research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

An Ni-based coordination polymer with a bamboo-like crystal structure

crossmark logo

aNanjing Petmedicine Technology Co., Ltd, Nanjing, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
*Correspondence e-mail: linchen@nju.edu.cn

Edited by X. Hao, Institute of Chemistry, Chinese Academy of Sciences (Received 24 March 2025; accepted 3 April 2025; online 8 April 2025)

An Ni-based coordination polymer, namely, poly[tetra­aqua­bis­[4,7-bis­(1H-pyrazol-4-yl)benzo[c][1,2,5]thia­diazole][μ4-5,5′-(1,3,6,8-tetra­oxo-1,3,6,8-tetra­hydro­benzo[lmn][3,8]phenanthroline-2,7-di­yl)diisophthalato]dinickel(II)], {[Ni2(C30H10N2O12)(C12H8N6S)2(H2O)4]·2C3H7NO·H2O}n or Ni-BIBT-BINDI, with a crystal structure reminiscent of bamboo has been synthesized, the Ni2+ ions exhibiting a slightly distorted octa­hedral coordination geometry with N atoms and O atoms. The bond lengths of the Ni—O bonds range from 2.032 to 2.121 Å, and those of the Ni—N bonds are approximately 2.080 Å. The BINDI ligands are connected to each other by the Ni—O bonds, which form the backbone of the bamboo, while the BIBT ligands are connected to the backbone of the bamboo through Ni—N bonds and grows on both sides of the bamboo, constituting the bamboo leaves.

1. Chemical context

Coordination polymers are defined as polymers formed by the association of inorganic metal ions and organic ligands with coordination bonds (Xia et al., 2022[Xia, L., Wang, Q. & Hu, M. (2022). Beilstein J. Nanotechnol. 13, 763-777.]). Currently, coordination polymers are being widely used in the fields of catalysis (Li et al., 2024[Li, X.-S., Zhao, J., Hou, S.-L., Xu, H., Liang, Z.-L., Shi, Y. & Zhao, B. (2024). CCS Chem. 6, 2982-2995.]), sensing (Tian et al., 2023[Tian, Y., Li, J., Chen, Y.-Q., Wu, H.-P., Yang, G.-L., Li, M. & Liu, S.-J. (2023). J. Solid State Chem. 323, 124045.]) and gas storage (Dong et al., 2023[Dong, Q., Huang, Y., Wan, J., Lu, Z., Wang, Z., Gu, C., Duan, J. & Bai, J. (2023). J. Am. Chem. Soc. 145, 8043-8051.]). In particular, Ni-based coordination polymers have received much attention from researchers in recent years because of their excellent catalytic properties (Shah et al., 2019[Shah, J., Wu, T., Lucero, J., Carreon, M. A. & Carreon, M. L. (2019). ACS Sustainable Chem. Eng. 7, 377-383.]) and electrical conductivity (Khokhar et al., 2022[Khokhar, S., Anand, H. & Chand, P. (2022). J. Energy Storage, 56, 124045.]).

[Scheme 1]

In this context, a novel one-dimensional Ni-based coordination polymer with the formula {[Ni (BINDI)0.5(BIBT)(H2O)2]·DMF·0.5H2O]}n [DMF = N,N-di­methyl­formamide, BIBT = 4,7-di(1H-pyrazol-4-yl)benzo[c][1,2,5]thia­diazole and H4BINDI = 5,5′-(1,3,6,8-tetra­oxo-1,3,6,8-tetra­hydro­benzo[lmn][3,8]phenanthroline-2,7-di­yl)diisophthal­ic acid], namely Ni-BIBT-BINDI, was synthesized. The crystal structure of Ni-BIBT-BINDI exhibits a bamboo-like morphology, with BINDI4− ions and Ni2+ ions connected to form the bamboo trunk, and BIBT ligands and Ni2+ ions coordinated to form the bamboo leaves.

2. Structural commentary

Ni-BIBT-BINDI crystallizes in the triclinic crystal system, space group P[\overline{1}]. The asymmetric unit contains one NiII ion, one BIBT ligand and half a BINDI4− ion, one DMF mol­ecule, as well as two coordinated H2O mol­ecules and half of a free H2O mol­ecule (Fig. 1[link]). The NiII ion is surrounded by one nitro­gen atom (N1) from one BIBT mol­ecule, two oxygen atoms (O3, O4) from two different H2O mol­ecules, and three oxygen (O1, O5, O6) atoms from two different BINDI4− ions (Fig. 1[link]), resulting in a distorted octa­hedral coordination geometry (Fig. 1[link]). The Ni—O bond lengths range from 2.032 (3) to 2.122 (3) Å, while the Ni—N bond length is 2.079 (4) Å (Table 1[link]), which is consistent with previously reported Ni-based coordination complexes (Wang et al., 2020[Wang, X., Li, B., Wu, Y.-P., Tsamis, A., Yu, H.-G., Liu, S., Zhao, J., Li, Y.-S. & Li, D.-S. (2020). Inorg. Chem. 59, 4764-4771.]). The BINDI4− ions are linked by the Ni2+ ions, extending along the b-axis direction (Fig. 2[link]a), forming a structure comparable to that of bamboo, while the naphthalene di­imide functional group is almost perpendicular to the b-axis, resembling a bamboo joint (Fig. 2[link]b). The distance between adjacent naphthalene di­imide functional groups is 10.15 Å (Fig. 2[link]b). The N atom at the terminal end of the BIBT ligand on the bamboo coordinates with the Ni2+ ion and grows in a manner analogous to a bamboo leaf (Fig. 2[link]b). It has been established that only one end of the N atom of the BIBT ligand is coordinated to the Ni2+ ion, thus resulting in the formation of a mono-periodic chain.

Table 1
Selected geometric parameters (Å, °)

Ni1—O1 2.042 (3) Ni1—O5i 2.115 (3)
Ni1—O3 2.101 (3) Ni1—O6i 2.122 (3)
Ni1—O4 2.032 (3) Ni1—N1 2.079 (4)
       
O1—Ni1—O3 89.17 (14) O4—Ni1—O5i 103.05 (13)
O1—Ni1—O5i 160.93 (13) O4—Ni1—O6i 164.09 (13)
O1—Ni1—O6i 98.70 (12) O4—Ni1—N1 96.72 (15)
O1—Ni1—N1 89.40 (15) O5i—Ni1—O6i 62.43 (12)
O3—Ni1—O5i 87.54 (13) N1—Ni1—O3 178.02 (14)
O3—Ni1—O6i 87.96 (13) N1—Ni1—O5i 93.37 (15)
O4—Ni1—O1 95.34 (13) N1—Ni1—O6i 90.90 (15)
O4—Ni1—O3 84.78 (14)    
Symmetry code: (i) [x, y-1, z].
[Figure 1]
Figure 1
[The coordination environment of Ni-BIBT-BINDI, Symmetry codes: (i) x, y − 1,z?(ii) x, y + 1, z; (iii) −x, −y + 2, −z]
[Figure 2]
Figure 2
[(a)The Ni—BT-BINDI chain was observed from the b axis direction. (b) The Ni—BT-BINDI chain exhibits a structural similarity to bamboo, with nodes positioned at inter­vals of 10.15 Å]

3. Supra­molecular features

In the crystal structure of Ni-BIBT-BINDI, the coordination polymer chains are oriented along the b-axis direction. The chains are linked by face-to-face ππ stacking inter­actions [centroid–centroid distance = 3.515 (3) Å] between the BIBT ligand and BINDI ion, as shown in Fig. 3[link]a. Within an Ni-BIBT-BINDI chain, the pore between two neighbouring ligand BINDIs contains two ligand BIBTs, which are from different Ni-BIBT-BINDI chains. The distance between the BIBT ligand and the neighbouring BINDI ligand is 3.5 Å, as shown in Fig. 3[link]b. In addition to these ππ stacking inter­actions, there is also evidence of hydrogen-bonding inter­actions between a DMF mol­ecule and two distinct Ni-BIBT-BINDI chains (C28—H28C⋯O8, 2.26 Å; O4—H4B⋯O9ii, 1.83 Å; N2—H2⋯O9ii, 1.92 Å; Table 2[link]). Hydrogen bonding is also present between two different Ni-BIBT-BINDI chains (O3—H3A⋯O2ii; Fig. 3[link]b, Table 2[link]). These weak inter­actions connect Ni-BIBT-BINDI chains and build the 3D framework structure of Ni-BIBT-BINDI.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O2ii 0.87 1.92 2.758 (5) 162
O3—H3B⋯N6iii 0.87 2.18 2.986 (5) 154
O4—H4A⋯O2 0.87 1.86 2.640 (4) 148
O4—H4B⋯O9ii 0.87 1.83 2.695 (5) 173
N2—H2⋯O9ii 0.88 1.92 2.779 (5) 166
N5—H5⋯N6iv 0.88 2.20 2.956 (6) 144
C1—H1⋯O10iii 0.95 2.57 3.46 (3) 155
C11—H11⋯O1iii 0.95 2.54 3.210 (6) 127
C11—H11⋯O6v 0.95 2.49 3.279 (6) 141
C12—H12⋯O2vi 0.95 2.46 3.168 (6) 131
C28—H28A⋯N5iii 0.98 2.65 3.426 (8) 136
C28—H28B⋯O4ii 0.98 2.72 3.414 (6) 128
C28—H28C⋯O8 0.98 2.26 3.157 (7) 151
O10—H10A⋯O7 0.87 2.08 2.95 (3) 180
O10—H10B⋯O6v 0.87 2.20 3.01 (3) 155
Symmetry codes: (ii) [-x+1, -y+1, -z+2]; (iii) [-x+1, -y+1, -z+1]; (iv) [-x+2, -y+1, -z]; (v) [-x+1, -y+2, -z+1]; (vi) [-x+2, -y+1, -z+1].
[Figure 3]
Figure 3
[(a) The π-π stacking inter­actions between the ligand BIBT and BINDI, (b) The H-bond inter­actions between a DMF mol­ecule and two distinct Ni—BT-BINDI chains.]

4. Database survey

A search in CSD (version 5.46, last update November 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) for compounds based on BIBT and BINDI ligands revealed that no identical compounds have been reported. However, there are two metal–organic frameworks assembled from ligand BT [4,7-di(1H-benzoimidazol-1-yl)benzo[c][1,2,5]thia­diazole, structurally analogous to BIBT] in combination with BINDI ligands. The structural unit of the first compound includes Ni2+ ions, BINDI and BT ligands (BODCOQ; Xiong et al., 2024[Xiong, G., Xu, W., Liang, L., Huang, K., Zhang, X. & Qin, D. (2024). J. Mol. Struct. 1303, 137538.]),while that of the second compound includes Cu2+ ions, BINDI and BT ligands (TILTHU; Huang et al., 2023[Huang, K. (2023). CCDC 2270656: Experimental Crystal Structure Determination. https://dx.doi.org/10.5517/ccdc.csd.cc2g6szg.]).

5. Synthesis and crystallization

The crystal of Ni-BIBT-BINDI was synthesized by the solvothermal method. 2.7 mg of BIBT, 6 mg of BINDI, 58 mg of Ni(NO3)2·6H2O, 3.5 mL of DMF and 2.5 mL of deionized water were added in a 10 mL glass tube. After sonication for about 10 min, the glass tube was sealed and heated at 368 K for 24 h. After cooling to room temperature, green crystals were collected.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were positioned geometrically and refined using a riding model.

Table 3
Experimental details

Crystal data
Chemical formula [Ni2(C30H10N2O12)(C12H8N6S)2(H2O)4]·2(C3H7NO)·H2O
Mr 1480.70
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 193
a, b, c (Å) 9.5384 (4), 10.1543 (4), 16.2521 (8)
α, β, γ (°) 81.511 (3), 75.790 (3), 75.920 (3)
V3) 1473.62 (12)
Z 1
Radiation type Cu Kα
μ (mm−1) 2.27
Crystal size (mm) 0.16 × 0.12 × 0.11
 
Data collection
Diffractometer Bruker PHOTON-II area detector
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.544, 0.753
No. of measured, independent and observed [I > 2σ(I)] reflections 24224, 5414, 4005
Rint 0.068
(sin θ/λ)max−1) 0.604
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.076, 0.247, 1.06
No. of reflections 5414
No. of parameters 455
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.46, −1.04
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), OLEX2.solve (Bourhis et al., 2015[Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59-75.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

Poly[tetraaquabis[4,7-bis(1H-pyrazol-4-yl)benzo[c][1,2,5]thiadiazole][µ4-5,5'-(1,3,6,8-tetraoxo-1,3,6,8-tetrahydrobenzo[lmn][3,8]phenanthroline-2,7-diyl)diisophthalato]dinickel(II)] top
Crystal data top
[Ni2(C30H10N2O12)(C12H8N6S)2(H2O)4]·2(C3H7NO)·H2OZ = 1
Mr = 1480.70F(000) = 762
Triclinic, P1Dx = 1.669 Mg m3
a = 9.5384 (4) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.1543 (4) ÅCell parameters from 7699 reflections
c = 16.2521 (8) Åθ = 4.5–68.1°
α = 81.511 (3)°µ = 2.27 mm1
β = 75.790 (3)°T = 193 K
γ = 75.920 (3)°Block, dull greenish green
V = 1473.62 (12) Å30.16 × 0.12 × 0.11 mm
Data collection top
Bruker PHOTON-II area detector
diffractometer
4005 reflections with I > 2σ(I)
Detector resolution: 7.4 pixels mm-1Rint = 0.068
phi and ω scansθmax = 68.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 1111
Tmin = 0.544, Tmax = 0.753k = 1212
24224 measured reflectionsl = 1919
5414 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.076H-atom parameters constrained
wR(F2) = 0.247 w = 1/[σ2(Fo2) + (0.1781P)2 + 0.7895P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5414 reflectionsΔρmax = 1.46 e Å3
455 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.57153 (8)0.31000 (7)0.84217 (5)0.0304 (3)
S11.29018 (14)0.30007 (14)0.39030 (9)0.0450 (4)
O10.4971 (4)0.5137 (3)0.8127 (2)0.0341 (7)
O20.5865 (3)0.6001 (3)0.9027 (2)0.0335 (7)
O30.3923 (4)0.3157 (3)0.9478 (2)0.0378 (8)
H3A0.4184100.3324320.9923610.057*
H3B0.3213200.3852530.9394520.057*
O40.6859 (4)0.3342 (3)0.9272 (2)0.0359 (7)
H4A0.6801190.4207910.9284620.054*
H4B0.7799380.3007600.9086020.054*
O50.5926 (4)1.0963 (3)0.8525 (2)0.0349 (7)
O60.4480 (4)1.2335 (3)0.7751 (2)0.0337 (7)
O70.4323 (4)0.8766 (4)0.5411 (2)0.0492 (9)
O80.0255 (4)0.9415 (4)0.7567 (2)0.0496 (10)
N10.7439 (4)0.3085 (4)0.7351 (3)0.0359 (9)
N20.8912 (5)0.2834 (4)0.7296 (3)0.0393 (9)
H20.9333740.2601890.7735670.047*
N31.1602 (5)0.3014 (4)0.4758 (3)0.0423 (10)
N41.1933 (5)0.3483 (4)0.3182 (3)0.0408 (10)
N51.0322 (5)0.4553 (5)0.0894 (3)0.0454 (10)
H51.0945650.4464060.0396850.055*
N60.8855 (5)0.5163 (5)0.0989 (3)0.0416 (10)
N70.2282 (4)0.9214 (4)0.6484 (2)0.0311 (8)
C10.7268 (6)0.3386 (5)0.6562 (3)0.0396 (11)
H10.6334020.3599820.6408090.048*
C20.8620 (5)0.3357 (5)0.5972 (3)0.0358 (10)
C30.9646 (6)0.2981 (5)0.6490 (3)0.0372 (10)
H31.0690800.2852860.6300450.045*
C40.8869 (5)0.3612 (5)0.5052 (3)0.0363 (10)
C50.7710 (6)0.4059 (5)0.4641 (3)0.0410 (11)
H5A0.6728810.4198110.4977270.049*
C60.7905 (6)0.4322 (6)0.3745 (3)0.0434 (12)
H60.7048940.4632190.3511320.052*
C70.9277 (5)0.4149 (5)0.3194 (3)0.0346 (10)
C81.0512 (6)0.3685 (5)0.3594 (3)0.0356 (10)
C91.0309 (6)0.3426 (5)0.4498 (3)0.0361 (10)
C100.9456 (5)0.4426 (5)0.2269 (3)0.0368 (10)
C110.8347 (6)0.5097 (5)0.1819 (3)0.0393 (11)
H110.7349860.5459450.2085850.047*
C121.0702 (6)0.4106 (6)0.1641 (3)0.0434 (12)
H121.1660180.3649110.1720880.052*
C130.5182 (5)0.6112 (4)0.8442 (3)0.0292 (9)
C140.4599 (5)0.7526 (4)0.8049 (3)0.0293 (9)
C150.3696 (5)0.7719 (4)0.7469 (3)0.0313 (9)
H150.3407780.6961850.7329570.038*
C160.3218 (5)0.9009 (5)0.7094 (3)0.0320 (10)
C170.3612 (5)1.0118 (4)0.7286 (3)0.0323 (10)
H170.3263681.1001220.7028900.039*
C180.4529 (5)0.9944 (4)0.7863 (3)0.0295 (9)
C190.5010 (5)0.8645 (4)0.8249 (3)0.0306 (9)
H190.5619720.8523470.8649190.037*
C200.5006 (5)1.1154 (4)0.8060 (3)0.0309 (9)
C210.2983 (5)0.9141 (5)0.5622 (3)0.0344 (10)
C220.0752 (5)0.9435 (5)0.6811 (3)0.0323 (10)
C230.0198 (5)0.9732 (4)0.6173 (3)0.0314 (10)
C240.0452 (5)0.9811 (4)0.5302 (3)0.0298 (9)
C250.1718 (5)0.9988 (5)0.6451 (3)0.0358 (10)
H250.2149070.9914010.7044390.043*
C260.2624 (6)1.0358 (5)0.5860 (3)0.0381 (11)
H260.3670331.0537810.6054200.046*
C270.2012 (5)1.0462 (4)0.5001 (3)0.0309 (9)
O90.0216 (4)0.7746 (4)1.1156 (2)0.0448 (9)
N80.0606 (5)0.8531 (5)0.9943 (3)0.0427 (10)
C280.0864 (7)0.8243 (7)0.9386 (4)0.0523 (14)
H28A0.1123790.7285490.9264600.078*
H28B0.1590910.8416390.9667800.078*
H28C0.0866240.8832410.8851040.078*
C290.1853 (7)0.9179 (6)0.9545 (4)0.0526 (14)
H29A0.1682461.0047460.9230800.079*
H29B0.2766810.9346750.9986580.079*
H29C0.1945650.8578330.9150680.079*
C300.0785 (6)0.8241 (5)1.0773 (3)0.0415 (11)
H300.1768780.8428061.1105220.050*
O100.584 (3)0.692 (2)0.4066 (17)0.217 (12)0.5
H10A0.5395920.7462540.4464170.326*0.5
H10B0.5575020.7362040.3607870.326*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0285 (5)0.0232 (4)0.0429 (5)0.0058 (3)0.0149 (3)0.0012 (3)
S10.0326 (7)0.0497 (8)0.0521 (8)0.0048 (5)0.0156 (5)0.0007 (6)
O10.0359 (18)0.0220 (15)0.0500 (19)0.0064 (13)0.0215 (14)0.0001 (13)
O20.0311 (17)0.0249 (15)0.0477 (18)0.0025 (13)0.0198 (14)0.0004 (13)
O30.0331 (17)0.0382 (18)0.0457 (19)0.0060 (14)0.0160 (14)0.0057 (14)
O40.0321 (17)0.0288 (16)0.0497 (19)0.0045 (13)0.0172 (14)0.0027 (13)
O50.0336 (17)0.0254 (16)0.0515 (19)0.0069 (13)0.0217 (14)0.0001 (13)
O60.0335 (17)0.0216 (15)0.0504 (19)0.0044 (12)0.0202 (14)0.0015 (13)
O70.0244 (18)0.069 (3)0.054 (2)0.0009 (17)0.0190 (15)0.0023 (18)
O80.0354 (19)0.071 (3)0.042 (2)0.0040 (18)0.0182 (15)0.0006 (17)
N10.032 (2)0.033 (2)0.045 (2)0.0080 (16)0.0119 (17)0.0034 (16)
N20.037 (2)0.036 (2)0.047 (2)0.0058 (18)0.0170 (18)0.0021 (17)
N30.042 (2)0.036 (2)0.052 (2)0.0081 (18)0.0181 (19)0.0003 (18)
N40.032 (2)0.038 (2)0.054 (3)0.0078 (17)0.0136 (18)0.0016 (18)
N50.036 (2)0.057 (3)0.042 (2)0.010 (2)0.0089 (18)0.0025 (19)
N60.035 (2)0.046 (2)0.045 (2)0.0084 (19)0.0124 (18)0.0032 (18)
N70.0269 (19)0.0271 (18)0.043 (2)0.0060 (15)0.0174 (15)0.0019 (15)
C10.040 (3)0.034 (2)0.048 (3)0.007 (2)0.017 (2)0.003 (2)
C20.035 (3)0.028 (2)0.047 (3)0.0097 (19)0.014 (2)0.0032 (19)
C30.035 (3)0.034 (2)0.045 (3)0.009 (2)0.014 (2)0.0008 (19)
C40.035 (3)0.030 (2)0.049 (3)0.0120 (19)0.013 (2)0.0020 (19)
C50.031 (3)0.047 (3)0.047 (3)0.011 (2)0.008 (2)0.004 (2)
C60.033 (3)0.049 (3)0.053 (3)0.008 (2)0.018 (2)0.006 (2)
C70.030 (2)0.031 (2)0.045 (3)0.0070 (19)0.0131 (19)0.0036 (19)
C80.034 (2)0.028 (2)0.046 (3)0.0090 (19)0.012 (2)0.0013 (19)
C90.037 (3)0.028 (2)0.048 (3)0.0105 (19)0.015 (2)0.0026 (19)
C100.030 (2)0.033 (2)0.049 (3)0.0072 (19)0.014 (2)0.002 (2)
C110.032 (2)0.037 (3)0.051 (3)0.005 (2)0.014 (2)0.005 (2)
C120.033 (3)0.052 (3)0.047 (3)0.008 (2)0.014 (2)0.003 (2)
C130.026 (2)0.024 (2)0.041 (2)0.0089 (17)0.0120 (17)0.0002 (17)
C140.023 (2)0.024 (2)0.041 (2)0.0011 (17)0.0110 (17)0.0022 (17)
C150.026 (2)0.025 (2)0.046 (3)0.0068 (17)0.0114 (18)0.0031 (18)
C160.029 (2)0.031 (2)0.040 (2)0.0063 (18)0.0171 (18)0.0003 (18)
C170.028 (2)0.023 (2)0.044 (3)0.0019 (17)0.0125 (18)0.0003 (17)
C180.022 (2)0.023 (2)0.046 (2)0.0056 (16)0.0113 (17)0.0028 (17)
C190.026 (2)0.029 (2)0.039 (2)0.0058 (17)0.0133 (18)0.0024 (18)
C200.026 (2)0.026 (2)0.041 (2)0.0044 (17)0.0091 (18)0.0024 (17)
C210.032 (2)0.030 (2)0.046 (3)0.0068 (19)0.0196 (19)0.0001 (18)
C220.029 (2)0.029 (2)0.043 (3)0.0054 (18)0.0180 (19)0.0018 (18)
C230.028 (2)0.025 (2)0.044 (2)0.0060 (18)0.0168 (19)0.0001 (17)
C240.028 (2)0.021 (2)0.044 (2)0.0057 (17)0.0159 (19)0.0002 (17)
C250.031 (2)0.034 (2)0.043 (3)0.0076 (19)0.0123 (19)0.0021 (19)
C260.029 (2)0.038 (3)0.047 (3)0.005 (2)0.012 (2)0.001 (2)
C270.025 (2)0.028 (2)0.043 (2)0.0047 (17)0.0150 (18)0.0008 (17)
O90.0387 (19)0.050 (2)0.047 (2)0.0044 (16)0.0193 (16)0.0019 (15)
N80.038 (2)0.044 (2)0.048 (2)0.0057 (19)0.0194 (19)0.0007 (18)
C280.043 (3)0.062 (4)0.049 (3)0.007 (3)0.014 (2)0.001 (3)
C290.046 (3)0.050 (3)0.065 (4)0.005 (3)0.029 (3)0.006 (3)
C300.032 (3)0.038 (3)0.056 (3)0.008 (2)0.013 (2)0.001 (2)
O100.29 (3)0.16 (2)0.22 (2)0.02 (2)0.11 (2)0.028 (17)
Geometric parameters (Å, º) top
Ni1—O12.042 (3)C6—C71.380 (7)
Ni1—O32.101 (3)C7—C81.432 (7)
Ni1—O42.032 (3)C7—C101.462 (7)
Ni1—O5i2.115 (3)C8—C91.428 (7)
Ni1—O6i2.122 (3)C10—C111.415 (7)
Ni1—N12.079 (4)C10—C121.370 (7)
Ni1—C20i2.428 (5)C11—H110.9500
S1—N31.618 (5)C12—H120.9500
S1—N41.615 (4)C13—C141.515 (6)
O1—C131.257 (5)C14—C151.390 (6)
O2—C131.257 (5)C14—C191.393 (6)
O3—H3A0.8717C15—H150.9500
O3—H3B0.8720C15—C161.380 (6)
O4—H4A0.8703C16—C171.368 (7)
O4—H4B0.8715C17—H170.9500
O5—C201.256 (6)C17—C181.398 (6)
O6—C201.263 (5)C18—C191.395 (6)
O7—C211.217 (6)C18—C201.510 (6)
O8—C221.202 (6)C19—H190.9500
N1—N21.348 (6)C21—C27ii1.484 (6)
N1—C11.314 (6)C22—C231.491 (6)
N2—H20.8800C23—C241.398 (7)
N2—C31.330 (7)C23—C251.380 (7)
N3—C91.351 (6)C24—C24ii1.413 (8)
N4—C81.336 (6)C24—C27ii1.419 (6)
N5—H50.8800C25—H250.9500
N5—N61.366 (6)C25—C261.397 (7)
N5—C121.335 (7)C26—H260.9500
N6—C111.314 (7)C26—C271.375 (7)
N7—C161.452 (5)O9—C301.232 (6)
N7—C211.401 (6)N8—C281.459 (7)
N7—C221.399 (6)N8—C291.462 (6)
C1—H10.9500N8—C301.315 (7)
C1—C21.401 (7)C28—H28A0.9800
C2—C31.393 (7)C28—H28B0.9800
C2—C41.450 (7)C28—H28C0.9800
C3—H30.9500C29—H29A0.9800
C4—C51.380 (7)C29—H29B0.9800
C4—C91.431 (7)C29—H29C0.9800
C5—H5A0.9500C30—H300.9500
C5—C61.415 (7)O10—H10A0.8701
C6—H60.9500O10—H10B0.8699
O1—Ni1—O389.17 (14)C12—C10—C11103.9 (4)
O1—Ni1—O5i160.93 (13)N6—C11—C10112.2 (5)
O1—Ni1—O6i98.70 (12)N6—C11—H11123.9
O1—Ni1—N189.40 (15)C10—C11—H11123.9
O1—Ni1—C20i129.91 (14)N5—C12—C10107.5 (5)
O3—Ni1—O5i87.54 (13)N5—C12—H12126.3
O3—Ni1—O6i87.96 (13)C10—C12—H12126.3
O3—Ni1—C20i86.63 (14)O1—C13—O2125.5 (4)
O4—Ni1—O195.34 (13)O1—C13—C14116.0 (4)
O4—Ni1—O384.78 (14)O2—C13—C14118.5 (4)
O4—Ni1—O5i103.05 (13)C15—C14—C13120.9 (4)
O4—Ni1—O6i164.09 (13)C15—C14—C19119.4 (4)
O4—Ni1—N196.72 (15)C19—C14—C13119.7 (4)
O4—Ni1—C20i133.75 (14)C14—C15—H15120.0
O5i—Ni1—O6i62.43 (12)C16—C15—C14120.1 (4)
O5i—Ni1—C20i31.13 (13)C16—C15—H15120.0
O6i—Ni1—C20i31.31 (14)C15—C16—N7120.3 (4)
N1—Ni1—O3178.02 (14)C17—C16—N7118.6 (4)
N1—Ni1—O5i93.37 (15)C17—C16—C15121.1 (4)
N1—Ni1—O6i90.90 (15)C16—C17—H17120.2
N1—Ni1—C20i93.24 (16)C16—C17—C18119.7 (4)
N4—S1—N3100.7 (2)C18—C17—H17120.2
C13—O1—Ni1127.5 (3)C17—C18—C20120.1 (4)
Ni1—O3—H3A109.5C19—C18—C17119.6 (4)
Ni1—O3—H3B109.5C19—C18—C20120.3 (4)
H3A—O3—H3B104.4C14—C19—C18120.1 (4)
Ni1—O4—H4A109.2C14—C19—H19119.9
Ni1—O4—H4B109.3C18—C19—H19119.9
H4A—O4—H4B104.5O5—C20—Ni1iii60.6 (2)
C20—O5—Ni1iii88.3 (3)O5—C20—O6121.4 (4)
C20—O6—Ni1iii87.8 (3)O5—C20—C18119.1 (4)
N2—N1—Ni1129.7 (3)O6—C20—Ni1iii60.9 (2)
C1—N1—Ni1124.8 (4)O6—C20—C18119.5 (4)
C1—N1—N2105.4 (4)C18—C20—Ni1iii178.1 (3)
N1—N2—H2124.3O7—C21—N7120.4 (4)
C3—N2—N1111.3 (4)O7—C21—C27ii123.0 (5)
C3—N2—H2124.3N7—C21—C27ii116.6 (4)
C9—N3—S1106.3 (4)O8—C22—N7120.7 (4)
C8—N4—S1106.5 (4)O8—C22—C23123.0 (4)
N6—N5—H5123.8N7—C22—C23116.3 (4)
C12—N5—H5123.8C24—C23—C22119.9 (4)
C12—N5—N6112.4 (4)C25—C23—C22119.3 (4)
C11—N6—N5104.0 (4)C25—C23—C24120.7 (4)
C21—N7—C16117.5 (4)C23—C24—C24ii119.9 (5)
C22—N7—C16117.0 (4)C23—C24—C27ii121.8 (4)
C22—N7—C21125.5 (4)C24ii—C24—C27ii118.3 (5)
N1—C1—H1123.8C23—C25—H25120.0
N1—C1—C2112.4 (5)C23—C25—C26120.0 (5)
C2—C1—H1123.8C26—C25—H25120.0
C1—C2—C4128.0 (4)C25—C26—H26119.8
C3—C2—C1102.7 (4)C27—C26—C25120.5 (5)
C3—C2—C4129.3 (5)C27—C26—H26119.8
N2—C3—C2108.2 (5)C24ii—C27—C21ii119.3 (4)
N2—C3—H3125.9C26—C27—C21ii120.1 (4)
C2—C3—H3125.9C26—C27—C24ii120.6 (4)
C5—C4—C2121.7 (5)C28—N8—C29117.5 (5)
C5—C4—C9114.7 (5)C30—N8—C28120.7 (4)
C9—C4—C2123.6 (4)C30—N8—C29121.8 (5)
C4—C5—H5A118.2N8—C28—H28A109.5
C4—C5—C6123.5 (5)N8—C28—H28B109.5
C6—C5—H5A118.2N8—C28—H28C109.5
C5—C6—H6118.3H28A—C28—H28B109.5
C7—C6—C5123.3 (5)H28A—C28—H28C109.5
C7—C6—H6118.3H28B—C28—H28C109.5
C6—C7—C8115.0 (4)N8—C29—H29A109.5
C6—C7—C10122.5 (4)N8—C29—H29B109.5
C8—C7—C10122.4 (4)N8—C29—H29C109.5
N4—C8—C7124.9 (5)H29A—C29—H29B109.5
N4—C8—C9113.7 (4)H29A—C29—H29C109.5
C9—C8—C7121.4 (4)H29B—C29—H29C109.5
N3—C9—C4125.1 (5)O9—C30—N8125.4 (5)
N3—C9—C8112.8 (4)O9—C30—H30117.3
C8—C9—C4122.1 (4)N8—C30—H30117.3
C11—C10—C7127.0 (5)H10A—O10—H10B104.5
C12—C10—C7129.1 (4)
Ni1—O1—C13—O22.5 (7)C7—C8—C9—N3179.1 (4)
Ni1—O1—C13—C14175.2 (3)C7—C8—C9—C40.1 (7)
Ni1iii—O5—C20—O62.5 (4)C7—C10—C11—N6178.7 (5)
Ni1iii—O5—C20—C18177.8 (4)C7—C10—C12—N5179.4 (5)
Ni1iii—O6—C20—O52.5 (4)C8—C7—C10—C11168.5 (5)
Ni1iii—O6—C20—C18177.8 (4)C8—C7—C10—C1211.8 (8)
Ni1—N1—N2—C3177.3 (3)C9—C4—C5—C60.1 (7)
Ni1—N1—C1—C2177.0 (3)C10—C7—C8—N41.4 (8)
S1—N3—C9—C4178.5 (4)C10—C7—C8—C9179.8 (4)
S1—N3—C9—C80.7 (5)C11—C10—C12—N50.4 (6)
S1—N4—C8—C7178.6 (4)C12—N5—N6—C111.0 (6)
S1—N4—C8—C90.1 (5)C12—C10—C11—N61.1 (6)
O1—C13—C14—C159.4 (6)C13—C14—C15—C16177.7 (4)
O1—C13—C14—C19168.5 (4)C13—C14—C19—C18177.3 (4)
O2—C13—C14—C15172.8 (4)C14—C15—C16—N7179.7 (4)
O2—C13—C14—C199.4 (7)C14—C15—C16—C170.3 (7)
O8—C22—C23—C24176.5 (5)C15—C14—C19—C180.6 (7)
O8—C22—C23—C250.5 (7)C15—C16—C17—C180.8 (7)
N1—N2—C3—C20.2 (5)C16—N7—C21—O78.2 (7)
N1—C1—C2—C30.9 (6)C16—N7—C21—C27ii171.9 (4)
N1—C1—C2—C4179.0 (4)C16—N7—C22—O81.9 (6)
N2—N1—C1—C20.8 (5)C16—N7—C22—C23176.2 (4)
N3—S1—N4—C80.2 (4)C16—C17—C18—C191.2 (7)
N4—S1—N3—C90.5 (4)C16—C17—C18—C20178.2 (4)
N4—C8—C9—N30.6 (6)C17—C18—C19—C141.1 (7)
N4—C8—C9—C4178.7 (4)C17—C18—C20—O5174.2 (4)
N5—N6—C11—C101.2 (6)C17—C18—C20—O65.5 (7)
N6—N5—C12—C100.3 (6)C19—C14—C15—C160.2 (7)
N7—C16—C17—C18179.2 (4)C19—C18—C20—O55.2 (7)
N7—C22—C23—C241.6 (6)C19—C18—C20—O6175.1 (4)
N7—C22—C23—C25178.6 (4)C20—C18—C19—C14178.3 (4)
C1—N1—N2—C30.3 (5)C21—N7—C16—C1590.6 (5)
C1—C2—C3—N20.6 (5)C21—N7—C16—C1789.4 (5)
C1—C2—C4—C56.4 (8)C21—N7—C22—O8176.4 (4)
C1—C2—C4—C9173.6 (5)C21—N7—C22—C235.5 (6)
C2—C4—C5—C6179.9 (5)C22—N7—C16—C1587.8 (5)
C2—C4—C9—N31.0 (8)C22—N7—C16—C1792.2 (5)
C2—C4—C9—C8179.9 (4)C22—N7—C21—O7170.1 (5)
C3—C2—C4—C5176.0 (5)C22—N7—C21—C27ii9.8 (6)
C3—C2—C4—C94.0 (8)C22—C23—C24—C24ii175.5 (5)
C4—C2—C3—N2178.7 (5)C22—C23—C24—C27ii3.7 (6)
C4—C5—C6—C70.3 (9)C22—C23—C25—C26175.8 (4)
C5—C4—C9—N3179.1 (5)C23—C25—C26—C270.3 (7)
C5—C4—C9—C80.1 (7)C24—C23—C25—C261.3 (7)
C5—C6—C7—C80.3 (8)C25—C23—C24—C24ii1.5 (8)
C5—C6—C7—C10180.0 (5)C25—C23—C24—C27ii179.3 (4)
C6—C7—C8—N4178.3 (5)C25—C26—C27—C21ii179.8 (5)
C6—C7—C8—C90.1 (7)C25—C26—C27—C24ii0.4 (7)
C6—C7—C10—C1111.2 (8)C28—N8—C30—O91.6 (9)
C6—C7—C10—C12168.5 (5)C29—N8—C30—O9177.0 (5)
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z+1; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2iv0.871.922.758 (5)162
O3—H3B···N6v0.872.182.986 (5)154
O4—H4A···O20.871.862.640 (4)148
O4—H4B···O9iv0.871.832.695 (5)173
N2—H2···O9iv0.881.922.779 (5)166
N5—H5···N6vi0.882.202.956 (6)144
C1—H1···O10v0.952.573.46 (3)155
C11—H11···O1v0.952.543.210 (6)127
C11—H11···O6vii0.952.493.279 (6)141
C12—H12···O2viii0.952.463.168 (6)131
C28—H28A···N5v0.982.653.426 (8)136
C28—H28B···O4iv0.982.723.414 (6)128
C28—H28C···O80.982.263.157 (7)151
O10—H10A···O70.872.082.95 (3)180
O10—H10B···O6vii0.872.203.01 (3)155
Symmetry codes: (iv) x+1, y+1, z+2; (v) x+1, y+1, z+1; (vi) x+2, y+1, z; (vii) x+1, y+2, z+1; (viii) x+2, y+1, z+1.
 

Acknowledgements

We appreciate the College of Chemistry and Chemical Engineering of Nanjing University for providing the experimental platforms.

Funding information

Funding for this research was provided by: National Natural Science Foundation of China (award No. 22071104).

References

First citationBourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2015). Acta Cryst. A71, 59–75.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDong, Q., Huang, Y., Wan, J., Lu, Z., Wang, Z., Gu, C., Duan, J. & Bai, J. (2023). J. Am. Chem. Soc. 145, 8043–8051.  CSD CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHuang, K. (2023). CCDC 2270656: Experimental Crystal Structure Determination. https://dx.doi.org/10.5517/ccdc.csd.cc2g6szgGoogle Scholar
First citationKhokhar, S., Anand, H. & Chand, P. (2022). J. Energy Storage, 56, 124045.  CrossRef Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLi, X.-S., Zhao, J., Hou, S.-L., Xu, H., Liang, Z.-L., Shi, Y. & Zhao, B. (2024). CCS Chem. 6, 2982–2995.  CrossRef CAS Google Scholar
First citationShah, J., Wu, T., Lucero, J., Carreon, M. A. & Carreon, M. L. (2019). ACS Sustainable Chem. Eng. 7, 377–383.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationTian, Y., Li, J., Chen, Y.-Q., Wu, H.-P., Yang, G.-L., Li, M. & Liu, S.-J. (2023). J. Solid State Chem. 323, 124045.  CSD CrossRef Google Scholar
First citationWang, X., Li, B., Wu, Y.-P., Tsamis, A., Yu, H.-G., Liu, S., Zhao, J., Li, Y.-S. & Li, D.-S. (2020). Inorg. Chem. 59, 4764–4771.  CSD CrossRef CAS PubMed Google Scholar
First citationXia, L., Wang, Q. & Hu, M. (2022). Beilstein J. Nanotechnol. 13, 763–777.  CrossRef CAS PubMed Google Scholar
First citationXiong, G., Xu, W., Liang, L., Huang, K., Zhang, X. & Qin, D. (2024). J. Mol. Struct. 1303, 137538.  CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds