research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Orthosilicates with glaserite-type crystal structures: Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2

crossmark logo

aResearch Center for Electronic and Optical Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
*Correspondence e-mail: takeda.takashi@nims.go.jp

Edited by M. Weil, Vienna University of Technology, Austria (Received 28 February 2025; accepted 2 April 2025; online 4 April 2025)

Single crystal particles of Na2BaZr[SiO4]2 [systematic name: disodium barium zirconium bis­(orthosilicate)] and Na2BaHf[SiO4]2 [disodium barium hafnium bis­(orthosilicate)] were extracted from grain-grown polycrystals obtained by heating compacts of binary oxide mixtures at 1473 K. Single crystal X-ray diffraction analysis revealed that these are isostructural orthosilicates with a glaserite-type crystal structure, in which all sites of X, Y, M, and T in the general formula XY2[M(TO4)2] are fully occupied by atoms of different elements. The crystal structures of the title compounds were refined in space group P3 under consideration of a two-component twin model. The SiO4 tetra­hedra are rotated approximately ±10.2° from the mirror plane of space group P3m around an axis parallel to [001].

1. Chemical context

Nikolova & Kostov-Kytin (2013[Nikolova, R. & Kostov-Kytin, V. (2013). Bulg. Chem. Commun. 45, 418-426.]) described more than 100 oxides with glaserite-type crystal structures by the general formula X(□;1)Y(□;2)[M(TO4)2] and summarized their crystal structural features: the T sites are always fully occupied by the atoms of transition metals (V, Cr, Mo, W, Re, Fe, Ru) or non-metals (Si, P, S, Se). These T atoms are fourfold coordinated by oxygen atoms to form isolated tetra­hedra in the crystal structures. Silicates (T = Si), such as BaMg[SiO4] and Ba(Ba,Sr,Ca)2Mg[SiO4]2 doped with Eu2+, have been studied for their fluorescent properties and photochromism (Yonesaki et al., 2008[Yonesaki, Y., Takei, T., Kumada, N. & Kinomura, N. (2008). J. Lumin. 128, 1507-1514.], 2011[Yonesaki, Y., Dong, Q., Mohamad, N. S. B., Miura, A., Takei, T., Yamanaka, J., Kumada, N. & Kinomura, N. (2011). J. Alloys Compd. 509, 8738-8741.]; Yonesaki, 2013[Yonesaki, Y. (2013). J. Solid State Chem. 201, 324-329.]; Yonezaki et al., 2018[Yonezaki, Y., Takei, S. & Matsumoto, S. (2018). J. Photochem. Photobiol. Chem. 367, 406-410.]; Yonezaki, 2015[Yonezaki, Y. (2015). Powder Diffr. 30, 40-51.], 2018[Yonezaki, Y. (2018). J. Lumin. 195, 408-412.], 2020[Yonezaki, Y. (2020). J. Photochem. Photobiol. Chem. 398, 112645.]; Yonezaki & Takei, 2016[Yonezaki, Y. & Takei, S. (2016). J. Lumin. 173, 237-242.]; Yonezaki & Yanai, 2021[Yonezaki, Y. & Yanai, R. (2021). J. Alloys Compd. 876, 160111.]; Birkel et al., 2015[Birkel, A., DeCino, N. A., Cozzan, C., Mikhailovsky, A. A., Hong, B.-C. & Seshadri, R. (2015). Solid State Sci. 48, 82-89.]). Recently, ferroaxial transitions of compounds with glaserite-type crystal structures were investigated, in which the space-group type changes from P[\overline{3}] to P[\overline{3}]m (Yamagishi et al., 2023[Yamagishi, S., Hayashida, T., Misawa, R., Kimura, K., Hagihala, M., Murata, T., Hirose, S. & Kimura, T. (2023). Chem. Mater. 35, 747-754.]). The rotation angle φ of the TO4 tetra­hedron was defined relative to the mirror plane of P[\overline{3}]m, and BaCa2Mg[SiO4]2 with φ = 12.5° was proposed as a potential ferroaxial transition material. For the compounds with M = Zr, Kostov-Kytin and co-workers analysed the crystal structures of Na3–xH1+xZr(SiO)4·yH2O in which water mol­ecules are located between the ZrO6 octa­hedra (Kostov-Kytin et al., 2012[Kostov-Kytin, V. V., Nikolova, R. P. & Nihtianova, D. D. (2012). Mater. Res. Bull. 47, 2324-2331.], 2013[Kostov-Kytin, V., Nikolova, R., Kerestedjian, T. & Bezdicka, P. (2013). Mater. Res. Bull. 48, 2029-2033.]).

In the current study, we report the synthesis and crystal structure analysis of two new orthosilicate compounds with glaserite-type crystal structure, Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2.

2. Structural commentary

According to the classification by Nikolova & Kostov-Kytin (2013[Nikolova, R. & Kostov-Kytin, V. (2013). Bulg. Chem. Commun. 45, 418-426.]) using the general formula X(□;1)Y(□;2)[M(TO4)2] for compounds with glaserite-type crystal structures, Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2 meet the condition XYMT of XY2[M(TO4)2] with no vacancy. The two new orthosilicates are isostructural and crystallize in the trigonal space group P[\overline{3}]. The crystal structures of both silicates were refined under consideration of a two-component twin model in each case. Multiplicity, Wyckoff letter, and site symmetry are: 1, a and [\overline{3}] for Ba1, 1, b and [\overline{3}] for Zr1/Hf1, 2, d and 3 for Na1, Si1 and O2, and 6, g and 1 for O1. As shown in Fig. 1[link], slabs identified in the crystal structure are composed of M = Zr- or Hf-centred oxygen octa­hedra and SiO4 tetra­hedra.

[Figure 1]
Figure 1
Crystal structure of Na2BaZr[SiO4]2 in a projection along [100], drawn with Zr1-centered oxygen octa­hedra and Si1-centered oxygen tetra­hedra.

Fig. 2[link] shows the arrangement of oxygen atoms around each cation. Inter­atomic distances of Zr—O and Hf—O are 2.0667 (14) Å (×6) and 2.0600 (15) Å (×6), respectively (Tables 1[link] and 2[link]), which are consistent with the sizes of Shannon's effective ionic radii [six-coordinated Zr (0.72 Å) and Hf (0.71 Å); Shannon, 1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]]. The Si—O distances of 1.6373 (13) and 1.578 (2) Å for Na2BaZr[SiO4]2 agree with those of 1.6354 (16) and 1.575 (2) Å for Na2BaHf[SiO4]2. The Ba—O distances for the 12-coordinate X site are slightly longer for Na2BaZr[SiO4]2 [2.8764 (15)–3.1198 (2) Å] than for Na2BaHf[SiO4]2 [2.8687 (16)–3.1158 (2) Å]. The distances between O1 and Na1 at the tenfold coordination sites are slightly longer for Na2BaM[SiO4]2 M = Zr [2.4461 (15)–3.1545 (19) Å] than for M = Hf [2.4423 (15)–3.145 (2) Å], while the Na1—O2 distance of 2.250 (3) Å for M = Zr is slightly shorter than that of 2.258 (3) Å for M = Hf. The bond-valence sums for Na1, Ba1, Zr1, Hf1, and Si1 calculated with the bond valence parameters provided by Gagné & Hawthorne (2015[Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562-578.]) are 1.00, 1.86, 4.03, and 4.11 valence units for Na2BaM[SiO4]2 M = Zr, and 1.01, 1.89, 4.05, and 4.09 valence units for M = Hf. The rotation angles φ of the [SiO4] tetra­hedra are 10.18° for M = Zr and 10.15° for M = Hf (Fig. 3[link]).

Table 1
Selected bond lengths (Å) for Na2BaZr[SiO4]2

Na1—O1i 2.9791 (15) Ba1—O2 3.1198 (2)
Na1—O1ii 2.4461 (15) Zr1—O1 2.0667 (13)
Na1—O1 3.1545 (19) Si1—O1 1.6373 (13)
Na1—O2iii 2.250 (3) Si1—O2 1.578 (2)
Ba1—O1 2.8764 (15)    
Symmetry codes: (i) [x-y, x, -z+1]; (ii) [x-y+1, x+1, -z+1]; (iii) [x, y, z+1].

