research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 4-bromo-2-chloro­phenyl 4′-meth­­oxy-[1,1′-biphen­yl]-4-carboxyl­ate featuring short halogen⋯oxygen contacts

crossmark logo

aDepartment of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur, Karnataka-572103, India, bDepartment of Physics, Government First Grade College, Chikkballapur, Karnataka-562101, India, cDepartment of Physics, Yuvaraja's College, University of Mysore, Mysore-, 570005, Karnataka, India, and dRaman Research Institute, C. V. Raman, Avenue, Sadashivanagar, Bangalore-560080, Karnataka, India
*Correspondence e-mail: harishkagalipur@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 3 March 2025; accepted 24 March 2025; online 4 April 2025)

In the title compound, C20H14BrClO3, the dihedral angles between the aromatic ring of the 4-bromo-2-chloro­phenyl and the immediate neighbour and second aromatic ring of the biphenyl moiety are 80.59 (2) and 75.42 (2)°, respectively. The dihedral angle between the rings within the biphenyl moiety is 24.57 (4)°. The torsion angle associated with the ester group linking the biphenyl ring and the 4-bromo-2-chloro­phenyl group is −166.6 (2)°. The extended structure features short halogen⋯oxygen contacts [Cl⋯O = 2.991 (3), Br⋯O = 3.139 (2) Å], forming mol­ecular sheets lying parallel to (101). The Hirshfeld surface analysis reveals that the major contributions to the inter­molecular inter­actions are from C⋯H/H⋯C (32.2%), H⋯H/H⋯H (26.3%), Br⋯H/H⋯Br (10.7%), O⋯H/H⋯O (10.4%) and Cl⋯H/H⋯Cl (7.5%) contacts.

1. Chemical context

Biphenyl derivates exhibit medicinal properties such as anti­hypertensive (Sharma et al., 2010[Sharma, M. C., Kohli, D. V. & Sharma, S. (2010). Digest J. Nanomat. Biostruct. 5, 605-621.]), anti-diabetic (Sachan et al., 2009[Sachan, N., Thareja, S., Agarwal, R., Kadam, S. S. & Kulkarni, V. M. (2009). Int. J. PharmTech Res, 1(4), 1625-1631.]), anti-bacterial (Trivedi et al., 2009[Trivedi, V. & Shah, S. H. (2009). Orient. J. Chem. 25(4), 893.]), anti­fungal (Zhao et al., 2017[Zhao, D., Zhao, S., Zhao, L., Zhang, X., Wei, P., Liu, C., Hao, C., Sun, B., Su, X. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 750-758.]) and anti­cancer (Mukherjee et al., 2016[Mukherjee, S., Chatterjee, S., Poddar, A., Bhattacharyya, B. & Gupta, S. (2016). J. Taibah Univ. Sci. 10, 839-849.]) effects. The drug obtained from the piperidine derivative of biphenyl-4-carboxyl­ate selectively kills the bacterial persisters that are resistant to anti­biotic treatments (Kim et al., 2011[Kim, J. S., Heo, P., Yang, T. J., Lee, K. S., Cho, D. H., Kim, B. T., Suh, J. H., Lim, H. J., Shin, D., Kim, S. K. & Kweon, D. H. (2011). Antimicrob. Agents Chemother. 55, 5380-5383.]). Some biphenyl-carb­oxy­lic acid derivatives act as anti­resorptive drugs (Van't Hof et al., 2004['t Hof, R. J. van, Idris, A. I., Ridge, S. A., Dunford, J., Greig, I. R. & Ralston, S. H. (2004). J. Bone Miner. Res. 19, 1651-1660.]; Idris et al., 2009[Idris, A. I., Greig, I. R., Bassonga-Landao, E., Ralston, S. H. & van 't Hof, R. J. (2009). Endocrinology, 150, 5-13.]) by stopping or slowing down bone loss in osteoporosis. It is found that biphenyl compounds substituted with a heterocyclic ring can act as anti-tyrosinase agents (Kwong et al., 2017[Kwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.]) that reduce the activity of tyrosinase enzyme. Biphenyl-4-carb­oxy­lic acid derivatives inhibit tubulin polymerization to act as anti­cancer agents (Mahale et al., 2014[Mahale, S., Bharate, S. B., Manda, S., Joshi, P., Bharate, S. S., Jenkins, P. R., Vishwakarma, R. A. & Chaudhuri, B. (2014). J. Med. Chem. 57, 9658-9672.]). 4-Bromo-2-chloro­phenyl-based compounds exhibit significant in vitro inhibitory effects on plasmodium falciparum against malaria parasites (Vallone et al., 2018[Vallone, A., D'Alessandro, S., Brogi, S., Brindisi, M., Chemi, G., Alfano, G. & Butini, S. (2018). Eur. J. Med. Chem. 150, 698-718.], Kos et al., 2022[Kos, J., Degotte, G., Pindjakova, D., Strharsky, T., Jankech, T., Gonec, T., Francotte, P., Frederich, M. & Jampilek, J. (2022). Molecules, 27, 7799.]). The presence of a halogen atom in the phenyl moiety of 4-bromo-2-chloro­phenyl derivatives is found to induce anti­microbial properties in the compounds (Radwan et al., 2014[Radwan, A. A., Ghorab, M. M., Alsaid, M. S. & Alanazi, F. K. (2014). Acta Pharm. 64, 335-344.]).

