

research communications
Orthosilicates with glaserite-type crystal structures: Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2
aResearch Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*Correspondence e-mail: takeda.takashi@nims.go.jp
Single crystal particles of Na2BaZr[SiO4]2 [systematic name: disodium barium zirconium bis(orthosilicate)] and Na2BaHf[SiO4]2 [disodium barium hafnium bis(orthosilicate)] were extracted from grain-grown polycrystals obtained by heating compacts of binary oxide mixtures at 1473 K. Single crystal X-ray revealed that these are isostructural orthosilicates with a glaserite-type in which all sites of X, Y, M, and T in the general formula XY2[M(TO4)2] are fully occupied by atoms of different elements. The crystal structures of the title compounds were refined in P3 under consideration of a two-component twin model. The SiO4 tetrahedra are rotated approximately ±10.2° from the mirror plane of P3m around an axis parallel to [001].
1. Chemical context
Nikolova & Kostov-Kytin (2013) described more than 100 oxides with glaserite-type crystal structures by the general formula X(□;1)Y(□;2)[M(TO4)2] and summarized their crystal structural features: the T sites are always fully occupied by the atoms of transition metals (V, Cr, Mo, W, Re, Fe, Ru) or non-metals (Si, P, S, Se). These T atoms are fourfold coordinated by oxygen atoms to form isolated tetrahedra in the crystal structures. Silicates (T = Si), such as BaMg[SiO4] and Ba(Ba,Sr,Ca)2Mg[SiO4]2 doped with Eu2+, have been studied for their fluorescent properties and (Yonesaki et al., 2008
, 2011
; Yonesaki, 2013
; Yonezaki et al., 2018
; Yonezaki, 2015
, 2018
, 2020
; Yonezaki & Takei, 2016
; Yonezaki & Yanai, 2021
; Birkel et al., 2015
). Recently, ferroaxial transitions of compounds with glaserite-type crystal structures were investigated, in which the space-group type changes from P
to P
m (Yamagishi et al., 2023
). The rotation angle φ of the TO4 tetrahedron was defined relative to the mirror plane of P
m, and BaCa2Mg[SiO4]2 with φ = 12.5° was proposed as a potential ferroaxial transition material. For the compounds with M = Zr, Kostov-Kytin and co-workers analysed the crystal structures of Na3–xH1+xZr(SiO)4·yH2O in which water molecules are located between the ZrO6 octahedra (Kostov-Kytin et al., 2012
, 2013
).
In the current study, we report the synthesis and 2BaZr[SiO4]2 and Na2BaHf[SiO4]2.
analysis of two new orthosilicate compounds with glaserite-type Na2. Structural commentary
According to the classification by Nikolova & Kostov-Kytin (2013) using the general formula X(□;1)Y(□;2)[M(TO4)2] for compounds with glaserite-type crystal structures, Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2 meet the condition X ≠ Y ≠ M ≠ T of XY2[M(TO4)2] with no vacancy. The two new orthosilicates are isostructural and crystallize in the trigonal P
. The crystal structures of both silicates were refined under consideration of a two-component twin model in each case. Multiplicity, Wyckoff letter, and are: 1, a and
for Ba1, 1, b and
for Zr1/Hf1, 2, d and 3 for Na1, Si1 and O2, and 6, g and 1 for O1. As shown in Fig. 1
, slabs identified in the are composed of M = Zr- or Hf-centred oxygen octahedra and SiO4 tetrahedra.
![]() | Figure 1 Crystal structure of Na2BaZr[SiO4]2 in a projection along [100], drawn with Zr1-centered oxygen octahedra and Si1-centered oxygen tetrahedra. |
Fig. 2 shows the arrangement of oxygen atoms around each cation. Interatomic distances of Zr—O and Hf—O are 2.0667 (14) Å (×6) and 2.0600 (15) Å (×6), respectively (Tables 1
and 2
), which are consistent with the sizes of Shannon's effective ionic radii [six-coordinated Zr (0.72 Å) and Hf (0.71 Å); Shannon, 1976
]. The Si—O distances of 1.6373 (13) and 1.578 (2) Å for Na2BaZr[SiO4]2 agree with those of 1.6354 (16) and 1.575 (2) Å for Na2BaHf[SiO4]2. The Ba—O distances for the 12-coordinate X site are slightly longer for Na2BaZr[SiO4]2 [2.8764 (15)–3.1198 (2) Å] than for Na2BaHf[SiO4]2 [2.8687 (16)–3.1158 (2) Å]. The distances between O1 and Na1 at the tenfold coordination sites are slightly longer for Na2BaM[SiO4]2 M = Zr [2.4461 (15)–3.1545 (19) Å] than for M = Hf [2.4423 (15)–3.145 (2) Å], while the Na1—O2 distance of 2.250 (3) Å for M = Zr is slightly shorter than that of 2.258 (3) Å for M = Hf. The bond-valence sums for Na1, Ba1, Zr1, Hf1, and Si1 calculated with the bond valence parameters provided by Gagné & Hawthorne (2015
) are 1.00, 1.86, 4.03, and 4.11 valence units for Na2BaM[SiO4]2 M = Zr, and 1.01, 1.89, 4.05, and 4.09 valence units for M = Hf. The rotation angles φ of the [SiO4] tetrahedra are 10.18° for M = Zr and 10.15° for M = Hf (Fig. 3
).
|
|
![]() | Figure 2 Atomic arrangements around Na1, Ba1, Zr1, and Si1 in the crystal structure of Na2BaZr[SiO4]2. Displacement ellipsoids are depicted at the 90% probability level. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y + 1, −z + 1; (v) x − y, x, −z + 1; (vi) x − y + 1, x + 1, −z + 1; (vii) y, −x + y, −z + 1; (viii) y, −x + y + 1, −z + 1; (ix) −x + y, −x + 1, z; (x) −y + 1, x − y + 1, z; (xi) x, y, z + 1; (xii) −x + y, −x, z; (xiii) −x, −y, −z; (xiv) −y, x − y, z; (xv) x − y, x, −z; (xvi) y, −x + y, −z; (xvii) −x, −y + 1, −z; (xviii) x, y − 1, z; (xix) −x + 1, −y + 1, −z; (xx) x − 1, y − 1, z; (xxi) −x, −y, −z + 1; (xxii) x + 1, y + 1, z; (xxiii) x, y, z − 1.] |
![]() | Figure 3 [001] projection of the twin domains in the crystal structure of Na2BaZr[SiO4]2. |
The Madelung energy part of the lattice energies (MAPLE; Hoppe, 1995) of Na2BaM[SiO4]2 calculated using VESTA (Momma & Izumi, 2011
) are −50.170 mJ mol−1 (M = Zr) and −50.260 MJ mol−1 (M = Hf). These values are close to those of −49.880 MJ mol−1 and −49.880 mJ mol−1 with differences of 0.6% and 0.8%, respectively, as calculated from the equation BaO + MO2 + α-Na2Si2O5 = Na2BaM[SiO4]2 using MAPLE values calculated from the data for BaO (–3.510 MJ mol−1; Zollweg, 1955
), ZrO2 (–12.740 MJ mol−1; Gualtieri et al., 1996
), HfO2 (–12.740 MJ mol−1; Pathak et al., 2020
) and α-Na2Si2O5 (–33.630 MJ mol−1; Pant & Cruickshank, 1968
).
3. Database survey
The crystal structures listed for glaserite-type silicates in the ICSD database (ICSD, 2025) are the high-temperature phase of Ca2[SiO4] (P
m, Z = 2, V = 194.19 Å3; Mumme et al., 1996
), Ba3Mg[SiO4]2 (P
m, Z = 1, V = 198.64 Å3; Iwata et al., 2009
) and its (P
, Z = 3, V = 594.71 Å3; Park et al., 2009
), BaCa2Mg[SiO4]2 (P
, Z = 1, V = 173.31 Å3; Park et al., 2011
), BaxSr3–xMg[SiO4]2 (x = 0.0 – 0.5, C2, Z = 4, V = 714.9 – 723.7 Å3; x = 0.625 – 2.375, P
m, Z = 1, V = 181.81 – 193.46 Å3; x = 2.5 – 3.0, P
, Z = 3, V = 583.2 – 594.72 Å3; Yonezaki, 2015
), Ba(Sr1-xCax)2Mg[SiO4]2 (x = 0.0 – 0.5, P
m, Z = 1, V = 182.76 – 178.70 Å3; x = 0.5625 – 1.0, P
, Z = 1, V = 177.97 – 174.00 Å3; Yonesaki et al., 2008
; Yonesaki, 2013
), Ba3Mn[SiO4] (P
m, Z = 1, V = 203.44 Å3; Avdeev et al., 2018
), Na3HZr[SiO4]2, P
, Z = 2, V = 350.12 Å3; Na3HZr[SiO4]2·0.4H2O, P
, Z = 2, V = 350.19 Å3; Na3HZr[SiO4]2·H2O, C2/m, Z = 4, V = 683.92 Å3; Kostov-Kytin et al., 2012
).
4. Synthesis and crystallization
The starting materials were powders of Na2O (∼80%, Sigma-Aldrich), SiO2 (99.9% Kojundo Chemical Lab. Co., Ltd.), BaO (99.99%, Sigma-Aldrich), ZrO2 (99%, Sigma-Aldrich), and HfO2 (98%, Kojundo Chemical Lab. Co., Ltd.), which were weighed in a in a nitrogen atmosphere, mixed in an agate mortar, and formed into disk-shaped compacts. The compacts were placed in a nickel boat and sealed in a stainless-steel container. The container was heated up to 1473 K for 3 h in a nitrogen gas flow to prevent oxidation of the stainless steel, and this temperature was maintained for 30 min. The temperature was subsequently lowered to 1073 K at a rate of −100 K h−1. The power supply to the heater wire was stopped at this temperature, and the sample was allowed to cool in the furnace. The single crystal grains of Na2BaZr[SiO4]2 used for single crystal X-ray diffraction data measurements were isolated from fragments of polycrystals synthesised from a starting material mixture with a metal element molar ratio of Na:Ba:Zr:Si = 2:1:1:2. Single crystal grains of Na2BaHf[SiO4]2 were obtained from polycrystals prepared with a starting mixture of Na:Ba:Hf:Si = 2.2:1:1:2.2.
Semi-quantitative analysis of the Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2 grains was performed using an energy-dispersive X-ray detector (Bruker AXS, XFlash 5010) attached to a scanning electron microscope (Hitachi High-Tech SU1510) and measurement analysis software (Bruker AXS, QUANTAX2000). The atomic ratios acquired from the analysis were Na:Ba:Hf:Si = 2.0 (3):0.6 (1):0.66 (5):2.0 (3) for Na2BaZr[SiO4]2 and Na:Ba:Zr:Si = 2.3 (4):1.2 (1):1.3 (1):2.0 (1) for Na2BaHf[SiO4]2, both of which correspond sufficiently with the metal element ratios of the formulae.
5. Refinement
Crystal data, data collection and structural . In the first step, the ideal model of the glaserite-type structure with P
m was adopted and the R1 values were 0.032 and 0.018 for Na2BaM[SiO4]2 for M = Zr and Hf, respectively. However, the ratio of the mean-square displacements of the major and minor axes of the atomic displacement ellipsoid of O1 was 30.3 (M = Zr) and 22.4 (M = Hf). Subsequently, when the was performed in P
removing mirror from P
m, the R1 values were 0.035 and 0.020, and the displacement ratios were still large at 27.6 and 18.2, for M = Zr and Hf, respectively. Further analysis in P
under consideration of (twin matrix 010, 100, 00
) resulted in R1 values of 0.016 and 0.010 for M = Zr and Hf, respectively, and both displacement ratios were reasonable with a value of 3.2. The twin ratios of domains 1 and 2 were refined to 0.635 (4):0.365 for M = Zr and 0.623 (4):0.377 (4) for M = Hf.
|
Supporting information
https://doi.org/10.1107/S2056989025002956/wm5753sup1.cif
contains datablocks global, I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025002956/wm5753Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989025002956/wm5753IIsup3.hkl
Na2BaZr[SiO4]2 | Dx = 4.186 Mg m−3 |
Mr = 458.72 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3 | Cell parameters from 5734 reflections |
a = 5.3966 (2) Å | θ = 2.8–47.6° |
c = 7.2153 (3) Å | µ = 7.27 mm−1 |
V = 181.98 (2) Å3 | T = 293 K |
Z = 1 | Plate, colourless |
F(000) = 210 | 0.04 × 0.03 × 0.01 mm |
ROD, Synergy Custom system, HyPix-Arc 150 diffractometer | 587 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source | 543 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.043 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 36.2°, θmin = 2.8° |
ω scans | h = −8→7 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | k = −8→8 |
Tmin = 0.544, Tmax = 0.817 | l = −12→12 |
9034 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.016 | w = 1/[σ2(Fo2) + (0.0092P)2 + 0.1709P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.035 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.52 e Å−3 |
587 reflections | Δρmin = −0.59 e Å−3 |
24 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.635 (4) 0.365 (4) |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.333333 | 0.666667 | 0.71034 (19) | 0.0167 (2) | |
Ba1 | 0.000000 | 0.000000 | 0.000000 | 0.01522 (7) | |
Zr1 | 0.000000 | 0.000000 | 0.500000 | 0.00498 (6) | |
Si1 | 0.333333 | 0.666667 | 0.24086 (9) | 0.00685 (12) | |
O1 | 0.1242 (3) | 0.3476 (3) | 0.3269 (2) | 0.0144 (3) | |
O2 | 0.333333 | 0.666667 | 0.0221 (3) | 0.0222 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0157 (4) | 0.0157 (4) | 0.0188 (6) | 0.00784 (18) | 0.000 | 0.000 |
Ba1 | 0.01899 (9) | 0.01899 (9) | 0.00767 (9) | 0.00950 (4) | 0.000 | 0.000 |
Zr1 | 0.00436 (8) | 0.00436 (8) | 0.00620 (12) | 0.00218 (4) | 0.000 | 0.000 |
