

research communications
Synthesis and H-1,5-benzodiazepine
of 2-(2,4-dioxo-6-methylpyran-3-ylidene)-4-(4-hydroxyphenyl)-2,3,4,5-tetrahydro-1aLaboratory of Heterocyclic Organic Chemistry, Medicines Science Research, Center, Pharmacochemistry Competence Center, Mohammed V University in Rabat, Faculté des Sciences, Av. Ibn Battouta, BP 1014, Rabat, Morocco, bUniversity of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland, cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Türkiye, dScience and Technology of Lille USR 3290, Villeneuve d'ascq cedex, France, eLaboratory of Organic and Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco, and fLaboratory of Plant Chemistry, Organic and Bioorganic Synthesis, Faculty of Sciences, Mohammed V University in Rabat, 4 Avenue Ibn Battouta BP 1014 RP, Rabat, Morocco
*Correspondence e-mail: l.elghayati@um5r.ac.ma
The title compound, C21H18N2O4, contains non-planar diazepine (in a boat–sofa conformation) and pyran (envelope) rings. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the molecules, enclosing R22(16) and R22(24) ring motifs, to generate [110] chains. Very weak π–π stacking interactions between the phenyl rings of adjacent molecules with an inter-centroid distance of 4.0264 (9) Å help to consolidate a three-dimensional architecture. The Hirshfeld surface analysis of the indicates that the most important contributions for the crystal packing are from H⋯H (45.1%), H⋯O/O⋯H (23.2%) and H⋯C/C⋯H (19.2%) interactions.
Keywords: crystal structure; benzodiazepine; C—H⋯π interaction; hydrogen bond.
CCDC reference: 2440877
1. Chemical context
1,5-Benzodiazepine derivatives are known for their potent biological activities, being used as antitubercular agents (Singh et al., 2017), anticonvulsants (Jyoti & Mithlesh, 2013
), anticancer agents (Gawandi et al., 2021
), antimicrobials (An et al., 2016
), and antidepressants (Sharma et al., 2017
). This study continues our investigation into 1,5-benzodiazepine derivatives, as published by our team in earlier works (El Ghayati et al., 2021
; Essaghouani et al., 2017
). In this context, we synthesized the title compound, C21H18N2O4, (I), through the condensation reaction of the intermediate 3-[1-(2-amino-phenylimino)-ethyl]-4-hydroxy-6-methyl-pyran-2-one with 4-hydroxybenzaldehyde in ethanol. In this report, we present the synthesis, molecular and crystal structures and Hirshfeld surface analysis of (I).
2. Structural commentary
Compound (I) contains a benzodiazepine ring system besides pyran and phenyl rings (Fig. 1). The benzene (A, C1–C6) and phenyl (C, C16–C21) rings are oriented at a dihedral angle of 42.68 (5)°, and atom O4 is displaced by 0.0246 (12) Å from the mean plane of the C ring. The seven-membered diazepine ring (B, N1/N2/C1/C6–C9) is in a boat–sofa conformation (Boessenkool & Boeyens, 1980
) with puckering amplitudes QT = 0.9082 (14) Å, q2 = 0.8845 (14) Å and q3 = 0.2062 (14) Å: atoms N1, N2, C7 and C9 form the base, C8 the prow and C1 and C6 the stern. On the other hand, the pyran, (D, O2/C10–C14), ring is in a shallow with puckering parameters QT = 0.0661 (14) Å, θ = 53 (1)° and φ = 5 (2)°. Atom C11 at the flap position is displaced by 0.0802 (14) Å from the best least-squares plane of the other five atoms. An intramolecular N2—H2⋯O1 hydrogen bond (Table 1
) between the diazepine and pyran rings completes an S(6) ring motif. Otherwise there are no unusual bond distances or interbond angles in the molecule.
|
![]() | Figure 1 The molecular structure of (I) showing 50% probability ellipsoids. |
3. Supramolecular features
In the crystal, O4—H4⋯O3 and N1—H1⋯O4 hydrogen bonds link the molecules (Fig. 2), enclosing R22(16) and R22(24) ring motifs (Etter et al., 1990
). A [110] infinite chain results. A very weak π–π stacking interaction between the C rings of adjacent molecules with an inter-centroid distance of 4.0264 (9) Å may help to consolidate the three-dimensional architecture. There are no identified C—H⋯π(ring) interactions.
![]() | Figure 2 A partial packing diagram of (I) viewed down the a-axis direction. The intermolecular O—H⋯O and N—H⋯O and intramolecular N—H⋯O hydrogen bonds are shown as dashed lines. The other hydrogen atoms have been omitted for clarity. |
4. Hirshfeld surface analysis
To visualize the intermolecular interactions in the crystal of (I), a Hirshfeld surface (HS) analysis was carried out using Crystal Explorer 17.5 (Spackman et al., 2021). Fig. 3
shows the contact distances where the bright-red spots correspond to the respective donors and/or acceptors noted above. According to the two-dimensional fingerprint plots (McKinnon et al., 2007
), the H⋯H, H⋯O/O⋯H and H⋯C/C⋯H contacts make the most significant contributions to the HS, at 45.1%, 23.2% and 19.2%, respectively (Fig. 4
).
![]() | Figure 3 View of the three-dimensional Hirshfeld surface of (I) plotted over dnorm. |
![]() | Figure 4 The two-dimensional fingerprint plots for (I), showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯O/O⋯H, (d) H⋯C/C⋯H, (e) C⋯C, (f) H⋯N/N⋯H interactions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
5. Database survey
A search of the Cambridge Structural Database (CSD updated to January 2025; Groom et al., 2016) for 2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepines substituted at the 2- and 4-positions gave a substantial number of hits, with seven deemed closely similar to the title molecule. These are A (Siddiqui & Siddiqui, 2020
), compound B with R = thiophene and 4-ClC6H4, and R′ = 6-methyl-2H-pyran-2,4(3H)-dione, as well as R = 6-methyl-2H-pyran-2,4(3H)-dione and R′ = 3-BrC6H4 (Faidallah et al., 2015
), and compounds C (Wu & Wang, 2020
) and D (Lal et al., 2013
) (see scheme below
). All have the tetrahydrodiazepine ring adopting a boat conformation, with total puckering amplitudes ranging from 0.702 (2) (for A) to 0.957 (2) Å (for C, R = thiophene). The dihedral angles between the mean plane of the benzo ring and those of the ring containing substituents on the seven-membered ring vary considerably, likely due to packing considerations, as the steric bulk of these groups differs markedly.
6. Synthesis and crystallization
A mixture of 3.87 mmol of 3-[1-(2-aminophenylimino)ethyl]-4-hydroxy-6-methyl-pyran-2-one in 40 ml of ethanol with 5.81 mmol of 4-hydroxybenzaldehyde, along with a catalytic amount of trifluoroacetic acid was made up. The reaction mixture was refluxed for 4 h. After cooling and filtration, the formed precipitate was recrystallized from ethanol solution to obtain the title compound (I).
7. Refinement
Crystal data, data collection and structure . The OH and NH hydrogen atoms were located in a difference-Fourier map and the positions were freely refined. The C-bound hydrogen-atom positions were calculated geometrically (C—H = 0.95–1.00 Å depending on hybridization) and refined using a riding model with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
|
Supporting information
CCDC reference: 2440877
https://doi.org/10.1107/S2056989025003032/hb8131sup1.cif
contains datablock I. DOI:Supporting information file. DOI: https://doi.org/10.1107/S2056989025003032/hb8131sup3.txt
Supporting information file. DOI: https://doi.org/10.1107/S2056989025003032/hb8131Isup4.cdx
Supporting information file. DOI: https://doi.org/10.1107/S2056989025003032/hb8131Isup5.cml
Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025003032/hb8131Isup5.hkl
C21H18N2O4 | Z = 2 |
Mr = 362.37 | F(000) = 380 |
Triclinic, P1 | Dx = 1.420 Mg m−3 |
a = 6.3757 (1) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 7.7506 (1) Å | Cell parameters from 9714 reflections |
c = 17.9997 (4) Å | θ = 2.5–79.1° |
α = 100.967 (2)° | µ = 0.82 mm−1 |
β = 97.373 (2)° | T = 160 K |
γ = 100.127 (2)° | Needle, yellow |
V = 847.49 (3) Å3 | 0.10 × 0.03 × 0.02 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3608 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3159 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.028 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 79.4°, θmin = 2.5° |
ω scans | h = −8→8 |
Absorption correction: analytical (CrysAlisPro; Rigaku OD, 2024) | k = −9→7 |
Tmin = 0.941, Tmax = 0.988 | l = −21→22 |
18745 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.041 | w = 1/[σ2(Fo2) + (0.057P)2 + 0.3065P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.115 | (Δ/σ)max < 0.001 |
S = 1.08 | Δρmax = 0.45 e Å−3 |
3608 reflections | Δρmin = −0.31 e Å−3 |
258 parameters | Extinction correction: SHELXL (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0020 (5) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.65055 (17) | 0.66657 (15) | 0.03539 (6) | 0.0334 (3) | |
O2 | 1.17867 (16) | 0.94555 (14) | 0.18839 (6) | 0.0314 (2) | |
O3 | 1.03777 (17) | 0.89041 (15) | 0.28886 (6) | 0.0352 (3) | |
O4 | 0.58361 (18) | 0.87903 (15) | 0.63441 (6) | 0.0335 (3) | |
H4 | 0.709 (4) | 0.952 (3) | 0.6591 (14) | 0.060 (7)* | |
N1 | 0.47933 (19) | 0.44213 (16) | 0.28508 (7) | 0.0283 (3) | |
H1 | 0.462 (3) | 0.363 (3) | 0.3168 (11) | 0.041 (5)* | |
N2 | 0.46259 (18) | 0.58760 (16) | 0.14729 (7) | 0.0257 (3) | |
H2 | 0.478 (3) | 0.574 (3) | 0.0958 (12) | 0.044 (5)* | |
C1 | 0.2753 (2) | 0.49401 (18) | 0.16861 (8) | 0.0255 (3) | |
C2 | 0.0839 (2) | 0.45358 (19) | 0.11617 (8) | 0.0289 (3) | |
H2A | 0.081763 | 0.494087 | 0.069522 | 0.035* | |
C3 | −0.1035 (2) | 0.3553 (2) | 0.13089 (9) | 0.0330 (3) | |
H3 | −0.232941 | 0.326686 | 0.094441 | 0.040* | |
C4 | −0.0992 (2) | 0.2990 (2) | 0.19981 (9) | 0.0337 (3) | |
H4A | −0.227750 | 0.234648 | 0.211340 | 0.040* | |
C5 | 0.0913 (2) | 0.33631 (19) | 0.25171 (8) | 0.0306 (3) | |
H5 | 0.091044 | 0.296638 | 0.298496 | 0.037* | |
C6 | 0.2848 (2) | 0.43108 (18) | 0.23716 (8) | 0.0257 (3) | |
C7 | 0.6316 (2) | 0.61210 (19) | 0.32150 (8) | 0.0272 (3) | |
H7 | 0.781572 | 0.592843 | 0.318419 | 0.033* | |
C8 | 0.5909 (2) | 0.75522 (18) | 0.27661 (8) | 0.0266 (3) | |
H8A | 0.441204 | 0.773084 | 0.277664 | 0.032* | |
H8B | 0.690582 | 0.870450 | 0.301855 | 0.032* | |
C9 | 0.6225 (2) | 0.70452 (17) | 0.19521 (7) | 0.0246 (3) | |
C10 | 0.8083 (2) | 0.78109 (18) | 0.16665 (7) | 0.0247 (3) | |
C11 | 0.8057 (2) | 0.75700 (18) | 0.08500 (8) | 0.0265 (3) | |
C12 | 0.9941 (2) | 0.84607 (18) | 0.06080 (7) | 0.0252 (3) | |
H12 | 0.994265 | 0.840831 | 0.007649 | 0.030* | |
C13 | 1.1697 (2) | 0.93642 (18) | 0.11166 (8) | 0.0270 (3) | |
C14 | 1.0025 (2) | 0.87205 (18) | 0.21893 (8) | 0.0266 (3) | |
C15 | 1.3704 (3) | 1.0348 (2) | 0.09359 (11) | 0.0425 (4) | |
H15A | 1.398618 | 1.160599 | 0.121192 | 0.064* | |
H15B | 1.354219 | 1.028990 | 0.038227 | 0.064* | |
H15C | 1.491521 | 0.980219 | 0.109353 | 0.064* | |
C16 | 0.6170 (2) | 0.67727 (19) | 0.40544 (8) | 0.0281 (3) | |
C17 | 0.4208 (2) | 0.6658 (2) | 0.43198 (8) | 0.0337 (3) | |
H17 | 0.290729 | 0.610431 | 0.397254 | 0.040* | |
C18 | 0.4116 (2) | 0.7339 (2) | 0.50830 (8) | 0.0340 (3) | |
H18 | 0.276168 | 0.724100 | 0.525576 | 0.041* | |
C19 | 0.6007 (2) | 0.81657 (19) | 0.55939 (8) | 0.0282 (3) | |
C20 | 0.7980 (2) | 0.8286 (2) | 0.53405 (8) | 0.0336 (3) | |
H20 | 0.927986 | 0.884150 | 0.568830 | 0.040* | |
C21 | 0.8048 (2) | 0.7590 (2) | 0.45751 (8) | 0.0328 (3) | |
H21 | 0.940413 | 0.767471 | 0.440438 | 0.039* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0320 (5) | 0.0402 (6) | 0.0219 (5) | −0.0044 (4) | 0.0028 (4) | 0.0037 (4) |
O2 | 0.0288 (5) | 0.0357 (5) | 0.0268 (5) | 0.0007 (4) | 0.0040 (4) | 0.0062 (4) |
O3 | 0.0316 (5) | 0.0468 (6) | 0.0216 (5) | −0.0040 (4) | 0.0018 (4) | 0.0071 (4) |
O4 | 0.0352 (6) | 0.0388 (6) | 0.0225 (5) | 0.0007 (5) | 0.0044 (4) | 0.0037 (4) |
N1 | 0.0298 (6) | 0.0288 (6) | 0.0258 (6) | 0.0023 (5) | 0.0034 (5) | 0.0085 (5) |
N2 | 0.0250 (6) | 0.0293 (6) | 0.0215 (6) | 0.0012 (4) | 0.0054 (4) | 0.0051 (4) |
C1 | 0.0242 (6) | 0.0252 (6) | 0.0258 (6) | 0.0025 (5) | 0.0069 (5) | 0.0025 (5) |
C2 | 0.0285 (7) | 0.0291 (7) | 0.0274 (7) | 0.0052 (5) | 0.0036 (5) | 0.0034 (5) |
C3 | 0.0251 (7) | 0.0324 (7) | 0.0368 (8) | 0.0031 (6) | 0.0024 (6) | 0.0006 (6) |
C4 | 0.0275 (7) | 0.0308 (7) | 0.0407 (8) | 0.0011 (6) | 0.0114 (6) | 0.0035 (6) |
C5 | 0.0322 (7) | 0.0296 (7) | 0.0294 (7) | 0.0023 (6) | 0.0105 (6) | 0.0054 (5) |
C6 | 0.0260 (6) | 0.0243 (6) | 0.0251 (6) | 0.0032 (5) | 0.0056 (5) | 0.0022 (5) |
C7 | 0.0253 (6) | 0.0313 (7) | 0.0241 (6) | 0.0026 (5) | 0.0055 (5) | 0.0056 (5) |
C8 | 0.0265 (6) | 0.0284 (7) | 0.0231 (6) | 0.0016 (5) | 0.0061 (5) | 0.0034 (5) |
C9 | 0.0257 (6) | 0.0247 (6) | 0.0233 (6) | 0.0037 (5) | 0.0047 (5) | 0.0058 (5) |
C10 | 0.0258 (7) | 0.0257 (6) | 0.0217 (6) | 0.0024 (5) | 0.0049 (5) | 0.0048 (5) |
C11 | 0.0276 (7) | 0.0268 (6) | 0.0237 (6) | 0.0020 (5) | 0.0048 (5) | 0.0053 (5) |
C12 | 0.0257 (6) | 0.0303 (7) | 0.0184 (6) | 0.0006 (5) | 0.0064 (5) | 0.0056 (5) |
C13 | 0.0284 (7) | 0.0287 (7) | 0.0244 (6) | 0.0046 (5) | 0.0064 (5) | 0.0072 (5) |
C14 | 0.0276 (7) | 0.0278 (7) | 0.0237 (6) | 0.0025 (5) | 0.0060 (5) | 0.0061 (5) |
C15 | 0.0309 (8) | 0.0484 (9) | 0.0552 (10) | 0.0073 (7) | 0.0146 (7) | 0.0243 (8) |
C16 | 0.0287 (7) | 0.0316 (7) | 0.0233 (6) | 0.0034 (5) | 0.0038 (5) | 0.0076 (5) |
C17 | 0.0258 (7) | 0.0455 (8) | 0.0252 (7) | 0.0023 (6) | 0.0010 (5) | 0.0030 (6) |
C18 | 0.0266 (7) | 0.0464 (9) | 0.0271 (7) | 0.0037 (6) | 0.0056 (5) | 0.0066 (6) |
C19 | 0.0326 (7) | 0.0290 (7) | 0.0219 (6) | 0.0030 (5) | 0.0037 (5) | 0.0066 (5) |
C20 | 0.0286 (7) | 0.0413 (8) | 0.0255 (7) | −0.0035 (6) | 0.0004 (5) | 0.0062 (6) |
C21 | 0.0261 (7) | 0.0427 (8) | 0.0269 (7) | −0.0001 (6) | 0.0047 (5) | 0.0078 (6) |
O1—C11 | 1.2484 (17) | C7—C16 | 1.5195 (18) |
O2—C13 | 1.3626 (16) | C8—H8A | 0.9900 |
O2—C14 | 1.3933 (16) | C8—H8B | 0.9900 |
O3—C14 | 1.2260 (17) | C8—C9 | 1.4922 (18) |
O4—H4 | 0.90 (3) | C9—C10 | 1.4300 (18) |
O4—C19 | 1.3702 (17) | C10—C11 | 1.4434 (18) |
N1—H1 | 0.92 (2) | C10—C14 | 1.4341 (19) |
N1—C6 | 1.3963 (18) | C11—C12 | 1.4375 (18) |
N1—C7 | 1.4717 (18) | C12—H12 | 0.9500 |
N2—H2 | 0.93 (2) | C12—C13 | 1.3414 (19) |
N2—C1 | 1.4206 (17) | C13—C15 | 1.478 (2) |
N2—C9 | 1.3254 (17) | C15—H15A | 0.9800 |
C1—C2 | 1.3914 (19) | C15—H15B | 0.9800 |
C1—C6 | 1.4086 (19) | C15—H15C | 0.9800 |
C2—H2A | 0.9500 | C16—C17 | 1.390 (2) |
C2—C3 | 1.384 (2) | C16—C21 | 1.390 (2) |
C3—H3 | 0.9500 | C17—H17 | 0.9500 |
C3—C4 | 1.390 (2) | C17—C18 | 1.387 (2) |
C4—H4A | 0.9500 | C18—H18 | 0.9500 |
C4—C5 | 1.384 (2) | C18—C19 | 1.389 (2) |
C5—H5 | 0.9500 | C19—C20 | 1.386 (2) |
C5—C6 | 1.4027 (19) | C20—H20 | 0.9500 |
C7—H7 | 1.0000 | C20—C21 | 1.390 (2) |
C7—C8 | 1.5295 (19) | C21—H21 | 0.9500 |
O1···N2 | 2.5882 (16) | C3···C10v | 3.400 (2) |
O1···O1i | 2.8900 (16) | C1···H15Avi | 2.84 |
O2···C5ii | 3.1976 (18) | C1···H8A | 2.59 |
O3···C8 | 2.8223 (17) | C2···H12i | 2.79 |
O3···O4iii | 2.7598 (16) | C6···H8A | 2.59 |
O1···H2 | 1.80 (2) | C11···H2 | 2.36 (2) |
O1···H2i | 2.65 (2) | C14···H8B | 2.64 |
O2···H4iii | 2.67 (2) | C14···H4iii | 2.65 (2) |
O3···H8B | 2.24 | C17···H1 | 2.90 (2) |
O3···H4iii | 1.86 (3) | C19···H1iv | 2.88 (2) |
O4···H1iv | 2.21 (2) | H1···H5 | 2.2962 |
N1···N2 | 2.9107 (17) | H2···H2A | 2.45 |
N1···H17 | 2.72 | H4···H20 | 2.32 |
C2···C11v | 3.272 (2) | H7···H21 | 2.35 |
C2···C10v | 3.3849 (19) | ||
C13—O2—C14 | 122.21 (11) | C10—C9—C8 | 123.66 (12) |
C19—O4—H4 | 109.6 (16) | C9—C10—C11 | 120.11 (12) |
C6—N1—H1 | 110.6 (12) | C9—C10—C14 | 120.03 (12) |
C6—N1—C7 | 123.76 (12) | C14—C10—C11 | 119.74 (12) |
C7—N1—H1 | 113.6 (12) | O1—C11—C10 | 124.06 (12) |
C1—N2—H2 | 120.6 (13) | O1—C11—C12 | 119.13 (12) |
C9—N2—H2 | 114.0 (13) | C12—C11—C10 | 116.80 (12) |
C9—N2—C1 | 125.33 (11) | C11—C12—H12 | 119.3 |
C2—C1—N2 | 117.37 (12) | C13—C12—C11 | 121.42 (12) |
C2—C1—C6 | 120.69 (12) | C13—C12—H12 | 119.3 |
C6—C1—N2 | 121.73 (12) | O2—C13—C15 | 112.37 (13) |
C1—C2—H2A | 119.5 | C12—C13—O2 | 121.51 (12) |
C3—C2—C1 | 121.03 (13) | C12—C13—C15 | 126.11 (13) |
C3—C2—H2A | 119.5 | O2—C14—C10 | 117.90 (11) |
C2—C3—H3 | 120.5 | O3—C14—O2 | 114.04 (12) |
C2—C3—C4 | 118.99 (14) | O3—C14—C10 | 128.03 (13) |
C4—C3—H3 | 120.5 | C13—C15—H15A | 109.5 |
C3—C4—H4A | 119.9 | C13—C15—H15B | 109.5 |
C5—C4—C3 | 120.29 (13) | C13—C15—H15C | 109.5 |
C5—C4—H4A | 119.9 | H15A—C15—H15B | 109.5 |
C4—C5—H5 | 119.1 | H15A—C15—H15C | 109.5 |
C4—C5—C6 | 121.83 (13) | H15B—C15—H15C | 109.5 |
C6—C5—H5 | 119.1 | C17—C16—C7 | 122.38 (12) |
N1—C6—C1 | 122.60 (12) | C17—C16—C21 | 118.19 (13) |
N1—C6—C5 | 119.93 (12) | C21—C16—C7 | 119.36 (12) |
C5—C6—C1 | 117.06 (13) | C16—C17—H17 | 119.4 |
N1—C7—H7 | 108.1 | C18—C17—C16 | 121.16 (13) |
N1—C7—C8 | 109.11 (11) | C18—C17—H17 | 119.4 |
N1—C7—C16 | 113.14 (11) | C17—C18—H18 | 120.1 |
C8—C7—H7 | 108.1 | C17—C18—C19 | 119.86 (14) |
C16—C7—H7 | 108.1 | C19—C18—H18 | 120.1 |
C16—C7—C8 | 110.02 (11) | O4—C19—C18 | 117.69 (13) |
C7—C8—H8A | 109.2 | O4—C19—C20 | 122.47 (13) |
C7—C8—H8B | 109.2 | C20—C19—C18 | 119.81 (13) |
H8A—C8—H8B | 107.9 | C19—C20—H20 | 120.2 |
C9—C8—C7 | 112.11 (11) | C19—C20—C21 | 119.66 (13) |
C9—C8—H8A | 109.2 | C21—C20—H20 | 120.2 |
C9—C8—H8B | 109.2 | C16—C21—H21 | 119.3 |
N2—C9—C8 | 116.72 (12) | C20—C21—C16 | 121.32 (14) |
N2—C9—C10 | 119.55 (12) | C20—C21—H21 | 119.3 |
O1—C11—C12—C13 | −176.20 (14) | C8—C7—C16—C21 | −95.22 (15) |
O4—C19—C20—C21 | 178.55 (14) | C8—C9—C10—C11 | −165.74 (13) |
N1—C7—C8—C9 | −60.37 (14) | C8—C9—C10—C14 | 18.3 (2) |
N1—C7—C16—C17 | −40.57 (19) | C9—N2—C1—C2 | 147.66 (14) |
N1—C7—C16—C21 | 142.47 (14) | C9—N2—C1—C6 | −37.4 (2) |
N2—C1—C2—C3 | 176.89 (12) | C9—C10—C11—O1 | −2.4 (2) |
N2—C1—C6—N1 | −5.7 (2) | C9—C10—C11—C12 | 176.74 (12) |
N2—C1—C6—C5 | −178.41 (12) | C9—C10—C14—O2 | −179.54 (12) |
N2—C9—C10—C11 | 11.1 (2) | C9—C10—C14—O3 | 2.7 (2) |
N2—C9—C10—C14 | −164.86 (13) | C10—C11—C12—C13 | 4.6 (2) |
C1—N2—C9—C8 | −6.8 (2) | C11—C10—C14—O2 | 4.5 (2) |
C1—N2—C9—C10 | 176.18 (12) | C11—C10—C14—O3 | −173.28 (14) |
C1—C2—C3—C4 | 1.0 (2) | C11—C12—C13—O2 | 1.0 (2) |
C2—C1—C6—N1 | 169.01 (13) | C11—C12—C13—C15 | −179.05 (14) |
C2—C1—C6—C5 | −3.7 (2) | C13—O2—C14—O3 | 179.40 (13) |
C2—C3—C4—C5 | −1.9 (2) | C13—O2—C14—C10 | 1.33 (19) |
C3—C4—C5—C6 | 0.1 (2) | C14—O2—C13—C12 | −4.2 (2) |
C4—C5—C6—N1 | −170.18 (13) | C14—O2—C13—C15 | 175.86 (12) |
C4—C5—C6—C1 | 2.7 (2) | C14—C10—C11—O1 | 173.61 (13) |
C6—N1—C7—C8 | −21.39 (17) | C14—C10—C11—C12 | −7.29 (19) |
C6—N1—C7—C16 | 101.43 (15) | C16—C7—C8—C9 | 174.97 (11) |
C6—C1—C2—C3 | 1.9 (2) | C16—C17—C18—C19 | 0.5 (2) |
C7—N1—C6—C1 | 59.64 (19) | C17—C16—C21—C20 | −0.3 (2) |
C7—N1—C6—C5 | −127.87 (14) | C17—C18—C19—O4 | −178.94 (14) |
C7—C8—C9—N2 | 78.98 (15) | C17—C18—C19—C20 | −0.8 (2) |
C7—C8—C9—C10 | −104.10 (15) | C18—C19—C20—C21 | 0.5 (2) |
C7—C16—C17—C18 | −176.98 (14) | C19—C20—C21—C16 | 0.1 (2) |
C7—C16—C21—C20 | 176.77 (14) | C21—C16—C17—C18 | 0.0 (2) |
C8—C7—C16—C17 | 81.74 (17) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x+1, y+1, z; (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+1, −z+1; (v) x−1, y, z; (vi) x−1, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O3iii | 0.90 (3) | 1.86 (3) | 2.7597 (15) | 178 (2) |
N1—H1···O4iv | 0.92 (2) | 2.21 (2) | 3.1028 (16) | 165.2 (17) |
N2—H2···O1 | 0.93 (2) | 1.80 (2) | 2.5882 (15) | 140.8 (18) |
Symmetry codes: (iii) −x+2, −y+2, −z+1; (iv) −x+1, −y+1, −z+1. |
Funding information
TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).
References
An, Y. S., Hao, Z. F., Zhang, X. J. & Wang, L. Z. (2016). Chem. Biol. Drug Des. 88, 110–121. Web of Science CrossRef CAS PubMed Google Scholar
Boessenkool, I. K. & Boeyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11–18. CrossRef CAS Web of Science Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
El Ghayati, L., Sert, Y., Sebbar, N. K., Ramli, Y., Ahabchane, N. H., Talbaoui, A., Mague, J. T., El Ibrahimi, B., Taha, M. L., Essassi, E. M., Al–Zaqri, N. & Alsalme, A. (2021). J. Heterocycl. Chem. 58, 270–289. Web of Science CSD CrossRef CAS Google Scholar
Essaghouani, A., Boulhaoua, M., El Hafi, M., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017). IUCrData, 2, x170120. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Faidallah, H. M., Taib, L. A., Albeladi, S. N. A., Rahman, M. E. U., Al-Zahrani, F. A., Arshad, M. N. & Asiri, A. M. (2015). J. Chem. Res. 39, 502–508. Web of Science CSD CrossRef CAS Google Scholar
Gawandi, S. J., Desai, V. G., Joshi, S., Shingade, S. & Pissurlenkar, R. R. (2021). Bioorg. Chem. 117, 105331. CrossRef PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Jyoti, Y. & Mithlesh, P. D. (2013). Pharm. Sin. 4, 81–90. CAS Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Lal, M., Basha, R. S., Sarkar, S. & Khan, A. T. (2013). Tetrahedron Lett. 54, 4264–4272. Web of Science CSD CrossRef CAS Google Scholar
Rigaku OD (2024). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sharma, R., Tilak, A., Thakur, R. N., Gangwar, S. S. & Sutar, R. C. (2017). World J. Pharm. Res. 6, 925–931. CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siddiqui, S. & Siddiqui, Z. N. (2020). Nanoscale Adv. 2, 4639. CSD CrossRef PubMed Google Scholar
Singh, G., Nayak, S. K. & Monga, V. (2017). Indian J. Heterocycl. Chem. 27, 143–149. CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wu, H. T. & Wang, L. Z. (2020). New J. Chem. 44, 10428–10440. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.