research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure analysis of substituted bi­cyclo­[3.3.1]nona­nones

crossmark logo

aOrganic Chemistry II, Saarland University, 66123 Saarbrücken, Germany, and bService Center X-ray diffraction, Saarland University, 66123 Saarbrücken, Germany
*Correspondence e-mail: julien.koenig@uni-saarland.de

Edited by S. P. Kelley, University of Missouri-Columbia, USA (Received 12 March 2025; accepted 11 April 2025; online 17 April 2025)

A set of novel bi­cyclo­[3.3.1]nona­nones, namely, 4-methoxybi­cyclo­[3.3.1]non-3-ene-2,9-dione, C10H12O3 (1), 4,9,9-tri­methoxybi­cyclo­[3.3.1]non-3-en-2-ol, C12H20O4 (2), 4-meth­oxy-6-methyl-1-(3-methyl­but-2-en-1-yl)-6-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]non-3-ene-2,9-dione, C22H32O3 (3) and 4-(tert-but­yl)-4-hy­droxy-2-meth­oxy-8-methyl-7-(3-methyl­but-2-en-1-yl)-8-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]non-2-en-9-one, C26H42O3 (4), were synthesized and structurally elucidated by NMR, HRMS and X-ray crystallography.

1. Chemical context

Polycyclic polyprenylated acyl­phloroglucinols (PPAPs) are a class of structurally com­plex natural products predominantly isolated from plants of the Hypericum and Garcinia genera. Characterized by a highly oxygenated polycyclic core densely decorated with various substituents, these com­pounds exhibit remarkable chemical diversity and biological activity (Yang et al., 2018[Yang, X., Grossman, R. B. & Xu, G. (2018). Chem. Rev. 118, 3508-3558.]). Notably, a single representative can already cover a wide range of different activities. The most important of these may include anti-inflammatory, anti­bacterial and anti­viral activity, as well as cytotoxicity, anti­tumour properties and use as an anti­depressant and neuroprotective agent. Hyperforin, the most prominent and best-studied PPAP to date, may serve as an example of the latter point in particular (Richard, 2014[Richard, J.-A. (2014). Eur. J. Org. Chem. 2014, 273-299.]). The pronounced bicyclic framework, common to most PPAPs and many other natural com­pounds (Roy et al., 2023[Roy, N., Das, R., Paira, R. & Paira, P. (2023). RSC Adv. 13, 22389-22480.]), makes them particularly com­pelling for research in natural product chemistry and medicinal applications.

[Scheme 1]

Several approaches have been explored to synthesize polycyclic polyprenylated acyl­phloroglucines (PPAPs), yet achieving regioselective and diastereoselective control during modification of the core structure can be challenging due to the mol­ecule's dense stereochemically rich framework. Con­se­quently, precursors and inter­mediates often require rigorous confirmation of stereochemistry through advanced techniques, such as single-crystal X-ray diffraction, prior to further derivatization. Recent advancements in these stereochemical control strategies have opened new pathways not only to natural PPAPs but also to synthetic analogues with enhanced or modified bioactivity profiles.

In our approach to PPAP synthesis (König et al., 2024[König, J. A., Morgenstern, B. & Jauch, J. (2024). Org. Lett. 26, 7083-7087.], 2025[König, J. A., Frey, S., Morgenstern, B. & Jauch, J. (2025). Org. Lett. 27, 2157-2162.]), we focused on designing inter­mediate structures with a high degree of flexibility in substitution patterns, particularly at bridgehead positions. This flexibility is essential for achieving the precise stereochemical and functional com­plexity required for both natural and synthetic PPAPs, ultimately enhancing the efficiency and specificity of our synthetic route.

The title com­pounds 14 were synthesized as model structures to investigate the reductive and substitutional reactivity of the β-alk­oxy enone system found in PPAP precursors.

2. Structural commentary

Crystals suitable for X-ray diffraction analysis were obtained for 14 and their mol­ecular structures are illustrated in Fig. 1[link]. Compound 1 crystallizes in the Sohnke space group P21 and was refined as an inversion twin. Compounds 2, 3 and 4 crystallize in centrosymmetric space groups (P[\overline{1}], P21/n and P21/c, respectively) and thus occur as enanti­omeric pairs in the crystal. Notably, although com­pound 2 crystallizes in P[\overline{1}], the asymmetric unit contains two crystallographically distinct mol­ecules (Z′ = 2), 2a and 2b, which are chemically mirror images of each other [Fig. 1[link](b)]. Both com­pounds are related to their respective crystallographically enanti­omeric partners through the inversion centre in the unit cell. The five mol­ecular com­pounds 1, 2a, 2b, 3 and 4 share a bi­cyclo­[3.3.1]nona­none core structure but differ structurally at positions X4, X9, R5, R7, R8eq and R8ax (Fig. 2[link]). In the crystal structures of com­pounds 2 and 4, the OH groups form a hy­dro­gen-bonded network.

[Figure 1]
Figure 1
The mol­ecular structures of com­pounds (a) 1, (b) 2a and 2b, (c) 3 and (d) 4, with the atom labelling and displacement ellipsoids drawn at the 50% probability level. The dashed line in part (b) indicates the inter­molecular hy­dro­gen bond between the enanti­omeric com­pounds 2a and 2 b.
[Figure 2]
Figure 2
Numbering scheme for ring I (C1/C8/C7/C6/C5/C9) and ring II (C1–C5/C9) for the basic bi­cyclo­[3.3.1]nona­none framework and its substituents X4, X9, R5, R7, R8ax and R8eq for the assignment of the mol­ecular com­pounds 1, 2, 3 and 4.

To describe the structural characteristics of these mol­ecules, puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) were analyzed (Table 1[link]). For consistent representation, all crystal structures were treated with a unified naming scheme for the bi­cyclo­[3.3.1]nonane core (Fig. 2[link]). The starting atom for rings I and II is C1, with the rotation direction chosen as C1 toward C8 for ring I and C1 toward C2 for ring II. Focus was placed on the folding of the two six-membered rings C1/C8/C7/C6/C5/C9 (I) and C1–C5/C9 (II). The influence of substituents of ring I on its expected chair conformation [6C1; Fig. 3[link](a)] was determined using the puckering parameters. With regard to ring II, it is known that the introduction of three sp2-hybridized atoms into the bi­cyclo­[3.3.1]nonane skeleton (X4 = O) leads to planarity of this part of the ring (Zefirov & Palyulin, 1991[Zefirov, N. S. & Palyulin, V. A. (1991). Topics in Stereochemistry, Vol. 20, edited by E. L. Eliel & S. H. Wilen, pp. 171-230. New York: John Wiley & Sons Inc.]). Consequently one would expect a Cs-symmetric envelope conformation (E9) for the six-membered ring in which there are five C atoms in the plane and C9 below [Fig. 3[link](b)]. However, replacing the sp2-hybridized C atom at position 4 of ring II with an sp3-hybridized C atom (X4 = OH/H) alters the folding of the respective ring, leading to a C2-symmetric half-chair conformation (5H9). In this conformation, four C atoms lie in the plane, with C5 positioned above and C9 below it [Fig. 3[link](c)].

Table 1
Puckering parameters Q (Å), Θ (°) and Φ (°) of the cyclo­hexane rings I and II of 1, 2a, 2b, 3 and 4

    Ring I     Ring II  
  Q (Å) Θ (°) Φ (°) Q (Å) Θ (°) Φ (°)
1 0.590 (2) 172.2 (2) 104.4 (1) 0.505 (2) 56.7 (2) 306.0 (2)
2a 0.591 (3) 169.6 (3) 140.4 (2) 0.534 (3) 48.3 (3) 284.1 (4)
2ba 0.593 (3) 170.7 (3) 139.1 (2) 0.541 (3) 47.8 (3) 286.9 (4)
3 0.592 (2) 171.6 (2) 115.6 (1) 0.501 (2) 58.2 (2) 310.9 (2)
4 0.592 (1) 170.2 (1) 120.6 (7) 0.489 (1) 52.4 (1) 298.5 (2)
Note: (a) for 2b (the enanti­omer of 2a), the tabulated values of Θ and Φ were calculated from the observed Θ′ and Φ′ using the equations Θ = 180° – Θ′ and Φ = 180° + Φ′.
[Figure 3]
Figure 3
Overview of the cyclo­hexane conformations (bold black bonds) and their symmetries as described in the text: (a) chair conformation (D3d), with four atoms in the plane and atom C6 above and C1 below (6C1); (b) envelope conformation (Cs) with atoms C1–C5 in the plane and C9 below (E9); (c) half-chair conformation (C2) with atoms C1–C4 in the plane and atom C5 above and C9 below (looking towards the twofold axis in the middle of bond C2—C3 and bond C5—C9).

The puckering parameters Q, Θ and Φ allow a com­plete description of the conformations of I and II in polar coordinates, with every possible conformation represented as a point on a sphere of radius Q, the polar angle Θ [angle with respect to the positive polar axis (the north pole) with 0 ≤ Θ ≤ 180°], and the azimuthal angle Φ (rotation around the equator with 0 ≤ Φ ≤ 360°) (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]; Giacovazzo et al., 2011[Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Ferraris, G., Gilli, G., Gilli, P., Zanotti, G. & Catti, M. (2011). Fundamentals of Crystallography, 3rd ed., ch. 8.3.3, p. 634ff. International Union of Crystallography and Oxford University Press.]). On this sphere, the ideal chair conformation (C) (D3d) is located at the poles with Θ = 0° and Θ = 180° (Φ undefined). The two higher-energy states, half-chair (H) (C2) and envelope (E) (Cs), are situated towards the equator at tan Θ = ±[\sqrt 3/2] (Θ = 50.8°) and tan Θ = ±[\sqrt 2] (Θ = 54.7°), and inter­convert via pseudorotation [Φ = n × 60° + 30° for (H) and Φ = n × 60° for (E)]. Table 1[link] summarizes the puckering parameters for rings I and II. In the five investigated structures 1, 2a, 2b, 3 and 4 of the bi­cyclo­[3.3.1]nonane core, all conformations of the six-membered rings I are very close to the ideal chair conformation (6C1), with very tightly grouped Θ values (169.6 < Θ < 172.2°). In accordance with a previous report (Zefirov & Palyulin, 1991[Zefirov, N. S. & Palyulin, V. A. (1991). Topics in Stereochemistry, Vol. 20, edited by E. L. Eliel & S. H. Wilen, pp. 171-230. New York: John Wiley & Sons Inc.]), the influence of substituents R5, R7, R8eq and R8ax, as well as the difference between the keto group at C9 in com­pounds 1, 3 and 4 com­pared to the dimeth­oxy group in 2, appears to have no significant impact on the 6C1 conformation of ring I. Even bulky substituents in the axial position at C7, for example, OCH2Ph [Inouye et al., 1987[Inouye, Y., Kojima, T. & Kakisawa, H. (1987). Acta Cryst. C43, 1599-1601.]; Q = 0.561 (3) Å, Θ = 165.0 (3) and Φ = 118.1 (13)°] or CH2CHC(CH3)2 [Biber et al., 2011[Biber, N., Möws, K. & Plietker, B. (2011). Nat. Chem. 3, 938-942.]; Q = 0.560 Å, Θ = 170.8 (5) and Φ = 128 (3)°] leave the six-membered ring I in a nearly ideal chair conformation with a small distortion towards 7E.

A closer examination of the puckering parameters for ring II reveals a slightly different picture. Compounds 1 and 3 with X4 = O adopt a nearly ideal envelope conformation (E9) (1: Θ = 56.7° and Φ = 306.0°; 3: Θ = 58.2° and Φ = 310.9°), with C9 lying out of the plane of the ring and a mirror plane passing through atoms C3 and C9 [Fig. 3[link](b)]. When the C4 keto group is reduced to an alcohol (sp2sp3), the ring exhibits greater flexibility. In this case, com­pound 2 adopts a conformation close to the half-chair form (5H9) (2a: Θ = 48.3° and Φ = 284.1°; 2b: Θ = 47.8° and Φ = 286.9°), with a twofold axis passing through the bonds C2—C3 and C5—C9 [Fig. 3[link](c)]. In contrast, com­pound 4 is better described as a linear combination of E9 and 5H9 (Θ = 52.4° and Φ = 298.5°).

3. Supra­molecular features

Compounds 2 and 4 feature an OH group at C4, with the H atom capable of acting as a donor in C—H⋯O hy­dro­gen bonding (Tables 2[link] and 3[link]). In the crystal structure of 2, there are two crystallographically independent mol­ecules in the asymmetric unit, which are chemically enanti­omers of each other. 2a and 2b are inter­connected via hy­dro­gen bonds [Fig. 4[link](a)]. 2a forms a hy­dro­gen bond perpendicular to the a axis and directed along the b axis, with H2O as the donor and O8 in 2b as the acceptor [O2—H2O⋯O8 = 2.858 (3) Å and 176 (3)°]. Respectively, 2b forms another hy­dro­gen bond nearly parallel to the first (angle between lines O2⋯O8 and O6⋯O4i; symmetry code: (i) x + 1, y, z: 13.67 (8)°], with H6O as the donor and O4 in 2a as the acceptor [O6—H6O⋯O4i; 2.863 (3)Å and 171 (3)°]. The distances between the strands are approximately equidistant [H6O⋯H2O = 3.82 (4) Å and H2Oi⋯H6O = 3.92 (4) Å]. In both 2a and 2b, six atoms are involved in the bonding resulting in an infinite C(6) chain of hy­dro­gen-bonded mol­ecules along the a direction (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1533-1635.]). The crystal structure of 4 possesses a crystallographic glide mirror plane, which transforms the hy­dro­gen bonds between 4 with H2 as donor and its enanti­omer with O3ii as acceptor [symmetry code: (ii) x, −y + [{1\over 2}], z − [{1\over 2}]] into one another [Fig. 4[link](b)]. In this case, the hy­dro­gen bonds are slightly tilted from the glide-plane in the c direction [angle between the line O3ii⋯O2 and the c-glide plane = 12.40 (4)°]. Here too an infinite C(6) chain forms. The symmetry class of this Frieze group is p11g (No. 5 in Inter­national Tables for Crystallography, 2010[International Tables for Crystallography (2010). Vol. E, Subperiodic groups, edited by V. Kopsky & D. B. Litvin, second online edition, https://doi.org/10.1107/97809553602060000001.]).

Table 2
Hydrogen-bond geometry (Å, °) for 2[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6O⋯O4i 0.84 (1) 2.03 (1) 2.863 (3) 172 (3)
O2—H2O⋯O8 0.84 (1) 2.02 (1) 2.858 (3) 176 (3)
Symmetry code: (i) [x+1, y, z].

Table 3
Hydrogen-bond geometry (Å, °) for 4[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3i 0.85 (1) 2.06 (1) 2.8736 (11) 162 (2)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].
[Figure 4]
Figure 4
Hydrogen-bonding network of 2 and 4. (a) Hydrogen bonds (blue dashed lines) perpendicular to the a direction between 2a and 2b via O2—H20 and O8, and O6—H6O and O4i [symmetry code: (i) x + 1, y, z]. The formed C(6) chain is aligned in a direction. (b) The hy­dro­gen bonds (blue dashed lines) in the c direction via O2—H2 and O3ii [symmetry code: (ii) x, −y + [{1\over 2}], z − [{1\over 2}] and via O2iii—H2iii and O3 [symmetry code: (iii) x, −y + [{1\over 2}], z + [{1\over 2}]], are deflected by 12.40 (4)° against the c-glide plane (black dashed line). The formed C(6) chain has the symmetry of the Frieze group p11g.

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.45, November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) indicated 441, 165 and 15 com­pounds incorporating a bi­cyclo­[3.3.1]non-2-ene, bi­cyclo­[3.3.1]non-2-en-9-one and 4-methoxybi­cyclo­[3.3.1]non-3-ene-2,9-dione motif, respectively.

5. Synthesis and crystallization

5.1. 4-Methoxybi­cyclo­[3.3.1]non-3-ene-2,9-dione (1)

The reaction was carried out in a round-bottomed flask under ambient conditions. To a solution of 4-hy­droxybi­cyclo­[3.3.1]non-3-ene-2,9-dione (97.9 mg, 0.59 mmol; Shishido et al., 1986[Shishido, K., Hiroya, K., Ueno, Y., Fukumoto, K., Kametani, T. & Honda, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 829-836.]; Schönwälder et al., 1984[Schönwälder, K., Kollat, P., Stezowski, J. J. & Effenberger, F. (1984). Chem. Ber. 117, 3280-3296.]) in 6 ml of acetone was added K2CO3 (333 mg, 2.41 mmol) and dimethyl sulfate (70 µl, 0.74 mmol). The suspension was refluxed for 2 h. The reaction mixture was allowed to reach room tem­per­a­ture and treated with H2O. The layers were separated and the aqueous layer was extracted thrice with Et2O. The combined organic extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Purification of the residue by flash column chromatography (nPen/Et2O = 1:2) afforded 1 (yield: 84.2 mg, 0.47 mmol, 79%; m.p. 365.1–366.4 K) as a colourless solid.

1H NMR (CDCl3, 400 MHz): δ 5.79 (s, 1H), 3.79 (s, 3H), 3.21–3.19 (m, 2H), 2.22–2.16 (m, 1H), 2.14–2.07 (m, 1H), 2.00–1.86 (m, 2H), 1.79–1.60 (m, 2H); 13C NMR (CDCl3, 100 MHz): δ 207.4, 195.6, 175.6, 105.9, 61.3, 56.9, 53.3, 32.6, 30.5, 17.5.

HRMS (ESI) m/z calculated for C10H12O3+ [M + H]+: 181.08592, found: 181.08547.

5.2. 4,9,9-Tri­methoxybi­cyclo­[3.3.1]non-3-en-2-ol (2)

This com­pound was synthesized over two steps.

The reaction was carried out in a flame-dried round-bottomed flask under inert conditions. To a solution of 4-hydroxybi­cyclo­[3.3.1]non-3-ene-2,9-dione (504 mg, 3.02 mmol; Shishido et al., 1986[Shishido, K., Hiroya, K., Ueno, Y., Fukumoto, K., Kametani, T. & Honda, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 829-836.]; Schönwälder et al., 1984[Schönwälder, K., Kollat, P., Stezowski, J. J. & Effenberger, F. (1984). Chem. Ber. 117, 3280-3296.]) in 30 ml of dry methanol was added PTSA (117 mg, 0.62 mmol). The reaction mixture was refluxed overnight. The reaction mixture was allowed to reach room tem­per­a­ture and concentrated in vacuo. Purification of the residue by flash column chromatography (nPen/Et2O = 1:1) afforded 4,9,9-tri­methoxybi­cyclo­[3.3.1]non-3-en-2-one (yield: 593 mg, 2.62 mmol, 87%) as a colourless oil that solidifies in the cold.

1H NMR (CDCl3, 500 MHz): δ 5.47 (s, 1H), 3.64 (s, 3H), 3.12 (s, 3H), 3.05 (s, 3H), 2.74 (q, J = 3.2 Hz, 1H), 2.68–2.66 (m, 1H), 1.76 (tdd, J = 13.3, 5.1, 3.9 Hz, 1H), 1.66 (tdd, J = 13.6, 5.4, 4.4 Hz, 1H), 1.55 (dddt, J = 15.0, 4.7, 3.1, 1.6 Hz, 1H), 1.49 (dddt, J = 13.5, 5.0, 3.2, 1.6 Hz, 1H), 1.42–1.24 (m, 2H); 13C NMR (CDCl3, 125 MHz): δ 199.7, 176.6, 103.7, 100.7, 56.1, 48.8, 47.7, 46.8, 42.1, 24.1, 22.7, 16.4.

HRMS (ESI) m/z calculated for C12H19O4+ [M + H]+: 227.12779, found: 227.12863.

The reaction was carried out in a flame-dried round-bottomed flask under inert conditions. To a solution of 4,9,9-tri­methoxybi­cyclo­[3.3.1]non-3-en-2-one (704 mg, 3.11 mmol) in 60 ml of dry THF was added dropwise DIBAL-H (6.2 ml, 6.20 mmol, 1.0 M in hexa­ne) at 195 K. After stirring for 2 h, the reaction mixture was warmed to 233 K and then to 273 K. The reaction mixture was treated with an aqueous solution of potassium sodium tartrate. The layers were separated, and the aqueous layer was extracted thrice with Et2O. The combined organic extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Purification of the residue by flash column chromatography (nPen/Et2O = 1:1) afforded 2 (yield: 485 mg, 2.12 mmol, 69%; m.p. 336.8–337.4 K) as a colourless solid.

1H NMR (CDCl3, 400 MHz): δ 4.81 (d, J = 2.8 Hz, 1H), 4.57–4.52 (m, 1H), 3.54 (s, 3H), 3.19 (s, 3H), 3.16 (s, 3H), 2.52 (q, J = 3.0 Hz, 1H), 2.34–2.30 (m, 1H), 1.92–1.85 (m, 1H), 1.73 (ttd, J = 12.6, 4.4, 1.1 Hz, 1H), 1.61–1.31 (m, 5H); 13C NMR (CDCl3, 100 MHz): δ 155.5, 101.7, 98.7, 68.6, 54.7, 47.6, 46.8, 40.5, 38.4, 24.7, 21.8, 15.75.

HRMS (ESI) m/z calculated for C12H19O4 [M – H]: 227.12888,found: 227.12864.

5.3. 4-Meth­oxy-6-methyl-1-(3-methyl­but-2-en-1-yl)-6-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]non-3-ene-2,9-dione (3)

The reaction was carried out in a flame-dried round-bottomed flask under inert conditions. To a solution of 4-meth­oxy-6-methyl-6-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]non-3-ene-2,9-dione (55.4 mg, 0.20 mmol; König et al., 2024[König, J. A., Morgenstern, B. & Jauch, J. (2024). Org. Lett. 26, 7083-7087.]) and prenyl bromide (1.1 ml, 9.52 mmol) in 2.2 ml dry THF was added over 3 min a freshly prepared solution of LDA (1.6 ml, 0.40 mmol) at 173 K. The now yellow solution was allowed to reach 195 K over 30 min and then treated with H2O. The layers were separated, and the aqueous layer was extracted thrice with Et2O. The combined organic extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Purification of the residue by flash column chromatography (nPen/Et2O = 3:1→1:1) afforded 3 (yield: 9.6 mg, 27.9 µmol, 14%; m.p. 341.9–342.2 K) as a colourless solid.

1H NMR (CDCl3, 400 MHz): δ 5.71 (s, 1H), 5.01 (tsept, J = 7.0, 1.2 Hz, 1H), 4.97 (tsept, J = 7.0, 1.2 Hz, 1H), 3.74 (s, 3H), 2.99 (s, 1H), 2.42 (d, J = 6.8 Hz, 2H), 2.08 (tt, J = 12.5, 6.1 Hz, 1H), 1.90 (tt, J = 12.7, 6.6 Hz, 1H), 1.82–1.78 (m, 2H), 1.76–1.69 (m, 1H), 1.68 (s, 3H), 1.66 (s, 3H), 1.63 (s, 3H), 1.60 (s, 3H), 1.38–1.32 (m, 1H), 1.22 (td, J = 11.3, 5.1 Hz, 2H), 1.00 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 207.9, 197.8, 174.9, 133.8, 131.6, 124.0, 119.6, 106.0, 63.1, 62.6, 56.4, 42.4, 41.7, 34.5, 31.2, 29.3, 25.9, 25.7, 21.9, 21.3, 18.0, 17.5.

HRMS (ESI) m/z calculated for C22H33O3+ [M + H]+: 345.24242, found: 345.24241.

5.4. 4-tert-Butyl-4-hy­droxy-2-meth­oxy-8-methyl-7-(3-methyl­but-2-en-1-yl)-8-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]non-2-en-9-one (4)

The reaction was carried out in a flame-dried round-bottomed flask under inert conditions. To a solution of 4-meth­oxy-6-methyl-7-(3-methyl­but-2-en-1-yl)-6-(4-methyl­pent-3-en-1-yl)bi­cyclo­[3.3.1]-non-3-ene-2,9-dione (17.4 mg, 50.5 µmol; König et al., 2025[König, J. A., Frey, S., Morgenstern, B. & Jauch, J. (2025). Org. Lett. 27, 2157-2162.]) in 5 ml of dry THF was added dropwise t-BuLi (53 µl, 101 µmol) at 168 K. The reaction mixture was stirred for 90 min and then treated with a saturated aqueous solution of NH4Cl. The layers were separated, and the aqueous layer was extracted thrice with Et2O. The combined organic extracts were dried over anhydrous MgSO4 and concentrated in vacuo. Purification of the residue by flash column chromatography (nPen/Et2O = 10:1) afforded 4 (yield: 19.0 mg, 47.3 µmol, 94%; m.p. 382.7.1–384.3 K) as a colourless solid.

1H NMR (CDCl3, 400 MHz): δ 5.07–5.01 (m, 3H), 3.56 (s, 3H), 2.83 (bs, 1H), 2.70 (s, 1H), 2.29 (ddd, J = 14.3, 3.9 Hz, 2.7 Hz, 1H), 2.23–2.16 (m, 1H), 2.10 (dd, J = 13.7, 4.9 Hz, 1H), 1.85–1.77 (m, 1H), 1.68 (s, 6H), 1.65–1.62 (m, 1H), 1.61 (s, 3H), 1.57 (s, 3H), 1.54–1.39 (m, 3H), 1.22–1.15 (m, 1H), 0.92 (s, 9H), 0.84 (s, 3H); 13C NMR (CDCl3, 100 MHz): δ 212.0, 155.4, 132.7, 131.0, 124.9, 123.1, 101.6, 77.5, 58.6, 54.6, 52.2, 46.2, 41.2, 39.8, 38.5, 32.5, 28.2, 25.8, 25.7, 25.3, 21.7, 17.9, 17.5, 17.3.

HRMS (ESI) m/z calculated for C26H41O3 [M – H]: 401.30612, found: 401.30503.

All com­pounds were crystallized after flash chromatography by dissolving 10 mg to 30 mg of the respective purified com­pound in a 10 ml round-bottomed flask with 1–2 ml DCM. The flasks were topped with a septum and a cannula to allow slow solvent evaporation. All solutions were left undisturbed at room tem­per­a­ture for two to four weeks to yield colourless to pale yellow crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. All H atoms were treated as recommended by Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). In Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.]). A riding model was used for the C-bonded H atoms, with Uiso(H) = 1.5Ueq(meth­yl C) and 1.2Ueq(C) for other C-bound H atoms. The positional parameters of the O-bonded H atoms of 2a, 2b and 4 were refined using isotropic displacement parameters which were set at 1.5 times the Ueq value of the parent atom. In addition, restraints of 0.84 (1) Å were used for the O—H bond lengths. The crystal structure of com­pound 1 was refined as an inversion twin (BASF = 0.5).

Table 4
Experimental details

Experiments were carried out with Mo Kα radiation using a Bruker D8 VENTURE PHOTON II. Absorption was corrected for by multi-scan methods (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.]).

  (1) (2) (3) (4)
Crystal data
Chemical formula C10H12O3 C12H20O4 C22H32O3 C26H42O3
Mr 180.20 228.28 344.47 402.59
Crystal system, space group Monoclinic, P21 Triclinic, P[\overline{1}] Monoclinic, P21/n Monoclinic, P21/c
Temperature (K) 153 152 133 143
a, b, c (Å) 6.4819 (4), 7.4766 (5), 9.0627 (5) 7.7330 (15), 10.976 (2), 13.874 (3) 14.1871 (6), 6.3306 (2), 22.4159 (8) 15.1165 (5), 13.9068 (4), 12.8150 (4)
α, β, γ (°) 90, 99.546 (2), 90 101.984 (5), 92.032 (5), 90.293 (5) 90, 101.702 (1), 90 90, 113.218 (1), 90
V3) 433.12 (5) 1151.2 (4) 1971.39 (13) 2475.81 (13)
Z 2 4 4 4
μ (mm−1) 0.10 0.10 0.08 0.07
Crystal size (mm) 0.38 × 0.08 × 0.06 0.28 × 0.24 × 0.04 0.18 × 0.14 × 0.04 0.26 × 0.16 × 0.08
 
Data collection
Tmin, Tmax 0.699, 0.746 0.578, 0.746 0.687, 0.746 0.704, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8258, 2031, 1948 8885, 4662, 2677 28995, 4348, 3271 87917, 5484, 4697
Rint 0.028 0.055 0.067 0.048
(sin θ/λ)max−1) 0.658 0.625 0.642 0.642
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.074, 1.08 0.057, 0.139, 0.98 0.046, 0.116, 1.05 0.040, 0.108, 1.05
No. of reflections 2031 4662 4348 5484
No. of parameters 119 301 232 274
No. of restraints 1 2 0 1
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.15 0.24, −0.24 0.28, −0.22 0.29, −0.20
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.5
Computer programs: APEX4 and SAINT (Bruker, 2021[Bruker (2021). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2018 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ShelXle (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]), DIAMOND (Brandenburg, 2020[Brandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

4-Methoxybicyclo[3.3.1]non-3-ene-2,9-dione (1) top
Crystal data top
C10H12O3F(000) = 192
Mr = 180.20Dx = 1.382 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 6.4819 (4) ÅCell parameters from 6064 reflections
b = 7.4766 (5) Åθ = 2.3–27.9°
c = 9.0627 (5) ŵ = 0.10 mm1
β = 99.546 (2)°T = 153 K
V = 433.12 (5) Å3Rod, colourless
Z = 20.38 × 0.08 × 0.06 mm
Data collection top
Bruker D8 VENTURE PHOTON II
diffractometer
1948 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tubeRint = 0.028
φ and ω scansθmax = 27.9°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 87
Tmin = 0.699, Tmax = 0.746k = 99
8258 measured reflectionsl = 1111
2031 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0364P)2 + 0.0624P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2031 reflectionsΔρmax = 0.18 e Å3
119 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Refined as an inversion twin
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.5
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6356 (2)0.20219 (18)0.73144 (16)0.0358 (3)
O20.80123 (19)0.73388 (16)0.49209 (12)0.0255 (3)
O30.2740 (2)0.7098 (2)0.73484 (15)0.0345 (3)
C10.6305 (3)0.7548 (2)0.70026 (17)0.0214 (3)
H10.5781270.8686850.6495260.026*
C20.7203 (2)0.6369 (2)0.59258 (16)0.0207 (3)
C100.8884 (3)0.6368 (3)0.3793 (2)0.0318 (4)
H10A0.9300160.7213050.3069640.048*
H10B0.7833210.5540930.3276030.048*
H10C1.0111250.5691390.4268130.048*
C30.7170 (3)0.4564 (2)0.59890 (18)0.0241 (3)
H30.7739870.3886290.5266230.029*
C40.6278 (3)0.3647 (2)0.71463 (18)0.0242 (3)
C50.5211 (3)0.4780 (2)0.82067 (18)0.0240 (3)
H50.3976530.4120870.8465040.029*
C60.6779 (3)0.5196 (2)0.96573 (19)0.0285 (4)
H6A0.6048370.5864131.0360720.034*
H6B0.7294280.4059191.0144380.034*
C70.8636 (3)0.6296 (2)0.93294 (18)0.0277 (4)
H7A0.9510320.6651241.0285980.033*
H7B0.9505430.5548290.8771270.033*
C80.7938 (3)0.7970 (2)0.84179 (19)0.0252 (4)
H8A0.9174810.8544690.8109330.030*
H8B0.7322890.8827570.9054920.030*
C90.4511 (3)0.6540 (2)0.74873 (17)0.0224 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (8)0.0189 (6)0.0482 (8)0.0001 (6)0.0112 (6)0.0026 (5)
O20.0288 (7)0.0263 (6)0.0225 (5)0.0041 (5)0.0078 (4)0.0002 (4)
O30.0259 (7)0.0372 (7)0.0423 (7)0.0078 (6)0.0109 (5)0.0059 (6)
C10.0235 (8)0.0187 (8)0.0219 (7)0.0019 (6)0.0033 (6)0.0010 (6)
C20.0190 (7)0.0237 (7)0.0189 (6)0.0012 (6)0.0015 (6)0.0008 (6)
C100.0338 (10)0.0371 (9)0.0274 (8)0.0049 (8)0.0139 (7)0.0061 (8)
C30.0247 (8)0.0227 (8)0.0250 (8)0.0005 (6)0.0041 (6)0.0039 (6)
C40.0222 (9)0.0205 (8)0.0291 (8)0.0004 (6)0.0020 (6)0.0003 (6)
C50.0236 (9)0.0231 (8)0.0264 (8)0.0017 (6)0.0070 (6)0.0041 (6)
C60.0348 (10)0.0282 (9)0.0227 (7)0.0008 (7)0.0050 (6)0.0056 (6)
C70.0270 (9)0.0315 (9)0.0230 (7)0.0001 (7)0.0007 (6)0.0008 (7)
C80.0283 (9)0.0235 (8)0.0237 (8)0.0037 (7)0.0042 (6)0.0030 (6)
C90.0236 (8)0.0225 (7)0.0219 (7)0.0021 (6)0.0057 (6)0.0012 (6)
Geometric parameters (Å, º) top
O1—C41.225 (2)C3—H30.9500
O2—C21.3377 (19)C4—C51.529 (2)
O2—C101.443 (2)C5—C91.505 (2)
O3—C91.208 (2)C5—C61.554 (2)
C1—C21.502 (2)C5—H51.0000
C1—C91.510 (2)C6—C71.527 (3)
C1—C81.554 (2)C6—H6A0.9900
C1—H11.0000C6—H6B0.9900
C2—C31.351 (2)C7—C81.526 (2)
C10—H10A0.9800C7—H7A0.9900
C10—H10B0.9800C7—H7B0.9900
C10—H10C0.9800C8—H8A0.9900
C3—C41.451 (2)C8—H8B0.9900
C2—O2—C10116.97 (14)C9—C5—H5109.7
C2—C1—C9107.21 (13)C4—C5—H5109.7
C2—C1—C8111.78 (13)C6—C5—H5109.7
C9—C1—C8108.24 (12)C7—C6—C5111.67 (13)
C2—C1—H1109.8C7—C6—H6A109.3
C9—C1—H1109.8C5—C6—H6A109.3
C8—C1—H1109.8C7—C6—H6B109.3
O2—C2—C3125.52 (15)C5—C6—H6B109.3
O2—C2—C1111.23 (14)H6A—C6—H6B107.9
C3—C2—C1123.25 (14)C8—C7—C6111.97 (15)
O2—C10—H10A109.5C8—C7—H7A109.2
O2—C10—H10B109.5C6—C7—H7A109.2
H10A—C10—H10B109.5C8—C7—H7B109.2
O2—C10—H10C109.5C6—C7—H7B109.2
H10A—C10—H10C109.5H7A—C7—H7B107.9
H10B—C10—H10C109.5C7—C8—C1112.38 (14)
C2—C3—C4120.89 (15)C7—C8—H8A109.1
C2—C3—H3119.6C1—C8—H8A109.1
C4—C3—H3119.6C7—C8—H8B109.1
O1—C4—C3123.06 (16)C1—C8—H8B109.1
O1—C4—C5119.00 (15)H8A—C8—H8B107.9
C3—C4—C5117.94 (14)O3—C9—C5124.04 (16)
C9—C5—C4110.31 (13)O3—C9—C1124.16 (15)
C9—C5—C6107.41 (13)C5—C9—C1111.78 (14)
C4—C5—C6110.00 (14)
C10—O2—C2—C31.4 (2)C9—C5—C6—C757.61 (19)
C10—O2—C2—C1178.52 (14)C4—C5—C6—C762.47 (18)
C9—C1—C2—O2149.74 (13)C5—C6—C7—C852.43 (19)
C8—C1—C2—O291.79 (15)C6—C7—C8—C150.79 (18)
C9—C1—C2—C330.1 (2)C2—C1—C8—C763.52 (18)
C8—C1—C2—C388.33 (19)C9—C1—C8—C754.34 (18)
O2—C2—C3—C4179.00 (15)C4—C5—C9—O3125.58 (18)
C1—C2—C3—C41.1 (3)C6—C5—C9—O3114.54 (18)
C2—C3—C4—O1174.35 (17)C4—C5—C9—C156.12 (18)
C2—C3—C4—C55.1 (2)C6—C5—C9—C163.76 (17)
O1—C4—C5—C9157.28 (16)C2—C1—C9—O3123.17 (17)
C3—C4—C5—C923.2 (2)C8—C1—C9—O3116.10 (18)
O1—C4—C5—C684.41 (19)C2—C1—C9—C558.54 (16)
C3—C4—C5—C695.07 (17)C8—C1—C9—C562.20 (17)
4,9,9-Trimethoxybicyclo[3.3.1]non-3-en-2-ol (2) top
Crystal data top
C12H20O4Z = 4
Mr = 228.28F(000) = 496
Triclinic, P1Dx = 1.317 Mg m3
a = 7.7330 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.976 (2) ÅCell parameters from 1376 reflections
c = 13.874 (3) Åθ = 3.0–25.0°
α = 101.984 (5)°µ = 0.10 mm1
β = 92.032 (5)°T = 152 K
γ = 90.293 (5)°Plate, colourless
V = 1151.2 (4) Å30.28 × 0.24 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON II
diffractometer
2677 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tubeRint = 0.055
φ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.578, Tmax = 0.746k = 1313
8885 measured reflectionsl = 1717
4662 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: mixed
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0513P)2]
where P = (Fo2 + 2Fc2)/3
4662 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2250 (2)0.37070 (16)0.13978 (14)0.0244 (5)
O20.7476 (2)0.61301 (17)0.27191 (16)0.0288 (5)
H2O0.741 (4)0.6909 (10)0.278 (2)0.043*
O10.5543 (2)0.27872 (16)0.40336 (14)0.0248 (5)
O40.2372 (2)0.50789 (16)0.29210 (14)0.0219 (4)
O51.0600 (2)1.16441 (16)0.39368 (14)0.0252 (5)
O61.2486 (2)0.75906 (17)0.26446 (16)0.0311 (5)
H6O1.234 (4)0.6854 (14)0.271 (2)0.047*
O70.7194 (2)0.92784 (17)0.13891 (14)0.0252 (5)
O80.7424 (2)0.87754 (16)0.29317 (13)0.0208 (4)
C10.4127 (3)0.3167 (2)0.2597 (2)0.0207 (6)
H10.3177590.2673730.2812790.025*
C20.5345 (3)0.3652 (2)0.3458 (2)0.0206 (6)
C30.6152 (3)0.4749 (2)0.3592 (2)0.0211 (6)
H30.6955480.4980540.4134560.025*
C40.5835 (3)0.5635 (2)0.2916 (2)0.0210 (6)
H40.5144290.6342470.3277060.025*
C50.4824 (3)0.5061 (2)0.1964 (2)0.0213 (6)
H50.4306210.5753620.1686910.026*
C60.5910 (3)0.4263 (3)0.1161 (2)0.0263 (7)
H6A0.5200910.4061740.0538920.032*
H6B0.6920260.4764130.1044370.032*
C70.6560 (3)0.3048 (3)0.1411 (2)0.0276 (7)
H7A0.7493920.3238410.1928270.033*
H7B0.7050500.2524000.0817770.033*
C80.5107 (3)0.2326 (2)0.1773 (2)0.0244 (7)
H8A0.5602930.1616080.2022630.029*
H8B0.4289240.1987700.1215220.029*
C90.3347 (3)0.4262 (2)0.2210 (2)0.0200 (6)
C100.1260 (4)0.4544 (3)0.0941 (2)0.0324 (7)
H10A0.0547070.4066780.0391440.049*
H10B0.2043740.5102360.0692240.049*
H10C0.0510030.5036950.1425260.049*
C110.0995 (3)0.4525 (3)0.3350 (2)0.0306 (7)
H11A0.0193170.5173200.3646980.046*
H11B0.1472370.4110310.3859850.046*
H11C0.0374870.3912780.2838350.046*
C120.6804 (4)0.3079 (3)0.4830 (2)0.0311 (7)
H12A0.6827470.2408400.5198790.047*
H12B0.6500510.3862270.5269620.047*
H12C0.7946700.3167000.4566750.047*
C130.9185 (3)1.0473 (2)0.2509 (2)0.0212 (6)
H130.8262481.1099380.2713110.025*
C141.0410 (3)1.0473 (2)0.3369 (2)0.0203 (6)
C151.1210 (3)0.9454 (2)0.3512 (2)0.0200 (6)
H151.2039100.9526860.4043360.024*
C161.0862 (3)0.8197 (2)0.2871 (2)0.0225 (6)
H161.0198480.7695280.3260940.027*
C170.9785 (3)0.8221 (2)0.1917 (2)0.0214 (6)
H170.9230650.7382040.1682040.026*
C181.0814 (3)0.8527 (2)0.1075 (2)0.0268 (7)
H18A1.0055500.8394720.0471370.032*
H18B1.1786750.7939390.0944850.032*
C191.1541 (3)0.9861 (3)0.1278 (2)0.0281 (7)
H19A1.2497990.9946330.1781690.034*
H19B1.2015101.0035980.0666300.034*
C201.0141 (3)1.0806 (3)0.1641 (2)0.0264 (7)
H20A0.9297141.0832640.1092100.032*
H20B1.0676921.1644580.1851940.032*
C210.8344 (3)0.9177 (2)0.2176 (2)0.0198 (6)
C220.6196 (4)0.8179 (3)0.0962 (2)0.0347 (8)
H22A0.5316240.8382930.0496070.052*
H22B0.5630150.7865490.1483930.052*
H22C0.6961860.7540210.0612960.052*
C230.6060 (3)0.9566 (3)0.3360 (2)0.0288 (7)
H23A0.5352460.9120430.3750690.043*
H23B0.5334850.9799480.2835210.043*
H23C0.6560281.0318660.3787400.043*
C241.1744 (4)1.1781 (3)0.4781 (2)0.0305 (7)
H24A1.1722381.2642780.5153190.046*
H24B1.2922451.1574270.4570400.046*
H24C1.1374821.1218330.5200740.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0254 (10)0.0188 (10)0.0306 (12)0.0042 (7)0.0063 (9)0.0099 (9)
O20.0218 (10)0.0161 (10)0.0522 (15)0.0008 (8)0.0037 (9)0.0149 (10)
O10.0323 (10)0.0170 (10)0.0288 (12)0.0030 (8)0.0047 (9)0.0141 (9)
O40.0210 (9)0.0145 (10)0.0318 (12)0.0038 (7)0.0054 (8)0.0081 (8)
O50.0311 (10)0.0146 (10)0.0297 (12)0.0001 (8)0.0046 (9)0.0052 (9)
O60.0242 (10)0.0181 (11)0.0546 (15)0.0102 (8)0.0080 (10)0.0145 (10)
O70.0263 (10)0.0212 (11)0.0296 (12)0.0021 (8)0.0062 (9)0.0102 (9)
O80.0200 (9)0.0168 (10)0.0278 (12)0.0046 (7)0.0033 (8)0.0091 (8)
C10.0223 (13)0.0135 (14)0.0289 (17)0.0014 (10)0.0007 (12)0.0106 (12)
C20.0225 (13)0.0151 (14)0.0271 (17)0.0069 (10)0.0043 (12)0.0105 (12)
C30.0203 (13)0.0194 (15)0.0260 (17)0.0031 (11)0.0013 (12)0.0102 (12)
C40.0192 (13)0.0148 (14)0.0310 (17)0.0022 (10)0.0051 (12)0.0086 (12)
C50.0210 (13)0.0144 (14)0.0320 (17)0.0066 (10)0.0036 (12)0.0119 (12)
C60.0291 (15)0.0262 (16)0.0268 (17)0.0032 (12)0.0048 (13)0.0120 (14)
C70.0271 (15)0.0246 (16)0.0310 (18)0.0077 (12)0.0030 (13)0.0047 (14)
C80.0290 (15)0.0155 (14)0.0289 (18)0.0075 (11)0.0036 (13)0.0058 (13)
C90.0182 (13)0.0169 (14)0.0259 (16)0.0028 (10)0.0005 (12)0.0071 (12)
C100.0336 (16)0.0265 (17)0.040 (2)0.0082 (13)0.0095 (14)0.0160 (15)
C110.0243 (14)0.0288 (17)0.043 (2)0.0037 (12)0.0103 (14)0.0154 (15)
C120.0379 (17)0.0286 (17)0.0294 (18)0.0076 (13)0.0025 (14)0.0126 (14)
C130.0237 (13)0.0108 (13)0.0313 (17)0.0035 (10)0.0031 (12)0.0100 (12)
C140.0224 (13)0.0147 (14)0.0248 (16)0.0008 (10)0.0024 (12)0.0062 (12)
C150.0194 (13)0.0186 (14)0.0236 (16)0.0027 (10)0.0010 (11)0.0083 (12)
C160.0179 (13)0.0152 (14)0.0380 (18)0.0080 (10)0.0057 (12)0.0127 (13)
C170.0213 (13)0.0129 (13)0.0310 (17)0.0015 (10)0.0012 (12)0.0071 (12)
C180.0304 (15)0.0226 (16)0.0283 (18)0.0014 (12)0.0082 (13)0.0063 (13)
C190.0311 (15)0.0286 (17)0.0273 (18)0.0036 (12)0.0046 (13)0.0118 (14)
C200.0258 (14)0.0260 (16)0.0309 (18)0.0042 (12)0.0027 (13)0.0150 (14)
C210.0201 (13)0.0166 (14)0.0242 (16)0.0006 (10)0.0015 (12)0.0084 (12)
C220.0385 (17)0.0254 (17)0.039 (2)0.0050 (13)0.0139 (15)0.0060 (15)
C230.0255 (15)0.0244 (16)0.040 (2)0.0108 (11)0.0106 (13)0.0121 (14)
C240.0343 (16)0.0291 (17)0.0285 (18)0.0054 (13)0.0017 (14)0.0079 (14)
Geometric parameters (Å, º) top
O3—C91.415 (3)C10—H10B0.9800
O3—C101.431 (3)C10—H10C0.9800
O2—C41.435 (3)C11—H11A0.9800
O2—H2O0.843 (10)C11—H11B0.9800
O1—C21.367 (3)C11—H11C0.9800
O1—C121.431 (3)C12—H12A0.9800
O4—C91.427 (3)C12—H12B0.9800
O4—C111.431 (3)C12—H12C0.9800
O5—C141.365 (3)C13—C141.497 (4)
O5—C241.425 (3)C13—C211.536 (3)
O6—C161.438 (3)C13—C201.541 (4)
O6—H6O0.842 (10)C13—H131.0000
O7—C211.406 (3)C14—C151.328 (3)
O7—C221.436 (3)C15—C161.496 (4)
O8—C211.429 (3)C15—H150.9500
O8—C231.435 (3)C16—C171.543 (4)
C1—C21.499 (4)C16—H161.0000
C1—C91.533 (3)C17—C181.529 (3)
C1—C81.538 (4)C17—C211.534 (3)
C1—H11.0000C17—H171.0000
C2—C31.329 (3)C18—C191.533 (4)
C3—C41.500 (3)C18—H18A0.9900
C3—H30.9500C18—H18B0.9900
C4—C51.526 (4)C19—C201.528 (4)
C4—H41.0000C19—H19A0.9900
C5—C91.528 (3)C19—H19B0.9900
C5—C61.543 (4)C20—H20A0.9900
C5—H51.0000C20—H20B0.9900
C6—C71.529 (4)C22—H22A0.9800
C6—H6A0.9900C22—H22B0.9800
C6—H6B0.9900C22—H22C0.9800
C7—C81.529 (4)C23—H23A0.9800
C7—H7A0.9900C23—H23B0.9800
C7—H7B0.9900C23—H23C0.9800
C8—H8A0.9900C24—H24A0.9800
C8—H8B0.9900C24—H24B0.9800
C10—H10A0.9800C24—H24C0.9800
C9—O3—C10116.1 (2)H12A—C12—H12B109.5
C4—O2—H2O110 (2)O1—C12—H12C109.5
C2—O1—C12116.2 (2)H12A—C12—H12C109.5
C9—O4—C11116.6 (2)H12B—C12—H12C109.5
C14—O5—C24116.6 (2)C14—C13—C21109.5 (2)
C16—O6—H6O106 (2)C14—C13—C20110.8 (2)
C21—O7—C22116.0 (2)C21—C13—C20109.1 (2)
C21—O8—C23116.4 (2)C14—C13—H13109.1
C2—C1—C9109.6 (2)C21—C13—H13109.1
C2—C1—C8109.8 (2)C20—C13—H13109.1
C9—C1—C8109.5 (2)C15—C14—O5126.7 (2)
C2—C1—H1109.3C15—C14—C13122.6 (2)
C9—C1—H1109.3O5—C14—C13110.7 (2)
C8—C1—H1109.3C14—C15—C16122.8 (2)
C3—C2—O1126.4 (2)C14—C15—H15118.6
C3—C2—C1123.2 (2)C16—C15—H15118.6
O1—C2—C1110.3 (2)O6—C16—C15108.7 (2)
C2—C3—C4122.2 (2)O6—C16—C17110.7 (2)
C2—C3—H3118.9C15—C16—C17114.2 (2)
C4—C3—H3118.9O6—C16—H16107.7
O2—C4—C3108.1 (2)C15—C16—H16107.7
O2—C4—C5111.5 (2)C17—C16—H16107.7
C3—C4—C5113.9 (2)C18—C17—C21109.5 (2)
O2—C4—H4107.7C18—C17—C16114.9 (2)
C3—C4—H4107.7C21—C17—C16108.0 (2)
C5—C4—H4107.7C18—C17—H17108.1
C4—C5—C9108.7 (2)C21—C17—H17108.1
C4—C5—C6114.8 (2)C16—C17—H17108.1
C9—C5—C6109.0 (2)C17—C18—C19114.0 (2)
C4—C5—H5108.0C17—C18—H18A108.8
C9—C5—H5108.0C19—C18—H18A108.8
C6—C5—H5108.0C17—C18—H18B108.8
C7—C6—C5114.4 (2)C19—C18—H18B108.8
C7—C6—H6A108.7H18A—C18—H18B107.6
C5—C6—H6A108.7C20—C19—C18111.1 (2)
C7—C6—H6B108.7C20—C19—H19A109.4
C5—C6—H6B108.7C18—C19—H19A109.4
H6A—C6—H6B107.6C20—C19—H19B109.4
C6—C7—C8111.6 (2)C18—C19—H19B109.4
C6—C7—H7A109.3H19A—C19—H19B108.0
C8—C7—H7A109.3C19—C20—C13111.6 (2)
C6—C7—H7B109.3C19—C20—H20A109.3
C8—C7—H7B109.3C13—C20—H20A109.3
H7A—C7—H7B108.0C19—C20—H20B109.3
C7—C8—C1111.1 (2)C13—C20—H20B109.3
C7—C8—H8A109.4H20A—C20—H20B108.0
C1—C8—H8A109.4O7—C21—O8109.84 (19)
C7—C8—H8B109.4O7—C21—C17115.2 (2)
C1—C8—H8B109.4O8—C21—C17104.9 (2)
H8A—C8—H8B108.0O7—C21—C13105.2 (2)
O3—C9—O4109.76 (19)O8—C21—C13113.6 (2)
O3—C9—C5115.0 (2)C17—C21—C13108.3 (2)
O4—C9—C5105.4 (2)O7—C22—H22A109.5
O3—C9—C1105.0 (2)O7—C22—H22B109.5
O4—C9—C1113.5 (2)H22A—C22—H22B109.5
C5—C9—C1108.5 (2)O7—C22—H22C109.5
O3—C10—H10A109.5H22A—C22—H22C109.5
O3—C10—H10B109.5H22B—C22—H22C109.5
H10A—C10—H10B109.5O8—C23—H23A109.5
O3—C10—H10C109.5O8—C23—H23B109.5
H10A—C10—H10C109.5H23A—C23—H23B109.5
H10B—C10—H10C109.5O8—C23—H23C109.5
O4—C11—H11A109.5H23A—C23—H23C109.5
O4—C11—H11B109.5H23B—C23—H23C109.5
H11A—C11—H11B109.5O5—C24—H24A109.5
O4—C11—H11C109.5O5—C24—H24B109.5
H11A—C11—H11C109.5H24A—C24—H24B109.5
H11B—C11—H11C109.5O5—C24—H24C109.5
O1—C12—H12A109.5H24A—C24—H24C109.5
O1—C12—H12B109.5H24B—C24—H24C109.5
C12—O1—C2—C33.0 (4)C24—O5—C14—C151.5 (4)
C12—O1—C2—C1174.1 (2)C24—O5—C14—C13179.6 (2)
C9—C1—C2—C325.6 (4)C21—C13—C14—C1527.9 (4)
C8—C1—C2—C394.7 (3)C20—C13—C14—C1592.4 (3)
C9—C1—C2—O1157.2 (2)C21—C13—C14—O5153.9 (2)
C8—C1—C2—O182.5 (3)C20—C13—C14—O585.8 (3)
O1—C2—C3—C4179.8 (2)O5—C14—C15—C16177.4 (2)
C1—C2—C3—C43.4 (4)C13—C14—C15—C164.7 (4)
C2—C3—C4—O2136.6 (3)C14—C15—C16—O6135.7 (3)
C2—C3—C4—C512.2 (4)C14—C15—C16—C1711.7 (4)
O2—C4—C5—C9165.22 (19)O6—C16—C17—C1841.7 (3)
C3—C4—C5—C942.6 (3)C15—C16—C17—C1881.3 (3)
O2—C4—C5—C642.8 (3)O6—C16—C17—C21164.30 (19)
C3—C4—C5—C679.8 (3)C15—C16—C17—C2141.3 (3)
C4—C5—C6—C768.5 (3)C21—C17—C18—C1954.7 (3)
C9—C5—C6—C753.7 (3)C16—C17—C18—C1967.0 (3)
C5—C6—C7—C848.6 (3)C17—C18—C19—C2049.6 (3)
C6—C7—C8—C150.6 (3)C18—C19—C20—C1351.3 (3)
C2—C1—C8—C760.8 (3)C14—C13—C20—C1961.2 (3)
C9—C1—C8—C759.5 (3)C21—C13—C20—C1959.4 (3)
C10—O3—C9—O453.5 (3)C22—O7—C21—O855.6 (3)
C10—O3—C9—C565.1 (3)C22—O7—C21—C1762.5 (3)
C10—O3—C9—C1175.8 (2)C22—O7—C21—C13178.3 (2)
C11—O4—C9—O361.6 (3)C23—O8—C21—O759.8 (3)
C11—O4—C9—C5174.1 (2)C23—O8—C21—C17175.9 (2)
C11—O4—C9—C155.6 (3)C23—O8—C21—C1357.7 (3)
C4—C5—C9—O3177.56 (19)C18—C17—C21—O756.6 (3)
C6—C5—C9—O356.6 (3)C16—C17—C21—O7177.58 (19)
C4—C5—C9—O456.6 (2)C18—C17—C21—O8177.5 (2)
C6—C5—C9—O4177.5 (2)C16—C17—C21—O856.7 (2)
C4—C5—C9—C165.2 (3)C18—C17—C21—C1360.9 (3)
C6—C5—C9—C160.6 (3)C16—C17—C21—C1364.9 (3)
C2—C1—C9—O3179.1 (2)C14—C13—C21—O7178.6 (2)
C8—C1—C9—O358.6 (2)C20—C13—C21—O760.0 (3)
C2—C1—C9—O461.0 (3)C14—C13—C21—O858.4 (3)
C8—C1—C9—O4178.5 (2)C20—C13—C21—O8179.81 (19)
C2—C1—C9—C555.7 (3)C14—C13—C21—C1757.7 (3)
C8—C1—C9—C564.8 (3)C20—C13—C21—C1763.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O4i0.84 (1)2.03 (1)2.863 (3)172 (3)
O2—H2O···O80.84 (1)2.02 (1)2.858 (3)176 (3)
Symmetry code: (i) x+1, y, z.
4-Methoxy-6-methyl-1-(3-methylbut-2-en-1-yl)-6-(4-methylpent-3-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione (3) top
Crystal data top
C22H32O3F(000) = 752
Mr = 344.47Dx = 1.161 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 14.1871 (6) ÅCell parameters from 5403 reflections
b = 6.3306 (2) Åθ = 2.9–27.0°
c = 22.4159 (8) ŵ = 0.08 mm1
β = 101.702 (1)°T = 133 K
V = 1971.39 (13) Å3Plate, colourless
Z = 40.18 × 0.14 × 0.04 mm
Data collection top
Bruker D8 VENTURE PHOTON II
diffractometer
3271 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tubeRint = 0.067
φ and ω scansθmax = 27.1°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1818
Tmin = 0.687, Tmax = 0.746k = 87
28995 measured reflectionsl = 2828
4348 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0448P)2 + 0.8443P]
where P = (Fo2 + 2Fc2)/3
4348 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.22 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.39938 (7)0.15883 (17)0.60348 (5)0.0219 (2)
O20.65032 (8)0.42454 (18)0.51454 (5)0.0248 (3)
O30.69009 (8)0.20509 (19)0.71052 (5)0.0270 (3)
C10.53136 (10)0.3264 (2)0.66586 (7)0.0180 (3)
H10.5111360.2326660.6969030.022*
C20.48471 (10)0.2511 (2)0.60337 (7)0.0177 (3)
C110.81757 (10)0.2004 (3)0.60868 (7)0.0212 (3)
H110.8071990.0843680.6334480.025*
C120.85993 (11)0.1573 (3)0.56230 (7)0.0223 (3)
C130.89729 (12)0.0610 (3)0.55400 (8)0.0299 (4)
H13A0.8651580.1169230.5143080.045*
H13B0.8841770.1536100.5863960.045*
H13C0.9668510.0545700.5559070.045*
C140.87732 (13)0.3143 (3)0.51526 (8)0.0310 (4)
H14A0.8487220.2617440.4744850.047*
H14B0.9467430.3335570.5186150.047*
H14C0.8478320.4498480.5220630.047*
C150.55095 (12)0.6122 (3)0.74496 (7)0.0265 (4)
H15A0.5325110.7551070.7549000.040*
H15B0.6211870.6034200.7507440.040*
H15C0.5282520.5101180.7717580.040*
C160.39580 (11)0.5993 (3)0.66583 (7)0.0218 (3)
H16A0.3844660.7517960.6712660.026*
H16B0.3697080.5650270.6225400.026*
C170.33786 (11)0.4754 (3)0.70482 (7)0.0257 (4)
H17A0.3390380.3231330.6949480.031*
H17B0.3674110.4936000.7484770.031*
C180.23549 (11)0.5523 (3)0.69309 (8)0.0279 (4)
H180.2256780.6871730.7093820.033*
C190.15695 (12)0.4559 (3)0.66287 (8)0.0268 (4)
C200.15578 (14)0.2407 (3)0.63505 (9)0.0399 (5)
H20A0.1045960.1559240.6467020.060*
H20B0.2180280.1716970.6496420.060*
H20C0.1439550.2535240.5905810.060*
C210.06030 (12)0.5629 (3)0.65247 (9)0.0378 (5)
H21A0.0152170.4761080.6696940.057*
H21B0.0358560.5808120.6086330.057*
H21C0.0668630.7016250.6723090.057*
C220.34621 (11)0.0763 (3)0.54652 (8)0.0271 (4)
H22A0.2881670.0045500.5534380.041*
H22B0.3865010.0242490.5297720.041*
H22C0.3278320.1927000.5176740.041*
C30.52562 (10)0.2750 (2)0.55459 (7)0.0202 (3)
H30.4933550.2226810.5161240.024*
C40.61796 (11)0.3789 (2)0.55963 (7)0.0190 (3)
C50.67586 (10)0.4359 (2)0.62303 (7)0.0180 (3)
C60.65342 (11)0.6707 (2)0.63564 (7)0.0218 (3)
H6A0.6924820.7131460.6755940.026*
H6B0.6726510.7610320.6040690.026*
C70.54739 (11)0.7092 (2)0.63586 (7)0.0220 (3)
H7A0.5097880.6913520.5938570.026*
H7B0.5394270.8572630.6481440.026*
C80.50547 (10)0.5620 (2)0.67851 (7)0.0191 (3)
C90.63940 (10)0.3078 (2)0.67122 (7)0.0182 (3)
C100.78446 (11)0.4122 (3)0.62607 (7)0.0222 (3)
H10A0.8043180.5197390.5990170.027*
H10B0.8184980.4441740.6681690.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0186 (5)0.0217 (6)0.0243 (6)0.0033 (4)0.0018 (4)0.0049 (5)
O20.0266 (6)0.0293 (6)0.0191 (6)0.0028 (5)0.0061 (5)0.0040 (5)
O30.0232 (6)0.0330 (7)0.0229 (6)0.0051 (5)0.0002 (5)0.0084 (5)
C10.0191 (7)0.0180 (7)0.0164 (7)0.0000 (6)0.0026 (6)0.0009 (6)
C20.0160 (7)0.0134 (7)0.0221 (7)0.0018 (5)0.0000 (6)0.0001 (6)
C110.0162 (7)0.0226 (8)0.0235 (8)0.0006 (6)0.0007 (6)0.0025 (6)
C120.0171 (7)0.0229 (8)0.0253 (8)0.0003 (6)0.0007 (6)0.0007 (6)
C130.0256 (8)0.0272 (9)0.0359 (10)0.0047 (7)0.0039 (7)0.0028 (8)
C140.0327 (9)0.0318 (10)0.0308 (9)0.0006 (7)0.0119 (7)0.0016 (8)
C150.0246 (8)0.0327 (9)0.0213 (8)0.0013 (7)0.0022 (6)0.0069 (7)
C160.0208 (8)0.0222 (8)0.0219 (8)0.0032 (6)0.0031 (6)0.0022 (6)
C170.0224 (8)0.0319 (9)0.0231 (8)0.0017 (7)0.0050 (6)0.0011 (7)
C180.0246 (8)0.0313 (9)0.0291 (9)0.0026 (7)0.0087 (7)0.0041 (7)
C190.0254 (8)0.0319 (10)0.0235 (8)0.0005 (7)0.0060 (7)0.0035 (7)
C200.0359 (10)0.0408 (12)0.0402 (11)0.0035 (9)0.0009 (8)0.0066 (9)
C210.0230 (9)0.0478 (12)0.0417 (11)0.0009 (8)0.0048 (8)0.0060 (9)
C220.0212 (8)0.0291 (9)0.0281 (9)0.0046 (7)0.0017 (7)0.0087 (7)
C30.0205 (7)0.0212 (8)0.0170 (7)0.0018 (6)0.0008 (6)0.0037 (6)
C40.0203 (7)0.0165 (7)0.0194 (8)0.0054 (6)0.0022 (6)0.0013 (6)
C50.0172 (7)0.0185 (8)0.0180 (7)0.0003 (6)0.0025 (6)0.0006 (6)
C60.0241 (8)0.0176 (8)0.0245 (8)0.0014 (6)0.0065 (6)0.0012 (6)
C70.0242 (8)0.0159 (7)0.0262 (8)0.0026 (6)0.0058 (6)0.0014 (6)
C80.0198 (7)0.0201 (8)0.0170 (7)0.0013 (6)0.0025 (6)0.0025 (6)
C90.0207 (7)0.0163 (7)0.0161 (7)0.0005 (6)0.0003 (6)0.0018 (6)
C100.0183 (7)0.0236 (8)0.0242 (8)0.0015 (6)0.0035 (6)0.0002 (6)
Geometric parameters (Å, º) top
O1—C21.3445 (17)C17—H17A0.9900
O1—C221.4425 (19)C17—H17B0.9900
O2—C41.2263 (18)C18—C191.329 (2)
O3—C91.2078 (18)C18—H180.9500
C1—C21.501 (2)C19—C201.497 (3)
C1—C91.518 (2)C19—C211.505 (2)
C1—C81.575 (2)C20—H20A0.9800
C1—H11.0000C20—H20B0.9800
C2—C31.346 (2)C20—H20C0.9800
C11—C121.331 (2)C21—H21A0.9800
C11—C101.498 (2)C21—H21B0.9800
C11—H110.9500C21—H21C0.9800
C12—C131.505 (2)C22—H22A0.9800
C12—C141.505 (2)C22—H22B0.9800
C13—H13A0.9800C22—H22C0.9800
C13—H13B0.9800C3—C41.450 (2)
C13—H13C0.9800C3—H30.9500
C14—H14A0.9800C4—C51.533 (2)
C14—H14B0.9800C5—C91.523 (2)
C14—H14C0.9800C5—C101.536 (2)
C15—C81.532 (2)C5—C61.558 (2)
C15—H15A0.9800C6—C71.525 (2)
C15—H15B0.9800C6—H6A0.9900
C15—H15C0.9800C6—H6B0.9900
C16—C171.532 (2)C7—C81.538 (2)
C16—C81.542 (2)C7—H7A0.9900
C16—H16A0.9900C7—H7B0.9900
C16—H16B0.9900C10—H10A0.9900
C17—C181.503 (2)C10—H10B0.9900
C2—O1—C22117.71 (12)C19—C20—H20C109.5
C2—C1—C9107.24 (12)H20A—C20—H20C109.5
C2—C1—C8113.22 (12)H20B—C20—H20C109.5
C9—C1—C8109.15 (12)C19—C21—H21A109.5
C2—C1—H1109.1C19—C21—H21B109.5
C9—C1—H1109.1H21A—C21—H21B109.5
C8—C1—H1109.1C19—C21—H21C109.5
O1—C2—C3125.94 (14)H21A—C21—H21C109.5
O1—C2—C1111.29 (12)H21B—C21—H21C109.5
C3—C2—C1122.77 (13)O1—C22—H22A109.5
C12—C11—C10127.01 (15)O1—C22—H22B109.5
C12—C11—H11116.5H22A—C22—H22B109.5
C10—C11—H11116.5O1—C22—H22C109.5
C11—C12—C13120.73 (15)H22A—C22—H22C109.5
C11—C12—C14125.18 (15)H22B—C22—H22C109.5
C13—C12—C14114.07 (14)C2—C3—C4121.28 (14)
C12—C13—H13A109.5C2—C3—H3119.4
C12—C13—H13B109.5C4—C3—H3119.4
H13A—C13—H13B109.5O2—C4—C3121.74 (14)
C12—C13—H13C109.5O2—C4—C5119.27 (14)
H13A—C13—H13C109.5C3—C4—C5118.99 (13)
H13B—C13—H13C109.5C9—C5—C4109.70 (12)
C12—C14—H14A109.5C9—C5—C10113.49 (12)
C12—C14—H14B109.5C4—C5—C10111.23 (12)
H14A—C14—H14B109.5C9—C5—C6105.56 (12)
C12—C14—H14C109.5C4—C5—C6107.55 (12)
H14A—C14—H14C109.5C10—C5—C6108.98 (12)
H14B—C14—H14C109.5C7—C6—C5113.00 (12)
C8—C15—H15A109.5C7—C6—H6A109.0
C8—C15—H15B109.5C5—C6—H6A109.0
H15A—C15—H15B109.5C7—C6—H6B109.0
C8—C15—H15C109.5C5—C6—H6B109.0
H15A—C15—H15C109.5H6A—C6—H6B107.8
H15B—C15—H15C109.5C6—C7—C8114.29 (13)
C17—C16—C8117.03 (13)C6—C7—H7A108.7
C17—C16—H16A108.0C8—C7—H7A108.7
C8—C16—H16A108.0C6—C7—H7B108.7
C17—C16—H16B108.0C8—C7—H7B108.7
C8—C16—H16B108.0H7A—C7—H7B107.6
H16A—C16—H16B107.3C15—C8—C7109.82 (13)
C18—C17—C16110.21 (14)C15—C8—C16110.96 (12)
C18—C17—H17A109.6C7—C8—C16107.18 (12)
C16—C17—H17A109.6C15—C8—C1107.69 (13)
C18—C17—H17B109.6C7—C8—C1109.14 (12)
C16—C17—H17B109.6C16—C8—C1112.04 (12)
H17A—C17—H17B108.1O3—C9—C1122.82 (14)
C19—C18—C17128.37 (16)O3—C9—C5124.51 (14)
C19—C18—H18115.8C1—C9—C5112.66 (12)
C17—C18—H18115.8C11—C10—C5116.15 (13)
C18—C19—C20124.57 (16)C11—C10—H10A108.2
C18—C19—C21121.04 (17)C5—C10—H10A108.2
C20—C19—C21114.36 (16)C11—C10—H10B108.2
C19—C20—H20A109.5C5—C10—H10B108.2
C19—C20—H20B109.5H10A—C10—H10B107.4
H20A—C20—H20B109.5
C22—O1—C2—C30.3 (2)C6—C7—C8—C1567.77 (17)
C22—O1—C2—C1179.43 (13)C6—C7—C8—C16171.61 (13)
C9—C1—C2—O1147.89 (12)C6—C7—C8—C150.07 (17)
C8—C1—C2—O191.66 (15)C17—C16—C8—C1557.88 (18)
C9—C1—C2—C331.9 (2)C17—C16—C8—C7177.78 (13)
C8—C1—C2—C388.60 (17)C17—C16—C8—C162.53 (17)
C10—C11—C12—C13174.40 (15)C2—C1—C8—C15175.62 (12)
C10—C11—C12—C144.1 (3)C9—C1—C8—C1565.02 (15)
C8—C16—C17—C18171.90 (13)C2—C1—C8—C765.22 (16)
C16—C17—C18—C19107.5 (2)C9—C1—C8—C754.14 (16)
C17—C18—C19—C201.7 (3)C2—C1—C8—C1653.33 (16)
C17—C18—C19—C21176.41 (16)C9—C1—C8—C16172.69 (12)
O1—C2—C3—C4179.48 (14)C2—C1—C9—O3122.71 (16)
C1—C2—C3—C40.8 (2)C8—C1—C9—O3114.28 (16)
C2—C3—C4—O2170.94 (15)C2—C1—C9—C558.69 (16)
C2—C3—C4—C58.2 (2)C8—C1—C9—C564.32 (15)
O2—C4—C5—C9162.44 (13)C4—C5—C9—O3128.82 (16)
C3—C4—C5—C918.39 (18)C10—C5—C9—O33.7 (2)
O2—C4—C5—C1036.05 (19)C6—C5—C9—O3115.57 (16)
C3—C4—C5—C10144.78 (14)C4—C5—C9—C152.61 (16)
O2—C4—C5—C683.22 (16)C10—C5—C9—C1177.70 (12)
C3—C4—C5—C695.96 (15)C6—C5—C9—C163.01 (15)
C9—C5—C6—C755.72 (16)C12—C11—C10—C5117.26 (17)
C4—C5—C6—C761.36 (16)C9—C5—C10—C1168.76 (17)
C10—C5—C6—C7177.95 (13)C4—C5—C10—C1155.51 (18)
C5—C6—C7—C852.82 (18)C6—C5—C10—C11173.92 (13)
4-tert-Butyl-4-hydroxy-2-methoxy-8-methyl-7-(3-methylbut-2-en-1-yl)-8-(4-methylpent-3-en-1-yl)bicyclo[3.3.1]non-2-en-9-one (4) top
Crystal data top
C26H42O3F(000) = 888
Mr = 402.59Dx = 1.080 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1165 (5) ÅCell parameters from 9769 reflections
b = 13.9068 (4) Åθ = 2.9–27.1°
c = 12.8150 (4) ŵ = 0.07 mm1
β = 113.218 (1)°T = 143 K
V = 2475.81 (13) Å3Prism, colourless
Z = 40.26 × 0.16 × 0.08 mm
Data collection top
Bruker D8 VENTURE PHOTON II
diffractometer
4697 reflections with I > 2σ(I)
Radiation source: INCOATEC IµS microfocus sealed tubeRint = 0.048
φ and ω scansθmax = 27.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1919
Tmin = 0.704, Tmax = 0.746k = 1617
87917 measured reflectionsl = 1616
5484 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: mixed
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.049P)2 + 0.8245P]
where P = (Fo2 + 2Fc2)/3
5484 reflections(Δ/σ)max < 0.001
274 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.58921 (6)0.47108 (5)0.43047 (6)0.02376 (18)
O20.51178 (6)0.14696 (6)0.37950 (7)0.02551 (18)
H20.5478 (10)0.1689 (11)0.3487 (12)0.038*
O30.61221 (6)0.30868 (6)0.73617 (6)0.02674 (19)
C10.65561 (7)0.36534 (7)0.58638 (9)0.0191 (2)
H10.6681300.4273620.6292870.023*
C20.58011 (7)0.38158 (7)0.46865 (9)0.0187 (2)
C30.51410 (8)0.31676 (8)0.41130 (9)0.0202 (2)
H30.4702120.3333600.3369690.024*
C40.50402 (8)0.21886 (7)0.45585 (9)0.0198 (2)
C50.58310 (8)0.20205 (7)0.57770 (9)0.0202 (2)
H50.5564940.1581960.6200230.024*
C60.67741 (8)0.15818 (8)0.57903 (10)0.0229 (2)
H6A0.7188890.1406990.6582100.028*
H6B0.6615790.0981060.5339340.028*
C70.73503 (8)0.22364 (8)0.53245 (9)0.0210 (2)
H70.6953330.2326370.4496260.025*
C80.75364 (7)0.32539 (8)0.58735 (9)0.0205 (2)
C90.61403 (7)0.29414 (8)0.64324 (9)0.0197 (2)
C100.82710 (8)0.16941 (9)0.54227 (10)0.0276 (2)
H10A0.8694280.2134780.5222440.033*
H10B0.8624000.1484320.6218100.033*
C110.80410 (8)0.08302 (9)0.46537 (10)0.0274 (2)
H110.7525820.0908670.3934110.033*
C120.84620 (9)0.00269 (9)0.48468 (11)0.0318 (3)
C130.92703 (13)0.03188 (12)0.59291 (14)0.0542 (4)
H13A0.9827390.0510600.5767680.081*
H13B0.9064670.0860940.6268140.081*
H13C0.9447620.0224300.6459390.081*
C140.81468 (12)0.07908 (11)0.39421 (15)0.0473 (4)
H14A0.7580790.0565630.3293420.071*
H14B0.7983740.1378790.4248910.071*
H14C0.8670640.0925520.3694810.071*
C150.82707 (8)0.32225 (9)0.71095 (10)0.0272 (2)
H15A0.8904300.3047160.7126930.041*
H15B0.8068500.2743910.7532140.041*
H15C0.8308120.3856480.7458330.041*
C160.78978 (8)0.39199 (8)0.51636 (10)0.0255 (2)
H16A0.8488190.3631590.5139430.031*
H16B0.7405650.3926640.4376000.031*
C170.81238 (9)0.49662 (9)0.55609 (11)0.0331 (3)
H17A0.7561810.5255800.5655710.040*
H17B0.8677300.4984470.6304460.040*
C180.83575 (9)0.55326 (9)0.47056 (12)0.0347 (3)
H180.7908710.5477610.3940720.042*
C190.91070 (9)0.60995 (9)0.48753 (12)0.0336 (3)
C200.92557 (11)0.65611 (12)0.38952 (14)0.0478 (4)
H20A0.8706480.6414230.3187090.072*
H20B0.9846850.6310540.3853590.072*
H20C0.9310600.7259200.4006340.072*
C210.98769 (13)0.63083 (14)0.60163 (15)0.0597 (5)
H21A1.0484550.6021500.6066630.090*
H21B0.9694510.6034700.6607970.090*
H21C0.9956220.7005640.6122380.090*
C220.53199 (10)0.49151 (9)0.31424 (10)0.0335 (3)
H22A0.5495380.5547610.2945820.050*
H22B0.4637890.4915170.3020710.050*
H22C0.5432990.4422850.2661670.050*
C230.40054 (8)0.20444 (8)0.45525 (10)0.0244 (2)
C240.38671 (9)0.26723 (9)0.54585 (11)0.0298 (3)
H24A0.4021280.3341810.5359780.045*
H24B0.4294550.2447240.6214400.045*
H24C0.3196880.2629730.5380960.045*
C250.32344 (9)0.23243 (11)0.33952 (11)0.0378 (3)
H25A0.3356640.1988220.2793160.057*
H25B0.3255060.3020320.3287130.057*
H25C0.2598120.2143540.3365050.057*
C260.38494 (9)0.09832 (9)0.47587 (12)0.0345 (3)
H26A0.3202080.0898610.4747390.052*
H26B0.4328880.0784170.5499360.052*
H26C0.3917610.0588690.4161060.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0315 (4)0.0169 (4)0.0221 (4)0.0007 (3)0.0097 (3)0.0035 (3)
O20.0346 (4)0.0228 (4)0.0247 (4)0.0073 (3)0.0177 (3)0.0078 (3)
O30.0294 (4)0.0363 (5)0.0168 (4)0.0006 (3)0.0115 (3)0.0018 (3)
C10.0230 (5)0.0177 (5)0.0171 (5)0.0021 (4)0.0086 (4)0.0023 (4)
C20.0236 (5)0.0171 (5)0.0183 (5)0.0011 (4)0.0112 (4)0.0010 (4)
C30.0239 (5)0.0213 (5)0.0155 (5)0.0003 (4)0.0079 (4)0.0008 (4)
C40.0247 (5)0.0186 (5)0.0181 (5)0.0039 (4)0.0107 (4)0.0032 (4)
C50.0246 (5)0.0191 (5)0.0196 (5)0.0018 (4)0.0117 (4)0.0021 (4)
C60.0268 (5)0.0188 (5)0.0250 (5)0.0012 (4)0.0121 (4)0.0027 (4)
C70.0218 (5)0.0210 (5)0.0213 (5)0.0004 (4)0.0096 (4)0.0002 (4)
C80.0204 (5)0.0219 (5)0.0196 (5)0.0016 (4)0.0084 (4)0.0009 (4)
C90.0193 (5)0.0237 (5)0.0160 (5)0.0018 (4)0.0068 (4)0.0013 (4)
C100.0239 (5)0.0282 (6)0.0318 (6)0.0026 (4)0.0120 (5)0.0021 (5)
C110.0279 (6)0.0303 (6)0.0269 (6)0.0033 (5)0.0140 (5)0.0008 (5)
C120.0348 (6)0.0296 (6)0.0382 (7)0.0040 (5)0.0222 (6)0.0022 (5)
C130.0608 (10)0.0476 (9)0.0506 (9)0.0248 (8)0.0181 (8)0.0114 (7)
C140.0577 (9)0.0333 (7)0.0629 (10)0.0009 (6)0.0364 (8)0.0108 (7)
C150.0239 (5)0.0318 (6)0.0230 (5)0.0012 (4)0.0062 (4)0.0010 (5)
C160.0237 (5)0.0267 (6)0.0287 (6)0.0035 (4)0.0131 (5)0.0012 (4)
C170.0332 (6)0.0293 (6)0.0369 (7)0.0111 (5)0.0140 (5)0.0011 (5)
C180.0268 (6)0.0327 (6)0.0399 (7)0.0055 (5)0.0082 (5)0.0079 (5)
C190.0278 (6)0.0265 (6)0.0461 (8)0.0023 (5)0.0141 (5)0.0053 (5)
C200.0330 (7)0.0471 (8)0.0615 (10)0.0042 (6)0.0167 (7)0.0222 (7)
C210.0559 (10)0.0690 (12)0.0518 (10)0.0365 (9)0.0186 (8)0.0119 (8)
C220.0497 (8)0.0228 (6)0.0247 (6)0.0035 (5)0.0109 (5)0.0072 (5)
C230.0237 (5)0.0264 (6)0.0250 (5)0.0062 (4)0.0115 (4)0.0040 (4)
C240.0262 (6)0.0340 (6)0.0332 (6)0.0033 (5)0.0160 (5)0.0062 (5)
C250.0253 (6)0.0515 (8)0.0318 (7)0.0085 (5)0.0062 (5)0.0019 (6)
C260.0366 (7)0.0293 (6)0.0444 (7)0.0127 (5)0.0232 (6)0.0050 (5)
Geometric parameters (Å, º) top
O1—C21.3640 (12)C14—H14B0.9800
O1—C221.4254 (14)C14—H14C0.9800
O2—C41.4357 (12)C15—H15A0.9800
O2—H20.846 (9)C15—H15B0.9800
O3—C91.2189 (13)C15—H15C0.9800
C1—C91.5058 (14)C16—C171.5350 (17)
C1—C21.5073 (14)C16—H16A0.9900
C1—C81.5781 (14)C16—H16B0.9900
C1—H11.0000C17—C181.5005 (18)
C2—C31.3305 (15)C17—H17A0.9900
C3—C41.5071 (14)C17—H17B0.9900
C3—H30.9500C18—C191.3261 (17)
C4—C51.5652 (14)C18—H180.9500
C4—C231.5741 (15)C19—C211.495 (2)
C5—C91.5016 (15)C19—C201.5042 (19)
C5—C61.5446 (15)C20—H20A0.9800
C5—H51.0000C20—H20B0.9800
C6—C71.5342 (15)C20—H20C0.9800
C6—H6A0.9900C21—H21A0.9800
C6—H6B0.9900C21—H21B0.9800
C7—C101.5439 (15)C21—H21C0.9800
C7—C81.5558 (15)C22—H22A0.9800
C7—H71.0000C22—H22B0.9800
C8—C151.5350 (15)C22—H22C0.9800
C8—C161.5414 (15)C23—C241.5315 (16)
C10—C111.5051 (16)C23—C251.5319 (17)
C10—H10A0.9900C23—C261.5338 (16)
C10—H10B0.9900C24—H24A0.9800
C11—C121.3277 (17)C24—H24B0.9800
C11—H110.9500C24—H24C0.9800
C12—C131.498 (2)C25—H25A0.9800
C12—C141.5047 (19)C25—H25B0.9800
C13—H13A0.9800C25—H25C0.9800
C13—H13B0.9800C26—H26A0.9800
C13—H13C0.9800C26—H26B0.9800
C14—H14A0.9800C26—H26C0.9800
C2—O1—C22116.82 (9)H14A—C14—H14C109.5
C4—O2—H2107.9 (11)H14B—C14—H14C109.5
C9—C1—C2106.68 (8)C8—C15—H15A109.5
C9—C1—C8109.54 (8)C8—C15—H15B109.5
C2—C1—C8113.50 (8)H15A—C15—H15B109.5
C9—C1—H1109.0C8—C15—H15C109.5
C2—C1—H1109.0H15A—C15—H15C109.5
C8—C1—H1109.0H15B—C15—H15C109.5
C3—C2—O1125.44 (10)C17—C16—C8117.27 (10)
C3—C2—C1123.95 (9)C17—C16—H16A108.0
O1—C2—C1110.61 (9)C8—C16—H16A108.0
C2—C3—C4124.65 (9)C17—C16—H16B108.0
C2—C3—H3117.7C8—C16—H16B108.0
C4—C3—H3117.7H16A—C16—H16B107.2
O2—C4—C3108.86 (8)C18—C17—C16109.94 (11)
O2—C4—C5109.90 (8)C18—C17—H17A109.7
C3—C4—C5111.18 (8)C16—C17—H17A109.7
O2—C4—C23104.83 (8)C18—C17—H17B109.7
C3—C4—C23111.22 (9)C16—C17—H17B109.7
C5—C4—C23110.64 (8)H17A—C17—H17B108.2
C9—C5—C6104.37 (8)C19—C18—C17128.62 (13)
C9—C5—C4112.18 (8)C19—C18—H18115.7
C6—C5—C4114.12 (9)C17—C18—H18115.7
C9—C5—H5108.7C18—C19—C21124.14 (13)
C6—C5—H5108.7C18—C19—C20121.07 (13)
C4—C5—H5108.7C21—C19—C20114.76 (12)
C7—C6—C5115.11 (9)C19—C20—H20A109.5
C7—C6—H6A108.5C19—C20—H20B109.5
C5—C6—H6A108.5H20A—C20—H20B109.5
C7—C6—H6B108.5C19—C20—H20C109.5
C5—C6—H6B108.5H20A—C20—H20C109.5
H6A—C6—H6B107.5H20B—C20—H20C109.5
C6—C7—C10108.08 (9)C19—C21—H21A109.5
C6—C7—C8113.13 (9)C19—C21—H21B109.5
C10—C7—C8114.26 (9)H21A—C21—H21B109.5
C6—C7—H7107.0C19—C21—H21C109.5
C10—C7—H7107.0H21A—C21—H21C109.5
C8—C7—H7107.0H21B—C21—H21C109.5
C15—C8—C16110.22 (9)O1—C22—H22A109.5
C15—C8—C7111.66 (9)O1—C22—H22B109.5
C16—C8—C7108.81 (9)H22A—C22—H22B109.5
C15—C8—C1108.24 (8)O1—C22—H22C109.5
C16—C8—C1109.51 (9)H22A—C22—H22C109.5
C7—C8—C1108.35 (8)H22B—C22—H22C109.5
O3—C9—C5124.47 (10)C24—C23—C25108.05 (10)
O3—C9—C1122.56 (10)C24—C23—C26109.99 (10)
C5—C9—C1112.80 (8)C25—C23—C26107.54 (10)
C11—C10—C7111.61 (9)C24—C23—C4110.86 (9)
C11—C10—H10A109.3C25—C23—C4110.35 (9)
C7—C10—H10A109.3C26—C23—C4109.98 (9)
C11—C10—H10B109.3C23—C24—H24A109.5
C7—C10—H10B109.3C23—C24—H24B109.5
H10A—C10—H10B108.0H24A—C24—H24B109.5
C12—C11—C10128.65 (12)C23—C24—H24C109.5
C12—C11—H11115.7H24A—C24—H24C109.5
C10—C11—H11115.7H24B—C24—H24C109.5
C11—C12—C13124.87 (13)C23—C25—H25A109.5
C11—C12—C14120.48 (13)C23—C25—H25B109.5
C13—C12—C14114.64 (12)H25A—C25—H25B109.5
C12—C13—H13A109.5C23—C25—H25C109.5
C12—C13—H13B109.5H25A—C25—H25C109.5
H13A—C13—H13B109.5H25B—C25—H25C109.5
C12—C13—H13C109.5C23—C26—H26A109.5
H13A—C13—H13C109.5C23—C26—H26B109.5
H13B—C13—H13C109.5H26A—C26—H26B109.5
C12—C14—H14A109.5C23—C26—H26C109.5
C12—C14—H14B109.5H26A—C26—H26C109.5
H14A—C14—H14B109.5H26B—C26—H26C109.5
C12—C14—H14C109.5
C22—O1—C2—C39.12 (16)C9—C1—C8—C754.45 (10)
C22—O1—C2—C1171.02 (9)C2—C1—C8—C764.65 (11)
C9—C1—C2—C327.68 (14)C6—C5—C9—O3111.33 (11)
C8—C1—C2—C393.05 (12)C4—C5—C9—O3124.61 (11)
C9—C1—C2—O1152.17 (8)C6—C5—C9—C164.07 (11)
C8—C1—C2—O187.10 (10)C4—C5—C9—C159.99 (11)
O1—C2—C3—C4178.78 (9)C2—C1—C9—O3128.15 (10)
C1—C2—C3—C41.06 (17)C8—C1—C9—O3108.61 (11)
C2—C3—C4—O2122.62 (11)C2—C1—C9—C556.35 (11)
C2—C3—C4—C51.41 (14)C8—C1—C9—C566.88 (11)
C2—C3—C4—C23122.37 (11)C6—C7—C10—C1166.44 (12)
O2—C4—C5—C9150.21 (8)C8—C7—C10—C11166.66 (9)
C3—C4—C5—C929.61 (12)C7—C10—C11—C12142.25 (12)
C23—C4—C5—C994.50 (10)C10—C11—C12—C131.6 (2)
O2—C4—C5—C631.76 (11)C10—C11—C12—C14177.64 (12)
C3—C4—C5—C688.83 (10)C15—C8—C16—C1757.38 (13)
C23—C4—C5—C6147.06 (9)C7—C8—C16—C17179.86 (10)
C9—C5—C6—C755.79 (11)C1—C8—C16—C1761.59 (12)
C4—C5—C6—C767.01 (12)C8—C16—C17—C18173.70 (10)
C5—C6—C7—C10178.96 (9)C16—C17—C18—C19129.72 (15)
C5—C6—C7—C851.40 (12)C17—C18—C19—C212.1 (2)
C6—C7—C8—C1571.38 (11)C17—C18—C19—C20175.86 (14)
C10—C7—C8—C1552.86 (12)O2—C4—C23—C24172.12 (9)
C6—C7—C8—C16166.73 (9)C3—C4—C23—C2470.39 (12)
C10—C7—C8—C1669.03 (11)C5—C4—C23—C2453.69 (12)
C6—C7—C8—C147.73 (11)O2—C4—C23—C2568.21 (11)
C10—C7—C8—C1171.97 (9)C3—C4—C23—C2549.28 (12)
C9—C1—C8—C1566.80 (11)C5—C4—C23—C25173.36 (9)
C2—C1—C8—C15174.10 (9)O2—C4—C23—C2650.27 (11)
C9—C1—C8—C16173.01 (8)C3—C4—C23—C26167.75 (9)
C2—C1—C8—C1653.90 (11)C5—C4—C23—C2668.16 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.85 (1)2.06 (1)2.8736 (11)162 (2)
Symmetry code: (i) x, y+1/2, z1/2.
Puckering parameters Q (Å), Θ (°) and Φ (°) of the cyclohexane rings I and II of 1, 2a, 2b, 3 and 4 top
Ring IRing II
Q (Å)Θ (°)Φ (°)Q (Å)Θ (°)Φ (°)
10.590 (2)172.2 (2)104.4 (1)0.505 (2)56.7 (2)306.0 (2)
2a0.591 (3)169.6 (3)140.4 (2)0.534 (3)48.3 (3)284.1 (4)
2ba0.593 (3)170.7 (3)139.1 (2)0.541 (3)47.8 (3)286.9 (4)
30.592 (2)171.6 (2)115.6 (1)0.501 (2)58.2 (2)310.9 (2)
40.592 (1)170.2 (1)120.6 (7)0.489 (1)52.4 (1)298.5 (2)
Note: (a) for 2b (the enantiomer of 2a), the tabulated values of Θ and Φ were calculated from the observed Θ' and Φ' using the equations Θ = 180° – Θ' and Φ = 180° + Φ'.
 

Acknowledgements

We thank Saarland University for continuous support. We acknowledge the Service Center X-ray Diffraction established with financial support from Saarland University and the Deutsche Forschungsgemeinschaft.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. INST 256/506-1; grant No. INST 256/582-1).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1533–1635.  CrossRef Google Scholar
First citationBiber, N., Möws, K. & Plietker, B. (2011). Nat. Chem. 3, 938–942.  CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2020). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2021). APEX and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGiacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M., Ferraris, G., Gilli, G., Gilli, P., Zanotti, G. & Catti, M. (2011). Fundamentals of Crystallography, 3rd ed., ch. 8.3.3, p. 634ff. International Union of Crystallography and Oxford University Press.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationInouye, Y., Kojima, T. & Kakisawa, H. (1987). Acta Cryst. C43, 1599–1601.  CrossRef CAS IUCr Journals Google Scholar
First citationInternational Tables for Crystallography (2010). Vol. E, Subperiodic groups, edited by V. Kopsky & D. B. Litvin, second online edition, https://doi.org/10.1107/97809553602060000001Google Scholar
First citationKönig, J. A., Frey, S., Morgenstern, B. & Jauch, J. (2025). Org. Lett. 27, 2157–2162.  PubMed Google Scholar
First citationKönig, J. A., Morgenstern, B. & Jauch, J. (2024). Org. Lett. 26, 7083–7087.  PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). In Crystal Structure Refinement – A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationRichard, J.-A. (2014). Eur. J. Org. Chem. 2014, 273–299.  CrossRef CAS Google Scholar
First citationRoy, N., Das, R., Paira, R. & Paira, P. (2023). RSC Adv. 13, 22389–22480.  CrossRef CAS PubMed Google Scholar
First citationSchönwälder, K., Kollat, P., Stezowski, J. J. & Effenberger, F. (1984). Chem. Ber. 117, 3280–3296.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShishido, K., Hiroya, K., Ueno, Y., Fukumoto, K., Kametani, T. & Honda, T. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 829–836.  CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X., Grossman, R. B. & Xu, G. (2018). Chem. Rev. 118, 3508–3558.  CrossRef CAS PubMed Google Scholar
First citationZefirov, N. S. & Palyulin, V. A. (1991). Topics in Stereochemistry, Vol. 20, edited by E. L. Eliel & S. H. Wilen, pp. 171–230. New York: John Wiley & Sons Inc.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds