research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, Hirshfeld surface analysis and DFT studies of 4-amino-N′-[(1E)-1-(3-hy­droxyphen­yl)ethyl­­idene]benzohydrazide

crossmark logo

aDepartment of Chemistry, Annamalai University, Annamalainagar, Chidambaram 608 002, India, bDepartment of Science and Humanities, Dhaanish Ahmed Institute of Technology, Coimbatore 641 042, India, and cPG & Research Department of Physics, Government Arts College, Melur 625 106, India
*Correspondence e-mail: senraj05@gmail.com, sselvanayagam@gmail.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 10 March 2025; accepted 2 April 2025; online 8 April 2025)

In the title compound, C15H15N3O2, (I), the aniline and phenol rings form a dihedral angle of 62.1 (1)°. Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds lead to the formation of sheets extending parallel to (010). Inter­molecular inter­actions were qu­anti­fied and analysed using Hirshfeld surface analysis, revealing that H⋯H inter­actions contribute most to the crystal packing (42.2%). The mol­ecular structure was optimized by density functional theory (DFT) at the B3LYP/6–31 G(d,p) level and was compared with the experimentally determined mol­ecular structure in the solid state.

1. Chemical context

Hydrazones have been found to show various biological properties, including anti­oxidant (Belkheiri et al., 2010[Belkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Négre-Salvayre, A. & Baltas, M. (2010). Eur. J. Med. Chem. 45, 3019-3026.]), anti-inflammatory (Radwan et al., 2007[Radwan, M. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832-3841.]) and anti­cancer (Kumar et al., 2012[Kumar, D., Maruthi Kumar, N., Ghosh, S. & Shah, K. (2012). Bioorg. Med. Chem. Lett. 22, 212-215.]) effects.

[Scheme 1]

In the present work, the synthesis, structural and computational studies of another hydro­zone, 4-amino-N′-[(1E)-1-(3-hy­droxy­phen­yl)ethyl­idene]benzohydrazide, (I), is reported.

2. Structural commentary

The mol­ecular structure of (I) is displayed in Fig. 1[link]. The aniline ring (C1–C6/N1) is planar with a maximum deviation of 0.023 (1) Å for atom N1. Likewise, the phenol ring (C10–C15/O2) is planar with a maximum deviation of 0.003 (2) Å for atom C12. These two rings are oriented at a dihedral angle of 62.1 (1)°. The least-squares plane calculation of the N′-[(1E)-ethyl­idene]formohydrazide moiety (C7/O1/N2/N3/C8/C9) reveals that this part of the mol­ecule is nearly planar with a maximum deviation of −0.223 (1) Å for atom O1. This moiety forms dihedral angles of 36.5 (1) and 25.6 (1)°, respectively, with respect to the aniline and phenol rings.

[Figure 1]
Figure 1
The mol­ecular structure of (I) with displacement ellipsoids drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, mol­ecules associate pairwise via O2—H2⋯O1i hydrogen bonds (Table 1[link]) into inversion dimers with an R22 (20) graph-set motif (Etter et al., 1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]), as shown in Fig. 2[link]. Mol­ecules are further linked into a C(14) chain motif by N1—H1A⋯O2iii hydrogen bonds running parallel to [100], and by N1—H1B⋯O1ii hydrogen bonds into a C(8) chain motif running along [102] (Table 1[link]; Fig. 3[link]). Taken together, these inter­actions lead to a layered arrangement parallel to (010). It is inter­esting to note that the amine function (N2—H2A) is not involved in any inter­molecular inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.88 2.694 (2) 171
N1—H1B⋯O1ii 0.86 2.13 2.958 (2) 162
N1—H1A⋯O2iii 0.86 2.37 3.119 (2) 146
Symmetry codes: (i) [-x+1, -y+2, -z]; (ii) [x-1, y, z]; (iii) [x-2, y, z+1].
[Figure 2]
Figure 2
The formation of a centrosymmetric dimer in the crystal structure of (I) through O—H⋯O hydrogen bonds. [Symmetry code: (b) −x + 1, −y + 2, −z.]
[Figure 3]
Figure 3
Inter­molecular N—H⋯O and O—H⋯O hydrogen bonds in (I) shown as dashed lines. For clarity, H atoms not involved in these hydrogen bonds have been omitted.

4. Hirshfeld surface analysis

To further characterize the inter­molecular inter­actions in (I), a Hirshfeld surface (HS) analysis (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) was carried out using CrystalExplorer (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]). The HS mapped over dnorm is illustrated in Fig. 4[link], showing the aforementioned hydrogen-bonding inter­actions as red-colored areas.

[Figure 4]
Figure 4
The Hirshfeld surface mapped for (I) over dnorm.

The associated two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) provide qu­anti­tative information about the non-covalent inter­actions in the crystal packing in terms of the percentage contribution of the inter­atomic contacts (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378-392.]). The overall two-dimensional fingerprint plot is shown in Fig. 5[link]a. The HS analysis reveals that H⋯H and H⋯C/C⋯H contacts are the main contributors to the crystal packing, followed by H⋯O/O⋯H, N⋯H/H⋯N and C⋯N/N⋯C contacts; see Fig. 5[link]b–f. The HS analysis confirms the importance of H-atom contacts in establishing the packing (Hathwar et al., 2015[Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563-574.]).

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for (I), showing (a) all inter­actions, and delineated into (b) H⋯H, (c) H⋯C/C⋯H, (d) H⋯O/O⋯H, (e) H⋯N/N⋯H and (f) N⋯C/C⋯N inter­actions with their relative contributions. The di and de values are the closest inter­nal and external distances (in Å) from given points on the Hirshfeld surface.

5. DFT Studies

The optimized structure of (I) in the gas phase was computed with Gaussian09W using the B3LYP/6–31G (d, p) basis set and generated by GaussView5.0 (Frisch et al., 2009[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09W. Gaussian Inc., Wallingford, USA.]). Comparison of experimentally determined bond lengths and angles (present single-crystal X-ray study) with those of theoretical values from the optimized structure showed good agreement [electronic supporting information (ESI), Table S1; the optimized mol­ecular structure of (I) is shown in ESI as Fig. S1].

HOMO and LUMO (Fig. 6[link]) were generated and their energies were evaluated from the optimized structure. The biological activity may also be comprehended by using the value of ΔE (Gulsevensidir et al., 2011[Gulsevensidir, Y., Sidir, I., Tasal, E. & Oretir, C. (2011). Int. J. Quantum Chem. 111, 3616-3629.]), which can be used to correlate and understand a decreased toxicity, longer half-life, and sustained activity. Therefore, it is anti­cipated that mol­ecule (I) with ΔE = 4.395 eV might have a strong biological influence with low adverse effects.

[Figure 6]
Figure 6
The HOMO/LUMO energy diagram of (I).

The mol­ecular electrostatic potential surface (MEPS; Fig. 7[link]) is used to find the positive and negative electrostatic potential of the mol­ecule, which provides possible information about its reactive sites with regard to chemical processes and binding sites for certain biological entities. The red-colored areas on the MEPS of (I) above the carbonyl oxygen atom of the azo­nitrile nitro­gen moiety, which is likely to undergo electrophilic attack, indicate the electron-rich portion with a partial negative charge. The mild-blue coloration of (I) suggests that there are slight electron-deficient regions. The lack of a bright-blue area on the MEPS indicates that the mol­ecule has no potential nucleophilic attack sites. The pale-blue color of the phenyl rings indicate weak electrophilic sites.

[Figure 7]
Figure 7
The mol­ecular electrostatic potential surface (MEPS) of (I).

6. Synthesis and crystallization

4-Amino­benzohydrazide (2 mmol) and the corresponding substituted aromatic ketone (2 mmol) were dissolved in 25 ml of methanol, along with a few drops of acetic acid, to give a clear solution. The reaction mixture was filled in a round bottom flask and refluxed on a water bath for about 4 h. The progress of the reaction was monitored by thin layer chromatography (TLC). After completion of the reaction, methanol was removed by vacuum distillation. The solid product was collected, washed, and recrystallized from methanol to obtain a pure product of (I).

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atom H2A was located from a difference-Fourier map; all other H atoms were placed in idealized positions and allowed to ride on their parent atoms with O—H = 0.82, N—H = 0.86 and C—H = 0.93–0.96 Å, respectively, and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C)(C or N or O).

Table 2
Experimental details

Crystal data
Chemical formula C15H15N3O2
Mr 269.30
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 298
a, b, c (Å) 8.3562 (4), 9.2666 (4), 9.9151 (4)
α, β, γ (°) 76.685 (2), 65.316 (1), 84.909 (2)
V3) 678.83 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.33 × 0.29 × 0.17
 
Data collection
Diffractometer Bruker D8 Quest XRD
No. of measured, independent and observed [I > 2σ(I)] reflections 13112, 3420, 2620
Rint 0.026
(sin θ/λ)max−1) 0.707
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.134, 1.05
No. of reflections 3420
No. of parameters 186
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.25, −0.15
Computer programs: APEX3 and SAINT (Bruker, 2017[Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]).

Supporting information


Computing details top

4-Amino-N'-[(1E)-1-(3-hydroxyphenyl)ethylidene]benzohydrazide top
Crystal data top
C15H15N3O2Z = 2
Mr = 269.30F(000) = 284
Triclinic, P1Dx = 1.318 Mg m3
a = 8.3562 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.2666 (4) ÅCell parameters from 5917 reflections
c = 9.9151 (4) Åθ = 2.7–29.3°
α = 76.685 (2)°µ = 0.09 mm1
β = 65.316 (1)°T = 298 K
γ = 84.909 (2)°Block, colorless
V = 678.83 (5) Å30.33 × 0.29 × 0.17 mm
Data collection top
Bruker D8 Quest XRD
diffractometer
Rint = 0.026
Detector resolution: 7.3910 pixels mm-1θmax = 30.2°, θmin = 2.7°
ω and Phi Scans scansh = 1111
13112 measured reflectionsk = 1213
3420 independent reflectionsl = 1313
2620 reflections with I > 2σ(I)
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.2093P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3420 reflectionsΔρmax = 0.25 e Å3
186 parametersΔρmin = 0.15 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.15425 (14)0.90009 (13)0.19913 (13)0.0525 (3)
O20.99259 (14)0.84728 (15)0.28575 (16)0.0642 (4)
H20.9392700.9223960.2617400.096*
N10.67521 (18)0.83831 (19)0.41445 (18)0.0646 (4)
H1A0.7304740.8385060.5095680.078*
H1B0.7331950.8364030.3607730.078*
N20.14917 (16)0.77285 (15)0.03196 (16)0.0470 (3)
N30.33033 (15)0.76091 (14)0.03496 (14)0.0449 (3)
C10.22296 (19)0.83740 (17)0.12941 (16)0.0432 (3)
H10.1642180.8337880.0272850.052*
C20.4043 (2)0.83844 (17)0.19445 (17)0.0456 (3)
H2B0.4664200.8374290.1357190.055*
C30.49542 (19)0.84101 (17)0.34866 (18)0.0449 (3)
C40.3979 (2)0.84413 (19)0.43329 (17)0.0490 (4)
H40.4562020.8449260.5361140.059*
C50.2173 (2)0.84603 (18)0.36659 (17)0.0465 (4)
H50.1550970.8503170.4244900.056*
C60.12531 (18)0.84166 (16)0.21355 (16)0.0395 (3)
C70.06932 (19)0.84259 (16)0.14849 (17)0.0413 (3)
C80.38915 (19)0.66826 (16)0.12234 (17)0.0430 (3)
C90.2747 (2)0.5749 (3)0.1523 (3)0.0787 (7)
H9A0.3475370.5141730.2210980.118*
H9B0.1994640.5128230.0585000.118*
H9C0.2040570.6381710.1966270.118*
C100.58360 (19)0.65143 (16)0.19348 (16)0.0406 (3)
C110.69503 (19)0.76129 (16)0.20501 (16)0.0417 (3)
H110.6478410.8462820.1683570.050*
C120.87624 (19)0.74403 (17)0.27108 (17)0.0449 (3)
C130.9479 (2)0.61656 (19)0.32493 (18)0.0488 (4)
H131.0693770.6048300.3686560.059*
C140.8379 (2)0.50825 (18)0.31303 (19)0.0507 (4)
H140.8855540.4229000.3487360.061*
C150.6570 (2)0.52448 (17)0.24861 (19)0.0495 (4)
H150.5840650.4505650.2420030.059*
H2A0.082 (2)0.730 (2)0.005 (2)0.068 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0408 (6)0.0658 (7)0.0606 (7)0.0009 (5)0.0226 (5)0.0283 (6)
O20.0385 (6)0.0698 (8)0.0813 (9)0.0062 (5)0.0078 (6)0.0407 (7)
N10.0364 (7)0.0989 (12)0.0575 (9)0.0049 (7)0.0141 (6)0.0225 (8)
N20.0338 (6)0.0549 (7)0.0551 (8)0.0020 (5)0.0144 (6)0.0237 (6)
N30.0333 (6)0.0503 (7)0.0497 (7)0.0023 (5)0.0125 (5)0.0159 (6)
C10.0427 (8)0.0501 (8)0.0379 (7)0.0027 (6)0.0150 (6)0.0128 (6)
C20.0427 (8)0.0545 (9)0.0457 (8)0.0019 (6)0.0219 (6)0.0139 (7)
C30.0369 (7)0.0491 (8)0.0473 (8)0.0025 (6)0.0150 (6)0.0108 (7)
C40.0442 (8)0.0635 (10)0.0363 (7)0.0002 (7)0.0132 (6)0.0110 (7)
C50.0429 (8)0.0586 (9)0.0420 (8)0.0002 (7)0.0201 (6)0.0128 (7)
C60.0361 (7)0.0415 (7)0.0411 (7)0.0018 (5)0.0146 (6)0.0108 (6)
C70.0381 (7)0.0416 (7)0.0448 (8)0.0014 (6)0.0169 (6)0.0100 (6)
C80.0406 (7)0.0448 (7)0.0455 (8)0.0011 (6)0.0173 (6)0.0133 (6)
C90.0488 (10)0.0951 (15)0.1132 (18)0.0044 (10)0.0324 (11)0.0646 (14)
C100.0405 (7)0.0435 (7)0.0380 (7)0.0002 (6)0.0148 (6)0.0114 (6)
C110.0403 (7)0.0446 (7)0.0395 (7)0.0009 (6)0.0121 (6)0.0163 (6)
C120.0403 (8)0.0535 (8)0.0409 (7)0.0024 (6)0.0120 (6)0.0181 (7)
C130.0397 (8)0.0589 (9)0.0464 (8)0.0053 (7)0.0122 (6)0.0210 (7)
C140.0525 (9)0.0457 (8)0.0519 (9)0.0074 (7)0.0159 (7)0.0198 (7)
C150.0503 (9)0.0441 (8)0.0542 (9)0.0023 (6)0.0176 (7)0.0168 (7)
Geometric parameters (Å, º) top
O1—C71.2360 (17)C5—C61.394 (2)
O2—C121.3656 (18)C5—H50.9300
O2—H20.8200C6—C71.4782 (19)
N1—C31.3652 (19)C8—C101.487 (2)
N1—H1A0.8600C8—C91.501 (2)
N1—H1B0.8600C9—H9A0.9600
N2—C71.3496 (19)C9—H9B0.9600
N2—N31.3818 (17)C9—H9C0.9600
N2—H2A0.864 (9)C10—C111.394 (2)
N3—C81.2811 (19)C10—C151.395 (2)
C1—C21.377 (2)C11—C121.387 (2)
C1—C61.397 (2)C11—H110.9300
C1—H10.9300C12—C131.392 (2)
C2—C31.400 (2)C13—C141.373 (2)
C2—H2B0.9300C13—H130.9300
C3—C41.399 (2)C14—C151.383 (2)
C4—C51.371 (2)C14—H140.9300
C4—H40.9300C15—H150.9300
C12—O2—H2109.5N2—C7—C6115.58 (12)
C3—N1—H1A120.0N3—C8—C10116.54 (13)
C3—N1—H1B120.0N3—C8—C9124.22 (14)
H1A—N1—H1B120.0C10—C8—C9119.22 (13)
C7—N2—N3121.26 (12)C8—C9—H9A109.5
C7—N2—H2A117.2 (13)C8—C9—H9B109.5
N3—N2—H2A121.4 (13)H9A—C9—H9B109.5
C8—N3—N2115.54 (12)C8—C9—H9C109.5
C2—C1—C6121.41 (13)H9A—C9—H9C109.5
C2—C1—H1119.3H9B—C9—H9C109.5
C6—C1—H1119.3C11—C10—C15119.07 (14)
C1—C2—C3120.25 (14)C11—C10—C8120.63 (13)
C1—C2—H2B119.9C15—C10—C8120.30 (13)
C3—C2—H2B119.9C12—C11—C10120.09 (13)
N1—C3—C4121.19 (14)C12—C11—H11120.0
N1—C3—C2120.41 (14)C10—C11—H11120.0
C4—C3—C2118.39 (14)O2—C12—C11123.02 (13)
C5—C4—C3120.85 (14)O2—C12—C13116.66 (13)
C5—C4—H4119.6C11—C12—C13120.32 (14)
C3—C4—H4119.6C14—C13—C12119.50 (14)
C4—C5—C6121.19 (14)C14—C13—H13120.3
C4—C5—H5119.4C12—C13—H13120.2
C6—C5—H5119.4C13—C14—C15120.83 (14)
C5—C6—C1117.89 (13)C13—C14—H14119.6
C5—C6—C7118.67 (13)C15—C14—H14119.6
C1—C6—C7123.44 (13)C14—C15—C10120.19 (14)
O1—C7—N2121.81 (13)C14—C15—H15119.9
O1—C7—C6122.59 (13)C10—C15—H15119.9
C7—N2—N3—C8166.52 (15)N2—N3—C8—C10178.92 (13)
C6—C1—C2—C31.2 (2)N2—N3—C8—C90.7 (2)
C1—C2—C3—N1178.36 (15)N3—C8—C10—C1120.1 (2)
C1—C2—C3—C40.7 (2)C9—C8—C10—C11161.65 (17)
N1—C3—C4—C5179.65 (16)N3—C8—C10—C15159.42 (15)
C2—C3—C4—C50.6 (2)C9—C8—C10—C1518.9 (2)
C3—C4—C5—C61.4 (3)C15—C10—C11—C120.3 (2)
C4—C5—C6—C10.9 (2)C8—C10—C11—C12179.74 (13)
C4—C5—C6—C7179.44 (14)C10—C11—C12—O2179.94 (15)
C2—C1—C6—C50.4 (2)C10—C11—C12—C130.6 (2)
C2—C1—C6—C7179.23 (14)O2—C12—C13—C14179.78 (15)
N3—N2—C7—O10.9 (2)C11—C12—C13—C140.4 (2)
N3—N2—C7—C6177.49 (13)C12—C13—C14—C150.2 (3)
C5—C6—C7—O127.6 (2)C13—C14—C15—C100.5 (3)
C1—C6—C7—O1152.05 (15)C11—C10—C15—C140.3 (2)
C5—C6—C7—N2150.74 (15)C8—C10—C15—C14179.20 (14)
C1—C6—C7—N229.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.821.882.694 (2)171
N1—H1B···O1ii0.862.132.958 (2)162
N1—H1A···O2iii0.862.373.119 (2)146
Symmetry codes: (i) x+1, y+2, z; (ii) x1, y, z; (iii) x2, y, z+1.
 

References

First citationBelkheiri, N., Bouguerne, B., Bedos-Belval, F., Duran, H., Bernis, C., Salvayre, R., Négre-Salvayre, A. & Baltas, M. (2010). Eur. J. Med. Chem. 45, 3019–3026.  CrossRef CAS PubMed Google Scholar
First citationBruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef ICSD CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr, Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, O., Foresman, J. B., Ortiz, J. V., Cioslowski, J. & Fox, D. J. (2009). Gaussian09W. Gaussian Inc., Wallingford, USA.  Google Scholar
First citationGulsevensidir, Y., Sidir, I., Tasal, E. & Oretir, C. (2011). Int. J. Quantum Chem. 111, 3616–3629.  Google Scholar
First citationHathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574.  Web of Science CSD CrossRef CAS PubMed IUCr Journals Google Scholar
First citationKumar, D., Maruthi Kumar, N., Ghosh, S. & Shah, K. (2012). Bioorg. Med. Chem. Lett. 22, 212–215.  CrossRef CAS PubMed Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationRadwan, M. A., Ragab, E. A., Sabry, N. M. & El-Shenawy, S. M. (2007). Bioorg. Med. Chem. 15, 3832–3841.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm, 4, 378–392.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds