research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di-μ3-chlorido-1:2:3κ3Cl;2:3:4κ3Cl-di-μ2-chlorido-1:2κ2Cl;3:4κ2Cl-tetra­kis­[(4-amino-1,5-di­methyl-2-phenyl-2,3-di­hydro-1H-pyrazol-3-one-κ2N4,O)chlorido­cadmium(II)] 1.7-hydrate: a new six-coordinate geometry index, τ6

crossmark logo

aInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, bPG and Research Department of Physics, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamilnadu, India, cDepartment of Physics, Annapoorana Engineering College (Autonomous), Salem 636308, Tamilnadu, India, dNanophotonics Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India, eCrystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India, fInstitute of Physics ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic, and gChemistry Department, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 28 March 2025; accepted 7 April 2025; online 11 April 2025)

The title centrosymmetric tetra­nuclear cadmium(II) com­plex of 4-amino­anti­pyrine and chloride ions, [Cd4Cl8(C11H13N3O)4]·1.7H2O, was synthesized using methanol as solvent. The two independent Cd2+ ions in the asymmetric unit have different geometries; the outer Cd atoms have fivefold CdONCl3 coordination spheres, while the inner Cd atoms have sixfold CdONCl4 coordination spheres. The com­plex is consolidated by intra­molecular N—H⋯O and N—H⋯Cl hy­dro­gen bonds. In the crystal, a combination of N—H⋯Cl and Ow—H⋯Cl (w = water) hy­dro­gen bonds link the com­ponents to form chains propagating along the a-axis direction. The chains are crosslinked by C—H⋯Cl and C—H⋯O hy­dro­gen bonds to form a three-dimensional structure. A new geometry index, τ6, is proposed to qu­anti­tatively estimate the geometry of a sixfold coordinated atom.

1. Chemical context

Anti­pyrine derivatives have gained inter­est as model com­pounds for functional materials due to their various properties, including anti­oxidant (Bashkatova et al., 2005[Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143-1147.]), anti­pu­trefactive (Abd El Rehim et al., 2001[Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268-273.]) and optical properties (Collado et al., 2000[Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, H. C. (2000). Talanta, 52, 909-920.]; Coolen et al., 1999[Coolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B Biomed. Sci. Appl. 732, 103-113.]). One such analogue is 4-amino-1,5-dimethyl-2-phenyl­pyrazol-3-one, C11H13N3O, known as 4-amino­anti­pyrine (4-AAP). Its crystal structure was first reported by Li et al. (2013[Li, Y., Liu, Y., Wang, H., Xiong, X., Wei, P. & Li, F. (2013). Molecules, 18, 877-893.]), who also analysed its electronic structure and that of a number of its derivatives, including 4-(di­methyl­amino)­anti­pyrine. A low-tem­per­a­ture structural analysis of 4-AAP has been reported by Mnguni & Lemmerer (2015[Mnguni, M. J. & Lemmerer, A. (2015). Acta Cryst. C71, 103-109.]). The structure features a five-membered lactam ring in the pyrazole unit and a free amino group. Pyrazolone-based ligands exhibit variable com­plexing behaviour and a variety of coordination possibilities to metal centres. Such com­plexes have applications in both chemistry and the pharmaceutical sciences (Raman et al., 2014[Raman, N., Sakthivel, A. & Pravin, N. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 125, 404-413.]). Derivatives of 4-AAP have also emerged as important com­pounds in the fields of biology and medicine (Senthilkumar et al., 2016[Senthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939-11943.]). The presence of heteroatoms influences the electron distribution, which in turn enhances its reactivity and chelating properties (Matczak & Domagała, 2017[Matczak, M. & Domagała, M. (2017). J. Mol. Model. 23, 268-279.]; Joule & Mills, 2008[Joule, J. A. & Mills, K. (2008). In Heterocyclic Chemistry, 5th ed. Chichester: John Wiley & Sons.]). Due to this excellent chelating effect it can form a wide variety of metal com­plexes with almost all transition-metal ions and lanthanides. They have applications in many fields of research, such as sensor development (Banasz & Wałęsa-Chorab, 2019[Banasz, R. & Wałęsa-Chorab, M. (2019). Coord. Chem. Rev. 389, 1-18.]), renewable energy materials (Zhang et al., 2018[Zhang, J., Xu, L. & Wong, W. (2018). Coord. Chem. Rev. 355, 180-198.]), chemosensors (Selvan et al., 2016[Selvan, G. T., Kumaresan, M., Sivaraj, R., Enoch, I. V. M. V. & Selvakumar, P. M. (2016). Sens. Actuators B Chem. 229, 181-189.]), DNA binding (Sakthivel et al., 2020[Sakthivel, A., Jeyasubramanian, M., Thangagiri, B. & Raja, J. D. (2020). J. Mol. Struct. 1222, 128885.]), anti­pyretic (Turan-Zitouni et al., 2001[Turan-Zitouni, G., Sıvacı, M., Kılıç, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685-689.]), anti­oxidant (Bashkatova et al., 2005[Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143-1147.]), anti­cancer (Bose et al., 2005[Bose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem. 265, 115-122.]) and anti-inflammatory agents (Sondhi et al., 1999[Sondhi, S. M., Sharma, V. K., Verma, R. P., Singhal, N., Shukla, R., Raghubir, R. & Dubey, M. P. (1999). Synthesis, 1999, 878-884.]).

[Scheme 1]

Cadmium(II) com­plexes in general are notable because of their excellent optical and electronic properties (Venkataramanan et al., 1997[Venkataramanan, V., Bhat, H. L., Srinivasan, M. R., Ayyub, P. & Multani, M. S. (1997). J. Raman Spectrosc. 28, 779-784.]). They also have uses in environmental and analytical chemistry, and materials science (Adhikari et al., 2020[Adhikari, S., Bhattacharjee, T., Das, A., Roy, S., Daniliuc, C. G., Zaręba, J. K., Bauzá, A. & Frontera, A. (2020). CrystEngComm, 22, 8023-8035.]; Roccanova et al., 2017[Roccanova, R., Ming, W., Whiteside, V. R., McGuire, M. A., Sellers, I. R., Du, M. H. & Saparov, B. (2017). Inorg. Chem. 56, 13878-13888.]; Cheng et al., 2017[Cheng, C. C., Shen, N. N., Du, C. F., Wang, Z., Li, J. R. & Huang, X. Y. (2017). Inorg. Chem. Commun. 85, 21-25.]). A search of the Cambridge Structural Database (CSD, Version 5.46, up­date February 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for transition-metal com­plexes of 4-AAP gave 13 hits. Two of these are cad­mium(II) com­plexes, viz. catena-[[(4-amino­anti­pyrine)aqua­(μ2-5-nitro­isophthalato)cadmium(II)] monohydrate] (CSD refcode CIXQIK; Wang et al., 2008[Wang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 595-604.]) and catena-[bis­(μ-4-amino-1,5-dimethyl-2-phenyl-1,2-di­hydro-3H-pyrazol-3-one)tetra­deca-μ-chloro-bis­(ethanol)hepta­cadmium(II)] (IQATAY; Hu et al., 2012[Hu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2012). Arab. J. Chem. 14, 103117-103124.]). In both of these, 4-amino­anti­pyrine acts as a bidentate ligand, donating the lone pairs of electrons from the amino N atom and the carbonyl O atom to the cadmium ion.

Depending on the stoichiometry and reaction conditions, the structure of the com­plex can vary. For example, when reacting 4-amino­anti­pyrine (0.0203 g, 0.1 mmol) with CdCl2·2.5H2O (0.142 g, 0.06 mmol) in a mixture of ethanol and ethyl ­acetate (1:3 v/v) at 343 K, Hu et al. (2012[Hu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2012). Arab. J. Chem. 14, 103117-103124.]) synthesized a mono-periodic coordination polymer, catena-[bis­(μ-4-amino-1,5-dimethyl-2-phenyl-1,2-di­hydro-3H-pyrazol-3-one)tetra­deca-μ-chloro-bis­(ethanol)hepta­cadmium(II)]; structure IQATAY mentioned above. The com­plex unit possesses inversion symmetry and the asymmetric unit consists of 3.5 CdII atoms coordinated to seven bridging chloride ions, one bridging 4-amino­anti­pyrine ligand and one ethanol mol­ecule. In the present work, a new centrosymmetric tetra­nuclear cadmium(II) com­plex of 4-amino­anti­pyrine was synthesized when reacting an equimolar ratio of 4-AAP and CdCl2·2.5H2O using methanol as the solvent. Herein, we report on the structure and various properties of the title com­plex, [Cd4Cl8(C11H13N3O)4]·1.7H2O (I) (Scheme 1[link]), and com­pare them to those of the hepta­cadmium com­plex IQATAY.

2. τ6, a sixfold geometry index

The mol­ecular structure of (I) was found to be centrosymmetric with two independent cadmium(II) atoms (see Structural commentary section). The two outer CdII atoms have fivefold coordination spheres, while the inner CdII atoms have sixfold coordination spheres. Previously, a number of authors have described methods to measure the size of distortions in polyhedra; some have included only distortions in the bond lengths from their average values (Robinson et al., 1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]; Muetterties & Guggenberger, 1974[Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748-1756.]; Brown, 2006[Brown, I. D. (2006). Acta Cryst. B62, 692-694.]). Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]) introduced the notion of quadratic elongation (QE) and this analysis is incorporated in PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]). As of yet, no simple geometry index has been defined to describe the geometry of an octa­hedral coordination sphere. Deviations of the bond angles from their ideal values were largely ignored, but as shown below, when considered, they provide a simple method to calculate the various geometry indexes.

The fivefold geometry index τ5 was proposed by Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]) and is illustrated in Scheme 2[link] (τ5 = 0 for a perfect square pyramid and τ5 = 1 for a trigonal bipyramid). A fourfold geometry index τ4 was proposed by Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]) and is also illustrated in Scheme 2[link] (τ4 = 0 for a perfect square-planar geometry and τ4 = 1 for a pyramidal geometry). Following the reasoning of Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]), we propose a simple numerical estimation of the geometry of a sixfold coordination sphere; see Scheme 3[link] where τ6 = [(3 × 180°) – (α1 + α2 + α3)]/180° = 0 for a perfect octa­hedron where α1 = α2 = α3 = 180°. A value of 0.75 is obtained for a trigonal prismatic geometry, where α1 = α2 = α3 = 135° and a value of 1.00 is obtained for a penta­gonal pyramidal geometry, where α1 = α2 = α3 = α4 = α5 = 72°.

3. Structural commentary

The mol­ecular structure of (I) is illustrated in Fig. 1[link]. This tetra­nuclear com­plex possesses inversion symmetry and crystallizes as a 1.7 hydrate. Selected bond lengths and angles in the com­plex are given in Table 1[link]. The two independent CdII atoms of the asymmetric unit have different geometries, as shown in Figs. 1[link] and 2[link].

Table 1
Selected geometric parameters (Å, °)

Cd1—O1 2.3498 (14) Cd2—Cl2 2.5929 (5)
Cd1—N3 2.2863 (17) Cd2—Cl3i 2.6734 (5)
Cd1—Cl1 2.4486 (5) Cd2—Cl3 2.7631 (5)
Cd1—Cl2 2.5396 (5) Cd2—Cl4 2.5157 (5)
Cd1—Cl3 2.6908 (5) Cd1⋯Cd2 3.7831 (5)
Cd2—O2 2.3107 (13) Cd2⋯Cd2i 4.0745 (4)
Cd2—N6 2.4346 (17) Cd1⋯Cd2i 4.6003 (4)
       
N3—Cd1—Cl1 142.63 (5) Cd1—Cl2—Cd2 94.958 (15)
O1—Cd1—Cl3 161.00 (4) Cd2i—Cl3—Cd1 118.092 (16)
O2—Cd2—Cl2 159.61 (4) Cd2i—Cl3—Cd2 97.069 (14)
N6—Cd2—Cl3i 161.49 (4) Cd1—Cl3—Cd2 87.825 (14)
Cl4—Cd2—Cl3 170.343 (16)    
Symmetry code: (i) [-x+2, -y+2, -z+1].
[Figure 1]
Figure 1
A view of the mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 2, −z + 1.]
[Figure 2]
Figure 2
A partial view of (I), showing the different polyhedra for atoms Cd1 and Cd2 (Mercury; Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

The outer Cd atoms [Cd1 and Cd1i; symmetry code: (i) −x + 2, −y + 2, −z + 1] have fivefold CdONCl3 coordination spheres with a distorted shape, and according to the definition of Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]), the structural index τ5 = (161.0° – 142.63°)/60° = 0.31. The inner Cd atoms (Cd2 and Cd2i) have sixfold CdONCl4 coordination spheres. The three principal (trans) bond angles O2—Cd2—Cl2, N6—Cd2—Cl3i and Cl3—Cd2—Cl4 are 159.61 (4), 161.49 (4) and 170.34 (2)°, respectively, com­pared to 180° for a perfect octa­hedron. The τ6 geometry index gives a value of [540° – (159.61° + 161.49° + 170.34°)]/180° = 0.27, a significant distortion from the geometry of a perfect octa­hedron. The QE parameter for atom Cd2 is 1.027 (PLATON; Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]).

[Scheme 2]

Comparing the coordination geometry of the four Cd atoms in IQATAY, it was found that the values of τ6 for atoms Cd1, Cd2, Cd3 and Cd4 are 0, 0.06, 0.16 and 0.17, respectively. Hence, in this case, atom Cd1, which lies on an inversion centre, has a perfect octa­hedral geometry. Atom Cd2 has a very small distortion from a perfect octa­hedron. Atoms Cd3 and Cd4 have distorted geometries but less so than that observed for atom Cd2 in com­plex (I). The QE parameters for atoms Cd1 to Cd4 in IQATAY are 1.002, 1.005, 1.013 and 1.018, respectively.

[Scheme 3]

In (I), there are two terminal chlorido ligands (Cl1 and Cl4), one μ2-bridging Cl atom (Cl2) and one μ3-bridging Cl atom (Cl3); see Table 1[link]. In IQATAY, there are three μ2-bridging Cl atoms and four μ3-bridging Cl atoms. The Cd—Cl bond lengths vary from 2.4486 (5) to 2.7631 (5) Å in (I), com­pared to a range of 2.551 (2)–2.779 (2) Å in IQATAY. The various Cd⋯Cd separations and Cd—Cl—Cd bridging angles in (I) are given in Table 1[link]. These values are very similar to those observed for IQATAY.

The two independent 4-AAP mol­ecules in (I) have slightly different conformations. A view of the mol­ecular overlap of the two ligands [ligand 2 (involving atom O2) inverted over ligand 1 (involving atom O1)] is shown in Fig. S1 of the supporting information. In (I), the ligands are bidentate, coordinating to one Cd atom each time, while in IQATAY, the ligand bridges two Cd atoms. In (I), arene ring C4–C9 is inclined to the pyrazole ring mean plane (N1/N2/C1–C3; r.m.s. deviation = 0.05 Å) by 56.7 (1)°, while arene ring C15–C20 is inclined to the pyrazole ring mean plane (N4/N5/C12–C14; r.m.s. deviation 0.044 Å) by 45.2 (1)°. In IQATAY, the corresponding dihedral angle is larger at 62.1 (4)°. In (I), the pyrazole ring of ligand 1 (N1/N2/C1–C3) is almost parallel to arene ring C15i–C20i of ligand 2, with a centroid–centroid separation of 3.749 (1) Å. The 4-AAP ligands in (I) coordinate to the Cd atoms via the carbonyl O atom and the 4-amino N atom. The Cd1—O1 bond length is 2.3498 (13) Å com­pared to 2.3107 (13) Å for Cd2—O2. In IQATAY, the corresponding Cd—O bond length is significantly shorter at 2.245 (6) Å. The Cd—N bond lengths in (I) are Cd1—N3 = 2.2863 (17) Å and Cd2—N6 = 2.4346 (17) Å, com­pared to 2.352 (7) Å for the corresponding bond in IQATAY.

Complex (I) is consolidated by intra­molecular N—H⋯Cl and N—H⋯O hy­dro­gen bonds, which are listed in Table 2[link] and illustrated in Fig. 1[link]. The N6—H6NA⋯C1l hy­dro­gen bond involves the 4-amino group of ligand 2, while the N3—H3HA⋯O2i hy­dro­gen bond involves the 4-amino group of ligand 1 and the carbonyl O atom of ligand 2.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3NA⋯O2i 0.88 (3) 1.89 (3) 2.747 (2) 166 (3)
N6—H6NA⋯Cl1 0.87 (3) 2.54 (3) 3.4073 (19) 172 (2)
N6—H6NB⋯Cl1ii 0.86 (3) 2.73 (3) 3.3718 (18) 133 (2)
O1W—H1WA⋯Cl4ii 0.85 (4) 2.45 (4) 3.292 (2) 176 (4)
O1W—H1WB⋯Cl1 0.89 (4) 2.34 (4) 3.220 (2) 168 (3)
C11—H11A⋯Cl2iii 0.98 2.82 3.732 (2) 156
C16—H16⋯Cl2i 0.95 2.82 3.589 (2) 138
C21—H21C⋯Cl4iv 0.98 2.69 3.647 (2) 165
C22—H22C⋯O1ii 0.98 2.51 3.417 (3) 154
Symmetry codes: (i) [-x+2, -y+2, -z+1]; (ii) [-x+1, -y+2, -z+1]; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

4. Supra­molecular features

In the crystal of (I), the mol­ecules are linked by O—H⋯Cl hy­dro­gen bonds (Table 2[link]), involving the partially occupied water mol­ecules (Cl⋯H—O—H⋯Cl). Together with N—H⋯Cl hy­dro­gen bonds (Table 2[link]), chains are formed propagating along the a-axis direction (Fig. 3[link]). The chains enclose two ring motifs. The first, R42(8), involves the amine H atoms and chloride ion Cl1. The second, R32(8), involves an amine H atom, two chloride ions, the water H atoms and atom Cd1, as shown in Fig. 3[link]. The chains are linked by a series of C—H⋯Cl and C—H⋯O hy­dro­gen bonds to form a three-dimensional structure (Fig. 4[link] and Table 2[link]). Atom N3HB does not partake in hy­dro­gen bonding. This phenomenon is not unusual and has been observed previously (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

[Figure 3]
Figure 3
A partial view of the crystal packing of (I). Only the H atoms involved in the N—H⋯Cl and O—H⋯Cl hy­dro­gen bonds (Table 1[link]) have been included.
[Figure 4]
Figure 4
A view along the a-axis direction of the crystal packing of (I). Only the H atoms (grey spheres) involved in the various hy­dro­gen bonds (Table 1[link]) have been included.

5. Hirshfeld surface analysis and fingerprint plots

The Hirshfeld surface (HS) analysis and the associated two-dimensional fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and inter­preted following the protocol of Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surface (HS) of (I) is illustrated in Fig. 5[link]. It is colour-mapped with the normalized contact distance dnorm in the colour range from 0.00 to 1.41 a.u. There are a significant number of large red spots, indicating that in these regions the inter­atomic distances in the crystal are shorter than the sum of the van der Waals radii.

[Figure 5]
Figure 5
The Hirshfeld surface of (I) mapped over dnorm

The full two-dimensional fingerprint plot for (I), and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts, are given in Fig. 6[link]. The H⋯H contacts have a major contribution to the HS of 43.1%. The second most significant contributions are from the Cl⋯H/H⋯Cl contacts at 26.1%, with sharp peaks at di + de ≃ 2.2 Å. This reflects the presence of the seven H⋯Cl inter­actions in the crystal structure (see Table 2[link]). The C⋯H/H⋯C inter­actions contribute 15.0%, with relatively sharp spikes at di + de ≃ 2.5 Å. The O⋯H/H⋯O inter­actions contribute 10%, with sharp peaks at di + de ≃ 2.35 Å. The sharp pincer-like peaks for these three inter­atomic inter­actions indicate that they are significant. Finally, the N⋯H/H⋯N contacts contribute 2.5%, while other inter­atomic contacts contribute less than 1% to the overall HS.

[Figure 6]
Figure 6
The full two-dimensional fingerprint plot for (I), and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts.

6. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.46, update February 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for sixfold-coordinated cadmium(II) metal com­plexes was carried out with the following restrictions: three-dimensional structure, R ≤ 0.05, no disorder, no ions, no polymers, single crystals only and no bidentate ligands with fewer than four atoms, such as nitrate or acetate. Over 720 hits were obtained.

Although the majority of the com­plexes have octa­hedral coordination spheres, there are a number of com­plexes with a trigonal prismatic geometry. One such com­plex is (1,5,5,9,13,13,20,20-octa­methyl-3,7,11,15,18,22-hexa­aza­bicyclo­[7.7.7]tricosa­ne)cadmium(II) dinitrate dihydrate (CSD refcode ULESAH; Alcock et al., 2016[Alcock, L. J., Cavigliasso, G., Willis, A. C., Stranger, R. & Ralph, S. F. (2016). Dalton Trans. 45, 9036-9040.]), illustrated in Figs. 7[link](a) and 7(b). Here the structural index τ6 = 0.73 and the QE parameter for atom Cd1 is 1.24.

[Figure 7]
Figure 7
(a)/(b) The trigonal prismatic coordination sphere of ILUSAH (redrawn from Alcock et al., 2016[Alcock, L. J., Cavigliasso, G., Willis, A. C., Stranger, R. & Ralph, S. F. (2016). Dalton Trans. 45, 9036-9040.]) and (c)/(d) the penta­gonal pyramidal coordination sphere of VAPSAG (redrawn from Sessler et al., 1989[Sessler, J. L., Murai, T. & Lynch, V. (1989). Inorg. Chem. 28, 1333-1341.]).

Examples of penta­gonal pyramidal geometry are rare. One example is (benzimidazole)(4,5,9,24-tetra­ethyl-10,23-dimethyl-13,20,25,26,27-pentaaza­penta­cyclo­[20.2.1.13,6.18,11.014,19]hepta­cosa-1,3,5,7,9,11(27),12,14,16,18,20,22(25),23-trideca­ene)cad­mium(II) nitrate chloro­form solvate (VAPSAG; Sessler et al., 1989[Sessler, J. L., Murai, T. & Lynch, V. (1989). Inorg. Chem. 28, 1333-1341.]), illustrated in Figs. 7[link](c) and 7(d); here the structural index τ6 = 1.02 (the QE parameter for atom Cd1 is 1.33). Another example is that of com­plex tetra­aqua­bis­(μ2-xanthurenato)dicadmium(II), with two Cd atoms related by a centre of symmetry (CIJBII; Tratar et al., 2012[Tratar Pirc, E., Cer-Kerčmar, K., Modec, B. & Bukovec, P. (2012). Monatsh. Chem. 143, 1643-1648.]). Here the structural index τ6 = 1.0 (QE parameter for atom Cd1 = 1.31).

7. Thermal analysis

To investigate the thermal characteristics of (I), a SQT-Q600 V20.9 Build 20 Universal Thermo Analytical system was used under a nitro­gen atmosphere and with a sample weight of 2.044 mg in an alumina crucible over a tem­per­a­ture range from 25 to 800 °C, with a heating rate of 20 °C per minute. The TGA and DTA results are illustrated in Fig. S2 of the supporting information.

The melting point of the com­plex, observed from the DTA curve, is 245 °C (518 K). According to the TGA curve, the first weight loss step (2.3%) corresponds to the loss of water mol­ecules present in the title com­plex. The second step (34.7% loss) is probably due to the gradual decom­position of one 4-amino­anti­pyrine mol­ecule, accom­panied by the release of chlorine gas. The third step (48.9% loss) may correspond to the loss of one 4-amino­anti­pyrine mol­ecule and one CdCl2 mol­ecule. The final step may be due to the degradation of the rest of the com­plex, leading to the formation of the final residue of CdO (observed 16.23%; calculated 16.63%)

8. Synthesis and spectroscopic data

An equimolar mixture of 4-amino­anti­pyrine (0.100 mmol) and cadmium(II) chloride (0.100 mmol) was dissolved in 20 ml methanol and refluxed at 363 K using an oil bath. After 6 h the solution was filtered and left aside at room tem­per­a­ture. Orange needle-like crystals of (I) were obtained by evaporation of the solvent over a period of one week. The melting point is 518 K (245 °C), as seen from the DTA curve (Fig. S2).

The FT–IR spectrum of (I) was recorded with a JASCO Infrared spectrometer (400–4000 cm−1) using the KBr pellet technique (Fig. S3 of the supporting information). The FT–IR spectrum of the free ligand (Swaminathan et al., 2009[Swaminathan, J., Ramalingam, M., Sethuraman, V., Sundaraganesan, N. & Sebastian, S. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 593-600.]) was com­pared with that of the cadmium com­plex to verify the coordination of 4-AAP with the Cd2+ ions. For 4-AAP, prominent peaks are seen at 3432 and 3325 cm−1, corresponding to the asymmetric and symmetric stretching modes of NH2, respectively, and at 1679 cm−1 for the carbonyl-group stretching band. In the FT–IR spectrum of (I), sharp peaks were observed around 3301, 3213 and 1631 cm−1. It may be seen that the vibrational frequencies of NH2 and C=O are shifted to lower frequencies upon Cd2+ coordination, consistent with the crystal structure.

9. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The NH2 and water H atoms were located in difference Fourier maps and freely refined. C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Table 3
Experimental details

Crystal data
Chemical formula [Cd4Cl8(C11H13N3O)4]·1.7H2O
Mr 1576.80
Crystal system, space group Monoclinic, P21/n
Temperature (K) 95
a, b, c (Å) 11.0702 (2), 13.5058 (2), 19.0700 (3)
β (°) 102.006 (2)
V3) 2788.82 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.94
Crystal size (mm) 0.23 × 0.09 × 0.06
 
Data collection
Diffractometer Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.659, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 46639, 7273, 6505
Rint 0.033
(sin θ/λ)max−1) 0.696
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.051, 1.05
No. of reflections 7273
No. of parameters 362
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.60, −0.50
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), JANA2006 (Petrıcěk et al., 2023[Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. 238, 271-282.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), SHELXL2019 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Di-µ3-chlorido-1:2:3κ3Cl;2:3:4κ3Cl-di-µ2-chlorido-1:2κ2Cl;3:4κ2Cl-tetrakis[(4-amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one-κ2O,N4)chloridocadmium(II)] 1.7-hydrate top
Crystal data top
[Cd4Cl8(C11H13N3O)4]·1.7H2OF(000) = 1554
Mr = 1576.80Dx = 1.878 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.0702 (2) ÅCell parameters from 23338 reflections
b = 13.5058 (2) Åθ = 2.4–29.4°
c = 19.0700 (3) ŵ = 1.94 mm1
β = 102.006 (2)°T = 95 K
V = 2788.82 (8) Å3Needle, orange
Z = 20.23 × 0.09 × 0.06 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an AtlasS2 detector
7273 independent reflections
Radiation source: micro-focus sealed X-ray tube6505 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 5.2027 pixels mm-1θmax = 29.7°, θmin = 2.2°
ω scansh = 1315
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
k = 1717
Tmin = 0.659, Tmax = 1.000l = 2426
46639 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: mixed
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0206P)2 + 2.4714P]
where P = (Fo2 + 2Fc2)/3
7273 reflections(Δ/σ)max = 0.004
362 parametersΔρmax = 0.60 e Å3
0 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.69699 (2)0.94027 (2)0.38615 (2)0.01331 (4)
Cd20.87944 (2)1.07542 (2)0.54768 (2)0.01079 (4)
Cl10.55065 (4)0.86942 (3)0.45253 (2)0.01487 (9)
Cl20.73018 (4)1.11865 (3)0.42784 (2)0.01186 (9)
Cl30.90013 (4)0.89352 (3)0.48490 (2)0.01128 (9)
Cl40.89700 (4)1.23560 (3)0.61639 (2)0.01465 (9)
O10.55409 (13)0.94942 (10)0.27639 (7)0.0146 (3)
O20.98088 (12)0.98270 (10)0.64391 (7)0.0141 (3)
N10.56201 (15)0.92585 (12)0.15576 (9)0.0133 (3)
N20.65230 (15)0.89099 (13)0.12006 (9)0.0146 (3)
N30.81571 (16)0.90156 (13)0.30520 (9)0.0136 (3)
H3NA0.877 (3)0.944 (2)0.3144 (15)0.034 (8)*
H3NB0.849 (2)0.843 (2)0.3157 (13)0.024 (7)*
N40.93489 (15)0.86164 (12)0.72079 (9)0.0128 (3)
N50.82718 (15)0.82851 (12)0.74095 (9)0.0127 (3)
N60.71297 (16)0.99943 (13)0.59441 (9)0.0131 (3)
H6NA0.665 (3)0.967 (2)0.5601 (15)0.029 (7)*
H6NB0.668 (3)1.044 (2)0.6087 (14)0.026 (7)*
C10.61290 (18)0.93024 (13)0.22807 (10)0.0119 (4)
C20.76124 (18)0.88714 (14)0.16873 (10)0.0135 (4)
C30.73903 (18)0.90621 (14)0.23532 (10)0.0127 (4)
C40.43370 (18)0.91110 (14)0.12652 (10)0.0123 (4)
C50.39217 (19)0.82220 (14)0.09338 (10)0.0143 (4)
H50.4490800.7717160.0876360.017*
C60.26638 (19)0.80834 (15)0.06883 (10)0.0166 (4)
H60.2368180.7481110.0457590.020*
C70.1838 (2)0.88162 (16)0.07774 (11)0.0197 (4)
H70.0976180.8713080.0613100.024*
C80.2263 (2)0.97020 (16)0.11061 (11)0.0202 (4)
H80.1691721.0203410.1166380.024*
C90.35225 (19)0.98602 (15)0.13480 (10)0.0159 (4)
H90.3818851.0470310.1565940.019*
C100.6400 (2)0.91614 (17)0.04415 (11)0.0202 (4)
H10A0.5615770.8902080.0167810.030*
H10B0.7085640.8867560.0261150.030*
H10C0.6416570.9882610.0388020.030*
C110.87995 (19)0.86561 (16)0.14715 (12)0.0186 (4)
H11A0.8727180.8034150.1201240.028*
H11B0.9459010.8596090.1900500.028*
H11C0.8995600.9195940.1170350.028*
C120.90388 (18)0.93145 (13)0.66823 (10)0.0115 (4)
C130.72966 (18)0.86983 (14)0.69393 (10)0.0122 (4)
C140.77348 (18)0.93480 (14)0.65018 (10)0.0117 (4)
C151.05447 (18)0.85200 (13)0.76565 (10)0.0115 (4)
C161.15402 (18)0.84218 (14)0.73232 (10)0.0134 (4)
H161.1411320.8376170.6815900.016*
C171.27289 (19)0.83913 (14)0.77424 (11)0.0167 (4)
H171.3419380.8347980.7519900.020*
C181.2910 (2)0.84240 (15)0.84841 (12)0.0189 (4)
H181.3722590.8394350.8769100.023*
C191.1906 (2)0.84998 (16)0.88080 (11)0.0201 (4)
H191.2033120.8511830.9316140.024*
C201.07113 (19)0.85588 (14)0.83977 (10)0.0157 (4)
H201.0023670.8624260.8620510.019*
C210.82669 (19)0.72630 (14)0.76782 (11)0.0152 (4)
H21A0.9051660.7127080.8010170.023*
H21B0.8160740.6799880.7274390.023*
H21C0.7584960.7181900.7928850.023*
C220.60025 (18)0.84102 (15)0.69320 (11)0.0172 (4)
H22A0.5952520.8117280.7395270.026*
H22B0.5726890.7925420.6549880.026*
H22C0.5472340.8997480.6846070.026*
O1W0.3775 (2)0.67988 (14)0.46049 (11)0.0262 (4)0.85
H1WA0.308 (4)0.703 (3)0.439 (2)0.057 (13)*0.85
H1WB0.425 (4)0.734 (3)0.465 (2)0.050 (11)*0.85
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01297 (7)0.01485 (7)0.01124 (7)0.00084 (5)0.00051 (5)0.00144 (5)
Cd20.01082 (7)0.01089 (7)0.01011 (7)0.00029 (5)0.00088 (5)0.00165 (5)
Cl10.0106 (2)0.0169 (2)0.0168 (2)0.00061 (17)0.00230 (17)0.00041 (17)
Cl20.0138 (2)0.0106 (2)0.0098 (2)0.00143 (17)0.00070 (16)0.00113 (15)
Cl30.0095 (2)0.0116 (2)0.0125 (2)0.00016 (16)0.00191 (16)0.00141 (16)
Cl40.0149 (2)0.0135 (2)0.0168 (2)0.00281 (17)0.00625 (18)0.00634 (17)
O10.0113 (7)0.0193 (7)0.0127 (7)0.0002 (6)0.0012 (5)0.0027 (5)
O20.0111 (7)0.0178 (7)0.0128 (7)0.0034 (6)0.0009 (5)0.0046 (5)
N10.0111 (8)0.0164 (8)0.0125 (8)0.0003 (6)0.0027 (6)0.0032 (6)
N20.0135 (8)0.0186 (8)0.0123 (8)0.0022 (7)0.0042 (6)0.0023 (6)
N30.0128 (8)0.0116 (8)0.0144 (8)0.0003 (7)0.0018 (7)0.0006 (6)
N40.0101 (8)0.0154 (8)0.0134 (8)0.0014 (6)0.0033 (6)0.0040 (6)
N50.0111 (8)0.0134 (8)0.0146 (8)0.0011 (6)0.0050 (6)0.0028 (6)
N60.0112 (8)0.0135 (8)0.0139 (8)0.0014 (7)0.0006 (7)0.0017 (6)
C10.0132 (9)0.0090 (9)0.0127 (9)0.0021 (7)0.0008 (7)0.0015 (7)
C20.0136 (9)0.0101 (9)0.0163 (9)0.0001 (7)0.0017 (8)0.0005 (7)
C30.0123 (9)0.0086 (8)0.0164 (10)0.0009 (7)0.0013 (7)0.0004 (7)
C40.0125 (9)0.0152 (9)0.0089 (9)0.0003 (7)0.0013 (7)0.0005 (7)
C50.0181 (10)0.0137 (9)0.0103 (9)0.0012 (8)0.0013 (8)0.0005 (7)
C60.0196 (10)0.0187 (10)0.0105 (9)0.0061 (8)0.0005 (8)0.0006 (7)
C70.0147 (10)0.0285 (11)0.0149 (10)0.0024 (9)0.0005 (8)0.0005 (8)
C80.0163 (10)0.0222 (11)0.0217 (11)0.0061 (9)0.0034 (8)0.0006 (8)
C90.0189 (10)0.0138 (9)0.0144 (9)0.0023 (8)0.0020 (8)0.0010 (7)
C100.0186 (11)0.0301 (12)0.0120 (10)0.0017 (9)0.0033 (8)0.0013 (8)
C110.0141 (10)0.0195 (10)0.0226 (11)0.0018 (8)0.0046 (8)0.0037 (8)
C120.0130 (9)0.0116 (9)0.0094 (9)0.0002 (7)0.0011 (7)0.0000 (7)
C130.0120 (9)0.0121 (9)0.0124 (9)0.0007 (7)0.0024 (7)0.0016 (7)
C140.0108 (9)0.0125 (9)0.0114 (9)0.0007 (7)0.0011 (7)0.0016 (7)
C150.0113 (9)0.0086 (8)0.0138 (9)0.0003 (7)0.0007 (7)0.0025 (7)
C160.0156 (10)0.0103 (9)0.0146 (9)0.0006 (7)0.0037 (8)0.0011 (7)
C170.0136 (10)0.0103 (9)0.0267 (11)0.0012 (8)0.0051 (8)0.0006 (8)
C180.0148 (10)0.0133 (10)0.0248 (11)0.0008 (8)0.0044 (8)0.0030 (8)
C190.0241 (11)0.0197 (10)0.0140 (10)0.0000 (9)0.0014 (8)0.0032 (8)
C200.0180 (10)0.0159 (10)0.0133 (9)0.0014 (8)0.0033 (8)0.0022 (7)
C210.0173 (10)0.0120 (9)0.0172 (10)0.0002 (8)0.0056 (8)0.0046 (7)
C220.0122 (10)0.0195 (10)0.0205 (10)0.0018 (8)0.0049 (8)0.0020 (8)
O1W0.0261 (11)0.0187 (10)0.0349 (11)0.0030 (9)0.0087 (9)0.0008 (8)
Geometric parameters (Å, º) top
Cd1—O12.3498 (14)C5—C61.386 (3)
Cd1—N32.2863 (17)C5—H50.9500
Cd1—Cl12.4486 (5)C6—C71.382 (3)
Cd1—Cl22.5396 (5)C6—H60.9500
Cd1—Cl32.6908 (5)C7—C81.387 (3)
Cd2—O22.3107 (13)C7—H70.9500
Cd2—N62.4346 (17)C8—C91.391 (3)
Cd2—Cl22.5929 (5)C8—H80.9500
Cd2—Cl3i2.6734 (5)C9—H90.9500
Cd2—Cl32.7631 (5)C10—H10A0.9800
Cd2—Cl42.5157 (5)C10—H10B0.9800
Cd1—Cd23.7831 (5)C10—H10C0.9800
Cd2—Cd2i4.0745 (4)C11—H11A0.9800
Cd1—Cd2i4.6003 (4)C11—H11B0.9800
O1—C11.261 (2)C11—H11C0.9800
O2—C121.259 (2)C12—C141.413 (3)
N1—C11.378 (2)C13—C141.367 (3)
N1—N21.403 (2)C13—C221.482 (3)
N1—C41.428 (2)C15—C201.388 (3)
N2—C21.361 (3)C15—C161.388 (3)
N2—C101.465 (3)C16—C171.391 (3)
N3—C31.425 (3)C16—H160.9500
N3—H3NA0.88 (3)C17—C181.387 (3)
N3—H3NB0.88 (3)C17—H170.9500
N4—C121.367 (2)C18—C191.383 (3)
N4—N51.400 (2)C18—H180.9500
N4—C151.425 (2)C19—C201.392 (3)
N5—C131.370 (2)C19—H190.9500
N5—C211.473 (2)C20—H200.9500
N6—C141.430 (2)C21—H21A0.9800
N6—H6NA0.87 (3)C21—H21B0.9800
N6—H6NB0.86 (3)C21—H21C0.9800
C1—C31.412 (3)C22—H22A0.9800
C2—C31.367 (3)C22—H22B0.9800
C2—C111.485 (3)C22—H22C0.9800
C4—C91.386 (3)O1W—H1WA0.85 (4)
C4—C51.390 (3)O1W—H1WB0.89 (4)
N3—Cd1—O177.62 (5)C6—C5—H5120.5
N3—Cd1—Cl1142.63 (5)C4—C5—H5120.5
O1—Cd1—Cl194.93 (4)C7—C6—C5120.39 (19)
N3—Cd1—Cl2111.23 (5)C7—C6—H6119.8
O1—Cd1—Cl2104.82 (4)C5—C6—H6119.8
Cl1—Cd1—Cl2106.087 (16)C6—C7—C8120.1 (2)
N3—Cd1—Cl384.54 (4)C6—C7—H7119.9
O1—Cd1—Cl3161.00 (4)C8—C7—H7119.9
Cl1—Cd1—Cl395.335 (15)C7—C8—C9120.4 (2)
Cl2—Cd1—Cl387.599 (14)C7—C8—H8119.8
O2—Cd2—N676.15 (5)C9—C8—H8119.8
O2—Cd2—Cl494.60 (4)C4—C9—C8118.74 (19)
N6—Cd2—Cl498.87 (5)C4—C9—H9120.6
O2—Cd2—Cl2159.61 (4)C8—C9—H9120.6
N6—Cd2—Cl291.46 (4)N2—C10—H10A109.5
Cl4—Cd2—Cl2103.381 (16)N2—C10—H10B109.5
O2—Cd2—Cl3i87.33 (4)H10A—C10—H10B109.5
N6—Cd2—Cl3i161.49 (4)N2—C10—H10C109.5
Cl4—Cd2—Cl3170.343 (16)H10A—C10—H10C109.5
Cl4—Cd2—Cl3i90.613 (15)H10B—C10—H10C109.5
O2—Cd2—Cl377.99 (4)C2—C11—H11A109.5
N6—Cd2—Cl385.47 (4)C2—C11—H11B109.5
Cl2—Cd2—Cl385.035 (14)H11A—C11—H11B109.5
Cl3i—Cd2—Cl382.931 (14)C2—C11—H11C109.5
Cd1—Cl2—Cd294.958 (15)H11A—C11—H11C109.5
Cd2i—Cl3—Cd1118.092 (16)H11B—C11—H11C109.5
Cd2i—Cl3—Cd297.069 (14)O2—C12—N4124.29 (18)
Cd1—Cl3—Cd287.825 (14)O2—C12—C14128.91 (18)
C1—O1—Cd1106.61 (12)N4—C12—C14106.78 (16)
C12—O2—Cd2109.64 (12)C14—C13—N5109.23 (17)
C1—N1—N2108.41 (15)C14—C13—C22128.88 (18)
C1—N1—C4124.28 (16)N5—C13—C22121.85 (17)
N2—N1—C4121.00 (15)C13—C14—C12107.75 (17)
C2—N2—N1107.55 (15)C13—C14—N6132.43 (18)
C2—N2—C10124.72 (17)C12—C14—N6119.82 (17)
N1—N2—C10118.20 (16)C20—C15—C16121.33 (18)
C3—N3—Cd1107.89 (12)C20—C15—N4121.20 (17)
C3—N3—H3NA116.3 (19)C16—C15—N4117.43 (17)
Cd1—N3—H3NA104.2 (19)C15—C16—C17119.07 (18)
C3—N3—H3NB113.2 (16)C15—C16—H16120.5
Cd1—N3—H3NB108.9 (16)C17—C16—H16120.5
H3NA—N3—H3NB106 (2)C18—C17—C16120.26 (19)
C12—N4—N5108.87 (15)C18—C17—H17119.9
C12—N4—C15124.31 (16)C16—C17—H17119.9
N5—N4—C15122.94 (15)C19—C18—C17119.89 (19)
C13—N5—N4106.86 (15)C19—C18—H18120.1
C13—N5—C21123.36 (16)C17—C18—H18120.1
N4—N5—C21117.39 (15)C18—C19—C20120.74 (19)
C14—N6—Cd2104.86 (12)C18—C19—H19119.6
C14—N6—H6NA111.8 (18)C20—C19—H19119.6
Cd2—N6—H6NA109.1 (18)C15—C20—C19118.67 (19)
C14—N6—H6NB113.7 (18)C15—C20—H20120.7
Cd2—N6—H6NB110.6 (18)C19—C20—H20120.7
H6NA—N6—H6NB107 (2)N5—C21—H21A109.5
O1—C1—N1125.05 (18)N5—C21—H21B109.5
O1—C1—C3128.77 (18)H21A—C21—H21B109.5
N1—C1—C3106.15 (16)N5—C21—H21C109.5
N2—C2—C3108.73 (17)H21A—C21—H21C109.5
N2—C2—C11121.87 (17)H21B—C21—H21C109.5
C3—C2—C11129.40 (19)C13—C22—H22A109.5
C2—C3—C1108.52 (17)C13—C22—H22B109.5
C2—C3—N3132.32 (18)H22A—C22—H22B109.5
C1—C3—N3119.10 (17)C13—C22—H22C109.5
C9—C4—C5121.40 (19)H22A—C22—H22C109.5
C9—C4—N1118.13 (17)H22B—C22—H22C109.5
C5—C4—N1120.42 (17)H1WA—O1W—H1WB101 (3)
C6—C5—C4118.96 (19)
C1—N1—N2—C28.1 (2)C6—C7—C8—C90.0 (3)
C4—N1—N2—C2161.26 (17)C5—C4—C9—C81.4 (3)
C1—N1—N2—C10155.99 (17)N1—C4—C9—C8175.99 (18)
C4—N1—N2—C1050.8 (2)C7—C8—C9—C41.1 (3)
C12—N4—N5—C137.4 (2)Cd2—O2—C12—N4173.58 (15)
C15—N4—N5—C13166.03 (17)Cd2—O2—C12—C148.5 (2)
C12—N4—N5—C21150.92 (17)N5—N4—C12—O2172.46 (17)
C15—N4—N5—C2150.4 (2)C15—N4—C12—O214.2 (3)
Cd1—O1—C1—N1178.55 (15)N5—N4—C12—C145.9 (2)
Cd1—O1—C1—C30.8 (2)C15—N4—C12—C14164.13 (17)
N2—N1—C1—O1172.91 (17)N4—N5—C13—C146.0 (2)
C4—N1—C1—O120.8 (3)C21—N5—C13—C14146.82 (17)
N2—N1—C1—C35.3 (2)N4—N5—C13—C22172.07 (17)
C4—N1—C1—C3157.38 (17)C21—N5—C13—C2231.3 (3)
N1—N2—C2—C37.6 (2)N5—C13—C14—C122.5 (2)
C10—N2—C2—C3152.94 (19)C22—C13—C14—C12175.43 (19)
N1—N2—C2—C11172.06 (17)N5—C13—C14—N6177.43 (19)
C10—N2—C2—C1126.8 (3)C22—C13—C14—N64.7 (4)
N2—C2—C3—C14.4 (2)O2—C12—C14—C13176.07 (19)
C11—C2—C3—C1175.25 (19)N4—C12—C14—C132.1 (2)
N2—C2—C3—N3172.5 (2)O2—C12—C14—N63.8 (3)
C11—C2—C3—N37.8 (4)N4—C12—C14—N6177.94 (16)
O1—C1—C3—C2177.47 (19)Cd2—N6—C14—C13177.09 (18)
N1—C1—C3—C20.6 (2)Cd2—N6—C14—C123.0 (2)
O1—C1—C3—N30.1 (3)C12—N4—C15—C20123.4 (2)
N1—C1—C3—N3178.00 (16)N5—N4—C15—C2032.0 (3)
Cd1—N3—C3—C2177.59 (18)C12—N4—C15—C1654.3 (3)
Cd1—N3—C3—C10.9 (2)N5—N4—C15—C16150.31 (17)
C1—N1—C4—C968.2 (2)C20—C15—C16—C171.9 (3)
N2—N1—C4—C9142.99 (18)N4—C15—C16—C17175.82 (17)
C1—N1—C4—C5109.2 (2)C15—C16—C17—C182.2 (3)
N2—N1—C4—C539.6 (3)C16—C17—C18—C190.8 (3)
C9—C4—C5—C60.6 (3)C17—C18—C19—C201.0 (3)
N1—C4—C5—C6176.71 (17)C16—C15—C20—C190.2 (3)
C4—C5—C6—C70.5 (3)N4—C15—C20—C19177.46 (18)
C5—C6—C7—C80.8 (3)C18—C19—C20—C151.3 (3)
Symmetry code: (i) x+2, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3NA···O2i0.88 (3)1.89 (3)2.747 (2)166 (3)
N6—H6NA···Cl10.87 (3)2.54 (3)3.4073 (19)172 (2)
N6—H6NB···Cl1ii0.86 (3)2.73 (3)3.3718 (18)133 (2)
O1W—H1WA···Cl4ii0.85 (4)2.45 (4)3.292 (2)176 (4)
O1W—H1WB···Cl10.89 (4)2.34 (4)3.220 (2)168 (3)
C11—H11A···Cl2iii0.982.823.732 (2)156
C16—H16···Cl2i0.952.823.589 (2)138
C21—H21C···Cl4iv0.982.693.647 (2)165
C22—H22C···O1ii0.982.513.417 (3)154
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y1/2, z+3/2.
 

Acknowledgements

MK and MD acknowledge using the CzechNanoLab Research Infrastructure supported by MEYS CR (No. LM2018110) for crystallographic analysis. HSE is grateful to the University of Neuchâtel for their support over the years.

References

First citationAbd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273.  Web of Science CrossRef CAS Google Scholar
First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAdhikari, S., Bhattacharjee, T., Das, A., Roy, S., Daniliuc, C. G., Zaręba, J. K., Bauzá, A. & Frontera, A. (2020). CrystEngComm, 22, 8023–8035.  CrossRef CAS Google Scholar
First citationAlcock, L. J., Cavigliasso, G., Willis, A. C., Stranger, R. & Ralph, S. F. (2016). Dalton Trans. 45, 9036–9040.  CrossRef CAS PubMed Google Scholar
First citationBanasz, R. & Wałęsa-Chorab, M. (2019). Coord. Chem. Rev. 389, 1–18.  CrossRef CAS Google Scholar
First citationBashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143–1147.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem. 265, 115–122.  Web of Science CrossRef CAS Google Scholar
First citationBrown, I. D. (2006). Acta Cryst. B62, 692–694.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCheng, C. C., Shen, N. N., Du, C. F., Wang, Z., Li, J. R. & Huang, X. Y. (2017). Inorg. Chem. Commun. 85, 21–25.  CrossRef CAS Google Scholar
First citationCollado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, H. C. (2000). Talanta, 52, 909–920.  CrossRef PubMed CAS Google Scholar
First citationCoolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B Biomed. Sci. Appl. 732, 103–113.  CrossRef PubMed CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2012). Arab. J. Chem. 14, 103117–103124.  CrossRef Google Scholar
First citationJoule, J. A. & Mills, K. (2008). In Heterocyclic Chemistry, 5th ed. Chichester: John Wiley & Sons.  Google Scholar
First citationLi, Y., Liu, Y., Wang, H., Xiong, X., Wei, P. & Li, F. (2013). Molecules, 18, 877–893.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMatczak, M. & Domagała, M. (2017). J. Mol. Model. 23, 268–279.  CrossRef PubMed Google Scholar
First citationMnguni, M. J. & Lemmerer, A. (2015). Acta Cryst. C71, 103–109.  CSD CrossRef IUCr Journals Google Scholar
First citationMuetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPetříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. 238, 271–282.  Google Scholar
First citationRaman, N., Sakthivel, A. & Pravin, N. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 125, 404–413.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationRoccanova, R., Ming, W., Whiteside, V. R., McGuire, M. A., Sellers, I. R., Du, M. H. & Saparov, B. (2017). Inorg. Chem. 56, 13878–13888.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSakthivel, A., Jeyasubramanian, M., Thangagiri, B. & Raja, J. D. (2020). J. Mol. Struct. 1222, 128885.  CrossRef Google Scholar
First citationSelvan, G. T., Kumaresan, M., Sivaraj, R., Enoch, I. V. M. V. & Selvakumar, P. M. (2016). Sens. Actuators B Chem. 229, 181–189.  CrossRef CAS Google Scholar
First citationSenthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939–11943.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSessler, J. L., Murai, T. & Lynch, V. (1989). Inorg. Chem. 28, 1333–1341.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSondhi, S. M., Sharma, V. K., Verma, R. P., Singhal, N., Shukla, R., Raghubir, R. & Dubey, M. P. (1999). Synthesis, 1999, 878–884.  CrossRef Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSwaminathan, J., Ramalingam, M., Sethuraman, V., Sundaraganesan, N. & Sebastian, S. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 593–600.  CrossRef PubMed CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTratar Pirc, E., Cer-Kerčmar, K., Modec, B. & Bukovec, P. (2012). Monatsh. Chem. 143, 1643–1648.  CrossRef CAS Google Scholar
First citationTuran-Zitouni, G., Sıvacı, M., Kılıç, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685–689.  PubMed CAS Google Scholar
First citationVenkataramanan, V., Bhat, H. L., Srinivasan, M. R., Ayyub, P. & Multani, M. S. (1997). J. Raman Spectrosc. 28, 779–784.  CrossRef CAS Google Scholar
First citationWang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 595–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, J., Xu, L. & Wong, W. (2018). Coord. Chem. Rev. 355, 180–198.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds