research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure of 2-(2,4-dioxo-6-methyl­pyran-3-yl­­idene)-4-(4-hy­dr­oxy­phen­yl)-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepine

crossmark logo

aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research, Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: l.elghayati@um5r.ac.ma

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 27 March 2025; accepted 3 April 2025; online 8 April 2025)

The title compound, C21H18N2O4, contains non-planar diazepine (in a boat–sofa conformation) and pyran (envelope) rings. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules, enclosing R22(16) and R22(24) ring motifs, to generate [110] chains. Very weak ππ stacking inter­actions between the phenyl rings of adjacent mol­ecules with an inter-centroid distance of 4.0264 (9) Å help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (45.1%), H⋯O/O⋯H (23.2%) and H⋯C/C⋯H (19.2%) inter­actions.

1. Chemical context

1,5-Benzodiazepine derivatives are known for their potent biological activities, being used as anti­tubercular agents (Singh et al., 2017[Singh, G., Nayak, S. K. & Monga, V. (2017). Indian J. Heterocycl. Chem. 27, 143-149.]), anti­convulsants (Jyoti & Mithlesh, 2013[Jyoti, Y. & Mithlesh, P. D. (2013). Pharm. Sin. 4, 81-90.]), anti­cancer agents (Gawandi et al., 2021[Gawandi, S. J., Desai, V. G., Joshi, S., Shingade, S. & Pissurlenkar, R. R. (2021). Bioorg. Chem. 117, 105331.]), anti­microbials (An et al., 2016[An, Y. S., Hao, Z. F., Zhang, X. J. & Wang, L. Z. (2016). Chem. Biol. Drug Des. 88, 110-121.]), and anti­depressants (Sharma et al., 2017[Sharma, R., Tilak, A., Thakur, R. N., Gangwar, S. S. & Sutar, R. C. (2017). World J. Pharm. Res. 6, 925-931.]). This study continues our investigation into 1,5-benzodiazepine derivatives, as published by our team in earlier works (El Ghayati et al., 2021[El Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al-Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270-289.]; Essaghouani et al., 2017[Essaghouani, A., Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170120.]). In this context, we synthesized the title compound, C21H18N2O4, (I), through the condensation reaction of the inter­mediate 3-[1-(2-amino-phenyl­imino)-eth­yl]-4-hy­droxy-6-methyl-pyran-2-one with 4-hy­droxy­benzalde­hyde in ethanol. In this report, we present the synthesis, mol­ecular and crystal structures and Hirshfeld surface analysis of (I).

[Scheme 1]

2. Structural commentary

Compound (I) contains a benzodiazepine ring system besides pyran and phenyl rings (Fig. 1[link]). The benzene (A, C1–C6) and phenyl (C, C16–C21) rings are oriented at a dihedral angle of 42.68 (5)°, and atom O4 is displaced by 0.0246 (12) Å from the mean plane of the C ring. The seven-membered diazepine ring (B, N1/N2/C1/C6–C9) is in a boat–sofa conformation (Boessenkool & Boeyens, 1980[Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.]) with puckering amplitudes QT = 0.9082 (14) Å, q2 = 0.8845 (14) Å and q3 = 0.2062 (14) Å: atoms N1, N2, C7 and C9 form the base, C8 the prow and C1 and C6 the stern. On the other hand, the pyran, (D, O2/C10–C14), ring is in a shallow envelope conformation with puckering parameters QT = 0.0661 (14) Å, θ = 53 (1)° and φ = 5 (2)°. Atom C11 at the flap position is displaced by 0.0802 (14) Å from the best least-squares plane of the other five atoms. An intra­molecular N2—H2⋯O1 hydrogen bond (Table 1[link]) between the diazepine and pyran rings completes an S(6) ring motif. Otherwise there are no unusual bond distances or inter­bond angles in the mol­ecule.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3iii 0.90 (3) 1.86 (3) 2.7597 (15) 178 (2)
N1—H1⋯O4iv 0.92 (2) 2.21 (2) 3.1028 (16) 165.2 (17)
N2—H2⋯O1 0.93 (2) 1.80 (2) 2.5882 (15) 140.8 (18)
Symmetry codes: (iii) [-x+2, -y+2, -z+1]; (iv) [-x+1, -y+1, -z+1].
[Figure 1]
Figure 1
The mol­ecular structure of (I) showing 50% probability ellipsoids.

3. Supra­molecular features

In the crystal, O4—H4⋯O3 and N1—H1⋯O4 hydrogen bonds link the mol­ecules (Fig. 2[link]), enclosing R22(16) and R22(24) ring motifs (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). A [110] infinite chain results. A very weak ππ stacking inter­action between the C rings of adjacent mol­ecules with an inter-centroid distance of 4.0264 (9) Å may help to consolidate the three-dimensional architecture. There are no identified C—H⋯π(ring) inter­actions.

[Figure 2]
Figure 2
A partial packing diagram of (I) viewed down the a-axis direction. The inter­molecular O—H⋯O and N—H⋯O and intra­molecular N—H⋯O hydrogen bonds are shown as dashed lines. The other hydrogen atoms have been omitted for clarity.

4. Hirshfeld surface analysis

To visualize the inter­molecular inter­actions in the crystal of (I), a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). Fig. 3[link] shows the contact distances where the bright-red spots correspond to the respective donors and/or acceptors noted above. According to the two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]), the H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts make the most significant contributions to the HS, at 45.1%, 23.2% and 19.2%, respectively (Fig. 4[link]).

[Figure 3]
Figure 3
View of the three-dimensional Hirshfeld surface of (I) plotted over dnorm.
[Figure 4]
Figure 4
The two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) H⋯N/N⋯H inter­actions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. Database survey

A search of the Cambridge Structural Database (CSD up­dated to January 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for 2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepines substituted at the 2- and 4-positions gave a substantial number of hits, with seven deemed closely similar to the title molecule. These are A (Siddiqui & Siddiqui, 2020[Siddiqui, S. & Siddiqui, Z. N. (2020). Nanoscale Adv. 2, 4639.]), compound B with R = thiophene and 4-ClC6H4, and R′ = 6-methyl-2H-pyran-2,4(3H)-dione, as well as R = 6-methyl-2H-pyran-2,4(3H)-dione and R′ = 3-BrC6H4 (Faidallah et al., 2015[Faidallah, H. M., Taib, L. A., Albeladi, S. N. A., Rahman, M. E. U., Al-Zahrani, F. A., Arshad, M. N. & Asiri, A. M. (2015). J. Chem. Res. 39, 502-508.]), and compounds C (Wu & Wang, 2020[Wu, H. T. & Wang, L. Z. (2020). New J. Chem. 44, 10428-10440.]) and D (Lal et al., 2013[Lal, M., Basha, R. S., Sarkar, S. & Khan, A. T. (2013). Tetrahedron Lett. 54, 4264-4272.]) (see scheme below[link]). All have the tetrahydrodiazepine ring adopting a boat conformation, with total puckering amplitudes ranging from 0.702 (2) (for A) to 0.957 (2) Å (for C, R = thiophene). The dihedral angles between the mean plane of the benzo ring and those of the ring containing substituents on the seven-mem­bered ring vary considerably, likely due to packing considerations, as the steric bulk of these groups differs markedly.

[Scheme 2]

6. Synthesis and crystallization

A mixture of 3.87 mmol of 3-[1-(2-aminophenyl­imino)eth­yl]-4-hy­droxy-6-methyl-pyran-2-one in 40 ml of ethanol with 5.81 mmol of 4-hy­droxy­benzaldehyde, along with a catalytic amount of tri­fluoro­acetic acid was made up. The reaction mixture was refluxed for 4 h. After cooling and filtration, the formed precipitate was recrystallized from ethanol solution to obtain the title compound (I).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The OH and NH hydrogen atoms were located in a difference-Fourier map and the positions were freely refined. The C-bound hydrogen-atom positions were calculated geometrically (C—H = 0.95–1.00 Å depending on hybridization) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 2
Experimental details

Crystal data
Chemical formula C21H18N2O4
Mr 362.37
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 160
a, b, c (Å) 6.3757 (1), 7.7506 (1), 17.9997 (4)
α, β, γ (°) 100.967 (2), 97.373 (2), 100.127 (2)
V3) 847.49 (3)
Z 2
Radiation type Cu Kα
μ (mm−1) 0.82
Crystal size (mm) 0.10 × 0.03 × 0.02
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix
Absorption correction Analytical (CrysAlis PRO; Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.941, 0.988
No. of measured, independent and observed [I > 2σ(I)] reflections 18745, 3608, 3159
Rint 0.028
(sin θ/λ)max−1) 0.638
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.08
No. of reflections 3608
No. of parameters 258
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.45, −0.32
Computer programs: CrysAlis PRO (Rigaku OD, 2024[Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

4-(4-Hydroxyphenyl)-2-(6-methyl-2,4-dioxopyran-3-ylidene)-2,3,4,5-tetrahydro-1H-1,5-benzodiazepine top
Crystal data top
C21H18N2O4Z = 2
Mr = 362.37F(000) = 380
Triclinic, P1Dx = 1.420 Mg m3
a = 6.3757 (1) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.7506 (1) ÅCell parameters from 9714 reflections
c = 17.9997 (4) Åθ = 2.5–79.1°
α = 100.967 (2)°µ = 0.82 mm1
β = 97.373 (2)°T = 160 K
γ = 100.127 (2)°Needle, yellow
V = 847.49 (3) Å30.10 × 0.03 × 0.02 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3608 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3159 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.028
Detector resolution: 10.0000 pixels mm-1θmax = 79.4°, θmin = 2.5°
ω scansh = 88
Absorption correction: analytical
(CrysAlisPro; Rigaku OD, 2024)
k = 97
Tmin = 0.941, Tmax = 0.988l = 2122
18745 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.057P)2 + 0.3065P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.115(Δ/σ)max < 0.001
S = 1.08Δρmax = 0.45 e Å3
3608 reflectionsΔρmin = 0.31 e Å3
258 parametersExtinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0020 (5)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65055 (17)0.66657 (15)0.03539 (6)0.0334 (3)
O21.17867 (16)0.94555 (14)0.18839 (6)0.0314 (2)
O31.03777 (17)0.89041 (15)0.28886 (6)0.0352 (3)
O40.58361 (18)0.87903 (15)0.63441 (6)0.0335 (3)
H40.709 (4)0.952 (3)0.6591 (14)0.060 (7)*
N10.47933 (19)0.44213 (16)0.28508 (7)0.0283 (3)
H10.462 (3)0.363 (3)0.3168 (11)0.041 (5)*
N20.46259 (18)0.58760 (16)0.14729 (7)0.0257 (3)
H20.478 (3)0.574 (3)0.0958 (12)0.044 (5)*
C10.2753 (2)0.49401 (18)0.16861 (8)0.0255 (3)
C20.0839 (2)0.45358 (19)0.11617 (8)0.0289 (3)
H2A0.0817630.4940870.0695220.035*
C30.1035 (2)0.3553 (2)0.13089 (9)0.0330 (3)
H30.2329410.3266860.0944410.040*
C40.0992 (2)0.2990 (2)0.19981 (9)0.0337 (3)
H4A0.2277500.2346480.2113400.040*
C50.0913 (2)0.33631 (19)0.25171 (8)0.0306 (3)
H50.0910440.2966380.2984960.037*
C60.2848 (2)0.43108 (18)0.23716 (8)0.0257 (3)
C70.6316 (2)0.61210 (19)0.32150 (8)0.0272 (3)
H70.7815720.5928430.3184190.033*
C80.5909 (2)0.75522 (18)0.27661 (8)0.0266 (3)
H8A0.4412040.7730840.2776640.032*
H8B0.6905820.8704500.3018550.032*
C90.6225 (2)0.70452 (17)0.19521 (7)0.0246 (3)
C100.8083 (2)0.78109 (18)0.16665 (7)0.0247 (3)
C110.8057 (2)0.75700 (18)0.08500 (8)0.0265 (3)
C120.9941 (2)0.84607 (18)0.06080 (7)0.0252 (3)
H120.9942650.8408310.0076490.030*
C131.1697 (2)0.93642 (18)0.11166 (8)0.0270 (3)
C141.0025 (2)0.87205 (18)0.21893 (8)0.0266 (3)
C151.3704 (3)1.0348 (2)0.09359 (11)0.0425 (4)
H15A1.3986181.1605990.1211920.064*
H15B1.3542191.0289900.0382270.064*
H15C1.4915210.9802190.1093530.064*
C160.6170 (2)0.67727 (19)0.40544 (8)0.0281 (3)
C170.4208 (2)0.6658 (2)0.43198 (8)0.0337 (3)
H170.2907290.6104310.3972540.040*
C180.4116 (2)0.7339 (2)0.50830 (8)0.0340 (3)
H180.2761680.7241000.5255760.041*
C190.6007 (2)0.81657 (19)0.55939 (8)0.0282 (3)
C200.7980 (2)0.8286 (2)0.53405 (8)0.0336 (3)
H200.9279860.8841500.5688300.040*
C210.8048 (2)0.7590 (2)0.45751 (8)0.0328 (3)
H210.9404130.7674710.4404380.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0320 (5)0.0402 (6)0.0219 (5)0.0044 (4)0.0028 (4)0.0037 (4)
O20.0288 (5)0.0357 (5)0.0268 (5)0.0007 (4)0.0040 (4)0.0062 (4)
O30.0316 (5)0.0468 (6)0.0216 (5)0.0040 (4)0.0018 (4)0.0071 (4)
O40.0352 (6)0.0388 (6)0.0225 (5)0.0007 (5)0.0044 (4)0.0037 (4)
N10.0298 (6)0.0288 (6)0.0258 (6)0.0023 (5)0.0034 (5)0.0085 (5)
N20.0250 (6)0.0293 (6)0.0215 (6)0.0012 (4)0.0054 (4)0.0051 (4)
C10.0242 (6)0.0252 (6)0.0258 (6)0.0025 (5)0.0069 (5)0.0025 (5)
C20.0285 (7)0.0291 (7)0.0274 (7)0.0052 (5)0.0036 (5)0.0034 (5)
C30.0251 (7)0.0324 (7)0.0368 (8)0.0031 (6)0.0024 (6)0.0006 (6)
C40.0275 (7)0.0308 (7)0.0407 (8)0.0011 (6)0.0114 (6)0.0035 (6)
C50.0322 (7)0.0296 (7)0.0294 (7)0.0023 (6)0.0105 (6)0.0054 (5)
C60.0260 (6)0.0243 (6)0.0251 (6)0.0032 (5)0.0056 (5)0.0022 (5)
C70.0253 (6)0.0313 (7)0.0241 (6)0.0026 (5)0.0055 (5)0.0056 (5)
C80.0265 (6)0.0284 (7)0.0231 (6)0.0016 (5)0.0061 (5)0.0034 (5)
C90.0257 (6)0.0247 (6)0.0233 (6)0.0037 (5)0.0047 (5)0.0058 (5)
C100.0258 (7)0.0257 (6)0.0217 (6)0.0024 (5)0.0049 (5)0.0048 (5)
C110.0276 (7)0.0268 (6)0.0237 (6)0.0020 (5)0.0048 (5)0.0053 (5)
C120.0257 (6)0.0303 (7)0.0184 (6)0.0006 (5)0.0064 (5)0.0056 (5)
C130.0284 (7)0.0287 (7)0.0244 (6)0.0046 (5)0.0064 (5)0.0072 (5)
C140.0276 (7)0.0278 (7)0.0237 (6)0.0025 (5)0.0060 (5)0.0061 (5)
C150.0309 (8)0.0484 (9)0.0552 (10)0.0073 (7)0.0146 (7)0.0243 (8)
C160.0287 (7)0.0316 (7)0.0233 (6)0.0034 (5)0.0038 (5)0.0076 (5)
C170.0258 (7)0.0455 (8)0.0252 (7)0.0023 (6)0.0010 (5)0.0030 (6)
C180.0266 (7)0.0464 (9)0.0271 (7)0.0037 (6)0.0056 (5)0.0066 (6)
C190.0326 (7)0.0290 (7)0.0219 (6)0.0030 (5)0.0037 (5)0.0066 (5)
C200.0286 (7)0.0413 (8)0.0255 (7)0.0035 (6)0.0004 (5)0.0062 (6)
C210.0261 (7)0.0427 (8)0.0269 (7)0.0001 (6)0.0047 (5)0.0078 (6)
Geometric parameters (Å, º) top
O1—C111.2484 (17)C7—C161.5195 (18)
O2—C131.3626 (16)C8—H8A0.9900
O2—C141.3933 (16)C8—H8B0.9900
O3—C141.2260 (17)C8—C91.4922 (18)
O4—H40.90 (3)C9—C101.4300 (18)
O4—C191.3702 (17)C10—C111.4434 (18)
N1—H10.92 (2)C10—C141.4341 (19)
N1—C61.3963 (18)C11—C121.4375 (18)
N1—C71.4717 (18)C12—H120.9500
N2—H20.93 (2)C12—C131.3414 (19)
N2—C11.4206 (17)C13—C151.478 (2)
N2—C91.3254 (17)C15—H15A0.9800
C1—C21.3914 (19)C15—H15B0.9800
C1—C61.4086 (19)C15—H15C0.9800
C2—H2A0.9500C16—C171.390 (2)
C2—C31.384 (2)C16—C211.390 (2)
C3—H30.9500C17—H170.9500
C3—C41.390 (2)C17—C181.387 (2)
C4—H4A0.9500C18—H180.9500
C4—C51.384 (2)C18—C191.389 (2)
C5—H50.9500C19—C201.386 (2)
C5—C61.4027 (19)C20—H200.9500
C7—H71.0000C20—C211.390 (2)
C7—C81.5295 (19)C21—H210.9500
O1···N22.5882 (16)C3···C10v3.400 (2)
O1···O1i2.8900 (16)C1···H15Avi2.84
O2···C5ii3.1976 (18)C1···H8A2.59
O3···C82.8223 (17)C2···H12i2.79
O3···O4iii2.7598 (16)C6···H8A2.59
O1···H21.80 (2)C11···H22.36 (2)
O1···H2i2.65 (2)C14···H8B2.64
O2···H4iii2.67 (2)C14···H4iii2.65 (2)
O3···H8B2.24C17···H12.90 (2)
O3···H4iii1.86 (3)C19···H1iv2.88 (2)
O4···H1iv2.21 (2)H1···H52.2962
N1···N22.9107 (17)H2···H2A2.45
N1···H172.72H4···H202.32
C2···C11v3.272 (2)H7···H212.35
C2···C10v3.3849 (19)
C13—O2—C14122.21 (11)C10—C9—C8123.66 (12)
C19—O4—H4109.6 (16)C9—C10—C11120.11 (12)
C6—N1—H1110.6 (12)C9—C10—C14120.03 (12)
C6—N1—C7123.76 (12)C14—C10—C11119.74 (12)
C7—N1—H1113.6 (12)O1—C11—C10124.06 (12)
C1—N2—H2120.6 (13)O1—C11—C12119.13 (12)
C9—N2—H2114.0 (13)C12—C11—C10116.80 (12)
C9—N2—C1125.33 (11)C11—C12—H12119.3
C2—C1—N2117.37 (12)C13—C12—C11121.42 (12)
C2—C1—C6120.69 (12)C13—C12—H12119.3
C6—C1—N2121.73 (12)O2—C13—C15112.37 (13)
C1—C2—H2A119.5C12—C13—O2121.51 (12)
C3—C2—C1121.03 (13)C12—C13—C15126.11 (13)
C3—C2—H2A119.5O2—C14—C10117.90 (11)
C2—C3—H3120.5O3—C14—O2114.04 (12)
C2—C3—C4118.99 (14)O3—C14—C10128.03 (13)
C4—C3—H3120.5C13—C15—H15A109.5
C3—C4—H4A119.9C13—C15—H15B109.5
C5—C4—C3120.29 (13)C13—C15—H15C109.5
C5—C4—H4A119.9H15A—C15—H15B109.5
C4—C5—H5119.1H15A—C15—H15C109.5
C4—C5—C6121.83 (13)H15B—C15—H15C109.5
C6—C5—H5119.1C17—C16—C7122.38 (12)
N1—C6—C1122.60 (12)C17—C16—C21118.19 (13)
N1—C6—C5119.93 (12)C21—C16—C7119.36 (12)
C5—C6—C1117.06 (13)C16—C17—H17119.4
N1—C7—H7108.1C18—C17—C16121.16 (13)
N1—C7—C8109.11 (11)C18—C17—H17119.4
N1—C7—C16113.14 (11)C17—C18—H18120.1
C8—C7—H7108.1C17—C18—C19119.86 (14)
C16—C7—H7108.1C19—C18—H18120.1
C16—C7—C8110.02 (11)O4—C19—C18117.69 (13)
C7—C8—H8A109.2O4—C19—C20122.47 (13)
C7—C8—H8B109.2C20—C19—C18119.81 (13)
H8A—C8—H8B107.9C19—C20—H20120.2
C9—C8—C7112.11 (11)C19—C20—C21119.66 (13)
C9—C8—H8A109.2C21—C20—H20120.2
C9—C8—H8B109.2C16—C21—H21119.3
N2—C9—C8116.72 (12)C20—C21—C16121.32 (14)
N2—C9—C10119.55 (12)C20—C21—H21119.3
O1—C11—C12—C13176.20 (14)C8—C7—C16—C2195.22 (15)
O4—C19—C20—C21178.55 (14)C8—C9—C10—C11165.74 (13)
N1—C7—C8—C960.37 (14)C8—C9—C10—C1418.3 (2)
N1—C7—C16—C1740.57 (19)C9—N2—C1—C2147.66 (14)
N1—C7—C16—C21142.47 (14)C9—N2—C1—C637.4 (2)
N2—C1—C2—C3176.89 (12)C9—C10—C11—O12.4 (2)
N2—C1—C6—N15.7 (2)C9—C10—C11—C12176.74 (12)
N2—C1—C6—C5178.41 (12)C9—C10—C14—O2179.54 (12)
N2—C9—C10—C1111.1 (2)C9—C10—C14—O32.7 (2)
N2—C9—C10—C14164.86 (13)C10—C11—C12—C134.6 (2)
C1—N2—C9—C86.8 (2)C11—C10—C14—O24.5 (2)
C1—N2—C9—C10176.18 (12)C11—C10—C14—O3173.28 (14)
C1—C2—C3—C41.0 (2)C11—C12—C13—O21.0 (2)
C2—C1—C6—N1169.01 (13)C11—C12—C13—C15179.05 (14)
C2—C1—C6—C53.7 (2)C13—O2—C14—O3179.40 (13)
C2—C3—C4—C51.9 (2)C13—O2—C14—C101.33 (19)
C3—C4—C5—C60.1 (2)C14—O2—C13—C124.2 (2)
C4—C5—C6—N1170.18 (13)C14—O2—C13—C15175.86 (12)
C4—C5—C6—C12.7 (2)C14—C10—C11—O1173.61 (13)
C6—N1—C7—C821.39 (17)C14—C10—C11—C127.29 (19)
C6—N1—C7—C16101.43 (15)C16—C7—C8—C9174.97 (11)
C6—C1—C2—C31.9 (2)C16—C17—C18—C190.5 (2)
C7—N1—C6—C159.64 (19)C17—C16—C21—C200.3 (2)
C7—N1—C6—C5127.87 (14)C17—C18—C19—O4178.94 (14)
C7—C8—C9—N278.98 (15)C17—C18—C19—C200.8 (2)
C7—C8—C9—C10104.10 (15)C18—C19—C20—C210.5 (2)
C7—C16—C17—C18176.98 (14)C19—C20—C21—C160.1 (2)
C7—C16—C21—C20176.77 (14)C21—C16—C17—C180.0 (2)
C8—C7—C16—C1781.74 (17)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+1, z; (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O3iii0.90 (3)1.86 (3)2.7597 (15)178 (2)
N1—H1···O4iv0.92 (2)2.21 (2)3.1028 (16)165.2 (17)
N2—H2···O10.93 (2)1.80 (2)2.5882 (15)140.8 (18)
Symmetry codes: (iii) x+2, y+2, z+1; (iv) x+1, y+1, z+1.
 

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

First citationAn, Y. S., Hao, Z. F., Zhang, X. J. & Wang, L. Z. (2016). Chem. Biol. Drug Des. 88, 110–121.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBoessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18.  CrossRef CAS Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationEl Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al–Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270–289.  Web of Science CSD CrossRef CAS Google Scholar
First citationEssaghouani, A., Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170120.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFaidallah, H. M., Taib, L. A., Albeladi, S. N. A., Rahman, M. E. U., Al-Zahrani, F. A., Arshad, M. N. & Asiri, A. M. (2015). J. Chem. Res. 39, 502–508.  Web of Science CSD CrossRef CAS Google Scholar
First citationGawandi, S. J., Desai, V. G., Joshi, S., Shingade, S. & Pissurlenkar, R. R. (2021). Bioorg. Chem. 117, 105331.  CrossRef PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJyoti, Y. & Mithlesh, P. D. (2013). Pharm. Sin. 4, 81–90.  CAS Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationLal, M., Basha, R. S., Sarkar, S. & Khan, A. T. (2013). Tetrahedron Lett. 54, 4264–4272.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSharma, R., Tilak, A., Thakur, R. N., Gangwar, S. S. & Sutar, R. C. (2017). World J. Pharm. Res. 6, 925–931.  CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiddiqui, S. & Siddiqui, Z. N. (2020). Nanoscale Adv. 2, 4639.  CSD CrossRef PubMed Google Scholar
First citationSingh, G., Nayak, S. K. & Monga, V. (2017). Indian J. Heterocycl. Chem. 27, 143–149.  CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, H. T. & Wang, L. Z. (2020). New J. Chem. 44, 10428–10440.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds