

research communications
Synthesis and structure of 4-bromo-2-chlorophenyl 4′-methoxy-[1,1′-biphenyl]-4-carboxylate featuring short halogen⋯oxygen contacts
aDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, bDepartment of Physics, Government First Grade College, Chikkballapur, Karnataka-562101, India, cDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore-, 570005, Karnataka, India, and dRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore-560080, Karnataka, India
*Correspondence e-mail: harishkagalipur@gmail.com
In the title compound, C20H14BrClO3, the dihedral angles between the aromatic ring of the 4-bromo-2-chlorophenyl and the immediate neighbour and second aromatic ring of the biphenyl moiety are 80.59 (2) and 75.42 (2)°, respectively. The dihedral angle between the rings within the biphenyl moiety is 24.57 (4)°. The torsion angle associated with the ester group linking the biphenyl ring and the 4-bromo-2-chlorophenyl group is −166.6 (2)°. The extended structure features short halogen⋯oxygen contacts [Cl⋯O = 2.991 (3), Br⋯O = 3.139 (2) Å], forming molecular sheets lying parallel to (101). The Hirshfeld surface analysis reveals that the major contributions to the intermolecular interactions are from C⋯H/H⋯C (32.2%), H⋯H/H⋯H (26.3%), Br⋯H/H⋯Br (10.7%), O⋯H/H⋯O (10.4%) and Cl⋯H/H⋯Cl (7.5%) contacts.
Keywords: crystal structure; biphenyl; Hirshfeld surface.
CCDC reference: 2433444
1. Chemical context
Biphenyl derivates exhibit medicinal properties such as antihypertensive (Sharma et al., 2010), anti-diabetic (Sachan et al., 2009
), anti-bacterial (Trivedi et al., 2009
), antifungal (Zhao et al., 2017
) and anticancer (Mukherjee et al., 2016
) effects. The drug obtained from the piperidine derivative of biphenyl-4-carboxylate selectively kills the bacterial persisters that are resistant to antibiotic treatments (Kim et al., 2011
). Some biphenyl-carboxylic acid derivatives act as antiresorptive drugs (Van't Hof et al., 2004
; Idris et al., 2009
) by stopping or slowing down bone loss in osteoporosis. It is found that biphenyl compounds substituted with a heterocyclic ring can act as anti-tyrosinase agents (Kwong et al., 2017
) that reduce the activity of tyrosinase enzyme. Biphenyl-4-carboxylic acid derivatives inhibit tubulin polymerization to act as anticancer agents (Mahale et al., 2014
). 4-Bromo-2-chlorophenyl-based compounds exhibit significant in vitro inhibitory effects on plasmodium falciparum against malaria parasites (Vallone et al., 2018
, Kos et al., 2022
). The presence of a halogen atom in the phenyl moiety of 4-bromo-2-chlorophenyl derivatives is found to induce antimicrobial properties in the compounds (Radwan et al., 2014
).
As part of our studies in this area, we now present the synthesis and 20H14BrClO3 (I).
of the title compound, C2. Structural commentary
The molecular structure of (I) is shown in Fig. 1. The dihedral angle between the aromatic ring (C1–C6) of the 4-bromo-2-chlorophenyl group and the C8–C13 and C14–C19 rings of the methoxy-biphenyl-carboxylate moiety are 80.59 (2) and 75.42 (2)°, respectively. The dihedral angle between the aromatic rings in the biphenyl moiety (C8–C13 and C14–C19) is 24.57 (4)°. The torsion angle in the ester group (C1—O1—C7—C8) linking the 4-bromo-2-chlorophenyl group with the biphenyl moiety is −166.6 (2)°.
![]() | Figure 1 The molecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level. |
3. Supramolecular features
The crystal packing features short C2—Cl1⋯O3 and C4—Br1⋯O2 interactions with a Cl1⋯O3 distance of 2.991 (3) Å and a Br1⋯O2 distance of 3.139 (2) Å, forming molecular sheets propagating in the (101) plane, as shown in Fig. 2. The van der Waals separations of Cl and O atoms and Br and O atoms are 3.27 and 3.37 Å, respectively. Two weak C—H⋯π interactions also occur (Table 1
).
|
![]() | Figure 2 The packing of (I) with dashed lines indicating Cl⋯O and Br⋯O contacts. |
4. Hirshfeld surface analysis
A Hirshfeld surface analysis for (I) was performed to quantify and visualize the intermolecular interaction present in the molecules using Crystal-Explorer17 (Turner et al., 2017). The Hirshfeld surface (Spackman & Jayatilaka, 2009
) mapped over normalised contact distance dnorm (Fig. 3
) shows the presence of red spots on the iso-surface that correspond to the existence of the short halogen⋯oxygen type interactions noted above. The two-dimensional fingerprint plots (McKinnon et al., 2007
) are shown in Fig. 4
. The major contributions for the intermolecular interactions are from C⋯H/H⋯C (32.2%), H⋯H (26.3%), Br⋯H/H⋯Br (10.7%), O⋯H/H⋯O (10.4%) and Cl⋯H/H⋯Cl (7.5%). The sharp spikes in the fingerprint plots for Cl⋯O and Br⋯O contacts (Fig. 5
) confirm the existence of the directional halogen⋯oxygen interactions.
![]() | Figure 3 The Hirshfeld surface of (I) mapped over dnorm with red spots corresponding to Cl⋯O and Br⋯O short contacts. |
![]() | Figure 4 The two-dimensional fingerprint plots of the major contributors to intermolecular interactions in (I). |
![]() | Figure 5 Fingerprints plots for the Cl⋯O/O⋯Cl and Br⋯O/O⋯Br contacts in (I). |
5. Database survey
A search of the Cambridge Structural Database (CSD version 2.0.4, December 2019; Groom et al., 2016) for molecules containing a [1,1′-biphenyl]-4-carboxylate fragment resulted in more than thirty matches, but six compounds were identified with a substitution at the oxygen atom of the ester group similar to the title compound. In five of the compounds, namely CSD refcodes PUGZUP (Chen et al., 2020
), ESEMAT (Wang et al., 2021
), FIRYIR(Royal et al., 2019
), JOCVAB (Chen et al., 2019
) and JOCVEF (Chen et al., 2019
), the dihedral angles between the aromatic rings of the biphenyl carboxylic acid range between 29.42 (2) and 38.39 (3)° whereas in NEKPAK (Wang et al., 2017
), the dihedral angle is 12.42 (2)°. The conformations of the ester groups (C—O—C—C), which link the biphenyl ring and the in the above compounds and (I), are all anti.
6. Synthesis and crystallization
A mixture of 4-bromo-2-chlorophenol (0.208 g, 1.00 mmol) and 4′-methoxy-[1,1′-biphenyl]-4-carboxylic acid (0.228 g, 1.00 mmol) was suspended in anhydrous chloroform (10 ml). To this were added N,N-dicyclohexylcarbodiimide (0.206 g, 1.00 mmol) and 4-N,N-dimethylamino pyridine (5 mg) and the mixture was stirred overnight at room temperature. The N,N-dicyclohexyl urea formed was filtered off and the filtrate diluted with chloroform (25 ml). This solution was washed successively with 5% aqueous acetic acid solution (2 × 25 ml) and water (2 × 25 ml) and dried over sodium sulfate. The residue obtained on removal of the solvent was chromatographed on silica gel using chloroform as the Removal of solvent from the afforded a white material, which was recrystallized from the mixed solvents of chloroform and petroleum ether to yield colourless prisms of (I). Yield 78%. Elemental analysis calculated: C, 57.51; H, 3.38; Br, 19.13; Cl, 8.49; O, 11.49% found is C, 57.56; H, 3.39; Br, 19.15; Cl, 8.53%, m.p. 338–340 K.
7. Refinement
Crystal data, data collection and structure . All H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
|
Supporting information
CCDC reference: 2433444
https://doi.org/10.1107/S2056989025002658/hb8126sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002658/hb8126Isup2.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025002658/hb8126Isup3.cml
C20H14BrClO3 | prism |
Mr = 417.67 | Dx = 1.623 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.8347 (4) Å | Cell parameters from 4264 reflections |
b = 9.4124 (5) Å | θ = 2.5–28.5° |
c = 20.5526 (11) Å | µ = 2.58 mm−1 |
V = 1709.07 (15) Å3 | T = 296 K |
Z = 4 | Prism, colourless |
F(000) = 840 | 0.40 × 0.35 × 0.29 mm |
Bruker SMART APEXII CCD diffractometer | 4264 independent reflections |
Radiation source: fine-focus sealed tube | 4012 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.053 |
Detector resolution: 1.02 pixels mm-1 | θmax = 28.4°, θmin = 2.0° |
ω scans | h = −11→11 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −12→11 |
Tmin = 0.371, Tmax = 0.475 | l = −27→27 |
28805 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H-atom parameters constrained |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0209P)2 + 0.2511P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.005 |
4264 reflections | Δρmax = 0.27 e Å−3 |
228 parameters | Δρmin = −0.23 e Å−3 |
0 restraints | Absolute structure: Flack parameter |
0 constraints | Absolute structure parameter: 0.011 (8) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.36294 (3) | 0.65415 (3) | 1.07977 (2) | 0.02179 (8) | |
Cl1 | 0.27206 (8) | 0.77586 (8) | 0.82023 (3) | 0.02310 (15) | |
O1 | 0.5178 (2) | 0.5732 (2) | 0.79614 (9) | 0.0205 (4) | |
O2 | 0.6829 (2) | 0.7562 (2) | 0.79511 (9) | 0.0237 (4) | |
O3 | 0.5585 (2) | 0.6213 (2) | 0.28240 (9) | 0.0200 (4) | |
C1 | 0.4892 (3) | 0.5971 (3) | 0.86220 (13) | 0.0170 (5) | |
C2 | 0.3733 (3) | 0.6880 (3) | 0.87978 (12) | 0.0162 (5) | |
C3 | 0.3367 (3) | 0.7066 (3) | 0.94475 (13) | 0.0179 (5) | |
H3 | 0.260073 | 0.768730 | 0.957100 | 0.021* | |
C4 | 0.4174 (3) | 0.6301 (3) | 0.99101 (12) | 0.0163 (5) | |
C5 | 0.5330 (3) | 0.5395 (3) | 0.97413 (13) | 0.0192 (6) | |
H5 | 0.586627 | 0.490548 | 1.005954 | 0.023* | |
C6 | 0.5685 (3) | 0.5224 (3) | 0.90840 (13) | 0.0200 (6) | |
H6 | 0.645518 | 0.460749 | 0.895960 | 0.024* | |
C7 | 0.6090 (3) | 0.6712 (3) | 0.76569 (12) | 0.0173 (5) | |
C8 | 0.6024 (3) | 0.6556 (3) | 0.69402 (12) | 0.0162 (5) | |
C9 | 0.7052 (3) | 0.7323 (3) | 0.65671 (13) | 0.0193 (5) | |
H9 | 0.776532 | 0.789750 | 0.677077 | 0.023* | |
C10 | 0.7022 (3) | 0.7237 (3) | 0.58936 (13) | 0.0199 (5) | |
H10 | 0.772926 | 0.773917 | 0.565012 | 0.024* | |
C11 | 0.5936 (3) | 0.6401 (3) | 0.55758 (12) | 0.0137 (5) | |
C12 | 0.4918 (3) | 0.5638 (3) | 0.59588 (12) | 0.0181 (6) | |
H12 | 0.419557 | 0.507014 | 0.575668 | 0.022* | |
C13 | 0.4953 (3) | 0.5702 (3) | 0.66334 (13) | 0.0171 (5) | |
H13 | 0.426611 | 0.517802 | 0.687867 | 0.021* | |
C14 | 0.5846 (3) | 0.6327 (3) | 0.48544 (12) | 0.0137 (5) | |
C15 | 0.6389 (3) | 0.7435 (3) | 0.44582 (12) | 0.0163 (5) | |
H15 | 0.682792 | 0.822772 | 0.465137 | 0.020* | |
C16 | 0.6283 (3) | 0.7369 (3) | 0.37886 (12) | 0.0172 (5) | |
H16 | 0.664628 | 0.811468 | 0.353630 | 0.021* | |
C17 | 0.5634 (3) | 0.6189 (3) | 0.34898 (12) | 0.0160 (5) | |
C18 | 0.5083 (3) | 0.5085 (3) | 0.38685 (12) | 0.0163 (5) | |
H18 | 0.464090 | 0.429602 | 0.367308 | 0.020* | |
C19 | 0.5197 (3) | 0.5164 (3) | 0.45424 (13) | 0.0158 (5) | |
H19 | 0.482771 | 0.441679 | 0.479239 | 0.019* | |
C20 | 0.4945 (4) | 0.5005 (3) | 0.25032 (13) | 0.0238 (6) | |
H20A | 0.509264 | 0.509222 | 0.204215 | 0.036* | |
H20B | 0.388077 | 0.495699 | 0.259587 | 0.036* | |
H20C | 0.543054 | 0.415659 | 0.265624 | 0.036* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.03127 (14) | 0.02241 (13) | 0.01170 (11) | −0.00941 (12) | 0.00389 (11) | −0.00150 (11) |
Cl1 | 0.0232 (3) | 0.0267 (3) | 0.0194 (3) | 0.0006 (3) | −0.0048 (3) | 0.0066 (3) |
O1 | 0.0279 (10) | 0.0228 (10) | 0.0107 (9) | −0.0050 (8) | 0.0038 (8) | 0.0002 (8) |
O2 | 0.0236 (10) | 0.0321 (11) | 0.0153 (9) | −0.0082 (9) | 0.0012 (8) | −0.0034 (8) |
O3 | 0.0248 (10) | 0.0231 (11) | 0.0120 (9) | −0.0039 (8) | −0.0019 (8) | 0.0016 (7) |
C1 | 0.0160 (12) | 0.0222 (13) | 0.0128 (12) | −0.0036 (11) | 0.0030 (10) | −0.0014 (10) |
C2 | 0.0160 (11) | 0.0177 (13) | 0.0147 (11) | −0.0027 (10) | −0.0046 (10) | 0.0035 (9) |
C3 | 0.0180 (13) | 0.0174 (12) | 0.0182 (12) | −0.0007 (10) | 0.0023 (10) | −0.0003 (10) |
C4 | 0.0190 (12) | 0.0196 (14) | 0.0104 (11) | −0.0076 (11) | 0.0023 (9) | 0.0008 (10) |
C5 | 0.0181 (13) | 0.0243 (14) | 0.0152 (13) | −0.0012 (12) | −0.0015 (10) | 0.0057 (11) |
C6 | 0.0173 (12) | 0.0231 (14) | 0.0197 (14) | 0.0030 (11) | 0.0033 (11) | 0.0010 (11) |
C7 | 0.0150 (12) | 0.0210 (13) | 0.0160 (11) | −0.0002 (11) | 0.0021 (10) | 0.0002 (10) |
C8 | 0.0161 (12) | 0.0191 (12) | 0.0134 (11) | 0.0003 (11) | 0.0015 (9) | −0.0029 (11) |
C9 | 0.0179 (12) | 0.0258 (14) | 0.0142 (12) | −0.0077 (12) | 0.0001 (10) | −0.0041 (11) |
C10 | 0.0192 (12) | 0.0250 (13) | 0.0157 (14) | −0.0067 (11) | 0.0034 (11) | 0.0000 (11) |
C11 | 0.0143 (11) | 0.0141 (12) | 0.0127 (11) | 0.0015 (10) | −0.0003 (9) | −0.0010 (10) |
C12 | 0.0163 (12) | 0.0204 (13) | 0.0177 (13) | −0.0028 (11) | −0.0014 (10) | −0.0020 (10) |
C13 | 0.0163 (12) | 0.0193 (13) | 0.0158 (13) | −0.0041 (11) | 0.0031 (10) | 0.0017 (10) |
C14 | 0.0124 (11) | 0.0160 (13) | 0.0128 (11) | 0.0036 (10) | −0.0008 (9) | 0.0011 (10) |
C15 | 0.0167 (11) | 0.0144 (12) | 0.0179 (12) | 0.0008 (11) | −0.0014 (11) | −0.0019 (9) |
C16 | 0.0173 (11) | 0.0176 (12) | 0.0168 (12) | −0.0012 (12) | 0.0004 (11) | 0.0045 (9) |
C17 | 0.0151 (12) | 0.0214 (14) | 0.0114 (12) | 0.0030 (10) | −0.0002 (10) | −0.0008 (9) |
C18 | 0.0177 (12) | 0.0152 (13) | 0.0162 (13) | −0.0005 (10) | −0.0037 (10) | −0.0018 (10) |
C19 | 0.0161 (12) | 0.0160 (13) | 0.0154 (12) | 0.0010 (11) | −0.0004 (10) | 0.0029 (10) |
C20 | 0.0287 (14) | 0.0283 (16) | 0.0143 (13) | −0.0021 (13) | −0.0031 (11) | −0.0035 (11) |
Br1—C4 | 1.900 (2) | C10—C11 | 1.402 (4) |
Cl1—C2 | 1.727 (3) | C10—H10 | 0.9300 |
O1—C7 | 1.375 (3) | C11—C12 | 1.395 (4) |
O1—C1 | 1.399 (3) | C11—C14 | 1.487 (3) |
O2—C7 | 1.196 (3) | C12—C13 | 1.388 (4) |
O3—C17 | 1.369 (3) | C12—H12 | 0.9300 |
O3—C20 | 1.431 (3) | C13—H13 | 0.9300 |
C1—C6 | 1.374 (4) | C14—C19 | 1.392 (4) |
C1—C2 | 1.382 (4) | C14—C15 | 1.408 (3) |
C2—C3 | 1.385 (4) | C15—C16 | 1.381 (3) |
C3—C4 | 1.389 (4) | C15—H15 | 0.9300 |
C3—H3 | 0.9300 | C16—C17 | 1.392 (4) |
C4—C5 | 1.375 (4) | C16—H16 | 0.9300 |
C5—C6 | 1.396 (4) | C17—C18 | 1.387 (4) |
C5—H5 | 0.9300 | C18—C19 | 1.391 (3) |
C6—H6 | 0.9300 | C18—H18 | 0.9300 |
C7—C8 | 1.482 (3) | C19—H19 | 0.9300 |
C8—C9 | 1.391 (4) | C20—H20A | 0.9600 |
C8—C13 | 1.393 (4) | C20—H20B | 0.9600 |
C9—C10 | 1.387 (4) | C20—H20C | 0.9600 |
C9—H9 | 0.9300 | ||
C7—O1—C1 | 116.1 (2) | C11—C10—H10 | 119.6 |
C17—O3—C20 | 117.4 (2) | C12—C11—C10 | 117.9 (2) |
C6—C1—C2 | 120.9 (2) | C12—C11—C14 | 120.3 (2) |
C6—C1—O1 | 119.7 (2) | C10—C11—C14 | 121.9 (2) |
C2—C1—O1 | 119.1 (2) | C13—C12—C11 | 121.8 (2) |
C6—C1—O1 | 119.7 (2) | C13—C12—H12 | 119.1 |
C2—C1—O1 | 119.1 (2) | C11—C12—H12 | 119.1 |
C1—C2—C3 | 120.2 (2) | C12—C13—C8 | 119.5 (2) |
C1—C2—Cl1 | 119.6 (2) | C12—C13—H13 | 120.3 |
C3—C2—Cl1 | 120.1 (2) | C8—C13—H13 | 120.3 |
C2—C3—C4 | 118.3 (2) | C19—C14—C15 | 117.2 (2) |
C2—C3—H3 | 120.8 | C19—C14—C11 | 121.3 (2) |
C4—C3—H3 | 120.8 | C15—C14—C11 | 121.6 (2) |
C5—C4—C3 | 122.0 (2) | C16—C15—C14 | 121.3 (2) |
C5—C4—Br1 | 120.3 (2) | C16—C15—H15 | 119.3 |
C3—C4—Br1 | 117.7 (2) | C14—C15—H15 | 119.3 |
C4—C5—C6 | 118.9 (3) | C15—C16—C17 | 120.2 (2) |
C4—C5—H5 | 120.6 | C15—C16—H16 | 119.9 |
C6—C5—H5 | 120.6 | C17—C16—H16 | 119.9 |
C1—C6—C5 | 119.7 (3) | O3—C17—C18 | 124.2 (2) |
C1—C6—H6 | 120.2 | O3—C17—C16 | 116.1 (2) |
C5—C6—H6 | 120.2 | C18—C17—C16 | 119.6 (2) |
O2—C7—O1 | 122.5 (2) | C17—C18—C19 | 119.6 (2) |
O2—C7—O1 | 122.5 (2) | C17—C18—H18 | 120.2 |
O2—C7—C8 | 126.2 (2) | C19—C18—H18 | 120.2 |
O1—C7—C8 | 111.3 (2) | C18—C19—C14 | 122.1 (3) |
O1—C7—C8 | 111.3 (2) | C18—C19—H19 | 119.0 |
C9—C8—C13 | 119.6 (2) | C14—C19—H19 | 119.0 |
C9—C8—C7 | 118.1 (2) | O3—C20—H20A | 109.5 |
C13—C8—C7 | 122.3 (2) | O3—C20—H20B | 109.5 |
C10—C9—C8 | 120.5 (2) | H20A—C20—H20B | 109.5 |
C10—C9—H9 | 119.8 | O3—C20—H20C | 109.5 |
C8—C9—H9 | 119.8 | H20A—C20—H20C | 109.5 |
C9—C10—C11 | 120.7 (2) | H20B—C20—H20C | 109.5 |
C9—C10—H10 | 119.6 | ||
O1—O1—C1—C6 | 0.0 (6) | O2—C7—C8—C13 | −169.1 (3) |
C7—O1—C1—C6 | −100.4 (3) | O1—C7—C8—C13 | 11.1 (4) |
O1—O1—C1—C2 | 0.0 (6) | O1—C7—C8—C13 | 11.1 (4) |
C7—O1—C1—C2 | 84.4 (3) | C13—C8—C9—C10 | −0.3 (4) |
C7—O1—C1—O1 | 0 (34) | C7—C8—C9—C10 | −178.8 (3) |
C6—C1—C2—C3 | 0.9 (4) | C8—C9—C10—C11 | 1.4 (4) |
O1—C1—C2—C3 | 176.0 (2) | C9—C10—C11—C12 | −1.5 (4) |
O1—C1—C2—C3 | 176.0 (2) | C9—C10—C11—C14 | 178.0 (2) |
C6—C1—C2—Cl1 | −178.0 (2) | C10—C11—C12—C13 | 0.6 (4) |
O1—C1—C2—Cl1 | −2.8 (3) | C14—C11—C12—C13 | −178.9 (2) |
O1—C1—C2—Cl1 | −2.8 (3) | C11—C12—C13—C8 | 0.4 (4) |
C1—C2—C3—C4 | −1.1 (4) | C9—C8—C13—C12 | −0.6 (4) |
Cl1—C2—C3—C4 | 177.7 (2) | C7—C8—C13—C12 | 177.8 (2) |
C2—C3—C4—C5 | 1.2 (4) | C12—C11—C14—C19 | −24.4 (4) |
C2—C3—C4—Br1 | −178.8 (2) | C10—C11—C14—C19 | 156.1 (3) |
C3—C4—C5—C6 | −1.1 (4) | C12—C11—C14—C15 | 154.5 (3) |
Br1—C4—C5—C6 | 178.9 (2) | C10—C11—C14—C15 | −25.0 (4) |
C2—C1—C6—C5 | −0.7 (4) | C19—C14—C15—C16 | −0.1 (4) |
O1—C1—C6—C5 | −175.8 (2) | C11—C14—C15—C16 | −179.1 (3) |
O1—C1—C6—C5 | −175.8 (2) | C14—C15—C16—C17 | −0.2 (4) |
C4—C5—C6—C1 | 0.8 (4) | C20—O3—C17—C18 | −1.1 (4) |
O1—O1—C7—O2 | 0.0 (5) | C20—O3—C17—C16 | 179.1 (2) |
C1—O1—C7—O2 | 13.6 (4) | C15—C16—C17—O3 | −179.7 (3) |
C1—O1—C7—O1 | 0 (67) | C15—C16—C17—C18 | 0.5 (4) |
O1—O1—C7—C8 | 0.0 (4) | O3—C17—C18—C19 | 179.7 (3) |
C1—O1—C7—C8 | −166.6 (2) | C16—C17—C18—C19 | −0.5 (4) |
O2—C7—C8—C9 | 9.3 (4) | C17—C18—C19—C14 | 0.2 (4) |
O1—C7—C8—C9 | −170.5 (2) | C15—C14—C19—C18 | 0.1 (4) |
O1—C7—C8—C9 | −170.5 (2) | C11—C14—C19—C18 | 179.1 (2) |
Cg3 is the centroid of the C14–C19 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C6—H6···Cg3i | 0.93 | 2.65 | 3.459 (3) | 147 |
C10—H10···Cg3ii | 0.93 | 2.85 | 3.577 (3) | 136 |
Symmetry codes: (i) −x+3/2, −y+1, z+1/2; (ii) −x, y+3/2, −z+3/2. |
Parameter | SCXRD | DFT | |
Br1—C4 | 1.900 (2) | 1.9148 | |
Cl1—C2 | 1.727 (3) | 1.7468 | |
O1—C7 | 1.375 (3) | 1.3831 | |
O1—C1 | 1.399 (3) | 1.3848 | |
O2—C7 | 1.196 (3) | 1.2025 | |
O3—C17 | 1.369 (3) | 1.3619 | |
C7—O1—C1 | 116.1 (2) | 117.908 | |
C17—O3—C20 | 117.4 (2) | 118.693 | |
C6—C1—C2 | 120.9 (2) | 119.670 | |
C6—C1—O1 | 119.7 (2) | 119.844 | |
O2—C7—O1 | 122.5 (2) | 122.388 | |
O2—C7—C8 | 126.2 (2) | 126.007 | |
C1—O1—C7—C8 | -166.6 (2 | -179.143 | |
C7—O1—C1—C6 | -100.4 (3) | -88.445 | |
O1—C1—C2—Cl1 | -2.8 (3) | -3.598 |
Acknowledgements
The authors acknowledge the Raman Research Institute, Bangalore, and Center of Innovative Science, Engineering and Education (CISEE), UCS, Tumkur University, for constant support in extending the laboratory facilities. MH is thankful to BSPM's lab for use of their computing facilities at the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur.
Funding information
Funding for this research was provided by: Vision Group of Science and Technology (award No. GRD319 to Palakshamrthy BS).
References
Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, D., Lu, L. & Shen, Q. (2019). Org. Chem. Front. 6, 1801–1806. Google Scholar
Chen, G., Cao, J., Wang, Q. & Zhu, J. (2020). Org. Lett. 22, 322–325. PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Idris, A. I., Greig, I. R., Bassonga-Landao, E., Ralston, S. H. & van 't Hof, R. J. (2009). Endocrinology, 150, 5–13. Web of Science CrossRef PubMed CAS Google Scholar
Kim, J. S., Heo, P., Yang, T. J., Lee, K. S., Cho, D. H., Kim, B. T., Suh, J. H., Lim, H. J., Shin, D., Kim, S. K. & Kweon, D. H. (2011). Antimicrob. Agents Chemother. 55, 5380–5383. PubMed Google Scholar
Kos, J., Degotte, G., Pindjakova, D., Strharsky, T., Jankech, T., Gonec, T., Francotte, P., Frederich, M. & Jampilek, J. (2022). Molecules, 27, 7799. PubMed Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Kwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117. Web of Science CSD CrossRef PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mahale, S., Bharate, S. B., Manda, S., Joshi, P., Bharate, S. S., Jenkins, P. R., Vishwakarma, R. A. & Chaudhuri, B. (2014). J. Med. Chem. 57, 9658–9672. Web of Science CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Mukherjee, S., Chatterjee, S., Poddar, A., Bhattacharyya, B. & Gupta, S. (2016). J. Taibah Univ. Sci. 10, 839–849. Web of Science CrossRef Google Scholar
Radwan, A. A., Ghorab, M. M., Alsaid, M. S. & Alanazi, F. K. (2014). Acta Pharm. 64, 335–344. PubMed Google Scholar
Royal, T. & Baudoin, O. (2019). Chem. Sci. 10, 2331–2335. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sachan, N., Thareja, S., Agarwal, R., Kadam, S. S. & Kulkarni, V. M. (2009). Int. J. PharmTech Res, 1(4), 1625–1631. Google Scholar
Sharma, M. C., Kohli, D. V. & Sharma, S. (2010). Digest J. Nanomat. Biostruct. 5, 605–621. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
't Hof, R. J. van, Idris, A. I., Ridge, S. A., Dunford, J., Greig, I. R. & Ralston, S. H. (2004). J. Bone Miner. Res. 19, 1651–1660. PubMed Google Scholar
Trivedi, V. & Shah, S. H. (2009). Orient. J. Chem. 25(4), 893. Google Scholar
Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. Google Scholar
Vallone, A., D'Alessandro, S., Brogi, S., Brindisi, M., Chemi, G., Alfano, G. & Butini, S. (2018). Eur. J. Med. Chem. 150, 698–718. PubMed Google Scholar
Wang, C. S., Roisnel, T., Dixneuf, P. H. & Soulé, J. F. (2017). Org. Lett. 19, 6720–6723. PubMed Google Scholar
Wang, Y., Wang, Z., Wang, Z., Liu, X., Jiang, Y., Jiao, X. & Xie, P. (2021). Org. Lett. 23, 3680–3684. PubMed Google Scholar
Zhao, D., Zhao, S., Zhao, L., Zhang, X., Wei, P., Liu, C., Hao, C., Sun, B., Su, X. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 750–758. Web of Science CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.