Table 2
Selected bond lengths (Å) for Na2BaHf[SiO4]2

Na1—O1i 2.4423 (15) Ba1—O2 3.1158 (2)
Na1—O1ii 2.9738 (15) Hf1—O1 2.0600 (15)
Na1—O1 3.145 (2) Si1—O1 1.6354 (16)
Na1—O2iii 2.258 (3) Si1—O2 1.575 (2)
Ba1—O1 2.8687 (16)    
Symmetry codes: (i) [y, -x+y, -z+1]; (ii) [x-y, x, -z+1]; (iii) [x, y, z+1].
[Figure 2]
Figure 2
Atomic arrangements around Na1, Ba1, Zr1, and Si1 in the crystal structure of Na2BaZr[SiO4]2. Displacement ellipsoids are depicted at the 90% probability level. [Symmetry codes: (i) x, y + 1, z; (ii) −x + 1, −y + 2, −z + 1; (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y + 1, −z + 1; (v) x − y, x, −z + 1; (vi) x − y + 1, x + 1, −z + 1; (vii) y, −x + y, −z + 1; (viii) y, −x + y + 1, −z + 1; (ix) −x + y, −x + 1, z; (x) −y + 1, x − y + 1, z; (xi) x, y, z + 1; (xii) −x + y, −x, z; (xiii) −x, −y, −z; (xiv) −y, x − y, z; (xv) x − y, x, −z; (xvi) y, −x + y, −z; (xvii) −x, −y + 1, −z; (xviii) x, y − 1, z; (xix) −x + 1, −y + 1, −z; (xx) x − 1, y − 1, z; (xxi) −x, −y, −z + 1; (xxii) x + 1, y + 1, z; (xxiii) x, y, z − 1.]
[Figure 3]
Figure 3
[001] projection of the twin domains in the crystal structure of Na2BaZr[SiO4]2.

The Madelung energy part of the lattice energies (MAPLE; Hoppe, 1995[Hoppe, R. (1995). Z. Naturforsch., A: Phys. Sci. 50, 555.]) of Na2BaM[SiO4]2 calculated using VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]) are −50.170 mJ mol−1 (M = Zr) and −50.260 MJ mol−1 (M = Hf). These values are close to those of −49.880 MJ mol−1 and −49.880 mJ mol−1 with differences of 0.6% and 0.8%, respectively, as calculated from the equation BaO + MO2 + α-Na2Si2O5 = Na2BaM[SiO4]2 using MAPLE values calculated from the crystal structure data for BaO (–3.510 MJ mol−1; Zollweg, 1955[Zollweg, R. J. (1955). Phys. Rev. 100, 671-673.]), ZrO2 (–12.740 MJ mol−1; Gualtieri et al., 1996[Gualtieri, A., Norby, P., Hanson, J. & Hriljac, J. (1996). J. Appl. Cryst. 29, 707-713.]), HfO2 (–12.740 MJ mol−1; Pathak et al., 2020[Pathak, S., Das, P., Das, T., Mandal, G., Joseph, B., Sahu, M., Kaushik, S. D. & Siruguri, V. (2020). Acta Cryst. C76, 1034-1042.]) and α-Na2Si2O5 (–33.630 MJ mol−1; Pant & Cruickshank, 1968[Pant, A. K. & Cruickshank, D. W. J. (1968). Acta Cryst. B24, 13-19.]).

3. Database survey

The crystal structures listed for glaserite-type silicates in the ICSD database (ICSD, 2025[ICSD (2025). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.]) are the high-temperature phase of Ca2[SiO4] (P[\overline{3}]m, Z = 2, V = 194.19 Å3; Mumme et al., 1996[Mumme, W., Cranswick, L. & Chakoumakos, B. (1996). Neues Jahrb. Mineral. Abh. 170, 171-188.]), Ba3Mg[SiO4]2 (P[\overline{3}]m, Z = 1, V = 198.64 Å3; Iwata et al., 2009[Iwata, T., Horie, T. & Fukuda, K. (2009). Powder Diffr. 24, 180-184.]) and its superstructure (P[\overline{3}], Z = 3, V = 594.71 Å3; Park et al., 2009[Park, C.-H., Hong, S.-T. & Keszler, D. A. (2009). J. Solid State Chem. 182, 496-501.]), BaCa2Mg[SiO4]2 (P[\overline{3}], Z = 1, V = 173.31 Å3; Park et al., 2011[Park, C.-H., Kim, T.-H., Yonesaki, Y. & Kumada, N. (2011). J. Solid State Chem. 184, 1566-1570.]), BaxSr3–xMg[SiO4]2 (x = 0.0 – 0.5, C2, Z = 4, V = 714.9 – 723.7 Å3; x = 0.625 – 2.375, P[\overline{3}]m, Z = 1, V = 181.81 – 193.46 Å3; x = 2.5 – 3.0, P[\overline{3}], Z = 3, V = 583.2 – 594.72 Å3; Yonezaki, 2015[Yonezaki, Y. (2015). Powder Diffr. 30, 40-51.]), Ba(Sr1-xCax)2Mg[SiO4]2 (x = 0.0 – 0.5, P[\overline{3}]m, Z = 1, V = 182.76 – 178.70 Å3; x = 0.5625 – 1.0, P[\overline{3}], Z = 1, V = 177.97 – 174.00 Å3; Yonesaki et al., 2008[Yonesaki, Y., Takei, T., Kumada, N. & Kinomura, N. (2008). J. Lumin. 128, 1507-1514.]; Yonesaki, 2013[Yonesaki, Y. (2013). J. Solid State Chem. 201, 324-329.]), Ba3Mn[SiO4] (P[\overline{3}]m, Z = 1, V = 203.44 Å3; Avdeev et al., 2018[Avdeev, M., Xia, Q., Sale, M., Allison, M. & Ling, C. D. (2018). J. Solid State Chem. 266, 1-8.]), Na3HZr[SiO4]2, P[\overline{1}], Z = 2, V = 350.12 Å3; Na3HZr[SiO4]2·0.4H2O, P[\overline{1}], Z = 2, V = 350.19 Å3; Na3HZr[SiO4]2·H2O, C2/m, Z = 4, V = 683.92 Å3; Kostov-Kytin et al., 2012[Kostov-Kytin, V. V., Nikolova, R. P. & Nihtianova, D. D. (2012). Mater. Res. Bull. 47, 2324-2331.]).

4. Synthesis and crystallization

The starting materials were powders of Na2O (∼80%, Sigma-Aldrich), SiO2 (99.9% Kojundo Chemical Lab. Co., Ltd.), BaO (99.99%, Sigma-Aldrich), ZrO2 (99%, Sigma-Aldrich), and HfO2 (98%, Kojundo Chemical Lab. Co., Ltd.), which were weighed in a glove box in a nitro­gen atmosphere, mixed in an agate mortar, and formed into disk-shaped compacts. The compacts were placed in a nickel boat and sealed in a stainless-steel container. The container was heated up to 1473 K for 3 h in a nitro­gen gas flow to prevent oxidation of the stainless steel, and this temperature was maintained for 30 min. The temperature was subsequently lowered to 1073 K at a rate of −100 K h−1. The power supply to the heater wire was stopped at this temperature, and the sample was allowed to cool in the furnace. The single crystal grains of Na2BaZr[SiO4]2 used for single crystal X-ray diffraction data measurements were isolated from fragments of polycrystals synthesised from a starting material mixture with a metal element molar ratio of Na:Ba:Zr:Si = 2:1:1:2. Single crystal grains of Na2BaHf[SiO4]2 were obtained from polycrystals prepared with a starting mixture of Na:Ba:Hf:Si = 2.2:1:1:2.2.

Semi-qu­anti­tative analysis of the Na2BaZr[SiO4]2 and Na2BaHf[SiO4]2 grains was performed using an energy-dispersive X-ray detector (Bruker AXS, XFlash 5010) attached to a scanning electron microscope (Hitachi High-Tech SU1510) and measurement analysis software (Bruker AXS, QUANTAX2000). The atomic ratios acquired from the analysis were Na:Ba:Hf:Si = 2.0 (3):0.6 (1):0.66 (5):2.0 (3) for Na2BaZr[SiO4]2 and Na:Ba:Zr:Si = 2.3 (4):1.2 (1):1.3 (1):2.0 (1) for Na2BaHf[SiO4]2, both of which correspond sufficiently with the metal element ratios of the formulae.

5. Refinement

Crystal data, data collection and structural refinement details are summarised in Table 3[link]. In the first refinement step, the ideal model of the glaserite-type structure with space group P[\overline{3}]m was adopted and the R1 values were 0.032 and 0.018 for Na2BaM[SiO4]2 for M = Zr and Hf, respectively. However, the ratio of the mean-square displacements of the major and minor axes of the atomic displacement ellipsoid of O1 was 30.3 (M = Zr) and 22.4 (M = Hf). Subsequently, when the refinement was performed in P[\overline{3}] removing mirror symmetry operation from P[\overline{3}]m, the R1 values were 0.035 and 0.020, and the displacement ratios were still large at 27.6 and 18.2, for M = Zr and Hf, respectively. Further analysis in space group P[\overline{3}] under consideration of twinning (twin matrix 010, 100, 00[\overline{1}]) resulted in R1 values of 0.016 and 0.010 for M = Zr and Hf, respectively, and both displacement ratios were reasonable with a value of 3.2. The twin ratios of domains 1 and 2 were refined to 0.635 (4):0.365 for M = Zr and 0.623 (4):0.377 (4) for M = Hf.

Table 3
Experimental details

  Na2BaZr[SiO4]2 Na2BaHf[SiO4]2
Crystal data
Mr 458.72 545.99
Crystal system, space group Trigonal, P[\overline{3}] Trigonal, P[\overline{3}]
Temperature (K) 293 293
a, c (Å) 5.3966 (2), 7.2153 (3) 5.3889 (2), 7.1996 (2)
V3) 181.98 (2) 181.07 (1)
Z 1 1
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.27 20.19
Crystal size (mm) 0.04 × 0.03 × 0.01 0.03 × 0.03 × 0.01
 
Data collection
Diffractometer ROD, Synergy Custom system, HyPix-Arc 150 ROD, Synergy Custom system, HyPix-Arc 150
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]) Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.544, 0.817 0.641, 0.883
No. of measured, independent and observed [I > 2σ(I)] reflections 9034, 587, 543 8609, 538, 532
Rint 0.043 0.045
(sin θ/λ)max−1) 0.832 0.806
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.016, 0.035, 1.11 0.010, 0.024, 1.11
No. of reflections 587 538
No. of parameters 24 24
Δρmax, Δρmin (e Å−3) 0.52, −0.59 0.61, −0.60
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), VESTA (Momma & Izumi, 2011[Momma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Disodium barium zirconium bis(orthosilicate) (I) top
Crystal data top
Na2BaZr[SiO4]2Dx = 4.186 Mg m3
Mr = 458.72Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 5734 reflections
a = 5.3966 (2) Åθ = 2.8–47.6°
c = 7.2153 (3) ŵ = 7.27 mm1
V = 181.98 (2) Å3T = 293 K
Z = 1Plate, colourless
F(000) = 2100.04 × 0.03 × 0.01 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
587 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source543 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.043
Detector resolution: 10.0000 pixels mm-1θmax = 36.2°, θmin = 2.8°
ω scansh = 87
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 88
Tmin = 0.544, Tmax = 0.817l = 1212
9034 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.016 w = 1/[σ2(Fo2) + (0.0092P)2 + 0.1709P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.035(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.52 e Å3
587 reflectionsΔρmin = 0.59 e Å3
24 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.635 (4) 0.365 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.3333330.6666670.71034 (19)0.0167 (2)
Ba10.0000000.0000000.0000000.01522 (7)
Zr10.0000000.0000000.5000000.00498 (6)
Si10.3333330.6666670.24086 (9)0.00685 (12)
O10.1242 (3)0.3476 (3)0.3269 (2)0.0144 (3)
O20.3333330.6666670.0221 (3)0.0222 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0157 (4)0.0157 (4)0.0188 (6)0.00784 (18)0.0000.000
Ba10.01899 (9)0.01899 (9)0.00767 (9)0.00950 (4)0.0000.000
Zr10.00436 (8)0.00436 (8)0.00620 (12)0.00218 (4)0.0000.000
Si10.00661 (17)0.00661 (17)0.0073 (3)0.00331 (9)0.0000.000
O10.0154 (7)0.0082 (5)0.0175 (6)0.0043 (5)0.0010 (5)0.0046 (4)
O20.0287 (8)0.0287 (8)0.0093 (8)0.0144 (4)0.0000.000
Geometric parameters (Å, º) top
Na1—Zr1i3.4657 (6)Ba1—O1xvi2.8763 (15)
Na1—Si1ii3.1356 (2)Ba1—O12.8763 (15)
Na1—Si1iii3.1356 (2)Ba1—O2xvii3.1198 (2)
Na1—Si13.3875 (15)Ba1—O23.1198 (2)
Na1—Si1iv3.1356 (2)Ba1—O2xviii3.1198 (2)
Na1—O1v2.9791 (15)Ba1—O2xix3.1198 (2)
Na1—O1vi2.4461 (15)Ba1—O2xiii3.1198 (2)
Na1—O1iv2.4461 (14)Ba1—O2xx3.1198 (2)
Na1—O1vii2.4461 (14)Zr1—O1xxi2.0666 (13)
Na1—O1viii2.9791 (15)Zr1—O1vii2.0666 (14)
Na1—O1iii2.9791 (15)Zr1—O12.0667 (13)
Na1—O13.1545 (19)Zr1—O1v2.0667 (13)
Na1—O1ix3.1545 (19)Zr1—O1xiv2.0666 (14)
Na1—O1x3.1545 (19)Zr1—O1xii2.0667 (13)
Na1—O2xi2.250 (3)Si1—O1x1.6373 (13)
Ba1—O1xii2.8764 (15)Si1—O1ix1.6373 (13)
Ba1—O1xiii2.8763 (15)Si1—O11.6373 (13)
Ba1—O1xiv2.8763 (15)Si1—O21.578 (2)
Ba1—O1xv2.8764 (15)
Si1iii—Na1—Zr1i160.48 (5)Na1—Zr1—Na1iii77.74 (2)
Si1iv—Na1—Zr1i66.579 (9)Na1—Zr1—Na1xxi180.0
Si1ii—Na1—Zr1i66.579 (9)Na1iii—Zr1—Na1xx180.0
Si1—Na1—Zr1i64.03 (2)Na1iv—Zr1—Na1iii102.26 (2)
Si1iii—Na1—Si196.45 (3)Na1xviii—Zr1—Na1iv180.0
Si1iv—Na1—Si1iii118.756 (11)Na1xxi—Zr1—Na1iii102.26 (2)
Si1iv—Na1—Si196.45 (3)Na1xviii—Zr1—Na1xxi77.74 (2)
Si1ii—Na1—Si1iv118.757 (11)Na1iv—Zr1—Na177.74 (2)
Si1ii—Na1—Si1iii118.756 (11)Na1xviii—Zr1—Na1xx102.26 (2)
Si1ii—Na1—Si196.45 (3)Na1xviii—Zr1—Na1iii77.74 (2)
O1iii—Na1—Zr1i138.23 (4)O1—Zr1—Na1xviii135.97 (4)
O1vii—Na1—Zr1i137.54 (5)O1vii—Zr1—Na1xviii58.86 (4)
O1iv—Na1—Zr1i35.96 (3)O1xxi—Zr1—Na1xx58.86 (4)
O1viii—Na1—Zr1i36.43 (3)O1vii—Zr1—Na1iii63.77 (5)
O1v—Na1—Zr1i86.58 (3)O1xii—Zr1—Na1xx135.97 (4)
O1vi—Na1—Zr1i85.84 (4)O1xxi—Zr1—Na1116.23 (5)
O1iv—Na1—Si183.70 (5)O1v—Zr1—Na1xx44.03 (4)
O1vi—Na1—Si183.70 (5)O1v—Zr1—Na1xviii116.23 (5)
O1vii—Na1—Si1iii31.10 (3)O1v—Zr1—Na1iii135.97 (4)
O1vii—Na1—Si183.70 (5)O1xii—Zr1—Na1iii44.03 (4)
O1iii—Na1—Si184.83 (4)O1xiv—Zr1—Na1xviii121.14 (4)
O1v—Na1—Si184.83 (4)O1xii—Zr1—Na1xviii63.77 (5)
O1v—Na1—Si1iii91.85 (3)O1xiv—Zr1—Na1iv58.86 (4)
O1iii—Na1—Si1iv148.85 (3)O1—Zr1—Na1iv44.03 (4)
O1v—Na1—Si1ii148.85 (3)O1xxi—Zr1—Na1xviii44.03 (4)
O1viii—Na1—Si184.83 (4)O1xii—Zr1—Na1121.14 (4)
O1iii—Na1—Si1ii91.85 (3)O1v—Zr1—Na1iv63.77 (5)
O1vii—Na1—Si1ii148.63 (3)O1—Zr1—Na1iii58.86 (4)
O1iv—Na1—Si1iv31.10 (3)O1—Zr1—Na1xxi116.23 (5)
O1viii—Na1—Si1iii148.85 (3)O1xxi—Zr1—Na1iv135.97 (4)
O1vi—Na1—Si1iv148.63 (3)O1v—Zr1—Na1xxi121.14 (4)
O1viii—Na1—Si1ii30.93 (3)O1xii—Zr1—Na1iv116.23 (5)
O1vii—Na1—Si1iv92.26 (3)O1xii—Zr1—Na1xxi58.86 (4)
O1iv—Na1—Si1ii92.26 (3)O1vii—Zr1—Na1xx116.23 (5)
O1viii—Na1—Si1iv91.85 (3)O1vii—Zr1—Na1iv121.14 (4)
O1iii—Na1—Si1iii30.93 (3)O1—Zr1—Na1xx121.14 (4)
O1v—Na1—Si1iv30.93 (3)O1xxi—Zr1—Na1xxi63.77 (5)
O1iv—Na1—Si1iii148.63 (3)O1xiv—Zr1—Na1xx63.77 (5)
O1vi—Na1—Si1ii31.10 (3)O1vii—Zr1—Na144.03 (4)
O1vi—Na1—Si1iii92.26 (3)O1xxi—Zr1—Na1iii121.14 (4)
O1vii—Na1—O1iii56.84 (6)O1xiv—Zr1—Na1135.97 (4)
O1vi—Na1—O1viii56.84 (6)O1vii—Zr1—Na1xxi135.97 (4)
O1iv—Na1—O1vii118.811 (19)O1v—Zr1—Na158.86 (4)
O1iv—Na1—O1viii62.52 (6)O1xiv—Zr1—Na1iii116.23 (5)
O1vi—Na1—O1iii62.52 (6)O1xiv—Zr1—Na1xxi44.03 (4)
O1vi—Na1—O1v168.18 (9)O1—Zr1—Na163.77 (5)
O1v—Na1—O1iii119.197 (12)O1xxi—Zr1—O1xii92.75 (6)
O1vii—Na1—O1v62.52 (6)O1xiv—Zr1—O187.25 (6)
O1iv—Na1—O1v56.84 (6)O1xxi—Zr1—O1xiv92.75 (6)
O1vii—Na1—O1viii168.18 (9)O1xxi—Zr1—O1180.0
O1iv—Na1—O1vi118.810 (18)O1xxi—Zr1—O1vii87.25 (6)
O1viii—Na1—O1iii119.197 (13)O1xiv—Zr1—O1v92.75 (6)
O1viii—Na1—O1v119.196 (13)O1—Zr1—O1xii87.25 (6)
O1vi—Na1—O1vii118.812 (19)O1vii—Zr1—O1xii92.75 (6)
O1iv—Na1—O1iii168.18 (9)O1vii—Zr1—O1v87.25 (6)
O2xi—Na1—Zr1i115.97 (2)O1xxi—Zr1—O1v87.25 (6)
O2xi—Na1—Si1180.0O1—Zr1—O1v92.75 (6)
O2xi—Na1—Si1iv83.55 (3)O1xiv—Zr1—O1xii87.25 (6)
O2xi—Na1—Si1iii83.55 (3)O1vii—Zr1—O192.75 (6)
O2xi—Na1—Si1ii83.55 (3)O1vii—Zr1—O1xiv180.0
O2xi—Na1—O1v95.17 (4)O1v—Zr1—O1xii180.0
O2xi—Na1—O1iv96.30 (5)Na1iii—Si1—Na183.55 (3)
O2xi—Na1—O1vi96.30 (5)Na1ii—Si1—Na1iii118.756 (11)
O2xi—Na1—O1vii96.30 (5)Na1ii—Si1—Na183.55 (3)
O2xi—Na1—O1viii95.17 (4)Na1iv—Si1—Na183.55 (3)
O2xi—Na1—O1iii95.17 (4)Na1iv—Si1—Na1iii118.756 (11)
O1—Ba1—O1xiv59.43 (4)Na1ii—Si1—Na1iv118.757 (11)
O1xiii—Ba1—O1xv59.43 (4)Na1ii—Si1—Ba1i67.716 (15)
O1—Ba1—O1xvi120.57 (4)Na1iv—Si1—Ba167.715 (15)
O1—Ba1—O1xii59.43 (4)Na1ii—Si1—Ba1157.30 (3)
O1xiii—Ba1—O1xiv120.57 (4)Na1iv—Si1—Ba1xxii157.30 (3)
O1xiv—Ba1—O1xii59.43 (4)Na1iv—Si1—Ba1i67.716 (15)
O1xvi—Ba1—O1xiv180.00 (10)Na1—Si1—Ba1119.151 (10)
O1xvi—Ba1—O1xii120.57 (4)Na1iii—Si1—Ba1xxii67.715 (15)
O1xiii—Ba1—O1180.0Na1iii—Si1—Ba1i157.30 (3)
O1xiii—Ba1—O1xii120.57 (4)Na1iii—Si1—Ba167.715 (15)
O1xiii—Ba1—O1xvi59.43 (4)Na1—Si1—Ba1xxii119.151 (10)
O1—Ba1—O1xv120.57 (4)Na1ii—Si1—Ba1xxii67.715 (15)
O1xv—Ba1—O1xii180.00 (10)Na1—Si1—Ba1i119.151 (10)
O1xiv—Ba1—O1xv120.57 (4)Ba1—Si1—Ba1xxii98.284 (12)
O1xvi—Ba1—O1xv59.43 (4)Ba1i—Si1—Ba198.284 (12)
O1xiv—Ba1—O2xix127.30 (5)Ba1i—Si1—Ba1xxii98.284 (12)
O1xiv—Ba1—O2xvii80.82 (4)O1x—Si1—Na1iii50.51 (5)
O1xvi—Ba1—O2xix52.70 (5)O1—Si1—Na1iii69.25 (5)
O1xii—Ba1—O299.18 (4)O1ix—Si1—Na1iii149.59 (7)
O1xv—Ba1—O2xiii99.18 (4)O1ix—Si1—Na1iv69.25 (5)
O1—Ba1—O2xix80.82 (4)O1ix—Si1—Na1ii50.51 (5)
O1xiii—Ba1—O2xx80.82 (4)O1—Si1—Na167.72 (6)
O1xii—Ba1—O2xix71.30 (5)O1x—Si1—Na167.72 (6)
O1xvi—Ba1—O2xiii108.70 (5)O1x—Si1—Na1ii69.25 (5)
O1xiv—Ba1—O2xiii71.30 (5)O1—Si1—Na1ii149.59 (7)
O1xiii—Ba1—O2xix99.18 (4)O1—Si1—Na1iv50.51 (5)
O1—Ba1—O2xx99.18 (4)O1x—Si1—Na1iv149.59 (7)
O1xv—Ba1—O2xix108.70 (5)O1ix—Si1—Na167.72 (6)
O1xvi—Ba1—O271.30 (5)O1—Si1—Ba1xxii134.92 (5)
O1xvi—Ba1—O2xx127.30 (5)O1—Si1—Ba1i117.30 (5)
O1xiv—Ba1—O2xx52.70 (5)O1—Si1—Ba152.35 (6)
O1xv—Ba1—O280.82 (4)O1ix—Si1—Ba1i52.36 (6)
O1—Ba1—O2xiii127.30 (5)O1x—Si1—Ba1117.30 (5)
O1xiv—Ba1—O2xviii99.18 (4)O1ix—Si1—Ba1xxii117.30 (5)
O1xii—Ba1—O2xx108.70 (5)O1ix—Si1—Ba1134.92 (5)
O1xv—Ba1—O2xviii127.30 (5)O1x—Si1—Ba1xxii52.35 (6)
O1xii—Ba1—O2xiii80.82 (4)O1x—Si1—Ba1i134.92 (5)
O1xii—Ba1—O2xviii52.70 (5)O1ix—Si1—O1106.53 (6)
O1xii—Ba1—O2xvii127.30 (5)O1—Si1—O1x106.53 (6)
O1xiii—Ba1—O2127.30 (5)O1ix—Si1—O1x106.53 (6)
O1—Ba1—O252.70 (5)O2—Si1—Na1180.0
O1xiii—Ba1—O2xvii108.70 (5)O2—Si1—Na1ii96.45 (3)
O1xiii—Ba1—O2xviii71.30 (5)O2—Si1—Na1iv96.45 (3)
O1—Ba1—O2xvii71.30 (5)O2—Si1—Na1iii96.45 (3)
O1xiv—Ba1—O2108.70 (5)O2—Si1—Ba160.849 (10)
O1xvi—Ba1—O2xvii99.18 (4)O2—Si1—Ba1xxii60.849 (10)
O1—Ba1—O2xviii108.70 (5)O2—Si1—Ba1i60.849 (10)
O1xv—Ba1—O2xvii52.70 (5)O2—Si1—O1112.28 (6)
O1xiii—Ba1—O2xiii52.70 (5)O2—Si1—O1ix112.28 (6)
O1xvi—Ba1—O2xviii80.82 (4)O2—Si1—O1x112.28 (6)
O1xv—Ba1—O2xx71.30 (5)Na1iv—O1—Na1iii168.17 (9)
O2xvii—Ba1—O2xix119.741 (7)Na1iv—O1—Ba189.26 (5)
O2xvii—Ba1—O2xx60.259 (7)Ba1—O1—Na1iii79.67 (4)
O2xviii—Ba1—O2xiii60.259 (7)Zr1—O1—Na1iv100.01 (6)
O2xvii—Ba1—O2xiii119.741 (7)Zr1—O1—Na1iii84.71 (5)
O2—Ba1—O2xx119.740 (7)Zr1—O1—Ba192.27 (5)
O2xiii—Ba1—O2xx60.260 (7)Si1—O1—Na1iii79.82 (5)
O2xiii—Ba1—O2xix119.740 (7)Si1—O1—Na1iv98.38 (6)
O2xviii—Ba1—O2xix60.259 (7)Si1—O1—Ba1100.86 (7)
O2—Ba1—O2xiii180.0Si1—O1—Zr1157.49 (9)
O2xviii—Ba1—O2xx119.741 (7)Na1xxiii—O2—Ba1xxii87.07 (4)
O2xvii—Ba1—O260.259 (7)Na1xxiii—O2—Ba187.07 (4)
O2—Ba1—O2xix60.260 (7)Na1xxiii—O2—Ba1i87.07 (4)
O2xviii—Ba1—O2119.741 (7)Ba1—O2—Ba1xxii119.741 (7)
O2xvii—Ba1—O2xviii180.00 (8)Ba1i—O2—Ba1119.741 (7)
O2xix—Ba1—O2xx180.00 (8)Ba1i—O2—Ba1xxii119.741 (7)
Na1iv—Zr1—Na1xx77.74 (2)Si1—O2—Na1xxiii180.0
Na1—Zr1—Na1xx102.26 (2)Si1—O2—Ba1i92.93 (4)
Na1xviii—Zr1—Na1102.26 (2)Si1—O2—Ba1xxii92.93 (4)
Na1iv—Zr1—Na1xxi102.26 (2)Si1—O2—Ba192.93 (4)
Na1xxi—Zr1—Na1xx77.74 (2)
Na1ii—Si1—O1—Na1iv80.07 (11)Ba1i—Si1—O1—Zr1156.5 (2)
Na1—Si1—O1—Na1iv100.39 (6)Ba1—Si1—O1—Zr1124.6 (3)
Na1iii—Si1—O1—Na1iv168.16 (9)Ba1xxii—Si1—O1—Zr165.4 (3)
Na1—Si1—O1—Na1iii91.46 (4)Ba1—Si1—O2—Ba1xxii120.0
Na1iv—Si1—O1—Na1iii168.16 (9)Ba1i—Si1—O2—Ba1120.000 (1)
Na1ii—Si1—O1—Na1iii111.77 (9)Ba1xxii—Si1—O2—Ba1120.0
Na1—Si1—O1—Ba1168.75 (6)Ba1i—Si1—O2—Ba1xxii120.000 (1)
Na1iv—Si1—O1—Ba190.86 (7)Ba1xxii—Si1—O2—Ba1i120.0
Na1iii—Si1—O1—Ba177.30 (5)Ba1—Si1—O2—Ba1i120.0
Na1ii—Si1—O1—Ba1170.93 (5)O1ix—Si1—O1—Na1iii148.17 (6)
Na1iii—Si1—O1—Zr147.3 (2)O1x—Si1—O1—Na1iii34.74 (9)
Na1—Si1—O1—Zr144.1 (2)O1ix—Si1—O1—Na1iv43.67 (12)
Na1ii—Si1—O1—Zr164.5 (3)O1x—Si1—O1—Na1iv157.10 (5)
Na1iv—Si1—O1—Zr1144.5 (3)O1ix—Si1—O1—Ba1134.53 (8)
Na1iv—Si1—O2—Ba160.0O1x—Si1—O1—Ba1112.04 (9)
Na1iii—Si1—O2—Ba1i180.0O1ix—Si1—O1—Zr1100.85 (18)
Na1ii—Si1—O2—Ba1180.0O1x—Si1—O1—Zr112.6 (3)
Na1ii—Si1—O2—Ba1xxii60.0O1ix—Si1—O2—Ba1xxii109.82 (5)
Na1iv—Si1—O2—Ba1xxii180.000 (1)O1x—Si1—O2—Ba1109.81 (5)
Na1iii—Si1—O2—Ba1xxii60.0O1—Si1—O2—Ba110.18 (5)
Na1iv—Si1—O2—Ba1i60.0O1ix—Si1—O2—Ba1i10.18 (5)
Na1iii—Si1—O2—Ba160.0O1x—Si1—O2—Ba1xxii10.19 (5)
Na1ii—Si1—O2—Ba1i60.000 (1)O1x—Si1—O2—Ba1i130.19 (5)
Ba1—Si1—O1—Na1iv90.86 (7)O1—Si1—O2—Ba1i109.82 (5)
Ba1xxii—Si1—O1—Na1iii18.11 (8)O1ix—Si1—O2—Ba1130.18 (5)
Ba1i—Si1—O1—Na1iv12.01 (8)O1—Si1—O2—Ba1xxii130.18 (5)
Ba1—Si1—O1—Na1iii77.30 (5)O2—Si1—O1—Na1iv79.61 (6)
Ba1i—Si1—O1—Na1iii156.15 (4)O2—Si1—O1—Na1iii88.54 (4)
Ba1xxii—Si1—O1—Na1iv150.05 (5)O2—Si1—O1—Ba111.25 (6)
Ba1i—Si1—O1—Ba178.85 (6)O2—Si1—O1—Zr1135.9 (2)
Ba1xxii—Si1—O1—Ba159.19 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) xy, x, z+1; (vi) xy+1, x+1, z+1; (vii) y, x+y, z+1; (viii) y, x+y+1, z+1; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) x, y, z+1; (xii) x+y, x, z; (xiii) x, y, z; (xiv) y, xy, z; (xv) xy, x, z; (xvi) y, x+y, z; (xvii) x, y+1, z; (xviii) x, y1, z; (xix) x+1, y+1, z; (xx) x1, y1, z; (xxi) x, y, z+1; (xxii) x+1, y+1, z; (xxiii) x, y, z1.
Disodium barium hafnium bis(orthosilicate) (II) top
Crystal data top
Na2BaHf[SiO4]2Dx = 5.007 Mg m3
Mr = 545.99Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3Cell parameters from 7145 reflections
a = 5.3889 (2) Åθ = 2.8–51.0°
c = 7.1996 (2) ŵ = 20.19 mm1
V = 181.07 (1) Å3T = 293 K
Z = 1Plate, colourless
F(000) = 2420.03 × 0.03 × 0.01 mm
Data collection top
ROD, Synergy Custom system, HyPix-Arc 150
diffractometer
538 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Mo) X-ray Source532 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.045
Detector resolution: 10.0000 pixels mm-1θmax = 35.0°, θmin = 2.8°
ω scansh = 87
Absorption correction: gaussian
(CrysAlisPro; Rigaku OD, 2023)
k = 88
Tmin = 0.641, Tmax = 0.883l = 1111
8609 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: dual
R[F2 > 2σ(F2)] = 0.010 w = 1/[σ2(Fo2) + (0.0035P)2 + 0.1631P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.024(Δ/σ)max < 0.001
S = 1.11Δρmax = 0.61 e Å3
538 reflectionsΔρmin = 0.60 e Å3
24 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin. 1. Twinned data refinement Scales: 0.623 (4) 0.377 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.3333330.6666670.7096 (2)0.0148 (2)
Ba10.0000000.0000000.0000000.01327 (5)
Hf10.0000000.0000000.5000000.00516 (4)
Si10.3333330.6666670.24191 (11)0.00532 (12)
O10.1238 (3)0.3468 (3)0.3269 (2)0.0118 (4)
O20.3333330.6666670.0232 (3)0.0187 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0142 (4)0.0142 (4)0.0159 (6)0.00710 (18)0.0000.000
Ba10.01685 (8)0.01685 (8)0.00611 (10)0.00842 (4)0.0000.000
Hf10.00461 (5)0.00461 (5)0.00626 (7)0.00231 (2)0.0000.000
Si10.00477 (18)0.00477 (18)0.0064 (3)0.00239 (9)0.0000.000
O10.0111 (9)0.0074 (6)0.0146 (7)0.0030 (5)0.0012 (5)0.0043 (5)
O20.0245 (7)0.0245 (7)0.0073 (9)0.0122 (4)0.0000.000
Geometric parameters (Å, º) top
Na1—Hf1i3.4579 (6)Ba1—O1xv2.8687 (16)
Na1—Si13.3670 (16)Ba1—O1xvi2.8687 (16)
Na1—Si1ii3.1308 (2)Ba1—O2xvii3.1157 (2)
Na1—Si1iii3.1308 (2)Ba1—O2xviii3.1158 (2)
Na1—Si1iv3.1308 (2)Ba1—O2xiv3.1158 (2)
Na1—O1v2.4423 (15)Ba1—O2xix3.1157 (2)
Na1—O1iv2.4423 (15)Ba1—O23.1158 (2)
Na1—O1vi2.4423 (15)Ba1—O2xx3.1158 (2)
Na1—O1vii2.9738 (15)Hf1—O1v2.0600 (15)
Na1—O1viii2.9738 (15)Hf1—O1xxi2.0600 (15)
Na1—O1iii2.9738 (15)Hf1—O1xiii2.0600 (15)
Na1—O13.145 (2)Hf1—O12.0600 (15)
Na1—O1ix3.145 (2)Hf1—O1vii2.0600 (15)
Na1—O1x3.145 (2)Hf1—O1xvi2.0600 (15)
Na1—O2xi2.258 (3)Si1—O1x1.6354 (16)
Ba1—O1xii2.8687 (16)Si1—O11.6354 (16)
Ba1—O1xiii2.8687 (16)Si1—O1ix1.6354 (16)
Ba1—O1xiv2.8687 (16)Si1—O21.575 (2)
Ba1—O12.8687 (16)
Si1iii—Na1—Hf1i160.53 (5)Na1xix—Hf1—Na1iv180.0
Si1ii—Na1—Hf1i66.522 (10)Na1xix—Hf1—Na1xxi77.62 (3)
Si1iv—Na1—Hf1i66.522 (10)Na1xix—Hf1—Na1iii77.62 (3)
Si1—Na1—Hf1i64.13 (2)Na1—Hf1—Na1xxi180.0
Si1ii—Na1—Si1iii118.773 (12)Na1—Hf1—Na1iii77.62 (3)
Si1ii—Na1—Si1iv118.773 (12)Na1iv—Hf1—Na1xx77.62 (3)
Si1iv—Na1—Si1iii118.773 (12)Na1xxi—Hf1—Na1iii102.38 (3)
Si1ii—Na1—Si196.40 (3)Na1xxi—Hf1—Na1xx77.62 (3)
Si1iv—Na1—Si196.40 (3)Na1xix—Hf1—Na1102.38 (3)
Si1iii—Na1—Si196.40 (3)Na1iv—Hf1—Na177.62 (3)
O1iii—Na1—Hf1i138.33 (5)O1vii—Hf1—Na1xix116.29 (5)
O1viii—Na1—Hf1i36.38 (3)O1xvi—Hf1—Na1xx63.71 (5)
O1vii—Na1—Hf1i86.70 (3)O1v—Hf1—Na144.07 (4)
O1iv—Na1—Hf1i35.92 (4)O1xiii—Hf1—Na1xix63.71 (5)
O1v—Na1—Hf1i137.65 (5)O1xxi—Hf1—Na1xx58.91 (4)
O1vi—Na1—Hf1i85.99 (4)O1xxi—Hf1—Na1xix44.07 (4)
O1iv—Na1—Si1ii92.15 (4)O1vii—Hf1—Na1iv63.71 (5)
O1iii—Na1—Si1iii30.94 (3)O1xxi—Hf1—Na1116.29 (5)
O1iv—Na1—Si1iii148.71 (4)O1vii—Hf1—Na1xx44.07 (4)
O1vi—Na1—Si1ii31.12 (4)O1v—Hf1—Na1iv121.09 (4)
O1viii—Na1—Si184.93 (4)O1xxi—Hf1—Na1iv135.93 (4)
O1v—Na1—Si1ii148.71 (4)O1xvi—Hf1—Na1iii116.29 (5)
O1viii—Na1—Si1iii148.92 (3)O1vii—Hf1—Na1iii135.93 (4)
O1viii—Na1—Si1ii30.94 (3)O1—Hf1—Na1iii58.91 (4)
O1vi—Na1—Si183.83 (5)O1v—Hf1—Na1xx116.29 (5)
O1vii—Na1—Si1ii148.92 (3)O1xvi—Hf1—Na1xxi44.07 (4)
O1iii—Na1—Si184.93 (4)O1—Hf1—Na1xx121.09 (4)
O1iii—Na1—Si1ii91.76 (3)O1—Hf1—Na1xxi116.29 (5)
O1v—Na1—Si1iii31.12 (4)O1xiii—Hf1—Na1xx135.93 (4)
O1iv—Na1—Si1iv31.12 (4)O1vii—Hf1—Na1xxi121.09 (4)
O1vii—Na1—Si1iii91.76 (3)O1xxi—Hf1—Na1iii121.09 (4)
O1vi—Na1—Si1iv148.71 (4)O1xiii—Hf1—Na1xxi58.91 (4)
O1iv—Na1—Si183.83 (5)O1—Hf1—Na1xix135.93 (4)
O1v—Na1—Si1iv92.15 (4)O1xxi—Hf1—Na1xxi63.71 (5)
O1v—Na1—Si183.83 (5)O1v—Hf1—Na1iii63.71 (5)
O1viii—Na1—Si1iv91.76 (3)O1xvi—Hf1—Na1iv58.91 (4)
O1vii—Na1—Si184.93 (4)O1—Hf1—Na1iv44.07 (4)
O1vii—Na1—Si1iv30.94 (3)O1v—Hf1—Na1xxi135.93 (4)
O1iii—Na1—Si1iv148.92 (3)O1xiii—Hf1—Na1iii44.07 (4)
O1vi—Na1—Si1iii92.15 (4)O1xvi—Hf1—Na1135.93 (4)
O1v—Na1—O1iii57.02 (7)O1v—Hf1—Na1xix58.91 (4)
O1iv—Na1—O1viii62.36 (7)O1—Hf1—Na163.71 (5)
O1vi—Na1—O1vii168.44 (9)O1xvi—Hf1—Na1xix121.09 (4)
O1v—Na1—O1vii62.36 (7)O1vii—Hf1—Na158.91 (4)
O1v—Na1—O1viii168.44 (9)O1xiii—Hf1—Na1121.09 (4)
O1viii—Na1—O1iii119.229 (13)O1xiii—Hf1—Na1iv116.29 (5)
O1vi—Na1—O1v118.859 (19)O1v—Hf1—O1xxi87.19 (7)
O1vii—Na1—O1iii119.229 (13)O1v—Hf1—O1vii87.19 (7)
O1vi—Na1—O1viii57.02 (7)O1—Hf1—O1xiii87.19 (7)
O1iv—Na1—O1iii168.44 (9)O1xvi—Hf1—O1xxi92.81 (7)
O1iv—Na1—O1vii57.02 (7)O1v—Hf1—O1xiii92.81 (7)
O1vi—Na1—O1iii62.36 (7)O1—Hf1—O1xxi180.0
O1iv—Na1—O1vi118.859 (19)O1xvi—Hf1—O187.19 (7)
O1iv—Na1—O1v118.859 (19)O1vii—Hf1—O1xxi87.19 (7)
O1viii—Na1—O1vii119.229 (13)O1—Hf1—O1vii92.81 (7)
O2xi—Na1—Hf1i115.87 (2)O1xiii—Hf1—O1xxi92.81 (7)
O2xi—Na1—Si1iii83.60 (3)O1xvi—Hf1—O1xiii87.19 (7)
O2xi—Na1—Si1180.0O1v—Hf1—O1xvi180.0
O2xi—Na1—Si1iv83.60 (3)O1vii—Hf1—O1xiii180.0
O2xi—Na1—Si1ii83.60 (3)O1v—Hf1—O192.81 (7)
O2xi—Na1—O1vii95.07 (4)O1xvi—Hf1—O1vii92.81 (7)
O2xi—Na1—O1v96.17 (5)Na1ii—Si1—Na1iv118.773 (12)
O2xi—Na1—O1viii95.07 (4)Na1iii—Si1—Na183.60 (3)
O2xi—Na1—O1vi96.17 (5)Na1iv—Si1—Na183.60 (3)
O2xi—Na1—O1iv96.17 (5)Na1iv—Si1—Na1iii118.772 (12)
O2xi—Na1—O1iii95.07 (4)Na1ii—Si1—Na183.60 (3)
O1xiii—Ba1—O159.36 (5)Na1ii—Si1—Na1iii118.772 (12)
O1xiv—Ba1—O1180.0Na1ii—Si1—Ba1i67.724 (16)
O1xv—Ba1—O1xvi120.64 (5)Na1iv—Si1—Ba1xxii157.16 (4)
O1xii—Ba1—O1xvi180.00 (8)Na1—Si1—Ba1119.240 (11)
O1xiv—Ba1—O1xvi120.64 (5)Na1iii—Si1—Ba1i157.16 (4)
O1xiv—Ba1—O1xii59.36 (5)Na1—Si1—Ba1xxii119.240 (11)
O1xiii—Ba1—O1xvi59.36 (5)Na1—Si1—Ba1i119.240 (11)
O1xv—Ba1—O1xii59.36 (5)Na1ii—Si1—Ba1xxii67.723 (16)
O1xiii—Ba1—O1xii120.64 (5)Na1ii—Si1—Ba1157.16 (4)
O1xv—Ba1—O1120.64 (5)Na1iii—Si1—Ba1xxii67.723 (16)
O1xiv—Ba1—O1xv59.36 (5)Na1iv—Si1—Ba167.723 (16)
O1xii—Ba1—O1120.64 (5)Na1iii—Si1—Ba167.723 (16)
O1xiv—Ba1—O1xiii120.64 (5)Na1iv—Si1—Ba1i67.724 (16)
O1xv—Ba1—O1xiii180.00 (10)Ba1—Si1—Ba1xxii98.169 (14)
O1xvi—Ba1—O159.36 (5)Ba1i—Si1—Ba198.169 (14)
O1xii—Ba1—O2xviii52.61 (5)Ba1i—Si1—Ba1xxii98.169 (14)
O1—Ba1—O252.61 (5)O1ix—Si1—Na1ii50.52 (5)
O1xv—Ba1—O2xviii108.55 (5)O1x—Si1—Na168.03 (6)
O1—Ba1—O2xviii80.96 (5)O1—Si1—Na1ii149.93 (7)
O1xii—Ba1—O2xiv108.55 (5)O1x—Si1—Na1iv149.94 (7)
O1xv—Ba1—O2xx71.45 (5)O1ix—Si1—Na1iv69.22 (5)
O1xiii—Ba1—O299.04 (5)O1ix—Si1—Na1iii149.94 (7)
O1xii—Ba1—O2xx127.39 (5)O1—Si1—Na168.03 (6)
O1xv—Ba1—O2xiv99.04 (5)O1—Si1—Na1iii69.22 (5)
O1—Ba1—O2xx99.04 (5)O1x—Si1—Na1ii69.22 (5)
O1—Ba1—O2xiv127.39 (5)O1x—Si1—Na1iii50.51 (5)
O1—Ba1—O2xvii71.45 (5)O1—Si1—Na1iv50.51 (5)
O1xv—Ba1—O280.96 (5)O1ix—Si1—Na168.03 (6)
O1xiv—Ba1—O2xix71.45 (5)O1—Si1—Ba1xxii134.78 (5)
O1xii—Ba1—O271.45 (5)O1ix—Si1—Ba1i52.13 (6)
O1xv—Ba1—O2xix127.39 (5)O1ix—Si1—Ba1xxii117.23 (5)
O1xiv—Ba1—O2xiv52.61 (5)O1x—Si1—Ba1xxii52.13 (6)
O1xiii—Ba1—O2xix52.61 (5)O1—Si1—Ba1i117.23 (5)
O1xiii—Ba1—O2xiv80.96 (5)O1x—Si1—Ba1117.23 (5)
O1xii—Ba1—O2xix80.96 (5)O1—Si1—Ba152.13 (6)
O1xvi—Ba1—O2xiv71.45 (5)O1x—Si1—Ba1i134.78 (5)
O1xvi—Ba1—O2xix99.04 (5)O1ix—Si1—Ba1134.78 (6)
O1xiv—Ba1—O2xviii99.04 (5)O1ix—Si1—O1106.86 (7)
O1—Ba1—O2xix108.55 (5)O1—Si1—O1x106.86 (7)
O1xiii—Ba1—O2xviii71.45 (5)O1ix—Si1—O1x106.86 (7)
O1xiv—Ba1—O2127.39 (5)O2—Si1—Na1180.0
O1xvi—Ba1—O2xviii127.39 (5)O2—Si1—Na1iii96.40 (3)
O1xiv—Ba1—O2xvii108.55 (5)O2—Si1—Na1iv96.40 (3)
O1xiv—Ba1—O2xx80.96 (5)O2—Si1—Na1ii96.40 (3)
O1xv—Ba1—O2xvii52.61 (5)O2—Si1—Ba160.760 (11)
O1xiii—Ba1—O2xx108.55 (5)O2—Si1—Ba1xxii60.760 (11)
O1xiii—Ba1—O2xvii127.39 (5)O2—Si1—Ba1i60.760 (11)
O1xvi—Ba1—O2xx52.61 (5)O2—Si1—O1111.97 (6)
O1xii—Ba1—O2xvii99.04 (5)O2—Si1—O1x111.97 (6)
O1xvi—Ba1—O2xvii80.96 (5)O2—Si1—O1ix111.97 (6)
O1xvi—Ba1—O2108.55 (5)Na1iv—O1—Na1iii168.44 (9)
O2xvii—Ba1—O2xviii119.716 (8)Na1iv—O1—Ba189.42 (6)
O2xvii—Ba1—O2xiv119.716 (8)Ba1—O1—Na1iii79.80 (5)
O2xiv—Ba1—O2xx60.285 (8)Hf1—O1—Na1iii84.71 (5)
O2xix—Ba1—O2xviii60.284 (8)Hf1—O1—Na1iv100.01 (6)
O2xix—Ba1—O2xx119.716 (8)Hf1—O1—Ba192.35 (6)
O2—Ba1—O2xviii60.285 (8)Si1—O1—Na1iv98.37 (7)
O2xvii—Ba1—O2xix180.0Si1—O1—Na1iii79.84 (6)
O2xiv—Ba1—O2xviii119.715 (8)Si1—O1—Ba1101.12 (7)
O2xvii—Ba1—O2xx60.284 (8)Si1—O1—Hf1157.27 (10)
O2—Ba1—O2xiv180.0Na1xxiii—O2—Ba1xxii86.93 (4)
O2—Ba1—O2xx119.715 (8)Na1xxiii—O2—Ba1i86.93 (4)
O2xvii—Ba1—O260.285 (8)Na1xxiii—O2—Ba186.93 (4)
O2xix—Ba1—O2xiv60.284 (8)Ba1i—O2—Ba1xxii119.715 (8)
O2xix—Ba1—O2119.715 (8)Ba1—O2—Ba1xxii119.715 (8)
O2xviii—Ba1—O2xx180.0Ba1i—O2—Ba1119.715 (8)
Na1iv—Hf1—Na1iii102.38 (3)Si1—O2—Na1xxiii180.0
Na1iv—Hf1—Na1xxi102.38 (3)Si1—O2—Ba193.07 (4)
Na1—Hf1—Na1xx102.38 (3)Si1—O2—Ba1i93.07 (4)
Na1xx—Hf1—Na1iii180.0Si1—O2—Ba1xxii93.07 (4)
Na1xix—Hf1—Na1xx102.38 (3)
Na1ii—Si1—O1—Na1iv79.72 (11)Ba1i—Si1—O1—Hf1156.1 (2)
Na1—Si1—O1—Na1iii91.40 (4)Ba1—Si1—O1—Hf1125.3 (3)
Na1iv—Si1—O1—Na1iii168.43 (9)Ba1xxii—Si1—O1—Hf166.5 (3)
Na1iii—Si1—O1—Na1iv168.43 (9)Ba1xxii—Si1—O2—Ba1i120.0
Na1ii—Si1—O1—Na1iii111.84 (10)Ba1xxii—Si1—O2—Ba1120.0
Na1—Si1—O1—Na1iv100.17 (6)Ba1i—Si1—O2—Ba1120.000 (1)
Na1ii—Si1—O1—Ba1170.78 (6)Ba1—Si1—O2—Ba1i120.0
Na1—Si1—O1—Ba1168.78 (6)Ba1—Si1—O2—Ba1xxii120.0
Na1iii—Si1—O1—Ba177.38 (5)Ba1i—Si1—O2—Ba1xxii120.0
Na1iv—Si1—O1—Ba191.06 (7)O1ix—Si1—O1—Na1iii148.46 (7)
Na1iv—Si1—O1—Hf1143.7 (3)O1ix—Si1—O1—Na1iv43.11 (12)
Na1iii—Si1—O1—Hf147.9 (2)O1x—Si1—O1—Na1iv157.23 (5)
Na1ii—Si1—O1—Hf163.9 (3)O1x—Si1—O1—Na1iii34.34 (9)
Na1—Si1—O1—Hf143.5 (2)O1ix—Si1—O1—Ba1134.17 (9)
Na1ii—Si1—O2—Ba1i60.000 (1)O1x—Si1—O1—Ba1111.72 (10)
Na1iv—Si1—O2—Ba160.0O1ix—Si1—O1—Hf1100.56 (19)
Na1ii—Si1—O2—Ba1xxii60.0O1x—Si1—O1—Hf113.6 (3)
Na1iii—Si1—O2—Ba1xxii60.0O1ix—Si1—O2—Ba1i10.14 (6)
Na1iii—Si1—O2—Ba160.0O1x—Si1—O2—Ba1i130.14 (6)
Na1iii—Si1—O2—Ba1i180.0O1ix—Si1—O2—Ba1130.14 (6)
Na1iv—Si1—O2—Ba1xxii180.000 (1)O1—Si1—O2—Ba110.14 (6)
Na1ii—Si1—O2—Ba1180.0O1x—Si1—O2—Ba1109.86 (6)
Na1iv—Si1—O2—Ba1i60.0O1—Si1—O2—Ba1xxii130.14 (6)
Ba1—Si1—O1—Na1iv91.06 (7)O1x—Si1—O2—Ba1xxii10.14 (6)
Ba1—Si1—O1—Na1iii77.38 (5)O1ix—Si1—O2—Ba1xxii109.86 (6)
Ba1i—Si1—O1—Na1iii155.97 (4)O1—Si1—O2—Ba1i109.86 (6)
Ba1xxii—Si1—O1—Na1iv149.85 (6)O2—Si1—O1—Na1iv79.83 (6)
Ba1i—Si1—O1—Na1iv12.46 (9)O2—Si1—O1—Na1iii88.60 (4)
Ba1xxii—Si1—O1—Na1iii18.58 (9)O2—Si1—O1—Ba111.22 (6)
Ba1i—Si1—O1—Ba178.60 (6)O2—Si1—O1—Hf1136.5 (2)
Ba1xxii—Si1—O1—Ba158.80 (9)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+2, z+1; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) y, x+y, z+1; (vi) xy+1, x+1, z+1; (vii) xy, x, z+1; (viii) y, x+y+1, z+1; (ix) x+y, x+1, z; (x) y+1, xy+1, z; (xi) x, y, z+1; (xii) y, x+y, z; (xiii) x+y, x, z; (xiv) x, y, z; (xv) xy, x, z; (xvi) y, xy, z; (xvii) x, y+1, z; (xviii) x+1, y+1, z; (xix) x, y1, z; (xx) x1, y1, z; (xxi) x, y, z+1; (xxii) x+1, y+1, z; (xxiii) x, y, z1.
 

Funding information

Funding for this research was provided by: JST, the Core Research for Evolutionary Science and Technology (grant No. JPMJCR19J2); Innovative Science and Technology Initiative for Security (grant No. JPJ004596).

References

First citationAvdeev, M., Xia, Q., Sale, M., Allison, M. & Ling, C. D. (2018). J. Solid State Chem. 266, 1–8.  Google Scholar
First citationBirkel, A., DeCino, N. A., Cozzan, C., Mikhailovsky, A. A., Hong, B.-C. & Seshadri, R. (2015). Solid State Sci. 48, 82–89.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGualtieri, A., Norby, P., Hanson, J. & Hriljac, J. (1996). J. Appl. Cryst. 29, 707–713.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationHoppe, R. (1995). Z. Naturforsch., A: Phys. Sci. 50, 555.  Google Scholar
First citationICSD (2025). Inorganic Crystal Structure Database, Web version. FIZ Karlsruhe, Germany.  Google Scholar
First citationIwata, T., Horie, T. & Fukuda, K. (2009). Powder Diffr. 24, 180–184.  Google Scholar
First citationKostov-Kytin, V., Nikolova, R., Kerestedjian, T. & Bezdicka, P. (2013). Mater. Res. Bull. 48, 2029–2033.  Google Scholar
First citationKostov-Kytin, V. V., Nikolova, R. P. & Nihtianova, D. D. (2012). Mater. Res. Bull. 47, 2324–2331.  Google Scholar
First citationMomma, K. & Izumi, F. (2011). J. Appl. Cryst. 44, 1272–1276.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMumme, W., Cranswick, L. & Chakoumakos, B. (1996). Neues Jahrb. Mineral. Abh. 170, 171–188.  CAS Google Scholar
First citationNikolova, R. & Kostov-Kytin, V. (2013). Bulg. Chem. Commun. 45, 418–426.  Google Scholar
First citationPant, A. K. & Cruickshank, D. W. J. (1968). Acta Cryst. B24, 13–19.  CrossRef ICSD CAS IUCr Journals Web of Science Google Scholar
First citationPark, C.-H., Hong, S.-T. & Keszler, D. A. (2009). J. Solid State Chem. 182, 496–501.  Google Scholar
First citationPark, C.-H., Kim, T.-H., Yonesaki, Y. & Kumada, N. (2011). J. Solid State Chem. 184, 1566–1570.  Google Scholar
First citationPathak, S., Das, P., Das, T., Mandal, G., Joseph, B., Sahu, M., Kaushik, S. D. & Siruguri, V. (2020). Acta Cryst. C76, 1034–1042.  CrossRef ICSD IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamagishi, S., Hayashida, T., Misawa, R., Kimura, K., Hagihala, M., Murata, T., Hirose, S. & Kimura, T. (2023). Chem. Mater. 35, 747–754.  Google Scholar
First citationYonesaki, Y. (2013). J. Solid State Chem. 201, 324–329.  Google Scholar
First citationYonesaki, Y., Dong, Q., Mohamad, N. S. B., Miura, A., Takei, T., Yamanaka, J., Kumada, N. & Kinomura, N. (2011). J. Alloys Compd. 509, 8738–8741.  Google Scholar
First citationYonesaki, Y., Takei, T., Kumada, N. & Kinomura, N. (2008). J. Lumin. 128, 1507–1514.  Google Scholar
First citationYonezaki, Y. (2015). Powder Diffr. 30, 40–51.  Google Scholar
First citationYonezaki, Y. (2018). J. Lumin. 195, 408–412.  Google Scholar
First citationYonezaki, Y. (2020). J. Photochem. Photobiol. Chem. 398, 112645.  Google Scholar
First citationYonezaki, Y. & Takei, S. (2016). J. Lumin. 173, 237–242.  Google Scholar
First citationYonezaki, Y., Takei, S. & Matsumoto, S. (2018). J. Photochem. Photobiol. Chem. 367, 406–410.  Google Scholar
First citationYonezaki, Y. & Yanai, R. (2021). J. Alloys Compd. 876, 160111.  Google Scholar
First citationZollweg, R. J. (1955). Phys. Rev. 100, 671–673.  CrossRef ICSD CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds