (2)
N3—H3N⋯N2i 0.87 (2) 2.12 (2) 2.993 (2) 178.3 (18)
O4—H4W⋯O1iii 0.79 (3) 2.23 (3) 2.9254 (19) 146 (3)
O4—H4W⋯O2iii 0.79 (3) 2.55 (3) 3.239 (2) 147 (3)
O4—H5W⋯O2iv 0.85 (3) 2.08 (3) 2.914 (2) 169 (3)
C12—H12BCg(C6–C11)v 0.96 2.87 3.671 (1) 142
C13—H13BCg(C6–C11)iv 0.96 2.90 3.666 (1) 138
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, -y+1, -z+2]; (iv) [x, y+1, z]; (v) [x, y-1, z].
[Figure 2]
Figure 2
A view along the a axis of the crystal packing of title compound. Hydrogen bonds (Table 2[link]) are shown as dashed lines, and H atoms not involved in hydrogen bonding were omitted for clarity.

4. Database survey

A survey of the Cambridge Structural Database (CSD, Version 5.38; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for the presence of 3-(2-benzyl­idenehydrazin­yl)pyridazine as the main skeleton revealed three structures as closely related to the title compound. The mol­ecule of DUTQUF (Ather et al., 2010[Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2107.]) is much less planar than the title compound. However, the bidirectional N—H⋯N hydrogen bonding is present here as well, albeit twisted because of the non-planarity. Chlorine acts as a hydrogen-bonding acceptor. In GUTYEB01 (Bakale et al., 2018[Bakale, R. P., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2018). J. Mol. Struct. 1154, 92-99.]), the mol­ecule is also less planar due to the torsion of the nitro group, and the aromatic systems are not as coplanar as in the title compound. It is the only one of the three related compounds that has co-crystallized water. Hydrogen bonding involving water forms dimers of mol­ecules. The three-dimensional hydrogen-bonding network is facilitated by including chloride as hydrogen-bonding acceptor from water O—H, phenyl C—H and hydrazine N—H. Lastly, the KUZSOP (Rafi et al., 2016[Rafi, U. M., Mahendiran, D., Haleel, A. K., Nankar, R. P., Doble, M. & Rahiman, A. K. (2016). New J. Chem. 40, 2451-2465.]) mol­ecule is less planar than the title compound in its general scaffold but more planar than the other two. It is the only one of the three related derivatives that has the exact same hydrogen-bonding pattern for the N—H⋯N contacts as found in the tittle compound. Additional C—H⋯O inter­actions lead to band structures, which protrude indefinitely through the crystal structure and are not connected to any adjacent bands. This means that the hydrogen-bonding network is two-dimensional considering the mol­ecular dimensions and one-dimensional considering the band dimension, which is a unique feature among the four structures. All compounds have N—H⋯N bonds except GUTYEB01, while KUZSOP has overall similar types of hydrogen bonds (C—H⋯N and O—H⋯N) as the title compound. The N—C—N—N torsion angle between the pyridazine ring and hydrazine moiety of the title compound are comparable with those in DUTQUF and GUTYEB01 but differs slightly more from that in KUZSOP. The C—C—N—N torsion angles between the phenyl ring and hydrazine moiety of the title compound are comparable with all three compounds. Most of the bond angles of the title compound have close similarities with all three compounds, except for N—N—H and N—C—N, which may be attributed to the formation of hydrogen bonding involving these atoms.

5. Mol­ecular docking studies

The main factors in determining the binding affinity and the efficacy of a new drug mol­ecule are hydrogen bonding and hydro­phobic inter­actions. Hydrogen bonds play an important role in drug-receptor inter­actions, which improve many biological functions (Chen et al., 2016[Chen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M. & Savidge, T. C. (2016). Sci. Adv. 2, e1501240.]), while the hydro­phobic inter­actions affect a wide range of biological processes. Hence, mol­ecular docking studies were utilized to predict the in silico mol­ecular inter­actions between the compound and the targets, namely, EGFR and HER2 protein receptors. The binding energies of the title compound with these receptors are summarized in Table S2 in the Supporting Information.

4-Hy­droxy-3,5-di­meth­oxy­benzaldehyde (6-chloro­pyrid­azin-3-yl)hydrazone exhibits hydro­phobic inter­actions and hydrogen bonding with both the EGFR and HER2 kinases (Figs. 3[link] and 4[link]). The compound inter­acts with the EGFR receptor through two hydrogen-bonding inter­actions, one between the oxygen atoms of the meth­oxy group with Lys721, and the second between the oxygen atoms of the hydroxyl and meth­oxy groups with Asp831. The compound shows π–sulfur inter­actions with residue Cys751, alkyl inter­actions with residues Leu694, Val702, Lys721 and Met742, as well as van der Waals inter­actions with residues Glu738, Gln767, Met769, Pro770, Gyl772, The830 and Phe832. The compound inter­acts with the HER2 receptor through two hydrogen-bonding inter­actions, the first being the one between the nitro­gen atom of the pyridazine ring with Lys753, and the second between the oxygen atom in the hydroxyl group and Met801. Additionally, the compound has π–sigma inter­actions with residues Ala751, Thr798 and Leu852, alkyl inter­actions with residues Leu785, Leu796, Leu800, Cyc805 and Phe1004, and van der Waals inter­actions with residues Leu726, Val734, Val797 and Thr862.

[Figure 3]
Figure 3
(a) Three-dimensional visualization of the binding pose of the compound within the EGFR kinase receptor. (b) Two-dimensional ligand–protein inter­action plot of the title compound with the EGFR kinase receptor. Figure prepared using Discovery Studio Visualizer (v2021; BIOVIA, 2021[BIOVIA (2021). Discovery Studio Visualizer. Dassault Systèmes, San Diego, USA.]).
[Figure 4]
Figure 4
(a) Three-dimensional visualization of the binding pose of the compound within the HER2 kinase receptor. (b) Two-dimensional ligand–protein inter­action plot of the title compound with the HER2 kinase receptor. Figure prepared using Discovery Studio Visualizer (v2021; BIOVIA, 2021[BIOVIA (2021). Discovery Studio Visualizer. Dassault Systèmes, San Diego, USA.]).

Though the title compound inter­acts through hydrogen bonds and hydro­phobic inter­actions with both the receptors, it has different binding energy values. The compound has a higher binding energy for the EGFR receptor (−8.43 kJ mol−1) than the HER2 receptor (−6.88 kJ mol−1). Hence, the compound is tightly bound in the EGFR binding pocket, indicating that it can in principle act as a potent EGFR inhibitor.

6. Synthesis and crystallization

An ethano­lic solution (25 mL) of syringaldehyde (0.3642g, 1 mmol) was slowly added to an ethano­lic solution (25 mL) of 3-chloro-6-hydrazinopyridazine (0.289 g, 1 mmol) with constant stirring for 1 h and refluxed for 2 h. The obtained clear solution was allowed to stand and the compound crystallized under slow evaporation. Single crystals of the compound suitable for X-ray analysis were recrystallized by slow evaporation from ethanol/water at room temperature·Yellow solid. Yield: 0.4631 g (70.89%), m.p. 528 K. Selected IR data (KBr, cm−1): 3452 ν (OH), 3381 ν (NH), 1695 ν (C=N), 1502 ν (N=N), 1314 ν (Ar—O).

7. Refinement

Crystal data, data collection and structure refinement details, are summarized in Table 3[link]. The water, hydroxyl and NH hydrogen atoms were located in difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H =0.95–0.98 Â, and with Uiso = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Table 3
Experimental details

Crystal data
Chemical formula C13H13ClN4O3·H2O
Mr 326.74
Crystal system, space group Monoclinic, C2/c
Temperature (K) 298
a, b, c (Å) 32.1977 (19), 4.6431 (3), 26.400 (2)
β (°) 127.495 (2)
V3) 3131.4 (4)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.27
Crystal size (mm) 0.45 × 0.25 × 0.10
 
Data collection
Diffractometer Bruker D8 VENTURE with PHOTON II detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.580, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 32222, 3867, 3259
Rint 0.052
(sin θ/λ)max−1) 0.666
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.132, 1.07
No. of reflections 3867
No. of parameters 215
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.32, −0.27
Computer programs: APEX3, SAINT and XPREP (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Hydroxy-3,5-dimethoxybenzaldehyde (6-chloropyridazin-3-yl)hydrazone monohydrate top
Crystal data top
C13H13ClN4O3·H2OF(000) = 1360
Mr = 326.74Dx = 1.386 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 32.1977 (19) ÅCell parameters from 9970 reflections
b = 4.6431 (3) Åθ = 2.5–28.2°
c = 26.400 (2) ŵ = 0.27 mm1
β = 127.495 (2)°T = 298 K
V = 3131.4 (4) Å3Block, brown
Z = 80.45 × 0.25 × 0.10 mm
Data collection top
Bruker D8 VENTURE
diffractometer equipped with PHOTON II detector
3259 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
ω and φ scanθmax = 28.3°, θmin = 3.2°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 4242
Tmin = 0.580, Tmax = 0.746k = 64
32222 measured reflectionsl = 3535
3867 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0564P)2 + 2.0701P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3867 reflectionsΔρmax = 0.32 e Å3
215 parametersΔρmin = 0.27 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.12978 (7)0.8456 (4)0.41979 (9)0.0544 (4)
C20.14422 (8)0.9256 (4)0.47956 (10)0.0612 (5)
H20.1255981.0641790.4836810.073*
C30.18687 (8)0.7917 (4)0.53169 (9)0.0570 (4)
H30.1986560.8372530.5727870.068*
C40.21223 (6)0.5831 (4)0.52099 (7)0.0452 (4)
C50.31793 (6)0.3204 (4)0.66896 (7)0.0473 (4)
H50.3289520.1949710.6518410.057*
C60.34738 (6)0.3305 (4)0.73833 (7)0.0424 (3)
C70.39076 (6)0.1498 (4)0.77521 (7)0.0469 (4)
H70.4003660.0303340.7556280.056*
C80.41951 (6)0.1486 (4)0.84109 (7)0.0448 (3)
C90.40516 (5)0.3252 (3)0.87054 (6)0.0411 (3)
C100.36127 (6)0.5033 (3)0.83331 (7)0.0397 (3)
C110.33270 (6)0.5085 (3)0.76741 (7)0.0411 (3)
H110.3039490.6300520.7428560.049*
C120.30407 (7)0.8281 (5)0.83303 (9)0.0615 (5)
H12A0.3011090.9294930.8624010.092*
H12B0.3051100.9641180.8064310.092*
H12C0.2744420.7031710.8068860.092*
C130.48434 (8)0.1772 (5)0.85738 (12)0.0732 (6)
H13A0.5142420.2835630.8912180.110*
H13B0.4585480.3084400.8253250.110*
H13C0.4948470.0472170.8387930.110*
N10.15369 (6)0.6503 (4)0.41076 (7)0.0542 (4)
N20.19538 (6)0.5134 (3)0.46188 (6)0.0509 (3)
N30.25458 (6)0.4304 (4)0.56743 (6)0.0515 (4)
N40.27767 (5)0.4770 (3)0.63098 (6)0.0470 (3)
O10.46277 (5)0.0183 (3)0.88222 (6)0.0642 (4)
O20.43409 (5)0.3129 (3)0.93550 (5)0.0548 (3)
O30.35056 (4)0.6626 (3)0.86749 (5)0.0550 (3)
O40.44334 (6)0.7811 (3)1.00029 (6)0.0619 (4)
Cl10.07736 (2)1.01427 (14)0.35124 (3)0.0811 (2)
H2O0.4312 (9)0.472 (5)0.9495 (11)0.072 (7)*
H3N0.2689 (8)0.304 (4)0.5582 (9)0.054 (5)*
H4W0.4738 (12)0.791 (6)1.0283 (15)0.100 (10)*
H5W0.4362 (10)0.937 (6)0.9796 (13)0.084 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0465 (8)0.0610 (10)0.0545 (9)0.0077 (8)0.0300 (8)0.0089 (8)
C20.0656 (11)0.0575 (10)0.0721 (12)0.0019 (9)0.0478 (10)0.0019 (9)
C30.0697 (11)0.0578 (10)0.0532 (9)0.0107 (9)0.0425 (9)0.0058 (8)
C40.0478 (8)0.0523 (9)0.0386 (7)0.0127 (7)0.0279 (7)0.0030 (6)
C50.0485 (8)0.0610 (10)0.0361 (7)0.0106 (7)0.0277 (7)0.0088 (7)
C60.0409 (7)0.0515 (9)0.0347 (7)0.0104 (6)0.0230 (6)0.0068 (6)
C70.0444 (8)0.0545 (9)0.0436 (8)0.0056 (7)0.0278 (7)0.0133 (7)
C80.0360 (7)0.0463 (8)0.0431 (8)0.0007 (6)0.0194 (6)0.0060 (6)
C90.0371 (7)0.0455 (8)0.0311 (7)0.0007 (6)0.0158 (6)0.0040 (6)
C100.0356 (7)0.0461 (8)0.0331 (7)0.0010 (6)0.0187 (6)0.0054 (6)
C110.0350 (7)0.0492 (8)0.0320 (7)0.0006 (6)0.0168 (6)0.0008 (6)
C120.0467 (9)0.0736 (13)0.0581 (10)0.0132 (9)0.0288 (8)0.0081 (9)
C130.0618 (11)0.0681 (13)0.0876 (15)0.0153 (10)0.0444 (11)0.0102 (11)
N10.0475 (7)0.0687 (10)0.0404 (7)0.0070 (7)0.0237 (6)0.0036 (7)
N20.0504 (7)0.0645 (9)0.0357 (6)0.0045 (6)0.0251 (6)0.0007 (6)
N30.0536 (8)0.0668 (9)0.0330 (6)0.0029 (7)0.0257 (6)0.0052 (6)
N40.0499 (7)0.0603 (8)0.0323 (6)0.0128 (6)0.0258 (6)0.0063 (6)
O10.0499 (7)0.0685 (8)0.0518 (7)0.0191 (6)0.0193 (6)0.0089 (6)
O20.0540 (7)0.0569 (7)0.0317 (5)0.0128 (6)0.0148 (5)0.0027 (5)
O30.0473 (6)0.0731 (8)0.0345 (5)0.0169 (6)0.0197 (5)0.0053 (5)
O40.0582 (8)0.0642 (9)0.0379 (6)0.0048 (7)0.0161 (6)0.0042 (6)
Cl10.0572 (3)0.0952 (4)0.0770 (4)0.0074 (3)0.0337 (3)0.0300 (3)
Geometric parameters (Å, º) top
C1—N11.302 (2)C9—C101.399 (2)
C1—C21.397 (3)C10—O31.3636 (18)
C1—Cl11.7374 (19)C10—C111.3874 (19)
C2—C31.366 (3)C11—H110.9300
C2—H20.9300C12—O31.415 (2)
C3—C41.402 (3)C12—H12A0.9600
C3—H30.9300C12—H12B0.9600
C4—N21.343 (2)C12—H12C0.9600
C4—N31.353 (2)C13—O11.418 (2)
C5—N41.278 (2)C13—H13A0.9600
C5—C61.463 (2)C13—H13B0.9600
C5—H50.9300C13—H13C0.9600
C6—C111.392 (2)N1—N21.350 (2)
C6—C71.396 (2)N3—N41.3769 (17)
C7—C81.386 (2)N3—H3N0.87 (2)
C7—H70.9300O2—H2O0.85 (2)
C8—O11.3706 (19)O4—H4W0.79 (3)
C8—C91.388 (2)O4—H5W0.85 (3)
C9—O21.3664 (17)
N1—C1—C2124.38 (17)O3—C10—C9114.20 (12)
N1—C1—Cl1115.54 (14)C11—C10—C9120.45 (13)
C2—C1—Cl1120.07 (16)C10—C11—C6119.51 (14)
C3—C2—C1117.16 (18)C10—C11—H11120.2
C3—C2—H2121.4C6—C11—H11120.2
C1—C2—H2121.4O3—C12—H12A109.5
C2—C3—C4117.59 (17)O3—C12—H12B109.5
C2—C3—H3121.2H12A—C12—H12B109.5
C4—C3—H3121.2O3—C12—H12C109.5
N2—C4—N3113.48 (16)H12A—C12—H12C109.5
N2—C4—C3121.83 (16)H12B—C12—H12C109.5
N3—C4—C3124.68 (15)O1—C13—H13A109.5
N4—C5—C6122.62 (15)O1—C13—H13B109.5
N4—C5—H5118.7H13A—C13—H13B109.5
C6—C5—H5118.7O1—C13—H13C109.5
C11—C6—C7120.26 (13)H13A—C13—H13C109.5
C11—C6—C5122.03 (15)H13B—C13—H13C109.5
C7—C6—C5117.69 (14)C1—N1—N2118.93 (15)
C8—C7—C6119.86 (14)C4—N2—N1120.08 (15)
C8—C7—H7120.1C4—N3—N4121.38 (15)
C6—C7—H7120.1C4—N3—H3N121.0 (13)
O1—C8—C7125.21 (14)N4—N3—H3N117.6 (13)
O1—C8—C9114.48 (13)C5—N4—N3113.84 (14)
C7—C8—C9120.32 (14)C8—O1—C13118.39 (15)
O2—C9—C8118.24 (13)C9—O2—H2O109.7 (16)
O2—C9—C10122.15 (13)C10—O3—C12117.64 (12)
C8—C9—C10119.59 (13)H4W—O4—H5W104 (3)
O3—C10—C11125.35 (13)
N1—C1—C2—C31.1 (3)C8—C9—C10—C111.3 (2)
Cl1—C1—C2—C3177.81 (14)O3—C10—C11—C6178.86 (15)
C1—C2—C3—C40.7 (3)C9—C10—C11—C61.3 (2)
C2—C3—C4—N20.6 (3)C7—C6—C11—C100.5 (2)
C2—C3—C4—N3179.46 (17)C5—C6—C11—C10178.22 (14)
N4—C5—C6—C111.3 (2)C2—C1—N1—N20.1 (3)
N4—C5—C6—C7179.98 (15)Cl1—C1—N1—N2178.86 (12)
C11—C6—C7—C80.3 (2)N3—C4—N2—N1179.38 (14)
C5—C6—C7—C8179.12 (15)C3—C4—N2—N11.6 (2)
C6—C7—C8—O1179.85 (15)C1—N1—N2—C41.3 (2)
C6—C7—C8—C90.4 (2)N2—C4—N3—N4178.88 (14)
O1—C8—C9—O21.0 (2)C3—C4—N3—N42.2 (3)
C7—C8—C9—O2178.82 (15)C6—C5—N4—N3178.31 (14)
O1—C8—C9—C10179.37 (15)C4—N3—N4—C5178.52 (15)
C7—C8—C9—C100.4 (2)C7—C8—O1—C138.3 (3)
O2—C9—C10—O30.5 (2)C9—C8—O1—C13171.94 (17)
C8—C9—C10—O3178.88 (15)C11—C10—O3—C125.9 (3)
O2—C9—C10—C11179.61 (14)C9—C10—O3—C12174.30 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···N1i0.932.603.519 (2)172
C12—H12A···N4ii0.962.663.369 (2)132
O2—H2O···O40.85 (2)1.84 (2)2.668 (2)164 (2)
N3—H3N···N2i0.87 (2)2.12 (2)2.993 (2)178.3 (18)
O4—H4W···O1iii0.79 (3)2.23 (3)2.9254 (19)146 (3)
O4—H4W···O2iii0.79 (3)2.55 (3)3.239 (2)147 (3)
O4—H5W···O2iv0.85 (3)2.08 (3)2.914 (2)169 (3)
C12—H12B···Cg(C6–C11)v0.962.873.671 (1)142
C13—H13B···Cg(C6–C11)iv0.962.903.666 (1)138
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+3/2; (iii) x+1, y+1, z+2; (iv) x, y+1, z; (v) x, y1, z.
 

Acknowledgements

The authors thank DST and SC-XRD LAB, Sophisticated Analytical Instruments Facility (SAIF), Indian Institute Technology Madras (IIT-M), Chennai, for the X-ray data collection and the Department of Chemistry, The New College, Chennai, for recording the IR spectroscopic data.

References

First citationAhmad, S., Rathish, I. G., Bano, S., Alam, M. S. & Javed, K. K. (2010). J. Enzyme Inhib. Med. Chem. 25, 266–271.  CAS PubMed Google Scholar
First citationAther, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010). Acta Cryst. E66, o2107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBakale, R. P., Naik, G. N., Machakanur, S. S., Mangannavar, C. V., Muchchandi, I. S. & Gudasi, K. B. (2018). J. Mol. Struct. 1154, 92–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBIOVIA (2021). Discovery Studio Visualizer. Dassault Systèmes, San Diego, USA.  Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D., Oezguen, N., Urvil, P., Ferguson, C., Dann, S. M. & Savidge, T. C. (2016). Sci. Adv. 2, e1501240.  Web of Science CrossRef PubMed Google Scholar
First citationContreras, J. M., Rival, Y. M., Chayer, S., Bourguignon, J. J. & Wermuth, C. G. (1999). J. Med. Chem. 42, 730–741.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHarris, R. R., Black, L., Surapaneni, S., Kolasa, T., Majest, S., Namovic, M. T., Grayson, G., Komater, V., Wilcox, D., King, L., Marsh, K., Jarvis, M. F., Nuss, N., Nellans, H., Pruesser, L., Reinhart, G. A., Cox, B., Jacobson, P., Stewart, A., Coghlan, M., Carter, G. & Bell, R. L. (2004). J. Pharmacol. Exp. Ther. 311, 904–912.  PubMed CAS Google Scholar
First citationKomkov, A. V., Komendantova, A. S., Menchikov, L. G., Chernoburova, E. I., Volkova, Y. A. & Zavarzin, I. V. (2015). Org. Lett. 17, 3734–3737.  CAS PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationOlmo, E. del, Barboza, B., Ybarra, M. I., López-Pérez, J. L., Carrón, R., Sevilla, M. A., Boselli, C. & San Feliciano, A. (2006). Bioorg. Med. Chem. Lett. 16, 2786–2790.  PubMed Google Scholar
First citationPrabhu, M., Parthipan, K., Ramu, A., Chakkaravarthi, G. & Rajagopal, G. (2011). Acta Cryst. E67, o2716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRafi, U. M., Mahendiran, D., Haleel, A. K., Nankar, R. P., Doble, M. & Rahiman, A. K. (2016). New J. Chem. 40, 2451–2465.  CAS Google Scholar
First citationRafi, U. M., Mahendiran, D., Kumar, R. S. & Rahiman, A. K. (2019). Appl. Organom Chem. 33, e4946.  Google Scholar
First citationRiecke, K. & Witzel, I. (2020). Breast Care 15, 579–585.  PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSyed Abuthahir, S., NizamMohideen, M., Viswanathan, V., Abiraman, T. & Balasubramanian, S. (2019). Acta Cryst. E75, 655–661.  CSD CrossRef IUCr Journals Google Scholar
First citationUribe, M. L., Marrocco, I. & Yarden, Y. (2021). Cancers, 13, 2748.  PubMed Google Scholar
First citationWeinberg, F., Peckys, D. B. & de Jonge, N. (2020). Int. J. Mol. Sci. 21, 9008.  PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds