

research communications
N′-[(1E)-1-(3-hydroxyphenyl)ethylidene]benzohydrazide
Hirshfeld surface analysis and DFT studies of 4-amino-aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Science and Humanities, Dhaanish Ahmed Institute of Technology, Coimbatore 641 042, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: senraj05@gmail.com, sselvanayagam@gmail.com
In the title compound, C15H15N3O2, (I), the aniline and phenol rings form a dihedral angle of 62.1 (1)°. Intermolecular N—H⋯O and O—H⋯O hydrogen bonds lead to the formation of sheets extending parallel to (010). Intermolecular interactions were quantified and analysed using Hirshfeld surface analysis, revealing that H⋯H interactions contribute most to the crystal packing (42.2%). The molecular structure was optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and was compared with the experimentally determined molecular structure in the solid state.
Keywords: crystal structure; benzohydrazide derivative; N—H⋯O and O—H⋯O intermolecular hydrogen bonds; Hirshfeld surface analysis; DFT analysis.
CCDC reference: 2203541
1. Chemical context
et al., 2010), anti-inflammatory (Radwan et al., 2007
) and anticancer (Kumar et al., 2012
) effects.
In the present work, the synthesis, structural and computational studies of another hydrozone, 4-amino-N′-[(1E)-1-(3-hydroxyphenyl)ethylidene]benzohydrazide, (I), is reported.
2. Structural commentary
The molecular structure of (I) is displayed in Fig. 1. The aniline ring (C1–C6/N1) is planar with a maximum deviation of 0.023 (1) Å for atom N1. Likewise, the phenol ring (C10–C15/O2) is planar with a maximum deviation of 0.003 (2) Å for atom C12. These two rings are oriented at a dihedral angle of 62.1 (1)°. The least-squares plane calculation of the N′-[(1E)-ethylidene]formohydrazide moiety (C7/O1/N2/N3/C8/C9) reveals that this part of the molecule is nearly planar with a maximum deviation of −0.223 (1) Å for atom O1. This moiety forms dihedral angles of 36.5 (1) and 25.6 (1)°, respectively, with respect to the aniline and phenol rings.
![]() | Figure 1 The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level. |
3. Supramolecular features
In the crystal, molecules associate pairwise via O2—H2⋯O1i hydrogen bonds (Table 1) into inversion dimers with an R22 (20) graph-set motif (Etter et al., 1990
), as shown in Fig. 2
. Molecules are further linked into a C(14) chain motif by N1—H1A⋯O2iii hydrogen bonds running parallel to [100], and by N1—H1B⋯O1ii hydrogen bonds into a C(8) chain motif running along [102] (Table 1
; Fig. 3
). Taken together, these interactions lead to a layered arrangement parallel to (010). It is interesting to note that the amine function (N2—H2A) is not involved in any intermolecular interactions.
|
![]() | Figure 2 The formation of a centrosymmetric dimer in the crystal structure of (I) through O—H⋯O hydrogen bonds. [Symmetry code: (b) −x + 1, −y + 2, −z.] |
![]() | Figure 3 Intermolecular N—H⋯O and O—H⋯O hydrogen bonds in (I) shown as dashed lines. For clarity, H atoms not involved in these hydrogen bonds have been omitted. |
4. Hirshfeld surface analysis
To further characterize the intermolecular interactions in (I), a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009) was carried out using CrystalExplorer (Spackman et al., 2021
). The HS mapped over dnorm is illustrated in Fig. 4
, showing the aforementioned hydrogen-bonding interactions as red-colored areas.
![]() | Figure 4 The Hirshfeld surface mapped for (I) over dnorm. |
The associated two-dimensional fingerprint plots (McKinnon et al., 2007) provide quantitative information about the non-covalent interactions in the crystal packing in terms of the percentage contribution of the interatomic contacts (Spackman & McKinnon, 2002
). The overall two-dimensional fingerprint plot is shown in Fig. 5
a. The HS analysis reveals that H⋯H and H⋯C/C⋯H contacts are the main contributors to the crystal packing, followed by H⋯O/O⋯H, N⋯H/H⋯N and C⋯N/N⋯C contacts; see Fig. 5
b–f. The HS analysis confirms the importance of H-atom contacts in establishing the packing (Hathwar et al., 2015
).
![]() | Figure 5 Two-dimensional fingerprint plots for (I), showing (a) all interactions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) N⋯C/C⋯N interactions with their relative contributions. The di and de values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface. |
5. DFT Studies
The optimized structure of (I) in the gas phase was computed with Gaussian09W using the B3LYP/6–31G (d, p) basis set and generated by GaussView5.0 (Frisch et al., 2009). Comparison of experimentally determined bond lengths and angles (present single-crystal X-ray study) with those of theoretical values from the optimized structure showed good agreement [electronic supporting information (ESI), Table S1; the optimized molecular structure of (I) is shown in ESI as Fig. S1].
HOMO and LUMO (Fig. 6) were generated and their energies were evaluated from the optimized structure. The biological activity may also be comprehended by using the value of ΔE (Gulsevensidir et al., 2011
), which can be used to correlate and understand a decreased toxicity, longer half-life, and sustained activity. Therefore, it is anticipated that molecule (I) with ΔE = 4.395 eV might have a strong biological influence with low adverse effects.
![]() | Figure 6 The HOMO/LUMO energy diagram of (I). |
The molecular electrostatic potential surface (MEPS; Fig. 7) is used to find the positive and negative electrostatic potential of the molecule, which provides possible information about its reactive sites with regard to chemical processes and binding sites for certain biological entities. The red-colored areas on the MEPS of (I) above the carbonyl oxygen atom of the azonitrile nitrogen moiety, which is likely to undergo electrophilic attack, indicate the electron-rich portion with a partial negative charge. The mild-blue coloration of (I) suggests that there are slight electron-deficient regions. The lack of a bright-blue area on the MEPS indicates that the molecule has no potential nucleophilic attack sites. The pale-blue color of the phenyl rings indicate weak electrophilic sites.
![]() | Figure 7 The molecular electrostatic potential surface (MEPS) of (I). |
6. Synthesis and crystallization
4-Aminobenzohydrazide (2 mmol) and the corresponding substituted aromatic ketone (2 mmol) were dissolved in 25 ml of methanol, along with a few drops of acetic acid, to give a clear solution. The reaction mixture was filled in a round bottom flask and refluxed on a water bath for about 4 h. The progress of the reaction was monitored by thin layer I).
(TLC). After completion of the reaction, methanol was removed by vacuum distillation. The solid product was collected, washed, and recrystallized from methanol to obtain a pure product of (7. Refinement
Crystal data, data collection and structure . Atom H2A was located from a difference-Fourier map; all other H atoms were placed in idealized positions and allowed to ride on their parent atoms with O—H = 0.82, N—H = 0.86 and C—H = 0.93–0.96 Å, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C)(C or N or O).
|
Supporting information
CCDC reference: 2203541
https://doi.org/10.1107/S205698902500297X/wm5754sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S205698902500297X/wm5754Isup2.hkl
Table S1. DOI: https://doi.org/10.1107/S205698902500297X/wm5754sup3.docx
Figure S1. DOI: https://doi.org/10.1107/S205698902500297X/wm5754sup4.tif
Supporting information file. DOI: https://doi.org/10.1107/S205698902500297X/wm5754Isup5.cml
C15H15N3O2 | Z = 2 |
Mr = 269.30 | F(000) = 284 |
Triclinic, P1 | Dx = 1.318 Mg m−3 |
a = 8.3562 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.2666 (4) Å | Cell parameters from 5917 reflections |
c = 9.9151 (4) Å | θ = 2.7–29.3° |
α = 76.685 (2)° | µ = 0.09 mm−1 |
β = 65.316 (1)° | T = 298 K |
γ = 84.909 (2)° | Block, colorless |
V = 678.83 (5) Å3 | 0.33 × 0.29 × 0.17 mm |
Bruker D8 Quest XRD diffractometer | Rint = 0.026 |
Detector resolution: 7.3910 pixels mm-1 | θmax = 30.2°, θmin = 2.7° |
ω and Phi Scans scans | h = −11→11 |
13112 measured reflections | k = −12→13 |
3420 independent reflections | l = −13→13 |
2620 reflections with I > 2σ(I) |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.134 | w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2093P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3420 reflections | Δρmax = 0.25 e Å−3 |
186 parameters | Δρmin = −0.15 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.15425 (14) | 0.90009 (13) | 0.19913 (13) | 0.0525 (3) | |
O2 | 0.99259 (14) | 0.84728 (15) | −0.28575 (16) | 0.0642 (4) | |
H2 | 0.939270 | 0.922396 | −0.261740 | 0.096* | |
N1 | −0.67521 (18) | 0.83831 (19) | 0.41445 (18) | 0.0646 (4) | |
H1A | −0.730474 | 0.838506 | 0.509568 | 0.078* | |
H1B | −0.733195 | 0.836403 | 0.360773 | 0.078* | |
N2 | 0.14917 (16) | 0.77285 (15) | 0.03196 (16) | 0.0470 (3) | |
N3 | 0.33033 (15) | 0.76091 (14) | −0.03496 (14) | 0.0449 (3) | |
C1 | −0.22296 (19) | 0.83740 (17) | 0.12941 (16) | 0.0432 (3) | |
H1 | −0.164218 | 0.833788 | 0.027285 | 0.052* | |
C2 | −0.4043 (2) | 0.83844 (17) | 0.19445 (17) | 0.0456 (3) | |
H2B | −0.466420 | 0.837429 | 0.135719 | 0.055* | |
C3 | −0.49542 (19) | 0.84101 (17) | 0.34866 (18) | 0.0449 (3) | |
C4 | −0.3979 (2) | 0.84413 (19) | 0.43329 (17) | 0.0490 (4) | |
H4 | −0.456202 | 0.844926 | 0.536114 | 0.059* | |
C5 | −0.2173 (2) | 0.84603 (18) | 0.36659 (17) | 0.0465 (4) | |
H5 | −0.155097 | 0.850317 | 0.424490 | 0.056* | |
C6 | −0.12531 (18) | 0.84166 (16) | 0.21355 (16) | 0.0395 (3) | |
C7 | 0.06932 (19) | 0.84259 (16) | 0.14849 (17) | 0.0413 (3) | |
C8 | 0.38915 (19) | 0.66826 (16) | −0.12234 (17) | 0.0430 (3) | |
C9 | 0.2747 (2) | 0.5749 (3) | −0.1523 (3) | 0.0787 (7) | |
H9A | 0.347537 | 0.514173 | −0.221098 | 0.118* | |
H9B | 0.199464 | 0.512823 | −0.058500 | 0.118* | |
H9C | 0.204057 | 0.638171 | −0.196627 | 0.118* | |
C10 | 0.58360 (19) | 0.65143 (16) | −0.19348 (16) | 0.0406 (3) | |
C11 | 0.69503 (19) | 0.76129 (16) | −0.20501 (16) | 0.0417 (3) | |
H11 | 0.647841 | 0.846282 | −0.168357 | 0.050* | |
C12 | 0.87624 (19) | 0.74403 (17) | −0.27108 (17) | 0.0449 (3) | |
C13 | 0.9479 (2) | 0.61656 (19) | −0.32493 (18) | 0.0488 (4) | |
H13 | 1.069377 | 0.604830 | −0.368656 | 0.059* | |
C14 | 0.8379 (2) | 0.50825 (18) | −0.31303 (19) | 0.0507 (4) | |
H14 | 0.885554 | 0.422900 | −0.348736 | 0.061* | |
C15 | 0.6570 (2) | 0.52448 (17) | −0.24861 (19) | 0.0495 (4) | |
H15 | 0.584065 | 0.450565 | −0.242003 | 0.059* | |
H2A | 0.082 (2) | 0.730 (2) | 0.005 (2) | 0.068 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0408 (6) | 0.0658 (7) | 0.0606 (7) | 0.0009 (5) | −0.0226 (5) | −0.0283 (6) |
O2 | 0.0385 (6) | 0.0698 (8) | 0.0813 (9) | −0.0062 (5) | −0.0078 (6) | −0.0407 (7) |
N1 | 0.0364 (7) | 0.0989 (12) | 0.0575 (9) | −0.0049 (7) | −0.0141 (6) | −0.0225 (8) |
N2 | 0.0338 (6) | 0.0549 (7) | 0.0551 (8) | −0.0020 (5) | −0.0144 (6) | −0.0237 (6) |
N3 | 0.0333 (6) | 0.0503 (7) | 0.0497 (7) | −0.0023 (5) | −0.0125 (5) | −0.0159 (6) |
C1 | 0.0427 (8) | 0.0501 (8) | 0.0379 (7) | −0.0027 (6) | −0.0150 (6) | −0.0128 (6) |
C2 | 0.0427 (8) | 0.0545 (9) | 0.0457 (8) | −0.0019 (6) | −0.0219 (6) | −0.0139 (7) |
C3 | 0.0369 (7) | 0.0491 (8) | 0.0473 (8) | −0.0025 (6) | −0.0150 (6) | −0.0108 (7) |
C4 | 0.0442 (8) | 0.0635 (10) | 0.0363 (7) | 0.0002 (7) | −0.0132 (6) | −0.0110 (7) |
C5 | 0.0429 (8) | 0.0586 (9) | 0.0420 (8) | 0.0002 (7) | −0.0201 (6) | −0.0128 (7) |
C6 | 0.0361 (7) | 0.0415 (7) | 0.0411 (7) | −0.0018 (5) | −0.0146 (6) | −0.0108 (6) |
C7 | 0.0381 (7) | 0.0416 (7) | 0.0448 (8) | −0.0014 (6) | −0.0169 (6) | −0.0100 (6) |
C8 | 0.0406 (7) | 0.0448 (7) | 0.0455 (8) | −0.0011 (6) | −0.0173 (6) | −0.0133 (6) |
C9 | 0.0488 (10) | 0.0951 (15) | 0.1132 (18) | 0.0044 (10) | −0.0324 (11) | −0.0646 (14) |
C10 | 0.0405 (7) | 0.0435 (7) | 0.0380 (7) | −0.0002 (6) | −0.0148 (6) | −0.0114 (6) |
C11 | 0.0403 (7) | 0.0446 (7) | 0.0395 (7) | 0.0009 (6) | −0.0121 (6) | −0.0163 (6) |
C12 | 0.0403 (8) | 0.0535 (8) | 0.0409 (7) | −0.0024 (6) | −0.0120 (6) | −0.0181 (7) |
C13 | 0.0397 (8) | 0.0589 (9) | 0.0464 (8) | 0.0053 (7) | −0.0122 (6) | −0.0210 (7) |
C14 | 0.0525 (9) | 0.0457 (8) | 0.0519 (9) | 0.0074 (7) | −0.0159 (7) | −0.0198 (7) |
C15 | 0.0503 (9) | 0.0441 (8) | 0.0542 (9) | −0.0023 (6) | −0.0176 (7) | −0.0168 (7) |
O1—C7 | 1.2360 (17) | C5—C6 | 1.394 (2) |
O2—C12 | 1.3656 (18) | C5—H5 | 0.9300 |
O2—H2 | 0.8200 | C6—C7 | 1.4782 (19) |
N1—C3 | 1.3652 (19) | C8—C10 | 1.487 (2) |
N1—H1A | 0.8600 | C8—C9 | 1.501 (2) |
N1—H1B | 0.8600 | C9—H9A | 0.9600 |
N2—C7 | 1.3496 (19) | C9—H9B | 0.9600 |
N2—N3 | 1.3818 (17) | C9—H9C | 0.9600 |
N2—H2A | 0.864 (9) | C10—C11 | 1.394 (2) |
N3—C8 | 1.2811 (19) | C10—C15 | 1.395 (2) |
C1—C2 | 1.377 (2) | C11—C12 | 1.387 (2) |
C1—C6 | 1.397 (2) | C11—H11 | 0.9300 |
C1—H1 | 0.9300 | C12—C13 | 1.392 (2) |
C2—C3 | 1.400 (2) | C13—C14 | 1.373 (2) |
C2—H2B | 0.9300 | C13—H13 | 0.9300 |
C3—C4 | 1.399 (2) | C14—C15 | 1.383 (2) |
C4—C5 | 1.371 (2) | C14—H14 | 0.9300 |
C4—H4 | 0.9300 | C15—H15 | 0.9300 |
C12—O2—H2 | 109.5 | N2—C7—C6 | 115.58 (12) |
C3—N1—H1A | 120.0 | N3—C8—C10 | 116.54 (13) |
C3—N1—H1B | 120.0 | N3—C8—C9 | 124.22 (14) |
H1A—N1—H1B | 120.0 | C10—C8—C9 | 119.22 (13) |
C7—N2—N3 | 121.26 (12) | C8—C9—H9A | 109.5 |
C7—N2—H2A | 117.2 (13) | C8—C9—H9B | 109.5 |
N3—N2—H2A | 121.4 (13) | H9A—C9—H9B | 109.5 |
C8—N3—N2 | 115.54 (12) | C8—C9—H9C | 109.5 |
C2—C1—C6 | 121.41 (13) | H9A—C9—H9C | 109.5 |
C2—C1—H1 | 119.3 | H9B—C9—H9C | 109.5 |
C6—C1—H1 | 119.3 | C11—C10—C15 | 119.07 (14) |
C1—C2—C3 | 120.25 (14) | C11—C10—C8 | 120.63 (13) |
C1—C2—H2B | 119.9 | C15—C10—C8 | 120.30 (13) |
C3—C2—H2B | 119.9 | C12—C11—C10 | 120.09 (13) |
N1—C3—C4 | 121.19 (14) | C12—C11—H11 | 120.0 |
N1—C3—C2 | 120.41 (14) | C10—C11—H11 | 120.0 |
C4—C3—C2 | 118.39 (14) | O2—C12—C11 | 123.02 (13) |
C5—C4—C3 | 120.85 (14) | O2—C12—C13 | 116.66 (13) |
C5—C4—H4 | 119.6 | C11—C12—C13 | 120.32 (14) |
C3—C4—H4 | 119.6 | C14—C13—C12 | 119.50 (14) |
C4—C5—C6 | 121.19 (14) | C14—C13—H13 | 120.3 |
C4—C5—H5 | 119.4 | C12—C13—H13 | 120.2 |
C6—C5—H5 | 119.4 | C13—C14—C15 | 120.83 (14) |
C5—C6—C1 | 117.89 (13) | C13—C14—H14 | 119.6 |
C5—C6—C7 | 118.67 (13) | C15—C14—H14 | 119.6 |
C1—C6—C7 | 123.44 (13) | C14—C15—C10 | 120.19 (14) |
O1—C7—N2 | 121.81 (13) | C14—C15—H15 | 119.9 |
O1—C7—C6 | 122.59 (13) | C10—C15—H15 | 119.9 |
C7—N2—N3—C8 | 166.52 (15) | N2—N3—C8—C10 | −178.92 (13) |
C6—C1—C2—C3 | −1.2 (2) | N2—N3—C8—C9 | −0.7 (2) |
C1—C2—C3—N1 | −178.36 (15) | N3—C8—C10—C11 | −20.1 (2) |
C1—C2—C3—C4 | 0.7 (2) | C9—C8—C10—C11 | 161.65 (17) |
N1—C3—C4—C5 | 179.65 (16) | N3—C8—C10—C15 | 159.42 (15) |
C2—C3—C4—C5 | 0.6 (2) | C9—C8—C10—C15 | −18.9 (2) |
C3—C4—C5—C6 | −1.4 (3) | C15—C10—C11—C12 | 0.3 (2) |
C4—C5—C6—C1 | 0.9 (2) | C8—C10—C11—C12 | 179.74 (13) |
C4—C5—C6—C7 | −179.44 (14) | C10—C11—C12—O2 | −179.94 (15) |
C2—C1—C6—C5 | 0.4 (2) | C10—C11—C12—C13 | −0.6 (2) |
C2—C1—C6—C7 | −179.23 (14) | O2—C12—C13—C14 | 179.78 (15) |
N3—N2—C7—O1 | 0.9 (2) | C11—C12—C13—C14 | 0.4 (2) |
N3—N2—C7—C6 | −177.49 (13) | C12—C13—C14—C15 | 0.2 (3) |
C5—C6—C7—O1 | −27.6 (2) | C13—C14—C15—C10 | −0.5 (3) |
C1—C6—C7—O1 | 152.05 (15) | C11—C10—C15—C14 | 0.3 (2) |
C5—C6—C7—N2 | 150.74 (15) | C8—C10—C15—C14 | −179.20 (14) |
C1—C6—C7—N2 | −29.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···O1i | 0.82 | 1.88 | 2.694 (2) | 171 |
N1—H1B···O1ii | 0.86 | 2.13 | 2.958 (2) | 162 |
N1—H1A···O2iii | 0.86 | 2.37 | 3.119 (2) | 146 |
Symmetry codes: (i) −x+1, −y+2, −z; (ii) x−1, y, z; (iii) x−2, y, z+1. |
References
Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Négre-Salvayre, A. & Baltas, M. (2010). Eur. J. Med. Chem. 45, 3019–3026. CrossRef CAS PubMed Google Scholar
Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09W. Gaussian Inc., Wallingford, USA. Google Scholar
Gulsevensidir, Y., Sidir, I., Tasal, E. & Oretir, C. (2011). Int. J. Quantum Chem. 111, 3616–3629. Google Scholar
Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
Kumar, D., Maruthi Kumar, N., Ghosh, S. & Shah, K. (2012). Bioorg. Med. Chem. Lett. 22, 212–215. CrossRef CAS PubMed Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Radwan, M. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832–3841. CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.