

research communications
Di-μ3-chlorido-1:2:3κ3Cl;2:3:4κ3Cl-di-μ2-chlorido-1:2κ2Cl;3:4κ2Cl-tetrakis[(4-amino-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-3-one-κ2N4,O)chloridocadmium(II)] 1.7-hydrate: a new six-coordinate geometry index, τ6
aInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000 Neuchâtel, Switzerland, bPG and Research Department of Physics, Srimad Andavan Arts and Science College (Autonomous), Affiliated to Bharathidasan University, Tiruchirappalli 620005, Tamilnadu, India, cDepartment of Physics, Annapoorana Engineering College (Autonomous), Salem 636308, Tamilnadu, India, dNanophotonics Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India, eCrystal Growth and Thin Film Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India, fInstitute of Physics ASCR, Na Slovance 2, 182 21 Praha 8, Czech Republic, and gChemistry Department, University of Fribourg, Chemin du Musée 9, CH-1700 Fribourg, Switzerland
*Correspondence e-mail: helen.stoeckli-evans@unine.ch
The title centrosymmetric tetranuclear cadmium(II) complex of 4-aminoantipyrine and chloride ions, [Cd4Cl8(C11H13N3O)4]·1.7H2O, was synthesized using methanol as solvent. The two independent Cd2+ ions in the have different geometries; the outer Cd atoms have fivefold CdONCl3 coordination spheres, while the inner Cd atoms have sixfold CdONCl4 coordination spheres. The complex is consolidated by intramolecular N—H⋯O and N—H⋯Cl hydrogen bonds. In the crystal, a combination of N—H⋯Cl and Ow—H⋯Cl (w = water) hydrogen bonds link the components to form chains propagating along the a-axis direction. The chains are crosslinked by C—H⋯Cl and C—H⋯O hydrogen bonds to form a three-dimensional structure. A new geometry index, τ6, is proposed to quantitatively estimate the geometry of a sixfold coordinated atom.
Keywords: crystal structure; 4-aminoantipyrine; cadmium(II); tetranuclear; six-coordinate geometry index; hydrogen bonding.
CCDC reference: 2441688
1. Chemical context
Antipyrine derivatives have gained interest as model compounds for functional materials due to their various properties, including antioxidant (Bashkatova et al., 2005), antiputrefactive (Abd El Rehim et al., 2001
) and optical properties (Collado et al., 2000
; Coolen et al., 1999
). One such analogue is 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one, C11H13N3O, known as 4-aminoantipyrine (4-AAP). Its was first reported by Li et al. (2013
), who also analysed its electronic structure and that of a number of its derivatives, including 4-(dimethylamino)antipyrine. A low-temperature structural analysis of 4-AAP has been reported by Mnguni & Lemmerer (2015
). The structure features a five-membered lactam ring in the pyrazole unit and a free amino group. Pyrazolone-based ligands exhibit variable complexing behaviour and a variety of coordination possibilities to metal centres. Such complexes have applications in both chemistry and the pharmaceutical sciences (Raman et al., 2014
). Derivatives of 4-AAP have also emerged as important compounds in the fields of biology and medicine (Senthilkumar et al., 2016
). The presence of heteroatoms influences the electron distribution, which in turn enhances its reactivity and chelating properties (Matczak & Domagała, 2017
; Joule & Mills, 2008
). Due to this excellent chelating effect it can form a wide variety of metal complexes with almost all transition-metal ions and lanthanides. They have applications in many fields of research, such as sensor development (Banasz & Wałęsa-Chorab, 2019
), renewable energy materials (Zhang et al., 2018
), chemosensors (Selvan et al., 2016
), DNA binding (Sakthivel et al., 2020
), antipyretic (Turan-Zitouni et al., 2001
), antioxidant (Bashkatova et al., 2005
), anticancer (Bose et al., 2005
) and anti-inflammatory agents (Sondhi et al., 1999
).
Cadmium(II) complexes in general are notable because of their excellent optical and electronic properties (Venkataramanan et al., 1997). They also have uses in environmental and analytical chemistry, and materials science (Adhikari et al., 2020
; Roccanova et al., 2017
; Cheng et al., 2017
). A search of the Cambridge Structural Database (CSD, Version 5.46, update February 2025; Groom et al., 2016
) for transition-metal complexes of 4-AAP gave 13 hits. Two of these are cadmium(II) complexes, viz. catena-[[(4-aminoantipyrine)aqua(μ2-5-nitroisophthalato)cadmium(II)] monohydrate] (CSD refcode CIXQIK; Wang et al., 2008
) and catena-[bis(μ-4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one)tetradeca-μ-chloro-bis(ethanol)heptacadmium(II)] (IQATAY; Hu et al., 2012
). In both of these, 4-aminoantipyrine acts as a bidentate ligand, donating the lone pairs of electrons from the amino N atom and the carbonyl O atom to the cadmium ion.
Depending on the stoichiometry and reaction conditions, the structure of the complex can vary. For example, when reacting 4-aminoantipyrine (0.0203 g, 0.1 mmol) with CdCl2·2.5H2O (0.142 g, 0.06 mmol) in a mixture of ethanol and ethyl acetate (1:3 v/v) at 343 K, Hu et al. (2012) synthesized a mono-periodic coordination polymer, catena-[bis(μ-4-amino-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one)tetradeca-μ-chloro-bis(ethanol)heptacadmium(II)]; structure IQATAY mentioned above. The complex unit possesses inversion symmetry and the consists of 3.5 CdII atoms coordinated to seven bridging chloride ions, one bridging 4-aminoantipyrine ligand and one ethanol molecule. In the present work, a new centrosymmetric tetranuclear cadmium(II) complex of 4-aminoantipyrine was synthesized when reacting an equimolar ratio of 4-AAP and CdCl2·2.5H2O using methanol as the solvent. Herein, we report on the structure and various properties of the title complex, [Cd4Cl8(C11H13N3O)4]·1.7H2O (I) (Scheme 1
), and compare them to those of the heptacadmium complex IQATAY.
2. τ6, a sixfold geometry index
The molecular structure of (I) was found to be centrosymmetric with two independent cadmium(II) atoms (see Structural commentary section). The two outer CdII atoms have fivefold coordination spheres, while the inner CdII atoms have sixfold coordination spheres. Previously, a number of authors have described methods to measure the size of distortions in polyhedra; some have included only distortions in the bond lengths from their average values (Robinson et al., 1971; Muetterties & Guggenberger, 1974
; Brown, 2006
). Robinson et al. (1971
) introduced the notion of quadratic elongation (QE) and this analysis is incorporated in PLATON (Spek, 2020
). As of yet, no simple geometry index has been defined to describe the geometry of an octahedral coordination sphere. Deviations of the bond angles from their ideal values were largely ignored, but as shown below, when considered, they provide a simple method to calculate the various geometry indexes.
The fivefold geometry index τ5 was proposed by Addison et al. (1984) and is illustrated in Scheme 2
(τ5 = 0 for a perfect square pyramid and τ5 = 1 for a trigonal bipyramid). A fourfold geometry index τ4 was proposed by Yang et al. (2007
) and is also illustrated in Scheme 2
(τ4 = 0 for a perfect square-planar geometry and τ4 = 1 for a pyramidal geometry). Following the reasoning of Yang et al. (2007
), we propose a simple numerical estimation of the geometry of a sixfold coordination sphere; see Scheme 3
where τ6 = [(3 × 180°) – (α1 + α2 + α3)]/180° = 0 for a perfect octahedron where α1 = α2 = α3 = 180°. A value of 0.75 is obtained for a trigonal prismatic geometry, where α1 = α2 = α3 = 135° and a value of 1.00 is obtained for a pentagonal pyramidal geometry, where α1 = α2 = α3 = α4 = α5 = 72°.
3. Structural commentary
The molecular structure of (I) is illustrated in Fig. 1. This tetranuclear complex possesses inversion symmetry and crystallizes as a 1.7 hydrate. Selected bond lengths and angles in the complex are given in Table 1
. The two independent CdII atoms of the have different geometries, as shown in Figs. 1
and 2
.
|
![]() | Figure 1 A view of the molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x + 2, −y + 2, −z + 1.] |
![]() | Figure 2 A partial view of (I), showing the different polyhedra for atoms Cd1 and Cd2 (Mercury; Macrae et al., 2020 ![]() |
The outer Cd atoms [Cd1 and Cd1i; symmetry code: (i) −x + 2, −y + 2, −z + 1] have fivefold CdONCl3 coordination spheres with a distorted shape, and according to the definition of Addison et al. (1984), the structural index τ5 = (161.0° – 142.63°)/60° = 0.31. The inner Cd atoms (Cd2 and Cd2i) have sixfold CdONCl4 coordination spheres. The three principal (trans) bond angles O2—Cd2—Cl2, N6—Cd2—Cl3i and Cl3—Cd2—Cl4 are 159.61 (4), 161.49 (4) and 170.34 (2)°, respectively, compared to 180° for a perfect octahedron. The τ6 geometry index gives a value of [540° – (159.61° + 161.49° + 170.34°)]/180° = 0.27, a significant distortion from the geometry of a perfect octahedron. The QE parameter for atom Cd2 is 1.027 (PLATON; Spek, 2020
).
Comparing the coordination geometry of the four Cd atoms in IQATAY, it was found that the values of τ6 for atoms Cd1, Cd2, Cd3 and Cd4 are 0, 0.06, 0.16 and 0.17, respectively. Hence, in this case, atom Cd1, which lies on an inversion centre, has a perfect octahedral geometry. Atom Cd2 has a very small distortion from a perfect octahedron. Atoms Cd3 and Cd4 have distorted geometries but less so than that observed for atom Cd2 in complex (I). The QE parameters for atoms Cd1 to Cd4 in IQATAY are 1.002, 1.005, 1.013 and 1.018, respectively.
In (I), there are two terminal chlorido ligands (Cl1 and Cl4), one μ2-bridging Cl atom (Cl2) and one μ3-bridging Cl atom (Cl3); see Table 1. In IQATAY, there are three μ2-bridging Cl atoms and four μ3-bridging Cl atoms. The Cd—Cl bond lengths vary from 2.4486 (5) to 2.7631 (5) Å in (I), compared to a range of 2.551 (2)–2.779 (2) Å in IQATAY. The various Cd⋯Cd separations and Cd—Cl—Cd bridging angles in (I) are given in Table 1
. These values are very similar to those observed for IQATAY.
The two independent 4-AAP molecules in (I) have slightly different conformations. A view of the molecular overlap of the two ligands [ligand 2 (involving atom O2) inverted over ligand 1 (involving atom O1)] is shown in Fig. S1 of the supporting information. In (I), the ligands are bidentate, coordinating to one Cd atom each time, while in IQATAY, the ligand bridges two Cd atoms. In (I), arene ring C4–C9 is inclined to the pyrazole ring mean plane (N1/N2/C1–C3; r.m.s. deviation = 0.05 Å) by 56.7 (1)°, while arene ring C15–C20 is inclined to the pyrazole ring mean plane (N4/N5/C12–C14; r.m.s. deviation 0.044 Å) by 45.2 (1)°. In IQATAY, the corresponding dihedral angle is larger at 62.1 (4)°. In (I), the pyrazole ring of ligand 1 (N1/N2/C1–C3) is almost parallel to arene ring C15i–C20i of ligand 2, with a centroid–centroid separation of 3.749 (1) Å. The 4-AAP ligands in (I) coordinate to the Cd atoms via the carbonyl O atom and the 4-amino N atom. The Cd1—O1 bond length is 2.3498 (13) Å compared to 2.3107 (13) Å for Cd2—O2. In IQATAY, the corresponding Cd—O bond length is significantly shorter at 2.245 (6) Å. The Cd—N bond lengths in (I) are Cd1—N3 = 2.2863 (17) Å and Cd2—N6 = 2.4346 (17) Å, compared to 2.352 (7) Å for the corresponding bond in IQATAY.
Complex (I) is consolidated by intramolecular N—H⋯Cl and N—H⋯O hydrogen bonds, which are listed in Table 2 and illustrated in Fig. 1
. The N6—H6NA⋯C1l hydrogen bond involves the 4-amino group of ligand 2, while the N3—H3HA⋯O2i hydrogen bond involves the 4-amino group of ligand 1 and the carbonyl O atom of ligand 2.
|
4. Supramolecular features
In the crystal of (I), the molecules are linked by O—H⋯Cl hydrogen bonds (Table 2), involving the partially occupied water molecules (Cl⋯H—O—H⋯Cl). Together with N—H⋯Cl hydrogen bonds (Table 2
), chains are formed propagating along the a-axis direction (Fig. 3
). The chains enclose two ring motifs. The first, R42(8), involves the amine H atoms and chloride ion Cl1. The second, R32(8), involves an amine H atom, two chloride ions, the water H atoms and atom Cd1, as shown in Fig. 3
. The chains are linked by a series of C—H⋯Cl and C—H⋯O hydrogen bonds to form a three-dimensional structure (Fig. 4
and Table 2
). Atom N3HB does not partake in hydrogen bonding. This phenomenon is not unusual and has been observed previously (CSD; Groom et al., 2016
).
![]() | Figure 3 A partial view of the crystal packing of (I). Only the H atoms involved in the N—H⋯Cl and O—H⋯Cl hydrogen bonds (Table 1 ![]() |
![]() | Figure 4 A view along the a-axis direction of the crystal packing of (I). Only the H atoms (grey spheres) involved in the various hydrogen bonds (Table 1 ![]() |
5. Hirshfeld surface analysis and fingerprint plots
The Hirshfeld surface (HS) analysis and the associated two-dimensional fingerprint plots were generated with CrystalExplorer17 (Spackman et al., 2021) and interpreted following the protocol of Tan et al. (2019
). The Hirshfeld surface (HS) of (I) is illustrated in Fig. 5
. It is colour-mapped with the normalized contact distance dnorm in the colour range from 0.00 to 1.41 a.u. There are a significant number of large red spots, indicating that in these regions the interatomic distances in the crystal are shorter than the sum of the van der Waals radii.
![]() | Figure 5 The Hirshfeld surface of (I) mapped over dnorm |
The full two-dimensional fingerprint plot for (I), and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts, are given in Fig. 6. The H⋯H contacts have a major contribution to the HS of 43.1%. The second most significant contributions are from the Cl⋯H/H⋯Cl contacts at 26.1%, with sharp peaks at di + de ≃ 2.2 Å. This reflects the presence of the seven H⋯Cl interactions in the (see Table 2
). The C⋯H/H⋯C interactions contribute 15.0%, with relatively sharp spikes at di + de ≃ 2.5 Å. The O⋯H/H⋯O interactions contribute 10%, with sharp peaks at di + de ≃ 2.35 Å. The sharp pincer-like peaks for these three interatomic interactions indicate that they are significant. Finally, the N⋯H/H⋯N contacts contribute 2.5%, while other interatomic contacts contribute less than 1% to the overall HS.
![]() | Figure 6 The full two-dimensional fingerprint plot for (I), and those delineated into H⋯H, Cl⋯H/H⋯Cl, C⋯H/H⋯C, O⋯H/H⋯O and N⋯H/H⋯N contacts. |
6. Database survey
A search of the Cambridge Structural Database (CSD, Version 5.46, update February 2025; Groom et al., 2016) for sixfold-coordinated cadmium(II) metal complexes was carried out with the following restrictions: three-dimensional structure, R ≤ 0.05, no disorder, no ions, no polymers, single crystals only and no bidentate ligands with fewer than four atoms, such as nitrate or acetate. Over 720 hits were obtained.
Although the majority of the complexes have octahedral coordination spheres, there are a number of complexes with a trigonal prismatic geometry. One such complex is (1,5,5,9,13,13,20,20-octamethyl-3,7,11,15,18,22-hexaazabicyclo[7.7.7]tricosane)cadmium(II) dinitrate dihydrate (CSD refcode ULESAH; Alcock et al., 2016), illustrated in Figs. 7
(a) and 7(b). Here the structural index τ6 = 0.73 and the QE parameter for atom Cd1 is 1.24.
![]() | Figure 7 (a)/(b) The trigonal prismatic coordination sphere of ILUSAH (redrawn from Alcock et al., 2016 ![]() ![]() |
Examples of pentagonal pyramidal geometry are rare. One example is (benzimidazole)(4,5,9,24-tetraethyl-10,23-dimethyl-13,20,25,26,27-pentaazapentacyclo[20.2.1.13,6.18,11.014,19]heptacosa-1,3,5,7,9,11(27),12,14,16,18,20,22(25),23-tridecaene)cadmium(II) nitrate chloroform solvate (VAPSAG; Sessler et al., 1989), illustrated in Figs. 7
(c) and 7(d); here the structural index τ6 = 1.02 (the QE parameter for atom Cd1 is 1.33). Another example is that of complex tetraaquabis(μ2-xanthurenato)dicadmium(II), with two Cd atoms related by a centre of symmetry (CIJBII; Tratar et al., 2012
). Here the structural index τ6 = 1.0 (QE parameter for atom Cd1 = 1.31).
7. Thermal analysis
To investigate the thermal characteristics of (I), a SQT-Q600 V20.9 Build 20 Universal Thermo Analytical system was used under a nitrogen atmosphere and with a sample weight of 2.044 mg in an alumina crucible over a temperature range from 25 to 800 °C, with a heating rate of 20 °C per minute. The TGA and DTA results are illustrated in Fig. S2 of the supporting information.
The melting point of the complex, observed from the DTA curve, is 245 °C (518 K). According to the TGA curve, the first weight loss step (2.3%) corresponds to the loss of water molecules present in the title complex. The second step (34.7% loss) is probably due to the gradual decomposition of one 4-aminoantipyrine molecule, accompanied by the release of chlorine gas. The third step (48.9% loss) may correspond to the loss of one 4-aminoantipyrine molecule and one CdCl2 molecule. The final step may be due to the degradation of the rest of the complex, leading to the formation of the final residue of CdO (observed 16.23%; calculated 16.63%)
8. Synthesis and spectroscopic data
An equimolar mixture of 4-aminoantipyrine (0.100 mmol) and cadmium(II) chloride (0.100 mmol) was dissolved in 20 ml methanol and refluxed at 363 K using an oil bath. After 6 h the solution was filtered and left aside at room temperature. Orange needle-like crystals of (I) were obtained by evaporation of the solvent over a period of one week. The melting point is 518 K (245 °C), as seen from the DTA curve (Fig. S2).
The FT–IR spectrum of (I) was recorded with a JASCO Infrared spectrometer (400–4000 cm−1) using the KBr pellet technique (Fig. S3 of the supporting information). The FT–IR spectrum of the free ligand (Swaminathan et al., 2009) was compared with that of the cadmium complex to verify the coordination of 4-AAP with the Cd2+ ions. For 4-AAP, prominent peaks are seen at 3432 and 3325 cm−1, corresponding to the asymmetric and symmetric stretching modes of NH2, respectively, and at 1679 cm−1 for the carbonyl-group stretching band. In the FT–IR spectrum of (I), sharp peaks were observed around 3301, 3213 and 1631 cm−1. It may be seen that the vibrational frequencies of NH2 and C=O are shifted to lower frequencies upon Cd2+ coordination, consistent with the crystal structure.
9. details
Crystal data, data collection and structure . The NH2 and water H atoms were located in difference Fourier maps and freely refined. C-bound H atoms were included in calculated positions and treated as riding, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).
|
Supporting information
CCDC reference: 2441688
https://doi.org/10.1107/S2056989025003123/hb8132sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025003123/hb8132Isup2.hkl
Figs. S1-S4: Structural overlap of the two ligands; https://doi.org/10.1107/S2056989025003123/hb8132sup3.pdf
of compound I; FTIR spectrum of I; proton NMR spectrum of I. DOI:[Cd4Cl8(C11H13N3O)4]·1.7H2O | F(000) = 1554 |
Mr = 1576.80 | Dx = 1.878 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 11.0702 (2) Å | Cell parameters from 23338 reflections |
b = 13.5058 (2) Å | θ = 2.4–29.4° |
c = 19.0700 (3) Å | µ = 1.94 mm−1 |
β = 102.006 (2)° | T = 95 K |
V = 2788.82 (8) Å3 | Needle, orange |
Z = 2 | 0.23 × 0.09 × 0.06 mm |
Rigaku OD SuperNova Dual source diffractometer with an AtlasS2 detector | 7273 independent reflections |
Radiation source: micro-focus sealed X-ray tube | 6505 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.033 |
Detector resolution: 5.2027 pixels mm-1 | θmax = 29.7°, θmin = 2.2° |
ω scans | h = −13→15 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | k = −17→17 |
Tmin = 0.659, Tmax = 1.000 | l = −24→26 |
46639 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.022 | Hydrogen site location: mixed |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0206P)2 + 2.4714P] where P = (Fo2 + 2Fc2)/3 |
7273 reflections | (Δ/σ)max = 0.004 |
362 parameters | Δρmax = 0.60 e Å−3 |
0 restraints | Δρmin = −0.50 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.69699 (2) | 0.94027 (2) | 0.38615 (2) | 0.01331 (4) | |
Cd2 | 0.87944 (2) | 1.07542 (2) | 0.54768 (2) | 0.01079 (4) | |
Cl1 | 0.55065 (4) | 0.86942 (3) | 0.45253 (2) | 0.01487 (9) | |
Cl2 | 0.73018 (4) | 1.11865 (3) | 0.42784 (2) | 0.01186 (9) | |
Cl3 | 0.90013 (4) | 0.89352 (3) | 0.48490 (2) | 0.01128 (9) | |
Cl4 | 0.89700 (4) | 1.23560 (3) | 0.61639 (2) | 0.01465 (9) | |
O1 | 0.55409 (13) | 0.94942 (10) | 0.27639 (7) | 0.0146 (3) | |
O2 | 0.98088 (12) | 0.98270 (10) | 0.64391 (7) | 0.0141 (3) | |
N1 | 0.56201 (15) | 0.92585 (12) | 0.15576 (9) | 0.0133 (3) | |
N2 | 0.65230 (15) | 0.89099 (13) | 0.12006 (9) | 0.0146 (3) | |
N3 | 0.81571 (16) | 0.90156 (13) | 0.30520 (9) | 0.0136 (3) | |
H3NA | 0.877 (3) | 0.944 (2) | 0.3144 (15) | 0.034 (8)* | |
H3NB | 0.849 (2) | 0.843 (2) | 0.3157 (13) | 0.024 (7)* | |
N4 | 0.93489 (15) | 0.86164 (12) | 0.72079 (9) | 0.0128 (3) | |
N5 | 0.82718 (15) | 0.82851 (12) | 0.74095 (9) | 0.0127 (3) | |
N6 | 0.71297 (16) | 0.99943 (13) | 0.59441 (9) | 0.0131 (3) | |
H6NA | 0.665 (3) | 0.967 (2) | 0.5601 (15) | 0.029 (7)* | |
H6NB | 0.668 (3) | 1.044 (2) | 0.6087 (14) | 0.026 (7)* | |
C1 | 0.61290 (18) | 0.93024 (13) | 0.22807 (10) | 0.0119 (4) | |
C2 | 0.76124 (18) | 0.88714 (14) | 0.16873 (10) | 0.0135 (4) | |
C3 | 0.73903 (18) | 0.90621 (14) | 0.23532 (10) | 0.0127 (4) | |
C4 | 0.43370 (18) | 0.91110 (14) | 0.12652 (10) | 0.0123 (4) | |
C5 | 0.39217 (19) | 0.82220 (14) | 0.09338 (10) | 0.0143 (4) | |
H5 | 0.449080 | 0.771716 | 0.087636 | 0.017* | |
C6 | 0.26638 (19) | 0.80834 (15) | 0.06883 (10) | 0.0166 (4) | |
H6 | 0.236818 | 0.748111 | 0.045759 | 0.020* | |
C7 | 0.1838 (2) | 0.88162 (16) | 0.07774 (11) | 0.0197 (4) | |
H7 | 0.097618 | 0.871308 | 0.061310 | 0.024* | |
C8 | 0.2263 (2) | 0.97020 (16) | 0.11061 (11) | 0.0202 (4) | |
H8 | 0.169172 | 1.020341 | 0.116638 | 0.024* | |
C9 | 0.35225 (19) | 0.98602 (15) | 0.13480 (10) | 0.0159 (4) | |
H9 | 0.381885 | 1.047031 | 0.156594 | 0.019* | |
C10 | 0.6400 (2) | 0.91614 (17) | 0.04415 (11) | 0.0202 (4) | |
H10A | 0.561577 | 0.890208 | 0.016781 | 0.030* | |
H10B | 0.708564 | 0.886756 | 0.026115 | 0.030* | |
H10C | 0.641657 | 0.988261 | 0.038802 | 0.030* | |
C11 | 0.87995 (19) | 0.86561 (16) | 0.14715 (12) | 0.0186 (4) | |
H11A | 0.872718 | 0.803415 | 0.120124 | 0.028* | |
H11B | 0.945901 | 0.859609 | 0.190050 | 0.028* | |
H11C | 0.899560 | 0.919594 | 0.117035 | 0.028* | |
C12 | 0.90388 (18) | 0.93145 (13) | 0.66823 (10) | 0.0115 (4) | |
C13 | 0.72966 (18) | 0.86983 (14) | 0.69393 (10) | 0.0122 (4) | |
C14 | 0.77348 (18) | 0.93480 (14) | 0.65018 (10) | 0.0117 (4) | |
C15 | 1.05447 (18) | 0.85200 (13) | 0.76565 (10) | 0.0115 (4) | |
C16 | 1.15402 (18) | 0.84218 (14) | 0.73232 (10) | 0.0134 (4) | |
H16 | 1.141132 | 0.837617 | 0.681590 | 0.016* | |
C17 | 1.27289 (19) | 0.83913 (14) | 0.77424 (11) | 0.0167 (4) | |
H17 | 1.341938 | 0.834798 | 0.751990 | 0.020* | |
C18 | 1.2910 (2) | 0.84240 (15) | 0.84841 (12) | 0.0189 (4) | |
H18 | 1.372259 | 0.839435 | 0.876910 | 0.023* | |
C19 | 1.1906 (2) | 0.84998 (16) | 0.88080 (11) | 0.0201 (4) | |
H19 | 1.203312 | 0.851183 | 0.931614 | 0.024* | |
C20 | 1.07113 (19) | 0.85588 (14) | 0.83977 (10) | 0.0157 (4) | |
H20 | 1.002367 | 0.862426 | 0.862051 | 0.019* | |
C21 | 0.82669 (19) | 0.72630 (14) | 0.76782 (11) | 0.0152 (4) | |
H21A | 0.905166 | 0.712708 | 0.801017 | 0.023* | |
H21B | 0.816074 | 0.679988 | 0.727439 | 0.023* | |
H21C | 0.758496 | 0.718190 | 0.792885 | 0.023* | |
C22 | 0.60025 (18) | 0.84102 (15) | 0.69320 (11) | 0.0172 (4) | |
H22A | 0.595252 | 0.811728 | 0.739527 | 0.026* | |
H22B | 0.572689 | 0.792542 | 0.654988 | 0.026* | |
H22C | 0.547234 | 0.899748 | 0.684607 | 0.026* | |
O1W | 0.3775 (2) | 0.67988 (14) | 0.46049 (11) | 0.0262 (4) | 0.85 |
H1WA | 0.308 (4) | 0.703 (3) | 0.439 (2) | 0.057 (13)* | 0.85 |
H1WB | 0.425 (4) | 0.734 (3) | 0.465 (2) | 0.050 (11)* | 0.85 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01297 (7) | 0.01485 (7) | 0.01124 (7) | −0.00084 (5) | 0.00051 (5) | −0.00144 (5) |
Cd2 | 0.01082 (7) | 0.01089 (7) | 0.01011 (7) | −0.00029 (5) | 0.00088 (5) | 0.00165 (5) |
Cl1 | 0.0106 (2) | 0.0169 (2) | 0.0168 (2) | 0.00061 (17) | 0.00230 (17) | 0.00041 (17) |
Cl2 | 0.0138 (2) | 0.0106 (2) | 0.0098 (2) | 0.00143 (17) | −0.00070 (16) | 0.00113 (15) |
Cl3 | 0.0095 (2) | 0.0116 (2) | 0.0125 (2) | −0.00016 (16) | 0.00191 (16) | 0.00141 (16) |
Cl4 | 0.0149 (2) | 0.0135 (2) | 0.0168 (2) | −0.00281 (17) | 0.00625 (18) | −0.00634 (17) |
O1 | 0.0113 (7) | 0.0193 (7) | 0.0127 (7) | 0.0002 (6) | 0.0012 (5) | −0.0027 (5) |
O2 | 0.0111 (7) | 0.0178 (7) | 0.0128 (7) | −0.0034 (6) | 0.0009 (5) | 0.0046 (5) |
N1 | 0.0111 (8) | 0.0164 (8) | 0.0125 (8) | 0.0003 (6) | 0.0027 (6) | −0.0032 (6) |
N2 | 0.0135 (8) | 0.0186 (8) | 0.0123 (8) | 0.0022 (7) | 0.0042 (6) | −0.0023 (6) |
N3 | 0.0128 (8) | 0.0116 (8) | 0.0144 (8) | −0.0003 (7) | −0.0018 (7) | −0.0006 (6) |
N4 | 0.0101 (8) | 0.0154 (8) | 0.0134 (8) | −0.0014 (6) | 0.0033 (6) | 0.0040 (6) |
N5 | 0.0111 (8) | 0.0134 (8) | 0.0146 (8) | −0.0011 (6) | 0.0050 (6) | 0.0028 (6) |
N6 | 0.0112 (8) | 0.0135 (8) | 0.0139 (8) | 0.0014 (7) | 0.0006 (7) | 0.0017 (6) |
C1 | 0.0132 (9) | 0.0090 (9) | 0.0127 (9) | −0.0021 (7) | 0.0008 (7) | −0.0015 (7) |
C2 | 0.0136 (9) | 0.0101 (9) | 0.0163 (9) | 0.0001 (7) | 0.0017 (8) | −0.0005 (7) |
C3 | 0.0123 (9) | 0.0086 (8) | 0.0164 (10) | −0.0009 (7) | 0.0013 (7) | −0.0004 (7) |
C4 | 0.0125 (9) | 0.0152 (9) | 0.0089 (9) | −0.0003 (7) | 0.0013 (7) | 0.0005 (7) |
C5 | 0.0181 (10) | 0.0137 (9) | 0.0103 (9) | 0.0012 (8) | 0.0013 (8) | 0.0005 (7) |
C6 | 0.0196 (10) | 0.0187 (10) | 0.0105 (9) | −0.0061 (8) | 0.0005 (8) | −0.0006 (7) |
C7 | 0.0147 (10) | 0.0285 (11) | 0.0149 (10) | −0.0024 (9) | 0.0005 (8) | 0.0005 (8) |
C8 | 0.0163 (10) | 0.0222 (11) | 0.0217 (11) | 0.0061 (9) | 0.0034 (8) | 0.0006 (8) |
C9 | 0.0189 (10) | 0.0138 (9) | 0.0144 (9) | 0.0023 (8) | 0.0020 (8) | −0.0010 (7) |
C10 | 0.0186 (11) | 0.0301 (12) | 0.0120 (10) | 0.0017 (9) | 0.0033 (8) | −0.0013 (8) |
C11 | 0.0141 (10) | 0.0195 (10) | 0.0226 (11) | 0.0018 (8) | 0.0046 (8) | −0.0037 (8) |
C12 | 0.0130 (9) | 0.0116 (9) | 0.0094 (9) | 0.0002 (7) | 0.0011 (7) | 0.0000 (7) |
C13 | 0.0120 (9) | 0.0121 (9) | 0.0124 (9) | 0.0007 (7) | 0.0024 (7) | −0.0016 (7) |
C14 | 0.0108 (9) | 0.0125 (9) | 0.0114 (9) | 0.0007 (7) | 0.0011 (7) | −0.0016 (7) |
C15 | 0.0113 (9) | 0.0086 (8) | 0.0138 (9) | 0.0003 (7) | 0.0007 (7) | 0.0025 (7) |
C16 | 0.0156 (10) | 0.0103 (9) | 0.0146 (9) | 0.0006 (7) | 0.0037 (8) | 0.0011 (7) |
C17 | 0.0136 (10) | 0.0103 (9) | 0.0267 (11) | 0.0012 (8) | 0.0051 (8) | 0.0006 (8) |
C18 | 0.0148 (10) | 0.0133 (10) | 0.0248 (11) | 0.0008 (8) | −0.0044 (8) | 0.0030 (8) |
C19 | 0.0241 (11) | 0.0197 (10) | 0.0140 (10) | 0.0000 (9) | −0.0014 (8) | 0.0032 (8) |
C20 | 0.0180 (10) | 0.0159 (10) | 0.0133 (9) | 0.0014 (8) | 0.0033 (8) | 0.0022 (7) |
C21 | 0.0173 (10) | 0.0120 (9) | 0.0172 (10) | −0.0002 (8) | 0.0056 (8) | 0.0046 (7) |
C22 | 0.0122 (10) | 0.0195 (10) | 0.0205 (10) | −0.0018 (8) | 0.0049 (8) | 0.0020 (8) |
O1W | 0.0261 (11) | 0.0187 (10) | 0.0349 (11) | −0.0030 (9) | 0.0087 (9) | 0.0008 (8) |
Cd1—O1 | 2.3498 (14) | C5—C6 | 1.386 (3) |
Cd1—N3 | 2.2863 (17) | C5—H5 | 0.9500 |
Cd1—Cl1 | 2.4486 (5) | C6—C7 | 1.382 (3) |
Cd1—Cl2 | 2.5396 (5) | C6—H6 | 0.9500 |
Cd1—Cl3 | 2.6908 (5) | C7—C8 | 1.387 (3) |
Cd2—O2 | 2.3107 (13) | C7—H7 | 0.9500 |
Cd2—N6 | 2.4346 (17) | C8—C9 | 1.391 (3) |
Cd2—Cl2 | 2.5929 (5) | C8—H8 | 0.9500 |
Cd2—Cl3i | 2.6734 (5) | C9—H9 | 0.9500 |
Cd2—Cl3 | 2.7631 (5) | C10—H10A | 0.9800 |
Cd2—Cl4 | 2.5157 (5) | C10—H10B | 0.9800 |
Cd1—Cd2 | 3.7831 (5) | C10—H10C | 0.9800 |
Cd2—Cd2i | 4.0745 (4) | C11—H11A | 0.9800 |
Cd1—Cd2i | 4.6003 (4) | C11—H11B | 0.9800 |
O1—C1 | 1.261 (2) | C11—H11C | 0.9800 |
O2—C12 | 1.259 (2) | C12—C14 | 1.413 (3) |
N1—C1 | 1.378 (2) | C13—C14 | 1.367 (3) |
N1—N2 | 1.403 (2) | C13—C22 | 1.482 (3) |
N1—C4 | 1.428 (2) | C15—C20 | 1.388 (3) |
N2—C2 | 1.361 (3) | C15—C16 | 1.388 (3) |
N2—C10 | 1.465 (3) | C16—C17 | 1.391 (3) |
N3—C3 | 1.425 (3) | C16—H16 | 0.9500 |
N3—H3NA | 0.88 (3) | C17—C18 | 1.387 (3) |
N3—H3NB | 0.88 (3) | C17—H17 | 0.9500 |
N4—C12 | 1.367 (2) | C18—C19 | 1.383 (3) |
N4—N5 | 1.400 (2) | C18—H18 | 0.9500 |
N4—C15 | 1.425 (2) | C19—C20 | 1.392 (3) |
N5—C13 | 1.370 (2) | C19—H19 | 0.9500 |
N5—C21 | 1.473 (2) | C20—H20 | 0.9500 |
N6—C14 | 1.430 (2) | C21—H21A | 0.9800 |
N6—H6NA | 0.87 (3) | C21—H21B | 0.9800 |
N6—H6NB | 0.86 (3) | C21—H21C | 0.9800 |
C1—C3 | 1.412 (3) | C22—H22A | 0.9800 |
C2—C3 | 1.367 (3) | C22—H22B | 0.9800 |
C2—C11 | 1.485 (3) | C22—H22C | 0.9800 |
C4—C9 | 1.386 (3) | O1W—H1WA | 0.85 (4) |
C4—C5 | 1.390 (3) | O1W—H1WB | 0.89 (4) |
N3—Cd1—O1 | 77.62 (5) | C6—C5—H5 | 120.5 |
N3—Cd1—Cl1 | 142.63 (5) | C4—C5—H5 | 120.5 |
O1—Cd1—Cl1 | 94.93 (4) | C7—C6—C5 | 120.39 (19) |
N3—Cd1—Cl2 | 111.23 (5) | C7—C6—H6 | 119.8 |
O1—Cd1—Cl2 | 104.82 (4) | C5—C6—H6 | 119.8 |
Cl1—Cd1—Cl2 | 106.087 (16) | C6—C7—C8 | 120.1 (2) |
N3—Cd1—Cl3 | 84.54 (4) | C6—C7—H7 | 119.9 |
O1—Cd1—Cl3 | 161.00 (4) | C8—C7—H7 | 119.9 |
Cl1—Cd1—Cl3 | 95.335 (15) | C7—C8—C9 | 120.4 (2) |
Cl2—Cd1—Cl3 | 87.599 (14) | C7—C8—H8 | 119.8 |
O2—Cd2—N6 | 76.15 (5) | C9—C8—H8 | 119.8 |
O2—Cd2—Cl4 | 94.60 (4) | C4—C9—C8 | 118.74 (19) |
N6—Cd2—Cl4 | 98.87 (5) | C4—C9—H9 | 120.6 |
O2—Cd2—Cl2 | 159.61 (4) | C8—C9—H9 | 120.6 |
N6—Cd2—Cl2 | 91.46 (4) | N2—C10—H10A | 109.5 |
Cl4—Cd2—Cl2 | 103.381 (16) | N2—C10—H10B | 109.5 |
O2—Cd2—Cl3i | 87.33 (4) | H10A—C10—H10B | 109.5 |
N6—Cd2—Cl3i | 161.49 (4) | N2—C10—H10C | 109.5 |
Cl4—Cd2—Cl3 | 170.343 (16) | H10A—C10—H10C | 109.5 |
Cl4—Cd2—Cl3i | 90.613 (15) | H10B—C10—H10C | 109.5 |
O2—Cd2—Cl3 | 77.99 (4) | C2—C11—H11A | 109.5 |
N6—Cd2—Cl3 | 85.47 (4) | C2—C11—H11B | 109.5 |
Cl2—Cd2—Cl3 | 85.035 (14) | H11A—C11—H11B | 109.5 |
Cl3i—Cd2—Cl3 | 82.931 (14) | C2—C11—H11C | 109.5 |
Cd1—Cl2—Cd2 | 94.958 (15) | H11A—C11—H11C | 109.5 |
Cd2i—Cl3—Cd1 | 118.092 (16) | H11B—C11—H11C | 109.5 |
Cd2i—Cl3—Cd2 | 97.069 (14) | O2—C12—N4 | 124.29 (18) |
Cd1—Cl3—Cd2 | 87.825 (14) | O2—C12—C14 | 128.91 (18) |
C1—O1—Cd1 | 106.61 (12) | N4—C12—C14 | 106.78 (16) |
C12—O2—Cd2 | 109.64 (12) | C14—C13—N5 | 109.23 (17) |
C1—N1—N2 | 108.41 (15) | C14—C13—C22 | 128.88 (18) |
C1—N1—C4 | 124.28 (16) | N5—C13—C22 | 121.85 (17) |
N2—N1—C4 | 121.00 (15) | C13—C14—C12 | 107.75 (17) |
C2—N2—N1 | 107.55 (15) | C13—C14—N6 | 132.43 (18) |
C2—N2—C10 | 124.72 (17) | C12—C14—N6 | 119.82 (17) |
N1—N2—C10 | 118.20 (16) | C20—C15—C16 | 121.33 (18) |
C3—N3—Cd1 | 107.89 (12) | C20—C15—N4 | 121.20 (17) |
C3—N3—H3NA | 116.3 (19) | C16—C15—N4 | 117.43 (17) |
Cd1—N3—H3NA | 104.2 (19) | C15—C16—C17 | 119.07 (18) |
C3—N3—H3NB | 113.2 (16) | C15—C16—H16 | 120.5 |
Cd1—N3—H3NB | 108.9 (16) | C17—C16—H16 | 120.5 |
H3NA—N3—H3NB | 106 (2) | C18—C17—C16 | 120.26 (19) |
C12—N4—N5 | 108.87 (15) | C18—C17—H17 | 119.9 |
C12—N4—C15 | 124.31 (16) | C16—C17—H17 | 119.9 |
N5—N4—C15 | 122.94 (15) | C19—C18—C17 | 119.89 (19) |
C13—N5—N4 | 106.86 (15) | C19—C18—H18 | 120.1 |
C13—N5—C21 | 123.36 (16) | C17—C18—H18 | 120.1 |
N4—N5—C21 | 117.39 (15) | C18—C19—C20 | 120.74 (19) |
C14—N6—Cd2 | 104.86 (12) | C18—C19—H19 | 119.6 |
C14—N6—H6NA | 111.8 (18) | C20—C19—H19 | 119.6 |
Cd2—N6—H6NA | 109.1 (18) | C15—C20—C19 | 118.67 (19) |
C14—N6—H6NB | 113.7 (18) | C15—C20—H20 | 120.7 |
Cd2—N6—H6NB | 110.6 (18) | C19—C20—H20 | 120.7 |
H6NA—N6—H6NB | 107 (2) | N5—C21—H21A | 109.5 |
O1—C1—N1 | 125.05 (18) | N5—C21—H21B | 109.5 |
O1—C1—C3 | 128.77 (18) | H21A—C21—H21B | 109.5 |
N1—C1—C3 | 106.15 (16) | N5—C21—H21C | 109.5 |
N2—C2—C3 | 108.73 (17) | H21A—C21—H21C | 109.5 |
N2—C2—C11 | 121.87 (17) | H21B—C21—H21C | 109.5 |
C3—C2—C11 | 129.40 (19) | C13—C22—H22A | 109.5 |
C2—C3—C1 | 108.52 (17) | C13—C22—H22B | 109.5 |
C2—C3—N3 | 132.32 (18) | H22A—C22—H22B | 109.5 |
C1—C3—N3 | 119.10 (17) | C13—C22—H22C | 109.5 |
C9—C4—C5 | 121.40 (19) | H22A—C22—H22C | 109.5 |
C9—C4—N1 | 118.13 (17) | H22B—C22—H22C | 109.5 |
C5—C4—N1 | 120.42 (17) | H1WA—O1W—H1WB | 101 (3) |
C6—C5—C4 | 118.96 (19) | ||
C1—N1—N2—C2 | −8.1 (2) | C6—C7—C8—C9 | 0.0 (3) |
C4—N1—N2—C2 | −161.26 (17) | C5—C4—C9—C8 | 1.4 (3) |
C1—N1—N2—C10 | −155.99 (17) | N1—C4—C9—C8 | −175.99 (18) |
C4—N1—N2—C10 | 50.8 (2) | C7—C8—C9—C4 | −1.1 (3) |
C12—N4—N5—C13 | 7.4 (2) | Cd2—O2—C12—N4 | 173.58 (15) |
C15—N4—N5—C13 | 166.03 (17) | Cd2—O2—C12—C14 | −8.5 (2) |
C12—N4—N5—C21 | 150.92 (17) | N5—N4—C12—O2 | 172.46 (17) |
C15—N4—N5—C21 | −50.4 (2) | C15—N4—C12—O2 | 14.2 (3) |
Cd1—O1—C1—N1 | 178.55 (15) | N5—N4—C12—C14 | −5.9 (2) |
Cd1—O1—C1—C3 | 0.8 (2) | C15—N4—C12—C14 | −164.13 (17) |
N2—N1—C1—O1 | −172.91 (17) | N4—N5—C13—C14 | −6.0 (2) |
C4—N1—C1—O1 | −20.8 (3) | C21—N5—C13—C14 | −146.82 (17) |
N2—N1—C1—C3 | 5.3 (2) | N4—N5—C13—C22 | 172.07 (17) |
C4—N1—C1—C3 | 157.38 (17) | C21—N5—C13—C22 | 31.3 (3) |
N1—N2—C2—C3 | 7.6 (2) | N5—C13—C14—C12 | 2.5 (2) |
C10—N2—C2—C3 | 152.94 (19) | C22—C13—C14—C12 | −175.43 (19) |
N1—N2—C2—C11 | −172.06 (17) | N5—C13—C14—N6 | −177.43 (19) |
C10—N2—C2—C11 | −26.8 (3) | C22—C13—C14—N6 | 4.7 (4) |
N2—C2—C3—C1 | −4.4 (2) | O2—C12—C14—C13 | −176.07 (19) |
C11—C2—C3—C1 | 175.25 (19) | N4—C12—C14—C13 | 2.1 (2) |
N2—C2—C3—N3 | 172.5 (2) | O2—C12—C14—N6 | 3.8 (3) |
C11—C2—C3—N3 | −7.8 (4) | N4—C12—C14—N6 | −177.94 (16) |
O1—C1—C3—C2 | 177.47 (19) | Cd2—N6—C14—C13 | −177.09 (18) |
N1—C1—C3—C2 | −0.6 (2) | Cd2—N6—C14—C12 | 3.0 (2) |
O1—C1—C3—N3 | 0.1 (3) | C12—N4—C15—C20 | 123.4 (2) |
N1—C1—C3—N3 | −178.00 (16) | N5—N4—C15—C20 | −32.0 (3) |
Cd1—N3—C3—C2 | −177.59 (18) | C12—N4—C15—C16 | −54.3 (3) |
Cd1—N3—C3—C1 | −0.9 (2) | N5—N4—C15—C16 | 150.31 (17) |
C1—N1—C4—C9 | 68.2 (2) | C20—C15—C16—C17 | −1.9 (3) |
N2—N1—C4—C9 | −142.99 (18) | N4—C15—C16—C17 | 175.82 (17) |
C1—N1—C4—C5 | −109.2 (2) | C15—C16—C17—C18 | 2.2 (3) |
N2—N1—C4—C5 | 39.6 (3) | C16—C17—C18—C19 | −0.8 (3) |
C9—C4—C5—C6 | −0.6 (3) | C17—C18—C19—C20 | −1.0 (3) |
N1—C4—C5—C6 | 176.71 (17) | C16—C15—C20—C19 | 0.2 (3) |
C4—C5—C6—C7 | −0.5 (3) | N4—C15—C20—C19 | −177.46 (18) |
C5—C6—C7—C8 | 0.8 (3) | C18—C19—C20—C15 | 1.3 (3) |
Symmetry code: (i) −x+2, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H3NA···O2i | 0.88 (3) | 1.89 (3) | 2.747 (2) | 166 (3) |
N6—H6NA···Cl1 | 0.87 (3) | 2.54 (3) | 3.4073 (19) | 172 (2) |
N6—H6NB···Cl1ii | 0.86 (3) | 2.73 (3) | 3.3718 (18) | 133 (2) |
O1W—H1WA···Cl4ii | 0.85 (4) | 2.45 (4) | 3.292 (2) | 176 (4) |
O1W—H1WB···Cl1 | 0.89 (4) | 2.34 (4) | 3.220 (2) | 168 (3) |
C11—H11A···Cl2iii | 0.98 | 2.82 | 3.732 (2) | 156 |
C16—H16···Cl2i | 0.95 | 2.82 | 3.589 (2) | 138 |
C21—H21C···Cl4iv | 0.98 | 2.69 | 3.647 (2) | 165 |
C22—H22C···O1ii | 0.98 | 2.51 | 3.417 (3) | 154 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x+1, −y+2, −z+1; (iii) −x+3/2, y−1/2, −z+1/2; (iv) −x+3/2, y−1/2, −z+3/2. |
Acknowledgements
MK and MD acknowledge using the CzechNanoLab Research Infrastructure supported by MEYS CR (No. LM2018110) for crystallographic analysis. HSE is grateful to the University of Neuchâtel for their support over the years.
References
Abd El Rehim, S. S., Ibrahim, M. A. M. & Khalid, K. F. (2001). Mater. Chem. Phys. 70, 268–273. Web of Science CrossRef CAS Google Scholar
Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356. CSD CrossRef Web of Science Google Scholar
Adhikari, S., Bhattacharjee, T., Das, A., Roy, S., Daniliuc, C. G., Zaręba, J. K., Bauzá, A. & Frontera, A. (2020). CrystEngComm, 22, 8023–8035. CrossRef CAS Google Scholar
Alcock, L. J., Cavigliasso, G., Willis, A. C., Stranger, R. & Ralph, S. F. (2016). Dalton Trans. 45, 9036–9040. CrossRef CAS PubMed Google Scholar
Banasz, R. & Wałęsa-Chorab, M. (2019). Coord. Chem. Rev. 389, 1–18. CrossRef CAS Google Scholar
Bashkatova, N. V., Korotkova, E. I., Karbainov, Y. A., Yagovkin, A. Y. & Bakibaev, A. A. (2005). J. Pharm. Biomed. Anal. 37, 1143–1147. Web of Science CrossRef PubMed CAS Google Scholar
Bose, R., Murty, D. S. R. & Chakrapani, G. (2005). J. Radioanal. Nucl. Chem. 265, 115–122. Web of Science CrossRef CAS Google Scholar
Brown, I. D. (2006). Acta Cryst. B62, 692–694. Web of Science CrossRef CAS IUCr Journals Google Scholar
Cheng, C. C., Shen, N. N., Du, C. F., Wang, Z., Li, J. R. & Huang, X. Y. (2017). Inorg. Chem. Commun. 85, 21–25. CrossRef CAS Google Scholar
Collado, M. S., Mantovani, V. E., Goicoechea, H. C. & Olivieri, H. C. (2000). Talanta, 52, 909–920. CrossRef PubMed CAS Google Scholar
Coolen, S. A., Ligor, T., Lieshout, M. & Huf, F. A. (1999). J. Chromatogr. B Biomed. Sci. Appl. 732, 103–113. CrossRef PubMed CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hu, J., Qi, J., Luo, Y., Yin, T., Wang, J., Wang, C., Li, W. & Liang, L. (2012). Arab. J. Chem. 14, 103117–103124. CrossRef Google Scholar
Joule, J. A. & Mills, K. (2008). In Heterocyclic Chemistry, 5th ed. Chichester: John Wiley & Sons. Google Scholar
Li, Y., Liu, Y., Wang, H., Xiong, X., Wei, P. & Li, F. (2013). Molecules, 18, 877–893. Web of Science CSD CrossRef CAS PubMed Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Matczak, M. & Domagała, M. (2017). J. Mol. Model. 23, 268–279. CrossRef PubMed Google Scholar
Mnguni, M. J. & Lemmerer, A. (2015). Acta Cryst. C71, 103–109. CSD CrossRef IUCr Journals Google Scholar
Muetterties, E. L. & Guggenberger, L. J. (1974). J. Am. Chem. Soc. 96, 1748–1756. CrossRef CAS Web of Science Google Scholar
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790. Web of Science CrossRef CAS IUCr Journals Google Scholar
Petříček, V., Palatinus, L., Plášil, J. & Dušek, M. (2023). Z. Kristallogr. 238, 271–282. Google Scholar
Raman, N., Sakthivel, A. & Pravin, N. (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 125, 404–413. CrossRef CAS PubMed Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction Ltd, Yarnton, Oxfordshire, England. Google Scholar
Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570. CrossRef PubMed CAS Web of Science Google Scholar
Roccanova, R., Ming, W., Whiteside, V. R., McGuire, M. A., Sellers, I. R., Du, M. H. & Saparov, B. (2017). Inorg. Chem. 56, 13878–13888. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sakthivel, A., Jeyasubramanian, M., Thangagiri, B. & Raja, J. D. (2020). J. Mol. Struct. 1222, 128885. CrossRef Google Scholar
Selvan, G. T., Kumaresan, M., Sivaraj, R., Enoch, I. V. M. V. & Selvakumar, P. M. (2016). Sens. Actuators B Chem. 229, 181–189. CrossRef CAS Google Scholar
Senthilkumar, K., Thirumoorthy, K., Dragonetti, C., Marinotto, D., Righetto, S., Colombo, A., Haukka, M. & Palanisami, N. (2016). Dalton Trans. 45, 11939–11943. Web of Science CSD CrossRef CAS PubMed Google Scholar
Sessler, J. L., Murai, T. & Lynch, V. (1989). Inorg. Chem. 28, 1333–1341. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sondhi, S. M., Sharma, V. K., Verma, R. P., Singhal, N., Shukla, R., Raghubir, R. & Dubey, M. P. (1999). Synthesis, 1999, 878–884. CrossRef Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Swaminathan, J., Ramalingam, M., Sethuraman, V., Sundaraganesan, N. & Sebastian, S. (2009). Spectrochim. Acta A Mol. Biomol. Spectrosc. 73, 593–600. CrossRef PubMed CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Tratar Pirc, E., Cer-Kerčmar, K., Modec, B. & Bukovec, P. (2012). Monatsh. Chem. 143, 1643–1648. CrossRef CAS Google Scholar
Turan-Zitouni, G., Sıvacı, M., Kılıç, F. S. & Erol, K. (2001). Eur. J. Med. Chem. 36, 685–689. PubMed CAS Google Scholar
Venkataramanan, V., Bhat, H. L., Srinivasan, M. R., Ayyub, P. & Multani, M. S. (1997). J. Raman Spectrosc. 28, 779–784. CrossRef CAS Google Scholar
Wang, Q., Wu, M.-J., Yang, E.-C., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 595–604. Web of Science CSD CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, J., Xu, L. & Wong, W. (2018). Coord. Chem. Rev. 355, 180–198. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.