Si1 | 0.00661 (17) | 0.00661 (17) | 0.0073 (3) | 0.00331 (9) | 0.000 | 0.000 |
O1 | 0.0154 (7) | 0.0082 (5) | 0.0175 (6) | 0.0043 (5) | 0.0010 (5) | 0.0046 (4) |
O2 | 0.0287 (8) | 0.0287 (8) | 0.0093 (8) | 0.0144 (4) | 0.000 | 0.000 |
Na1—Zr1i | 3.4657 (6) | Ba1—O1xvi | 2.8763 (15) |
Na1—Si1ii | 3.1356 (2) | Ba1—O1 | 2.8763 (15) |
Na1—Si1iii | 3.1356 (2) | Ba1—O2xvii | 3.1198 (2) |
Na1—Si1 | 3.3875 (15) | Ba1—O2 | 3.1198 (2) |
Na1—Si1iv | 3.1356 (2) | Ba1—O2xviii | 3.1198 (2) |
Na1—O1v | 2.9791 (15) | Ba1—O2xix | 3.1198 (2) |
Na1—O1vi | 2.4461 (15) | Ba1—O2xiii | 3.1198 (2) |
Na1—O1iv | 2.4461 (14) | Ba1—O2xx | 3.1198 (2) |
Na1—O1vii | 2.4461 (14) | Zr1—O1xxi | 2.0666 (13) |
Na1—O1viii | 2.9791 (15) | Zr1—O1vii | 2.0666 (14) |
Na1—O1iii | 2.9791 (15) | Zr1—O1 | 2.0667 (13) |
Na1—O1 | 3.1545 (19) | Zr1—O1v | 2.0667 (13) |
Na1—O1ix | 3.1545 (19) | Zr1—O1xiv | 2.0666 (14) |
Na1—O1x | 3.1545 (19) | Zr1—O1xii | 2.0667 (13) |
Na1—O2xi | 2.250 (3) | Si1—O1x | 1.6373 (13) |
Ba1—O1xii | 2.8764 (15) | Si1—O1ix | 1.6373 (13) |
Ba1—O1xiii | 2.8763 (15) | Si1—O1 | 1.6373 (13) |
Ba1—O1xiv | 2.8763 (15) | Si1—O2 | 1.578 (2) |
Ba1—O1xv | 2.8764 (15) | ||
Si1iii—Na1—Zr1i | 160.48 (5) | Na1—Zr1—Na1iii | 77.74 (2) |
Si1iv—Na1—Zr1i | 66.579 (9) | Na1—Zr1—Na1xxi | 180.0 |
Si1ii—Na1—Zr1i | 66.579 (9) | Na1iii—Zr1—Na1xx | 180.0 |
Si1—Na1—Zr1i | 64.03 (2) | Na1iv—Zr1—Na1iii | 102.26 (2) |
Si1iii—Na1—Si1 | 96.45 (3) | Na1xviii—Zr1—Na1iv | 180.0 |
Si1iv—Na1—Si1iii | 118.756 (11) | Na1xxi—Zr1—Na1iii | 102.26 (2) |
Si1iv—Na1—Si1 | 96.45 (3) | Na1xviii—Zr1—Na1xxi | 77.74 (2) |
Si1ii—Na1—Si1iv | 118.757 (11) | Na1iv—Zr1—Na1 | 77.74 (2) |
Si1ii—Na1—Si1iii | 118.756 (11) | Na1xviii—Zr1—Na1xx | 102.26 (2) |
Si1ii—Na1—Si1 | 96.45 (3) | Na1xviii—Zr1—Na1iii | 77.74 (2) |
O1iii—Na1—Zr1i | 138.23 (4) | O1—Zr1—Na1xviii | 135.97 (4) |
O1vii—Na1—Zr1i | 137.54 (5) | O1vii—Zr1—Na1xviii | 58.86 (4) |
O1iv—Na1—Zr1i | 35.96 (3) | O1xxi—Zr1—Na1xx | 58.86 (4) |
O1viii—Na1—Zr1i | 36.43 (3) | O1vii—Zr1—Na1iii | 63.77 (5) |
O1v—Na1—Zr1i | 86.58 (3) | O1xii—Zr1—Na1xx | 135.97 (4) |
O1vi—Na1—Zr1i | 85.84 (4) | O1xxi—Zr1—Na1 | 116.23 (5) |
O1iv—Na1—Si1 | 83.70 (5) | O1v—Zr1—Na1xx | 44.03 (4) |
O1vi—Na1—Si1 | 83.70 (5) | O1v—Zr1—Na1xviii | 116.23 (5) |
O1vii—Na1—Si1iii | 31.10 (3) | O1v—Zr1—Na1iii | 135.97 (4) |
O1vii—Na1—Si1 | 83.70 (5) | O1xii—Zr1—Na1iii | 44.03 (4) |
O1iii—Na1—Si1 | 84.83 (4) | O1xiv—Zr1—Na1xviii | 121.14 (4) |
O1v—Na1—Si1 | 84.83 (4) | O1xii—Zr1—Na1xviii | 63.77 (5) |
O1v—Na1—Si1iii | 91.85 (3) | O1xiv—Zr1—Na1iv | 58.86 (4) |
O1iii—Na1—Si1iv | 148.85 (3) | O1—Zr1—Na1iv | 44.03 (4) |
O1v—Na1—Si1ii | 148.85 (3) | O1xxi—Zr1—Na1xviii | 44.03 (4) |
O1viii—Na1—Si1 | 84.83 (4) | O1xii—Zr1—Na1 | 121.14 (4) |
O1iii—Na1—Si1ii | 91.85 (3) | O1v—Zr1—Na1iv | 63.77 (5) |
O1vii—Na1—Si1ii | 148.63 (3) | O1—Zr1—Na1iii | 58.86 (4) |
O1iv—Na1—Si1iv | 31.10 (3) | O1—Zr1—Na1xxi | 116.23 (5) |
O1viii—Na1—Si1iii | 148.85 (3) | O1xxi—Zr1—Na1iv | 135.97 (4) |
O1vi—Na1—Si1iv | 148.63 (3) | O1v—Zr1—Na1xxi | 121.14 (4) |
O1viii—Na1—Si1ii | 30.93 (3) | O1xii—Zr1—Na1iv | 116.23 (5) |
O1vii—Na1—Si1iv | 92.26 (3) | O1xii—Zr1—Na1xxi | 58.86 (4) |
O1iv—Na1—Si1ii | 92.26 (3) | O1vii—Zr1—Na1xx | 116.23 (5) |
O1viii—Na1—Si1iv | 91.85 (3) | O1vii—Zr1—Na1iv | 121.14 (4) |
O1iii—Na1—Si1iii | 30.93 (3) | O1—Zr1—Na1xx | 121.14 (4) |
O1v—Na1—Si1iv | 30.93 (3) | O1xxi—Zr1—Na1xxi | 63.77 (5) |
O1iv—Na1—Si1iii | 148.63 (3) | O1xiv—Zr1—Na1xx | 63.77 (5) |
O1vi—Na1—Si1ii | 31.10 (3) | O1vii—Zr1—Na1 | 44.03 (4) |
O1vi—Na1—Si1iii | 92.26 (3) | O1xxi—Zr1—Na1iii | 121.14 (4) |
O1vii—Na1—O1iii | 56.84 (6) | O1xiv—Zr1—Na1 | 135.97 (4) |
O1vi—Na1—O1viii | 56.84 (6) | O1vii—Zr1—Na1xxi | 135.97 (4) |
O1iv—Na1—O1vii | 118.811 (19) | O1v—Zr1—Na1 | 58.86 (4) |
O1iv—Na1—O1viii | 62.52 (6) | O1xiv—Zr1—Na1iii | 116.23 (5) |
O1vi—Na1—O1iii | 62.52 (6) | O1xiv—Zr1—Na1xxi | 44.03 (4) |
O1vi—Na1—O1v | 168.18 (9) | O1—Zr1—Na1 | 63.77 (5) |
O1v—Na1—O1iii | 119.197 (12) | O1xxi—Zr1—O1xii | 92.75 (6) |
O1vii—Na1—O1v | 62.52 (6) | O1xiv—Zr1—O1 | 87.25 (6) |
O1iv—Na1—O1v | 56.84 (6) | O1xxi—Zr1—O1xiv | 92.75 (6) |
O1vii—Na1—O1viii | 168.18 (9) | O1xxi—Zr1—O1 | 180.0 |
O1iv—Na1—O1vi | 118.810 (18) | O1xxi—Zr1—O1vii | 87.25 (6) |
O1viii—Na1—O1iii | 119.197 (13) | O1xiv—Zr1—O1v | 92.75 (6) |
O1viii—Na1—O1v | 119.196 (13) | O1—Zr1—O1xii | 87.25 (6) |
O1vi—Na1—O1vii | 118.812 (19) | O1vii—Zr1—O1xii | 92.75 (6) |
O1iv—Na1—O1iii | 168.18 (9) | O1vii—Zr1—O1v | 87.25 (6) |
O2xi—Na1—Zr1i | 115.97 (2) | O1xxi—Zr1—O1v | 87.25 (6) |
O2xi—Na1—Si1 | 180.0 | O1—Zr1—O1v | 92.75 (6) |
O2xi—Na1—Si1iv | 83.55 (3) | O1xiv—Zr1—O1xii | 87.25 (6) |
O2xi—Na1—Si1iii | 83.55 (3) | O1vii—Zr1—O1 | 92.75 (6) |
O2xi—Na1—Si1ii | 83.55 (3) | O1vii—Zr1—O1xiv | 180.0 |
O2xi—Na1—O1v | 95.17 (4) | O1v—Zr1—O1xii | 180.0 |
O2xi—Na1—O1iv | 96.30 (5) | Na1iii—Si1—Na1 | 83.55 (3) |
O2xi—Na1—O1vi | 96.30 (5) | Na1ii—Si1—Na1iii | 118.756 (11) |
O2xi—Na1—O1vii | 96.30 (5) | Na1ii—Si1—Na1 | 83.55 (3) |
O2xi—Na1—O1viii | 95.17 (4) | Na1iv—Si1—Na1 | 83.55 (3) |
O2xi—Na1—O1iii | 95.17 (4) | Na1iv—Si1—Na1iii | 118.756 (11) |
O1—Ba1—O1xiv | 59.43 (4) | Na1ii—Si1—Na1iv | 118.757 (11) |
O1xiii—Ba1—O1xv | 59.43 (4) | Na1ii—Si1—Ba1i | 67.716 (15) |
O1—Ba1—O1xvi | 120.57 (4) | Na1iv—Si1—Ba1 | 67.715 (15) |
O1—Ba1—O1xii | 59.43 (4) | Na1ii—Si1—Ba1 | 157.30 (3) |
O1xiii—Ba1—O1xiv | 120.57 (4) | Na1iv—Si1—Ba1xxii | 157.30 (3) |
O1xiv—Ba1—O1xii | 59.43 (4) | Na1iv—Si1—Ba1i | 67.716 (15) |
O1xvi—Ba1—O1xiv | 180.00 (10) | Na1—Si1—Ba1 | 119.151 (10) |
O1xvi—Ba1—O1xii | 120.57 (4) | Na1iii—Si1—Ba1xxii | 67.715 (15) |
O1xiii—Ba1—O1 | 180.0 | Na1iii—Si1—Ba1i | 157.30 (3) |
O1xiii—Ba1—O1xii | 120.57 (4) | Na1iii—Si1—Ba1 | 67.715 (15) |
O1xiii—Ba1—O1xvi | 59.43 (4) | Na1—Si1—Ba1xxii | 119.151 (10) |
O1—Ba1—O1xv | 120.57 (4) | Na1ii—Si1—Ba1xxii | 67.715 (15) |
O1xv—Ba1—O1xii | 180.00 (10) | Na1—Si1—Ba1i | 119.151 (10) |
O1xiv—Ba1—O1xv | 120.57 (4) | Ba1—Si1—Ba1xxii | 98.284 (12) |
O1xvi—Ba1—O1xv | 59.43 (4) | Ba1i—Si1—Ba1 | 98.284 (12) |
O1xiv—Ba1—O2xix | 127.30 (5) | Ba1i—Si1—Ba1xxii | 98.284 (12) |
O1xiv—Ba1—O2xvii | 80.82 (4) | O1x—Si1—Na1iii | 50.51 (5) |
O1xvi—Ba1—O2xix | 52.70 (5) | O1—Si1—Na1iii | 69.25 (5) |
O1xii—Ba1—O2 | 99.18 (4) | O1ix—Si1—Na1iii | 149.59 (7) |
O1xv—Ba1—O2xiii | 99.18 (4) | O1ix—Si1—Na1iv | 69.25 (5) |
O1—Ba1—O2xix | 80.82 (4) | O1ix—Si1—Na1ii | 50.51 (5) |
O1xiii—Ba1—O2xx | 80.82 (4) | O1—Si1—Na1 | 67.72 (6) |
O1xii—Ba1—O2xix | 71.30 (5) | O1x—Si1—Na1 | 67.72 (6) |
O1xvi—Ba1—O2xiii | 108.70 (5) | O1x—Si1—Na1ii | 69.25 (5) |
O1xiv—Ba1—O2xiii | 71.30 (5) | O1—Si1—Na1ii | 149.59 (7) |
O1xiii—Ba1—O2xix | 99.18 (4) | O1—Si1—Na1iv | 50.51 (5) |
O1—Ba1—O2xx | 99.18 (4) | O1x—Si1—Na1iv | 149.59 (7) |
O1xv—Ba1—O2xix | 108.70 (5) | O1ix—Si1—Na1 | 67.72 (6) |
O1xvi—Ba1—O2 | 71.30 (5) | O1—Si1—Ba1xxii | 134.92 (5) |
O1xvi—Ba1—O2xx | 127.30 (5) | O1—Si1—Ba1i | 117.30 (5) |
O1xiv—Ba1—O2xx | 52.70 (5) | O1—Si1—Ba1 | 52.35 (6) |
O1xv—Ba1—O2 | 80.82 (4) | O1ix—Si1—Ba1i | 52.36 (6) |
O1—Ba1—O2xiii | 127.30 (5) | O1x—Si1—Ba1 | 117.30 (5) |
O1xiv—Ba1—O2xviii | 99.18 (4) | O1ix—Si1—Ba1xxii | 117.30 (5) |
O1xii—Ba1—O2xx | 108.70 (5) | O1ix—Si1—Ba1 | 134.92 (5) |
O1xv—Ba1—O2xviii | 127.30 (5) | O1x—Si1—Ba1xxii | 52.35 (6) |
O1xii—Ba1—O2xiii | 80.82 (4) | O1x—Si1—Ba1i | 134.92 (5) |
O1xii—Ba1—O2xviii | 52.70 (5) | O1ix—Si1—O1 | 106.53 (6) |
O1xii—Ba1—O2xvii | 127.30 (5) | O1—Si1—O1x | 106.53 (6) |
O1xiii—Ba1—O2 | 127.30 (5) | O1ix—Si1—O1x | 106.53 (6) |
O1—Ba1—O2 | 52.70 (5) | O2—Si1—Na1 | 180.0 |
O1xiii—Ba1—O2xvii | 108.70 (5) | O2—Si1—Na1ii | 96.45 (3) |
O1xiii—Ba1—O2xviii | 71.30 (5) | O2—Si1—Na1iv | 96.45 (3) |
O1—Ba1—O2xvii | 71.30 (5) | O2—Si1—Na1iii | 96.45 (3) |
O1xiv—Ba1—O2 | 108.70 (5) | O2—Si1—Ba1 | 60.849 (10) |
O1xvi—Ba1—O2xvii | 99.18 (4) | O2—Si1—Ba1xxii | 60.849 (10) |
O1—Ba1—O2xviii | 108.70 (5) | O2—Si1—Ba1i | 60.849 (10) |
O1xv—Ba1—O2xvii | 52.70 (5) | O2—Si1—O1 | 112.28 (6) |
O1xiii—Ba1—O2xiii | 52.70 (5) | O2—Si1—O1ix | 112.28 (6) |
O1xvi—Ba1—O2xviii | 80.82 (4) | O2—Si1—O1x | 112.28 (6) |
O1xv—Ba1—O2xx | 71.30 (5) | Na1iv—O1—Na1iii | 168.17 (9) |
O2xvii—Ba1—O2xix | 119.741 (7) | Na1iv—O1—Ba1 | 89.26 (5) |
O2xvii—Ba1—O2xx | 60.259 (7) | Ba1—O1—Na1iii | 79.67 (4) |
O2xviii—Ba1—O2xiii | 60.259 (7) | Zr1—O1—Na1iv | 100.01 (6) |
O2xvii—Ba1—O2xiii | 119.741 (7) | Zr1—O1—Na1iii | 84.71 (5) |
O2—Ba1—O2xx | 119.740 (7) | Zr1—O1—Ba1 | 92.27 (5) |
O2xiii—Ba1—O2xx | 60.260 (7) | Si1—O1—Na1iii | 79.82 (5) |
O2xiii—Ba1—O2xix | 119.740 (7) | Si1—O1—Na1iv | 98.38 (6) |
O2xviii—Ba1—O2xix | 60.259 (7) | Si1—O1—Ba1 | 100.86 (7) |
O2—Ba1—O2xiii | 180.0 | Si1—O1—Zr1 | 157.49 (9) |
O2xviii—Ba1—O2xx | 119.741 (7) | Na1xxiii—O2—Ba1xxii | 87.07 (4) |
O2xvii—Ba1—O2 | 60.259 (7) | Na1xxiii—O2—Ba1 | 87.07 (4) |
O2—Ba1—O2xix | 60.260 (7) | Na1xxiii—O2—Ba1i | 87.07 (4) |
O2xviii—Ba1—O2 | 119.741 (7) | Ba1—O2—Ba1xxii | 119.741 (7) |
O2xvii—Ba1—O2xviii | 180.00 (8) | Ba1i—O2—Ba1 | 119.741 (7) |
O2xix—Ba1—O2xx | 180.00 (8) | Ba1i—O2—Ba1xxii | 119.741 (7) |
Na1iv—Zr1—Na1xx | 77.74 (2) | Si1—O2—Na1xxiii | 180.0 |
Na1—Zr1—Na1xx | 102.26 (2) | Si1—O2—Ba1i | 92.93 (4) |
Na1xviii—Zr1—Na1 | 102.26 (2) | Si1—O2—Ba1xxii | 92.93 (4) |
Na1iv—Zr1—Na1xxi | 102.26 (2) | Si1—O2—Ba1 | 92.93 (4) |
Na1xxi—Zr1—Na1xx | 77.74 (2) | ||
Na1ii—Si1—O1—Na1iv | 80.07 (11) | Ba1i—Si1—O1—Zr1 | −156.5 (2) |
Na1—Si1—O1—Na1iv | 100.39 (6) | Ba1—Si1—O1—Zr1 | 124.6 (3) |
Na1iii—Si1—O1—Na1iv | −168.16 (9) | Ba1xxii—Si1—O1—Zr1 | 65.4 (3) |
Na1—Si1—O1—Na1iii | −91.46 (4) | Ba1—Si1—O2—Ba1xxii | −120.0 |
Na1iv—Si1—O1—Na1iii | 168.16 (9) | Ba1i—Si1—O2—Ba1 | −120.000 (1) |
Na1ii—Si1—O1—Na1iii | −111.77 (9) | Ba1xxii—Si1—O2—Ba1 | 120.0 |
Na1—Si1—O1—Ba1 | −168.75 (6) | Ba1i—Si1—O2—Ba1xxii | 120.000 (1) |
Na1iv—Si1—O1—Ba1 | 90.86 (7) | Ba1xxii—Si1—O2—Ba1i | −120.0 |
Na1iii—Si1—O1—Ba1 | −77.30 (5) | Ba1—Si1—O2—Ba1i | 120.0 |
Na1ii—Si1—O1—Ba1 | 170.93 (5) | O1ix—Si1—O1—Na1iii | −148.17 (6) |
Na1iii—Si1—O1—Zr1 | 47.3 (2) | O1x—Si1—O1—Na1iii | −34.74 (9) |
Na1—Si1—O1—Zr1 | −44.1 (2) | O1ix—Si1—O1—Na1iv | 43.67 (12) |
Na1ii—Si1—O1—Zr1 | −64.5 (3) | O1x—Si1—O1—Na1iv | 157.10 (5) |
Na1iv—Si1—O1—Zr1 | −144.5 (3) | O1ix—Si1—O1—Ba1 | 134.53 (8) |
Na1iv—Si1—O2—Ba1 | −60.0 | O1x—Si1—O1—Ba1 | −112.04 (9) |
Na1iii—Si1—O2—Ba1i | 180.0 | O1ix—Si1—O1—Zr1 | −100.85 (18) |
Na1ii—Si1—O2—Ba1 | 180.0 | O1x—Si1—O1—Zr1 | 12.6 (3) |
Na1ii—Si1—O2—Ba1xxii | 60.0 | O1ix—Si1—O2—Ba1xxii | 109.82 (5) |
Na1iv—Si1—O2—Ba1xxii | 180.000 (1) | O1x—Si1—O2—Ba1 | 109.81 (5) |
Na1iii—Si1—O2—Ba1xxii | −60.0 | O1—Si1—O2—Ba1 | −10.18 (5) |
Na1iv—Si1—O2—Ba1i | 60.0 | O1ix—Si1—O2—Ba1i | −10.18 (5) |
Na1iii—Si1—O2—Ba1 | 60.0 | O1x—Si1—O2—Ba1xxii | −10.19 (5) |
Na1ii—Si1—O2—Ba1i | −60.000 (1) | O1x—Si1—O2—Ba1i | −130.19 (5) |
Ba1—Si1—O1—Na1iv | −90.86 (7) | O1—Si1—O2—Ba1i | 109.82 (5) |
Ba1xxii—Si1—O1—Na1iii | 18.11 (8) | O1ix—Si1—O2—Ba1 | −130.18 (5) |
Ba1i—Si1—O1—Na1iv | −12.01 (8) | O1—Si1—O2—Ba1xxii | −130.18 (5) |
Ba1—Si1—O1—Na1iii | 77.30 (5) | O2—Si1—O1—Na1iv | −79.61 (6) |
Ba1i—Si1—O1—Na1iii | 156.15 (4) | O2—Si1—O1—Na1iii | 88.54 (4) |
Ba1xxii—Si1—O1—Na1iv | −150.05 (5) | O2—Si1—O1—Ba1 | 11.25 (6) |
Ba1i—Si1—O1—Ba1 | 78.85 (6) | O2—Si1—O1—Zr1 | 135.9 (2) |
Ba1xxii—Si1—O1—Ba1 | −59.19 (9) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x−y, x, −z+1; (vi) x−y+1, x+1, −z+1; (vii) y, −x+y, −z+1; (viii) y, −x+y+1, −z+1; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) x, y, z+1; (xii) −x+y, −x, z; (xiii) −x, −y, −z; (xiv) −y, x−y, z; (xv) x−y, x, −z; (xvi) y, −x+y, −z; (xvii) −x, −y+1, −z; (xviii) x, y−1, z; (xix) −x+1, −y+1, −z; (xx) x−1, y−1, z; (xxi) −x, −y, −z+1; (xxii) x+1, y+1, z; (xxiii) x, y, z−1. |
Na2BaHf[SiO4]2 | Dx = 5.007 Mg m−3 |
Mr = 545.99 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, P3 | Cell parameters from 7145 reflections |
a = 5.3889 (2) Å | θ = 2.8–51.0° |
c = 7.1996 (2) Å | µ = 20.19 mm−1 |
V = 181.07 (1) Å3 | T = 293 K |
Z = 1 | Plate, colourless |
F(000) = 242 | 0.03 × 0.03 × 0.01 mm |
ROD, Synergy Custom system, HyPix-Arc 150 diffractometer | 538 independent reflections |
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source | 532 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.045 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 35.0°, θmin = 2.8° |
ω scans | h = −8→7 |
Absorption correction: gaussian (CrysAlisPro; Rigaku OD, 2023) | k = −8→8 |
Tmin = 0.641, Tmax = 0.883 | l = −11→11 |
8609 measured reflections |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: dual |
R[F2 > 2σ(F2)] = 0.010 | w = 1/[σ2(Fo2) + (0.0035P)2 + 0.1631P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.024 | (Δ/σ)max < 0.001 |
S = 1.11 | Δρmax = 0.61 e Å−3 |
538 reflections | Δρmin = −0.60 e Å−3 |
24 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.623 (4) 0.377 (4) |
x | y | z | Uiso*/Ueq | ||
Na1 | 0.333333 | 0.666667 | 0.7096 (2) | 0.0148 (2) | |
Ba1 | 0.000000 | 0.000000 | 0.000000 | 0.01327 (5) | |
Hf1 | 0.000000 | 0.000000 | 0.500000 | 0.00516 (4) | |
Si1 | 0.333333 | 0.666667 | 0.24191 (11) | 0.00532 (12) | |
O1 | 0.1238 (3) | 0.3468 (3) | 0.3269 (2) | 0.0118 (4) | |
O2 | 0.333333 | 0.666667 | 0.0232 (3) | 0.0187 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Na1 | 0.0142 (4) | 0.0142 (4) | 0.0159 (6) | 0.00710 (18) | 0.000 | 0.000 |
Ba1 | 0.01685 (8) | 0.01685 (8) | 0.00611 (10) | 0.00842 (4) | 0.000 | 0.000 |
Hf1 | 0.00461 (5) | 0.00461 (5) | 0.00626 (7) | 0.00231 (2) | 0.000 | 0.000 |
Si1 | 0.00477 (18) | 0.00477 (18) | 0.0064 (3) | 0.00239 (9) | 0.000 | 0.000 |
O1 | 0.0111 (9) | 0.0074 (6) | 0.0146 (7) | 0.0030 (5) | 0.0012 (5) | 0.0043 (5) |
O2 | 0.0245 (7) | 0.0245 (7) | 0.0073 (9) | 0.0122 (4) | 0.000 | 0.000 |
Na1—Hf1i | 3.4579 (6) | Ba1—O1xv | 2.8687 (16) |
Na1—Si1 | 3.3670 (16) | Ba1—O1xvi | 2.8687 (16) |
Na1—Si1ii | 3.1308 (2) | Ba1—O2xvii | 3.1157 (2) |
Na1—Si1iii | 3.1308 (2) | Ba1—O2xviii | 3.1158 (2) |
Na1—Si1iv | 3.1308 (2) | Ba1—O2xiv | 3.1158 (2) |
Na1—O1v | 2.4423 (15) | Ba1—O2xix | 3.1157 (2) |
Na1—O1iv | 2.4423 (15) | Ba1—O2 | 3.1158 (2) |
Na1—O1vi | 2.4423 (15) | Ba1—O2xx | 3.1158 (2) |
Na1—O1vii | 2.9738 (15) | Hf1—O1v | 2.0600 (15) |
Na1—O1viii | 2.9738 (15) | Hf1—O1xxi | 2.0600 (15) |
Na1—O1iii | 2.9738 (15) | Hf1—O1xiii | 2.0600 (15) |
Na1—O1 | 3.145 (2) | Hf1—O1 | 2.0600 (15) |
Na1—O1ix | 3.145 (2) | Hf1—O1vii | 2.0600 (15) |
Na1—O1x | 3.145 (2) | Hf1—O1xvi | 2.0600 (15) |
Na1—O2xi | 2.258 (3) | Si1—O1x | 1.6354 (16) |
Ba1—O1xii | 2.8687 (16) | Si1—O1 | 1.6354 (16) |
Ba1—O1xiii | 2.8687 (16) | Si1—O1ix | 1.6354 (16) |
Ba1—O1xiv | 2.8687 (16) | Si1—O2 | 1.575 (2) |
Ba1—O1 | 2.8687 (16) | ||
Si1iii—Na1—Hf1i | 160.53 (5) | Na1xix—Hf1—Na1iv | 180.0 |
Si1ii—Na1—Hf1i | 66.522 (10) | Na1xix—Hf1—Na1xxi | 77.62 (3) |
Si1iv—Na1—Hf1i | 66.522 (10) | Na1xix—Hf1—Na1iii | 77.62 (3) |
Si1—Na1—Hf1i | 64.13 (2) | Na1—Hf1—Na1xxi | 180.0 |
Si1ii—Na1—Si1iii | 118.773 (12) | Na1—Hf1—Na1iii | 77.62 (3) |
Si1ii—Na1—Si1iv | 118.773 (12) | Na1iv—Hf1—Na1xx | 77.62 (3) |
Si1iv—Na1—Si1iii | 118.773 (12) | Na1xxi—Hf1—Na1iii | 102.38 (3) |
Si1ii—Na1—Si1 | 96.40 (3) | Na1xxi—Hf1—Na1xx | 77.62 (3) |
Si1iv—Na1—Si1 | 96.40 (3) | Na1xix—Hf1—Na1 | 102.38 (3) |
Si1iii—Na1—Si1 | 96.40 (3) | Na1iv—Hf1—Na1 | 77.62 (3) |
O1iii—Na1—Hf1i | 138.33 (5) | O1vii—Hf1—Na1xix | 116.29 (5) |
O1viii—Na1—Hf1i | 36.38 (3) | O1xvi—Hf1—Na1xx | 63.71 (5) |
O1vii—Na1—Hf1i | 86.70 (3) | O1v—Hf1—Na1 | 44.07 (4) |
O1iv—Na1—Hf1i | 35.92 (4) | O1xiii—Hf1—Na1xix | 63.71 (5) |
O1v—Na1—Hf1i | 137.65 (5) | O1xxi—Hf1—Na1xx | 58.91 (4) |
O1vi—Na1—Hf1i | 85.99 (4) | O1xxi—Hf1—Na1xix | 44.07 (4) |
O1iv—Na1—Si1ii | 92.15 (4) | O1vii—Hf1—Na1iv | 63.71 (5) |
O1iii—Na1—Si1iii | 30.94 (3) | O1xxi—Hf1—Na1 | 116.29 (5) |
O1iv—Na1—Si1iii | 148.71 (4) | O1vii—Hf1—Na1xx | 44.07 (4) |
O1vi—Na1—Si1ii | 31.12 (4) | O1v—Hf1—Na1iv | 121.09 (4) |
O1viii—Na1—Si1 | 84.93 (4) | O1xxi—Hf1—Na1iv | 135.93 (4) |
O1v—Na1—Si1ii | 148.71 (4) | O1xvi—Hf1—Na1iii | 116.29 (5) |
O1viii—Na1—Si1iii | 148.92 (3) | O1vii—Hf1—Na1iii | 135.93 (4) |
O1viii—Na1—Si1ii | 30.94 (3) | O1—Hf1—Na1iii | 58.91 (4) |
O1vi—Na1—Si1 | 83.83 (5) | O1v—Hf1—Na1xx | 116.29 (5) |
O1vii—Na1—Si1ii | 148.92 (3) | O1xvi—Hf1—Na1xxi | 44.07 (4) |
O1iii—Na1—Si1 | 84.93 (4) | O1—Hf1—Na1xx | 121.09 (4) |
O1iii—Na1—Si1ii | 91.76 (3) | O1—Hf1—Na1xxi | 116.29 (5) |
O1v—Na1—Si1iii | 31.12 (4) | O1xiii—Hf1—Na1xx | 135.93 (4) |
O1iv—Na1—Si1iv | 31.12 (4) | O1vii—Hf1—Na1xxi | 121.09 (4) |
O1vii—Na1—Si1iii | 91.76 (3) | O1xxi—Hf1—Na1iii | 121.09 (4) |
O1vi—Na1—Si1iv | 148.71 (4) | O1xiii—Hf1—Na1xxi | 58.91 (4) |
O1iv—Na1—Si1 | 83.83 (5) | O1—Hf1—Na1xix | 135.93 (4) |
O1v—Na1—Si1iv | 92.15 (4) | O1xxi—Hf1—Na1xxi | 63.71 (5) |
O1v—Na1—Si1 | 83.83 (5) | O1v—Hf1—Na1iii | 63.71 (5) |
O1viii—Na1—Si1iv | 91.76 (3) | O1xvi—Hf1—Na1iv | 58.91 (4) |
O1vii—Na1—Si1 | 84.93 (4) | O1—Hf1—Na1iv | 44.07 (4) |
O1vii—Na1—Si1iv | 30.94 (3) | O1v—Hf1—Na1xxi | 135.93 (4) |
O1iii—Na1—Si1iv | 148.92 (3) | O1xiii—Hf1—Na1iii | 44.07 (4) |
O1vi—Na1—Si1iii | 92.15 (4) | O1xvi—Hf1—Na1 | 135.93 (4) |
O1v—Na1—O1iii | 57.02 (7) | O1v—Hf1—Na1xix | 58.91 (4) |
O1iv—Na1—O1viii | 62.36 (7) | O1—Hf1—Na1 | 63.71 (5) |
O1vi—Na1—O1vii | 168.44 (9) | O1xvi—Hf1—Na1xix | 121.09 (4) |
O1v—Na1—O1vii | 62.36 (7) | O1vii—Hf1—Na1 | 58.91 (4) |
O1v—Na1—O1viii | 168.44 (9) | O1xiii—Hf1—Na1 | 121.09 (4) |
O1viii—Na1—O1iii | 119.229 (13) | O1xiii—Hf1—Na1iv | 116.29 (5) |
O1vi—Na1—O1v | 118.859 (19) | O1v—Hf1—O1xxi | 87.19 (7) |
O1vii—Na1—O1iii | 119.229 (13) | O1v—Hf1—O1vii | 87.19 (7) |
O1vi—Na1—O1viii | 57.02 (7) | O1—Hf1—O1xiii | 87.19 (7) |
O1iv—Na1—O1iii | 168.44 (9) | O1xvi—Hf1—O1xxi | 92.81 (7) |
O1iv—Na1—O1vii | 57.02 (7) | O1v—Hf1—O1xiii | 92.81 (7) |
O1vi—Na1—O1iii | 62.36 (7) | O1—Hf1—O1xxi | 180.0 |
O1iv—Na1—O1vi | 118.859 (19) | O1xvi—Hf1—O1 | 87.19 (7) |
O1iv—Na1—O1v | 118.859 (19) | O1vii—Hf1—O1xxi | 87.19 (7) |
O1viii—Na1—O1vii | 119.229 (13) | O1—Hf1—O1vii | 92.81 (7) |
O2xi—Na1—Hf1i | 115.87 (2) | O1xiii—Hf1—O1xxi | 92.81 (7) |
O2xi—Na1—Si1iii | 83.60 (3) | O1xvi—Hf1—O1xiii | 87.19 (7) |
O2xi—Na1—Si1 | 180.0 | O1v—Hf1—O1xvi | 180.0 |
O2xi—Na1—Si1iv | 83.60 (3) | O1vii—Hf1—O1xiii | 180.0 |
O2xi—Na1—Si1ii | 83.60 (3) | O1v—Hf1—O1 | 92.81 (7) |
O2xi—Na1—O1vii | 95.07 (4) | O1xvi—Hf1—O1vii | 92.81 (7) |
O2xi—Na1—O1v | 96.17 (5) | Na1ii—Si1—Na1iv | 118.773 (12) |
O2xi—Na1—O1viii | 95.07 (4) | Na1iii—Si1—Na1 | 83.60 (3) |
O2xi—Na1—O1vi | 96.17 (5) | Na1iv—Si1—Na1 | 83.60 (3) |
O2xi—Na1—O1iv | 96.17 (5) | Na1iv—Si1—Na1iii | 118.772 (12) |
O2xi—Na1—O1iii | 95.07 (4) | Na1ii—Si1—Na1 | 83.60 (3) |
O1xiii—Ba1—O1 | 59.36 (5) | Na1ii—Si1—Na1iii | 118.772 (12) |
O1xiv—Ba1—O1 | 180.0 | Na1ii—Si1—Ba1i | 67.724 (16) |
O1xv—Ba1—O1xvi | 120.64 (5) | Na1iv—Si1—Ba1xxii | 157.16 (4) |
O1xii—Ba1—O1xvi | 180.00 (8) | Na1—Si1—Ba1 | 119.240 (11) |
O1xiv—Ba1—O1xvi | 120.64 (5) | Na1iii—Si1—Ba1i | 157.16 (4) |
O1xiv—Ba1—O1xii | 59.36 (5) | Na1—Si1—Ba1xxii | 119.240 (11) |
O1xiii—Ba1—O1xvi | 59.36 (5) | Na1—Si1—Ba1i | 119.240 (11) |
O1xv—Ba1—O1xii | 59.36 (5) | Na1ii—Si1—Ba1xxii | 67.723 (16) |
O1xiii—Ba1—O1xii | 120.64 (5) | Na1ii—Si1—Ba1 | 157.16 (4) |
O1xv—Ba1—O1 | 120.64 (5) | Na1iii—Si1—Ba1xxii | 67.723 (16) |
O1xiv—Ba1—O1xv | 59.36 (5) | Na1iv—Si1—Ba1 | 67.723 (16) |
O1xii—Ba1—O1 | 120.64 (5) | Na1iii—Si1—Ba1 | 67.723 (16) |
O1xiv—Ba1—O1xiii | 120.64 (5) | Na1iv—Si1—Ba1i | 67.724 (16) |
O1xv—Ba1—O1xiii | 180.00 (10) | Ba1—Si1—Ba1xxii | 98.169 (14) |
O1xvi—Ba1—O1 | 59.36 (5) | Ba1i—Si1—Ba1 | 98.169 (14) |
O1xii—Ba1—O2xviii | 52.61 (5) | Ba1i—Si1—Ba1xxii | 98.169 (14) |
O1—Ba1—O2 | 52.61 (5) | O1ix—Si1—Na1ii | 50.52 (5) |
O1xv—Ba1—O2xviii | 108.55 (5) | O1x—Si1—Na1 | 68.03 (6) |
O1—Ba1—O2xviii | 80.96 (5) | O1—Si1—Na1ii | 149.93 (7) |
O1xii—Ba1—O2xiv | 108.55 (5) | O1x—Si1—Na1iv | 149.94 (7) |
O1xv—Ba1—O2xx | 71.45 (5) | O1ix—Si1—Na1iv | 69.22 (5) |
O1xiii—Ba1—O2 | 99.04 (5) | O1ix—Si1—Na1iii | 149.94 (7) |
O1xii—Ba1—O2xx | 127.39 (5) | O1—Si1—Na1 | 68.03 (6) |
O1xv—Ba1—O2xiv | 99.04 (5) | O1—Si1—Na1iii | 69.22 (5) |
O1—Ba1—O2xx | 99.04 (5) | O1x—Si1—Na1ii | 69.22 (5) |
O1—Ba1—O2xiv | 127.39 (5) | O1x—Si1—Na1iii | 50.51 (5) |
O1—Ba1—O2xvii | 71.45 (5) | O1—Si1—Na1iv | 50.51 (5) |
O1xv—Ba1—O2 | 80.96 (5) | O1ix—Si1—Na1 | 68.03 (6) |
O1xiv—Ba1—O2xix | 71.45 (5) | O1—Si1—Ba1xxii | 134.78 (5) |
O1xii—Ba1—O2 | 71.45 (5) | O1ix—Si1—Ba1i | 52.13 (6) |
O1xv—Ba1—O2xix | 127.39 (5) | O1ix—Si1—Ba1xxii | 117.23 (5) |
O1xiv—Ba1—O2xiv | 52.61 (5) | O1x—Si1—Ba1xxii | 52.13 (6) |
O1xiii—Ba1—O2xix | 52.61 (5) | O1—Si1—Ba1i | 117.23 (5) |
O1xiii—Ba1—O2xiv | 80.96 (5) | O1x—Si1—Ba1 | 117.23 (5) |
O1xii—Ba1—O2xix | 80.96 (5) | O1—Si1—Ba1 | 52.13 (6) |
O1xvi—Ba1—O2xiv | 71.45 (5) | O1x—Si1—Ba1i | 134.78 (5) |
O1xvi—Ba1—O2xix | 99.04 (5) | O1ix—Si1—Ba1 | 134.78 (6) |
O1xiv—Ba1—O2xviii | 99.04 (5) | O1ix—Si1—O1 | 106.86 (7) |
O1—Ba1—O2xix | 108.55 (5) | O1—Si1—O1x | 106.86 (7) |
O1xiii—Ba1—O2xviii | 71.45 (5) | O1ix—Si1—O1x | 106.86 (7) |
O1xiv—Ba1—O2 | 127.39 (5) | O2—Si1—Na1 | 180.0 |
O1xvi—Ba1—O2xviii | 127.39 (5) | O2—Si1—Na1iii | 96.40 (3) |
O1xiv—Ba1—O2xvii | 108.55 (5) | O2—Si1—Na1iv | 96.40 (3) |
O1xiv—Ba1—O2xx | 80.96 (5) | O2—Si1—Na1ii | 96.40 (3) |
O1xv—Ba1—O2xvii | 52.61 (5) | O2—Si1—Ba1 | 60.760 (11) |
O1xiii—Ba1—O2xx | 108.55 (5) | O2—Si1—Ba1xxii | 60.760 (11) |
O1xiii—Ba1—O2xvii | 127.39 (5) | O2—Si1—Ba1i | 60.760 (11) |
O1xvi—Ba1—O2xx | 52.61 (5) | O2—Si1—O1 | 111.97 (6) |
O1xii—Ba1—O2xvii | 99.04 (5) | O2—Si1—O1x | 111.97 (6) |
O1xvi—Ba1—O2xvii | 80.96 (5) | O2—Si1—O1ix | 111.97 (6) |
O1xvi—Ba1—O2 | 108.55 (5) | Na1iv—O1—Na1iii | 168.44 (9) |
O2xvii—Ba1—O2xviii | 119.716 (8) | Na1iv—O1—Ba1 | 89.42 (6) |
O2xvii—Ba1—O2xiv | 119.716 (8) | Ba1—O1—Na1iii | 79.80 (5) |
O2xiv—Ba1—O2xx | 60.285 (8) | Hf1—O1—Na1iii | 84.71 (5) |
O2xix—Ba1—O2xviii | 60.284 (8) | Hf1—O1—Na1iv | 100.01 (6) |
O2xix—Ba1—O2xx | 119.716 (8) | Hf1—O1—Ba1 | 92.35 (6) |
O2—Ba1—O2xviii | 60.285 (8) | Si1—O1—Na1iv | 98.37 (7) |
O2xvii—Ba1—O2xix | 180.0 | Si1—O1—Na1iii | 79.84 (6) |
O2xiv—Ba1—O2xviii | 119.715 (8) | Si1—O1—Ba1 | 101.12 (7) |
O2xvii—Ba1—O2xx | 60.284 (8) | Si1—O1—Hf1 | 157.27 (10) |
O2—Ba1—O2xiv | 180.0 | Na1xxiii—O2—Ba1xxii | 86.93 (4) |
O2—Ba1—O2xx | 119.715 (8) | Na1xxiii—O2—Ba1i | 86.93 (4) |
O2xvii—Ba1—O2 | 60.285 (8) | Na1xxiii—O2—Ba1 | 86.93 (4) |
O2xix—Ba1—O2xiv | 60.284 (8) | Ba1i—O2—Ba1xxii | 119.715 (8) |
O2xix—Ba1—O2 | 119.715 (8) | Ba1—O2—Ba1xxii | 119.715 (8) |
O2xviii—Ba1—O2xx | 180.0 | Ba1i—O2—Ba1 | 119.715 (8) |
Na1iv—Hf1—Na1iii | 102.38 (3) | Si1—O2—Na1xxiii | 180.0 |
Na1iv—Hf1—Na1xxi | 102.38 (3) | Si1—O2—Ba1 | 93.07 (4) |
Na1—Hf1—Na1xx | 102.38 (3) | Si1—O2—Ba1i | 93.07 (4) |
Na1xx—Hf1—Na1iii | 180.0 | Si1—O2—Ba1xxii | 93.07 (4) |
Na1xix—Hf1—Na1xx | 102.38 (3) | ||
Na1ii—Si1—O1—Na1iv | 79.72 (11) | Ba1i—Si1—O1—Hf1 | −156.1 (2) |
Na1—Si1—O1—Na1iii | −91.40 (4) | Ba1—Si1—O1—Hf1 | 125.3 (3) |
Na1iv—Si1—O1—Na1iii | 168.43 (9) | Ba1xxii—Si1—O1—Hf1 | 66.5 (3) |
Na1iii—Si1—O1—Na1iv | −168.43 (9) | Ba1xxii—Si1—O2—Ba1i | −120.0 |
Na1ii—Si1—O1—Na1iii | −111.84 (10) | Ba1xxii—Si1—O2—Ba1 | 120.0 |
Na1—Si1—O1—Na1iv | 100.17 (6) | Ba1i—Si1—O2—Ba1 | −120.000 (1) |
Na1ii—Si1—O1—Ba1 | 170.78 (6) | Ba1—Si1—O2—Ba1i | 120.0 |
Na1—Si1—O1—Ba1 | −168.78 (6) | Ba1—Si1—O2—Ba1xxii | −120.0 |
Na1iii—Si1—O1—Ba1 | −77.38 (5) | Ba1i—Si1—O2—Ba1xxii | 120.0 |
Na1iv—Si1—O1—Ba1 | 91.06 (7) | O1ix—Si1—O1—Na1iii | −148.46 (7) |
Na1iv—Si1—O1—Hf1 | −143.7 (3) | O1ix—Si1—O1—Na1iv | 43.11 (12) |
Na1iii—Si1—O1—Hf1 | 47.9 (2) | O1x—Si1—O1—Na1iv | 157.23 (5) |
Na1ii—Si1—O1—Hf1 | −63.9 (3) | O1x—Si1—O1—Na1iii | −34.34 (9) |
Na1—Si1—O1—Hf1 | −43.5 (2) | O1ix—Si1—O1—Ba1 | 134.17 (9) |
Na1ii—Si1—O2—Ba1i | −60.000 (1) | O1x—Si1—O1—Ba1 | −111.72 (10) |
Na1iv—Si1—O2—Ba1 | −60.0 | O1ix—Si1—O1—Hf1 | −100.56 (19) |
Na1ii—Si1—O2—Ba1xxii | 60.0 | O1x—Si1—O1—Hf1 | 13.6 (3) |
Na1iii—Si1—O2—Ba1xxii | −60.0 | O1ix—Si1—O2—Ba1i | −10.14 (6) |
Na1iii—Si1—O2—Ba1 | 60.0 | O1x—Si1—O2—Ba1i | −130.14 (6) |
Na1iii—Si1—O2—Ba1i | 180.0 | O1ix—Si1—O2—Ba1 | −130.14 (6) |
Na1iv—Si1—O2—Ba1xxii | 180.000 (1) | O1—Si1—O2—Ba1 | −10.14 (6) |
Na1ii—Si1—O2—Ba1 | 180.0 | O1x—Si1—O2—Ba1 | 109.86 (6) |
Na1iv—Si1—O2—Ba1i | 60.0 | O1—Si1—O2—Ba1xxii | −130.14 (6) |
Ba1—Si1—O1—Na1iv | −91.06 (7) | O1x—Si1—O2—Ba1xxii | −10.14 (6) |
Ba1—Si1—O1—Na1iii | 77.38 (5) | O1ix—Si1—O2—Ba1xxii | 109.86 (6) |
Ba1i—Si1—O1—Na1iii | 155.97 (4) | O1—Si1—O2—Ba1i | 109.86 (6) |
Ba1xxii—Si1—O1—Na1iv | −149.85 (6) | O2—Si1—O1—Na1iv | −79.83 (6) |
Ba1i—Si1—O1—Na1iv | −12.46 (9) | O2—Si1—O1—Na1iii | 88.60 (4) |
Ba1xxii—Si1—O1—Na1iii | 18.58 (9) | O2—Si1—O1—Ba1 | 11.22 (6) |
Ba1i—Si1—O1—Ba1 | 78.60 (6) | O2—Si1—O1—Hf1 | 136.5 (2) |
Ba1xxii—Si1—O1—Ba1 | −58.80 (9) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) y, −x+y, −z+1; (vi) x−y+1, x+1, −z+1; (vii) x−y, x, −z+1; (viii) y, −x+y+1, −z+1; (ix) −x+y, −x+1, z; (x) −y+1, x−y+1, z; (xi) x, y, z+1; (xii) y, −x+y, −z; (xiii) −x+y, −x, z; (xiv) −x, −y, −z; (xv) x−y, x, −z; (xvi) −y, x−y, z; (xvii) −x, −y+1, −z; (xviii) −x+1, −y+1, −z; (xix) x, y−1, z; (xx) x−1, y−1, z; (xxi) −x, −y, −z+1; (xxii) x+1, y+1, z; (xxiii) x, y, z−1. |
Funding information
Funding for this research was provided by: JST, the Core Research for Evolutionary Science and Technology (grant No. JPMJCR19J2); Innovative Science and Technology Initiative for Security (grant No. JPJ004596).
References
Avdeev, M., Xia, Q., Sale, M., Allison, M. & Ling, C. D. (2018). J. Solid State Chem. 266, 1–8. Google Scholar
Birkel, A., DeCino, N. A., Cozzan, C., Mikhailovsky, A. A., Hong, B.-C. & Seshadri, R. (2015). Solid State Sci. 48, 82–89. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. Web of Science CrossRef IUCr Journals Google Scholar
Gualtieri, A., Norby, P., Hanson, J. & Hriljac, J. (1996). J. Appl. Cryst. 29, 707–713. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Hoppe, R. (1995). Z. Naturforsch., A: Phys. Sci. 50, 555. Google Scholar
ICSD (2025). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany. Google Scholar
Iwata, T., Horie, T. & Fukuda, K. (2009). Powder Diffr. 24, 180–184. Google Scholar
Kostov-Kytin, V., Nikolova, R., Kerestedjian, T. & Bezdicka, P. (2013). Mater. Res. Bull. 48, 2029–2033. Google Scholar
Kostov-Kytin, V. V., Nikolova, R. P. & Nihtianova, D. D. (2012). Mater. Res. Bull. 47, 2324–2331. Google Scholar
Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mumme, W., Cranswick, L. & Chakoumakos, B. (1996). Neues Jahrb. Mineral. Abh. 170, 171–188. CAS Google Scholar
Nikolova, R. & Kostov-Kytin, V. (2013). Bulg. Chem. Commun. 45, 418–426. Google Scholar
Pant, A. K. & Cruickshank, D. W. J. (1968). Acta Cryst. B24, 13–19. CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
Park, C.-H., Hong, S.-T. & Keszler, D. A. (2009). J. Solid State Chem. 182, 496–501. Google Scholar
Park, C.-H., Kim, T.-H., Yonesaki, Y. & Kumada, N. (2011). J. Solid State Chem. 184, 1566–1570. Google Scholar
Pathak, S., Das, P., Das, T., Mandal, G., Joseph, B., Sahu, M., Kaushik, S. D. & Siruguri, V. (2020). Acta Cryst. C76, 1034–1042. CrossRef ICSD IUCr Journals Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yamagishi, S., Hayashida, T., Misawa, R., Kimura, K., Hagihala, M., Murata, T., Hirose, S. & Kimura, T. (2023). Chem. Mater. 35, 747–754. Google Scholar
Yonesaki, Y. (2013). J. Solid State Chem. 201, 324–329. Google Scholar
Yonesaki, Y., Dong, Q., Mohamad, N. S. B., Miura, A., Takei, T., Yamanaka, J., Kumada, N. & Kinomura, N. (2011). J. Alloys Compd. 509, 8738–8741. Google Scholar
Yonesaki, Y., Takei, T., Kumada, N. & Kinomura, N. (2008). J. Lumin. 128, 1507–1514. Google Scholar
Yonezaki, Y. (2015). Powder Diffr. 30, 40–51. Google Scholar
Yonezaki, Y. (2018). J. Lumin. 195, 408–412. Google Scholar
Yonezaki, Y. (2020). J. Photochem. Photobiol. Chem. 398, 112645. Google Scholar
Yonezaki, Y. & Takei, S. (2016). J. Lumin. 173, 237–242. Google Scholar
Yonezaki, Y., Takei, S. & Matsumoto, S. (2018). J. Photochem. Photobiol. Chem. 367, 406–410. Google Scholar
Yonezaki, Y. & Yanai, R. (2021). J. Alloys Compd. 876, 160111. Google Scholar
Zollweg, R. J. (1955). Phys. Rev. 100, 671–673. CrossRef ICSD CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.