[Scheme 1]

As part of our studies in this area, we now present the synthesis and crystal structure of the title compound, C20H14BrClO3 (I).

2. Structural commentary

The mol­ecular structure of (I) is shown in Fig. 1[link]. The dihedral angle between the aromatic ring (C1–C6) of the 4-bromo-2-chloro­phenyl group and the C8–C13 and C14–C19 rings of the meth­oxy-biphenyl-carboxyl­ate moiety are 80.59 (2) and 75.42 (2)°, respectively. The dihedral angle between the aromatic rings in the biphenyl moiety (C8–C13 and C14–C19) is 24.57 (4)°. The torsion angle in the ester group (C1—O1—C7—C8) linking the 4-bromo-2-chloro­phenyl group with the biphenyl moiety is −166.6 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I) showing displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal packing features short C2—Cl1⋯O3 and C4—Br1⋯O2 inter­actions with a Cl1⋯O3 distance of 2.991 (3) Å and a Br1⋯O2 distance of 3.139 (2) Å, forming mol­ecular sheets propagating in the (101) plane, as shown in Fig. 2[link]. The van der Waals separations of Cl and O atoms and Br and O atoms are 3.27 and 3.37 Å, respectively. Two weak C—H⋯π inter­actions also occur (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯Cg3i 0.93 2.65 3.459 (3) 147
C10—H10⋯Cg3ii 0.93 2.85 3.577 (3) 136
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].
[Figure 2]
Figure 2
The packing of (I) with dashed lines indicating Cl⋯O and Br⋯O contacts.

4. Hirshfeld surface analysis

A Hirshfeld surface analysis for (I) was performed to qu­antify and visualize the inter­molecular inter­action present in the mol­ecules using Crystal-Explorer17 (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.]). The Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) mapped over normalised contact distance dnorm (Fig. 3[link]) shows the presence of red spots on the iso-surface that correspond to the existence of the short halogen⋯oxygen type inter­actions noted above. The two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) are shown in Fig. 4[link]. The major contributions for the inter­molecular inter­actions are from C⋯H/H⋯C (32.2%), H⋯H (26.3%), Br⋯H/H⋯Br (10.7%), O⋯H/H⋯O (10.4%) and Cl⋯H/H⋯Cl (7.5%). The sharp spikes in the fingerprint plots for Cl⋯O and Br⋯O contacts (Fig. 5[link]) confirm the existence of the directional halogen⋯oxygen inter­actions.

[Figure 3]
Figure 3
The Hirshfeld surface of (I) mapped over dnorm with red spots corresponding to Cl⋯O and Br⋯O short contacts.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots of the major contributors to inter­molecular inter­actions in (I).
[Figure 5]
Figure 5
Fingerprints plots for the Cl⋯O/O⋯Cl and Br⋯O/O⋯Br contacts in (I).

5. Database survey

A search of the Cambridge Structural Database (CSD version 2.0.4, December 2019; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for mol­ecules containing a [1,1′-biphen­yl]-4-carboxyl­ate fragment resulted in more than thirty matches, but six compounds were identified with a substitution at the oxygen atom of the ester group similar to the title compound. In five of the compounds, namely CSD refcodes PUGZUP (Chen et al., 2020[Chen, G., Cao, J., Wang, Q. & Zhu, J. (2020). Org. Lett. 22, 322-325.]), ESEMAT (Wang et al., 2021[Wang, Y., Wang, Z., Wang, Z., Liu, X., Jiang, Y., Jiao, X. & Xie, P. (2021). Org. Lett. 23, 3680-3684.]), FIRYIR(Royal et al., 2019[Royal, T. & Baudoin, O. (2019). Chem. Sci. 10, 2331-2335.]), JOCVAB (Chen et al., 2019[Chen, D., Lu, L. & Shen, Q. (2019). Org. Chem. Front. 6, 1801-1806.]) and JOCVEF (Chen et al., 2019[Chen, D., Lu, L. & Shen, Q. (2019). Org. Chem. Front. 6, 1801-1806.]), the dihedral angles between the aromatic rings of the biphenyl carb­oxy­lic acid range between 29.42 (2) and 38.39 (3)° whereas in NEKPAK (Wang et al., 2017[Wang, C. S., Roisnel, T., Dixneuf, P. H. & Soulé, J. F. (2017). Org. Lett. 19, 6720-6723.]), the dihedral angle is 12.42 (2)°. The conformations of the ester groups (C—O—C—C), which link the biphenyl ring and the functional group in the above compounds and (I), are all anti.

6. Synthesis and crystallization

A mixture of 4-bromo-2-chloro­phenol (0.208 g, 1.00 mmol) and 4′-meth­oxy-[1,1′-biphen­yl]-4-carb­oxy­lic acid (0.228 g, 1.00 mmol) was suspended in anhydrous chloro­form (10 ml). To this were added N,N-di­cyclo­hexyl­carbodi­imide (0.206 g, 1.00 mmol) and 4-N,N-di­methyl­amino pyridine (5 mg) and the mixture was stirred overnight at room temperature. The N,N-di­cyclo­hexyl urea formed was filtered off and the filtrate diluted with chloro­form (25 ml). This solution was washed successively with 5% aqueous acetic acid solution (2 × 25 ml) and water (2 × 25 ml) and dried over sodium sulfate. The residue obtained on removal of the solvent was chromatographed on silica gel using chloro­form as the eluent. Removal of solvent from the eluate afforded a white material, which was recrystallized from the mixed solvents of chloro­form and petroleum ether to yield colourless prisms of (I). Yield 78%. Elemental analysis calculated: C, 57.51; H, 3.38; Br, 19.13; Cl, 8.49; O, 11.49% found is C, 57.56; H, 3.39; Br, 19.15; Cl, 8.53%, m.p. 338–340 K.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned with idealized geometry and refined using a riding model with C—H = 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C20H14BrClO3
Mr 417.67
Crystal system, space group Orthorhombic, P212121
Temperature (K) 296
a, b, c (Å) 8.8347 (4), 9.4124 (5), 20.5526 (11)
V3) 1709.07 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.58
Crystal size (mm) 0.40 × 0.35 × 0.29
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.371, 0.475
No. of measured, independent and observed [I > 2σ(I)] reflections 28805, 4264, 4012
Rint 0.053
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.054, 1.04
No. of reflections 4264
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.23
Absolute structure Flack parameter
Absolute structure parameter 0.011 (8)
Computer programs: APEX2 and SAINT (Bruker, 2017[Bruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXL2018/3 and SHELXL2019/2 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

4-Bromo-2-chlorophenyl 4'-methoxy-[1,1'-biphenyl]-4-carboxylate top
Crystal data top
C20H14BrClO3prism
Mr = 417.67Dx = 1.623 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 8.8347 (4) ÅCell parameters from 4264 reflections
b = 9.4124 (5) Åθ = 2.5–28.5°
c = 20.5526 (11) ŵ = 2.58 mm1
V = 1709.07 (15) Å3T = 296 K
Z = 4Prism, colourless
F(000) = 8400.40 × 0.35 × 0.29 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
4264 independent reflections
Radiation source: fine-focus sealed tube4012 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
Detector resolution: 1.02 pixels mm-1θmax = 28.4°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1211
Tmin = 0.371, Tmax = 0.475l = 2727
28805 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0209P)2 + 0.2511P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.005
4264 reflectionsΔρmax = 0.27 e Å3
228 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack parameter
0 constraintsAbsolute structure parameter: 0.011 (8)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36294 (3)0.65415 (3)1.07977 (2)0.02179 (8)
Cl10.27206 (8)0.77586 (8)0.82023 (3)0.02310 (15)
O10.5178 (2)0.5732 (2)0.79614 (9)0.0205 (4)
O20.6829 (2)0.7562 (2)0.79511 (9)0.0237 (4)
O30.5585 (2)0.6213 (2)0.28240 (9)0.0200 (4)
C10.4892 (3)0.5971 (3)0.86220 (13)0.0170 (5)
C20.3733 (3)0.6880 (3)0.87978 (12)0.0162 (5)
C30.3367 (3)0.7066 (3)0.94475 (13)0.0179 (5)
H30.2600730.7687300.9571000.021*
C40.4174 (3)0.6301 (3)0.99101 (12)0.0163 (5)
C50.5330 (3)0.5395 (3)0.97413 (13)0.0192 (6)
H50.5866270.4905481.0059540.023*
C60.5685 (3)0.5224 (3)0.90840 (13)0.0200 (6)
H60.6455180.4607490.8959600.024*
C70.6090 (3)0.6712 (3)0.76569 (12)0.0173 (5)
C80.6024 (3)0.6556 (3)0.69402 (12)0.0162 (5)
C90.7052 (3)0.7323 (3)0.65671 (13)0.0193 (5)
H90.7765320.7897500.6770770.023*
C100.7022 (3)0.7237 (3)0.58936 (13)0.0199 (5)
H100.7729260.7739170.5650120.024*
C110.5936 (3)0.6401 (3)0.55758 (12)0.0137 (5)
C120.4918 (3)0.5638 (3)0.59588 (12)0.0181 (6)
H120.4195570.5070140.5756680.022*
C130.4953 (3)0.5702 (3)0.66334 (13)0.0171 (5)
H130.4266110.5178020.6878670.021*
C140.5846 (3)0.6327 (3)0.48544 (12)0.0137 (5)
C150.6389 (3)0.7435 (3)0.44582 (12)0.0163 (5)
H150.6827920.8227720.4651370.020*
C160.6283 (3)0.7369 (3)0.37886 (12)0.0172 (5)
H160.6646280.8114680.3536300.021*
C170.5634 (3)0.6189 (3)0.34898 (12)0.0160 (5)
C180.5083 (3)0.5085 (3)0.38685 (12)0.0163 (5)
H180.4640900.4296020.3673080.020*
C190.5197 (3)0.5164 (3)0.45424 (13)0.0158 (5)
H190.4827710.4416790.4792390.019*
C200.4945 (4)0.5005 (3)0.25032 (13)0.0238 (6)
H20A0.5092640.5092220.2042150.036*
H20B0.3880770.4956990.2595870.036*
H20C0.5430540.4156590.2656240.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03127 (14)0.02241 (13)0.01170 (11)0.00941 (12)0.00389 (11)0.00150 (11)
Cl10.0232 (3)0.0267 (3)0.0194 (3)0.0006 (3)0.0048 (3)0.0066 (3)
O10.0279 (10)0.0228 (10)0.0107 (9)0.0050 (8)0.0038 (8)0.0002 (8)
O20.0236 (10)0.0321 (11)0.0153 (9)0.0082 (9)0.0012 (8)0.0034 (8)
O30.0248 (10)0.0231 (11)0.0120 (9)0.0039 (8)0.0019 (8)0.0016 (7)
C10.0160 (12)0.0222 (13)0.0128 (12)0.0036 (11)0.0030 (10)0.0014 (10)
C20.0160 (11)0.0177 (13)0.0147 (11)0.0027 (10)0.0046 (10)0.0035 (9)
C30.0180 (13)0.0174 (12)0.0182 (12)0.0007 (10)0.0023 (10)0.0003 (10)
C40.0190 (12)0.0196 (14)0.0104 (11)0.0076 (11)0.0023 (9)0.0008 (10)
C50.0181 (13)0.0243 (14)0.0152 (13)0.0012 (12)0.0015 (10)0.0057 (11)
C60.0173 (12)0.0231 (14)0.0197 (14)0.0030 (11)0.0033 (11)0.0010 (11)
C70.0150 (12)0.0210 (13)0.0160 (11)0.0002 (11)0.0021 (10)0.0002 (10)
C80.0161 (12)0.0191 (12)0.0134 (11)0.0003 (11)0.0015 (9)0.0029 (11)
C90.0179 (12)0.0258 (14)0.0142 (12)0.0077 (12)0.0001 (10)0.0041 (11)
C100.0192 (12)0.0250 (13)0.0157 (14)0.0067 (11)0.0034 (11)0.0000 (11)
C110.0143 (11)0.0141 (12)0.0127 (11)0.0015 (10)0.0003 (9)0.0010 (10)
C120.0163 (12)0.0204 (13)0.0177 (13)0.0028 (11)0.0014 (10)0.0020 (10)
C130.0163 (12)0.0193 (13)0.0158 (13)0.0041 (11)0.0031 (10)0.0017 (10)
C140.0124 (11)0.0160 (13)0.0128 (11)0.0036 (10)0.0008 (9)0.0011 (10)
C150.0167 (11)0.0144 (12)0.0179 (12)0.0008 (11)0.0014 (11)0.0019 (9)
C160.0173 (11)0.0176 (12)0.0168 (12)0.0012 (12)0.0004 (11)0.0045 (9)
C170.0151 (12)0.0214 (14)0.0114 (12)0.0030 (10)0.0002 (10)0.0008 (9)
C180.0177 (12)0.0152 (13)0.0162 (13)0.0005 (10)0.0037 (10)0.0018 (10)
C190.0161 (12)0.0160 (13)0.0154 (12)0.0010 (11)0.0004 (10)0.0029 (10)
C200.0287 (14)0.0283 (16)0.0143 (13)0.0021 (13)0.0031 (11)0.0035 (11)
Geometric parameters (Å, º) top
Br1—C41.900 (2)C10—C111.402 (4)
Cl1—C21.727 (3)C10—H100.9300
O1—C71.375 (3)C11—C121.395 (4)
O1—C11.399 (3)C11—C141.487 (3)
O2—C71.196 (3)C12—C131.388 (4)
O3—C171.369 (3)C12—H120.9300
O3—C201.431 (3)C13—H130.9300
C1—C61.374 (4)C14—C191.392 (4)
C1—C21.382 (4)C14—C151.408 (3)
C2—C31.385 (4)C15—C161.381 (3)
C3—C41.389 (4)C15—H150.9300
C3—H30.9300C16—C171.392 (4)
C4—C51.375 (4)C16—H160.9300
C5—C61.396 (4)C17—C181.387 (4)
C5—H50.9300C18—C191.391 (3)
C6—H60.9300C18—H180.9300
C7—C81.482 (3)C19—H190.9300
C8—C91.391 (4)C20—H20A0.9600
C8—C131.393 (4)C20—H20B0.9600
C9—C101.387 (4)C20—H20C0.9600
C9—H90.9300
C7—O1—C1116.1 (2)C11—C10—H10119.6
C17—O3—C20117.4 (2)C12—C11—C10117.9 (2)
C6—C1—C2120.9 (2)C12—C11—C14120.3 (2)
C6—C1—O1119.7 (2)C10—C11—C14121.9 (2)
C2—C1—O1119.1 (2)C13—C12—C11121.8 (2)
C6—C1—O1119.7 (2)C13—C12—H12119.1
C2—C1—O1119.1 (2)C11—C12—H12119.1
C1—C2—C3120.2 (2)C12—C13—C8119.5 (2)
C1—C2—Cl1119.6 (2)C12—C13—H13120.3
C3—C2—Cl1120.1 (2)C8—C13—H13120.3
C2—C3—C4118.3 (2)C19—C14—C15117.2 (2)
C2—C3—H3120.8C19—C14—C11121.3 (2)
C4—C3—H3120.8C15—C14—C11121.6 (2)
C5—C4—C3122.0 (2)C16—C15—C14121.3 (2)
C5—C4—Br1120.3 (2)C16—C15—H15119.3
C3—C4—Br1117.7 (2)C14—C15—H15119.3
C4—C5—C6118.9 (3)C15—C16—C17120.2 (2)
C4—C5—H5120.6C15—C16—H16119.9
C6—C5—H5120.6C17—C16—H16119.9
C1—C6—C5119.7 (3)O3—C17—C18124.2 (2)
C1—C6—H6120.2O3—C17—C16116.1 (2)
C5—C6—H6120.2C18—C17—C16119.6 (2)
O2—C7—O1122.5 (2)C17—C18—C19119.6 (2)
O2—C7—O1122.5 (2)C17—C18—H18120.2
O2—C7—C8126.2 (2)C19—C18—H18120.2
O1—C7—C8111.3 (2)C18—C19—C14122.1 (3)
O1—C7—C8111.3 (2)C18—C19—H19119.0
C9—C8—C13119.6 (2)C14—C19—H19119.0
C9—C8—C7118.1 (2)O3—C20—H20A109.5
C13—C8—C7122.3 (2)O3—C20—H20B109.5
C10—C9—C8120.5 (2)H20A—C20—H20B109.5
C10—C9—H9119.8O3—C20—H20C109.5
C8—C9—H9119.8H20A—C20—H20C109.5
C9—C10—C11120.7 (2)H20B—C20—H20C109.5
C9—C10—H10119.6
O1—O1—C1—C60.0 (6)O2—C7—C8—C13169.1 (3)
C7—O1—C1—C6100.4 (3)O1—C7—C8—C1311.1 (4)
O1—O1—C1—C20.0 (6)O1—C7—C8—C1311.1 (4)
C7—O1—C1—C284.4 (3)C13—C8—C9—C100.3 (4)
C7—O1—C1—O10 (34)C7—C8—C9—C10178.8 (3)
C6—C1—C2—C30.9 (4)C8—C9—C10—C111.4 (4)
O1—C1—C2—C3176.0 (2)C9—C10—C11—C121.5 (4)
O1—C1—C2—C3176.0 (2)C9—C10—C11—C14178.0 (2)
C6—C1—C2—Cl1178.0 (2)C10—C11—C12—C130.6 (4)
O1—C1—C2—Cl12.8 (3)C14—C11—C12—C13178.9 (2)
O1—C1—C2—Cl12.8 (3)C11—C12—C13—C80.4 (4)
C1—C2—C3—C41.1 (4)C9—C8—C13—C120.6 (4)
Cl1—C2—C3—C4177.7 (2)C7—C8—C13—C12177.8 (2)
C2—C3—C4—C51.2 (4)C12—C11—C14—C1924.4 (4)
C2—C3—C4—Br1178.8 (2)C10—C11—C14—C19156.1 (3)
C3—C4—C5—C61.1 (4)C12—C11—C14—C15154.5 (3)
Br1—C4—C5—C6178.9 (2)C10—C11—C14—C1525.0 (4)
C2—C1—C6—C50.7 (4)C19—C14—C15—C160.1 (4)
O1—C1—C6—C5175.8 (2)C11—C14—C15—C16179.1 (3)
O1—C1—C6—C5175.8 (2)C14—C15—C16—C170.2 (4)
C4—C5—C6—C10.8 (4)C20—O3—C17—C181.1 (4)
O1—O1—C7—O20.0 (5)C20—O3—C17—C16179.1 (2)
C1—O1—C7—O213.6 (4)C15—C16—C17—O3179.7 (3)
C1—O1—C7—O10 (67)C15—C16—C17—C180.5 (4)
O1—O1—C7—C80.0 (4)O3—C17—C18—C19179.7 (3)
C1—O1—C7—C8166.6 (2)C16—C17—C18—C190.5 (4)
O2—C7—C8—C99.3 (4)C17—C18—C19—C140.2 (4)
O1—C7—C8—C9170.5 (2)C15—C14—C19—C180.1 (4)
O1—C7—C8—C9170.5 (2)C11—C14—C19—C18179.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6···Cg3i0.932.653.459 (3)147
C10—H10···Cg3ii0.932.853.577 (3)136
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x, y+3/2, z+3/2.
top
ParameterSCXRDDFT
Br1—C41.900 (2)1.9148
Cl1—C21.727 (3)1.7468
O1—C71.375 (3)1.3831
O1—C11.399 (3)1.3848
O2—C71.196 (3)1.2025
O3—C171.369 (3)1.3619
C7—O1—C1116.1 (2)117.908
C17—O3—C20117.4 (2)118.693
C6—C1—C2120.9 (2)119.670
C6—C1—O1119.7 (2)119.844
O2—C7—O1122.5 (2)122.388
O2—C7—C8126.2 (2)126.007
C1—O1—C7—C8-166.6 (2-179.143
C7—O1—C1—C6-100.4 (3)-88.445
O1—C1—C2—Cl1-2.8 (3)-3.598

Acknowledgements

The authors acknowledge the Raman Research Institute, Bangalore, and Center of Innovative Science, Engineering and Education (CISEE), UCS, Tumkur University, for constant support in extending the laboratory facilities. MH is thankful to BSPM's lab for use of their computing facilities at the Department of PG Studies and Research in Physics, Albert Einstein Block, UCS, Tumkur University, Tumkur.

Funding information

Funding for this research was provided by: Vision Group of Science and Technology (award No. GRD319 to Palakshamrthy BS).

References

First citationBruker (2017). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, D., Lu, L. & Shen, Q. (2019). Org. Chem. Front. 6, 1801–1806.  Google Scholar
First citationChen, G., Cao, J., Wang, Q. & Zhu, J. (2020). Org. Lett. 22, 322–325.  PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIdris, A. I., Greig, I. R., Bassonga-Landao, E., Ralston, S. H. & van 't Hof, R. J. (2009). Endocrinology, 150, 5–13.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKim, J. S., Heo, P., Yang, T. J., Lee, K. S., Cho, D. H., Kim, B. T., Suh, J. H., Lim, H. J., Shin, D., Kim, S. K. & Kweon, D. H. (2011). Antimicrob. Agents Chemother. 55, 5380–5383.  PubMed Google Scholar
First citationKos, J., Degotte, G., Pindjakova, D., Strharsky, T., Jankech, T., Gonec, T., Francotte, P., Frederich, M. & Jampilek, J. (2022). Molecules, 27, 7799.  PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationKwong, H. C., Chidan Kumar, C. S., Mah, S. H., Chia, T. S., Quah, C. K., Loh, Z. H., Chandraju, S. & Lim, G. K. (2017). PLoS One, 12, e0170117.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMahale, S., Bharate, S. B., Manda, S., Joshi, P., Bharate, S. S., Jenkins, P. R., Vishwakarma, R. A. & Chaudhuri, B. (2014). J. Med. Chem. 57, 9658–9672.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationMukherjee, S., Chatterjee, S., Poddar, A., Bhattacharyya, B. & Gupta, S. (2016). J. Taibah Univ. Sci. 10, 839–849.  Web of Science CrossRef Google Scholar
First citationRadwan, A. A., Ghorab, M. M., Alsaid, M. S. & Alanazi, F. K. (2014). Acta Pharm. 64, 335–344.  PubMed Google Scholar
First citationRoyal, T. & Baudoin, O. (2019). Chem. Sci. 10, 2331–2335.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSachan, N., Thareja, S., Agarwal, R., Kadam, S. S. & Kulkarni, V. M. (2009). Int. J. PharmTech Res, 1(4), 1625–1631.  Google Scholar
First citationSharma, M. C., Kohli, D. V. & Sharma, S. (2010). Digest J. Nanomat. Biostruct. 5, 605–621.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citation't Hof, R. J. van, Idris, A. I., Ridge, S. A., Dunford, J., Greig, I. R. & Ralston, S. H. (2004). J. Bone Miner. Res. 19, 1651–1660.  PubMed Google Scholar
First citationTrivedi, V. & Shah, S. H. (2009). Orient. J. Chem. 25(4), 893.  Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia.  Google Scholar
First citationVallone, A., D'Alessandro, S., Brogi, S., Brindisi, M., Chemi, G., Alfano, G. & Butini, S. (2018). Eur. J. Med. Chem. 150, 698–718.  PubMed Google Scholar
First citationWang, C. S., Roisnel, T., Dixneuf, P. H. & Soulé, J. F. (2017). Org. Lett. 19, 6720–6723.  PubMed Google Scholar
First citationWang, Y., Wang, Z., Wang, Z., Liu, X., Jiang, Y., Jiao, X. & Xie, P. (2021). Org. Lett. 23, 3680–3684.  PubMed Google Scholar
First citationZhao, D., Zhao, S., Zhao, L., Zhang, X., Wei, P., Liu, C., Hao, C., Sun, B., Su, X. & Cheng, M. (2017). Bioorg. Med. Chem. 25, 750–758.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds