research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and crystal structure study of (R,R)-TMCDA ethanol derivatives doubly protonated with FeCl4 and Cl as counter-ions

crossmark logo

aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany, and bQuímica Inorgánica, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de

Edited by A. Briceno, Venezuelan Institute of Scientific Research, Venezuela (Received 21 February 2025; accepted 3 April 2025; online 8 April 2025)

The synthesis and structural characterization of the crystal forms of (R,R)-TMCDA and its ethanol derivative, both doubly protonated with FeCl4 and Cl as counter-ions, are reported, namely, (R,R)-N1,N1,N2,N2-tetra­methyl­cyclo­hexane-1,2-bis­(aminium) tetra­chlorido­ferrate chloride, (C10H24N2)[FeCl4]Cl (1a), and (R,R)-N1-(2-hy­droxy­eth­yl)-N1,N2,N2-tri­methyl­cyclo­hexane-1,2-bis­(aminium) tetra­chlorido­ferrate chloride (C11H26N2O)[FeCl4]Cl (2a). A notable feature across both synthesized compounds is the presence of N—H⋯Cl hydrogen bonds of moderate strength in the solid state. In the case of the ethanol derivative of (R,R)-TMCDA, the structure also reveals the formation of inter­molecular O—H⋯Cl hydrogen bonds.

1. Chemical context

Nitro­gen-containing compounds have numerous applications in coordination chemistry. Of particular inter­est is the mol­ecule (R,R)-TMCDA (1), which contains two stereogenic carbon centers, enabling it to function as a bidentate, chiral ligand.

Selective deprotonation reactions play a critical role in the functionalization of certain mol­ecules, facilitating the incorporation of new functional groups and enhancing mol­ecular properties.

In organolithium chemistry, polyamines are the only tertiary amines susceptible to deprotonation reactions. This is due to the fact that polyamines allow the formation of a complex in which the li­thia­ted base gets pre-coordinated. This pre-coordination brings reactive groups into close proximity, allowing selective deprotonation reactions to take place (Gessner et al., 2010[Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640-5649.]). This phenomenon is widely known as the complex-induced proximity effect (CIPE) (Gessner et al., 2010[Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640-5649.]; Whisler et al., 2004[Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. (2004). Angew. Chem. Int. Ed. 43, 2206-2225.]; Breit, 2000[Breit, B. (2000). Chem. Eur. J. 6, 1519-1524.]; Hoveyda et al., 1993[Hoveyda, A. H., Evans, D. A. & Fu, G. C. (1993). Chem. Rev. 93, 1307-1370.]; Beak & Meyers, 1986[Beak, P. & Meyers, A. I. (1986). Acc. Chem. Res. 19, 356-363.]).

Additionally, the synthesis of new ligands with stereogenic centers presents a persistent challenge. The inherent chirality of (R,R)-TMCDA (1) coupled with its high reactivity towards li­thia­ted bases, renders this mol­ecule a promising precursor for the synthesis of other novel ligands. A notable example is compound 2, which displays inter­esting characteristics including chirality and its function as an N,N,O-scorpionate ligand. In light of these characteristics, our research group has previously investigated compound 2 and related ligands (Gessner et al., 2010[Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640-5649.]) as well as with (R,R)-TMCDA (Eckert et al., 2011[Eckert, P. K., Schill, V. & Strohmann, C. (2011). Inorg. Chim. Acta, 376, 634-637.]; Strohmann & Gessner, 2008[Strohmann, C. & Gessner, V. H. (2008). J. Am. Chem. Soc. 130, 11719-11725.]; Strohmann & Gessner, 2007[Strohmann, C. & Gessner, V. H. (2007). Angew. Chem. Int. Ed. 46, 8281-8283.]). Building upon this foundation, compounds 1a and 2a, incorporating the aforementioned ligands, have been successfully synthesized and crystallized in this work.

[Scheme 1]

2. Structural commentary

The structure of compound 1a, as depicted in Fig. 1[link], comprises a cation and two anions. The cation consists of a doubly protonated (R,R)-TMCDA mol­ecule, with the cyclo­hexane ring adopting a chair conformation. The two counter-ions are a chloride anion, that forms two N—H⋯Cl hydrogen bonds, and a FeCl4 anion, in which the Fe3+ cation is coordinated by four chlorides in a tetra­hedral geometry.

[Figure 1]
Figure 1
The mol­ecular structure of compound 1a with the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The distances of inter­est are shown in Table 1[link]. Hydrogen bonds between the chloride and the hydrogen atoms bonded to either N1 or N2 were observed in the crystal structure, with N1—H1⋯Cl1 distances of 2.133 (19) Å and N2—H2⋯Cl1 distances of 2.135 (17) Å and N1—H1 distances of 0.891 (19) Å and N2—H2 distances of 0.900 (18) Å. These hydrogen bonds could be classified as moderate (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]).

Table 1
Hydrogen-bond geometry (Å, °) for 1a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.891 (19) 2.133 (19) 3.0189 (11) 172.7 (19)
N2—H2⋯Cl1 0.900 (18) 2.135 (17) 3.0208 (10) 165 (14)

The structure of compound 2a, illustrated in Fig. 2[link], consists of a cation and two anions. The cation is derived from an ethanol-substituted, doubly protonated (R,R)-TMCDA mol­ecule, characterized by a cyclo­hexane ring adopting a chair conformation. The two counter-ions include a chloride, which forms N—H⋯Cl hydrogen bonds, and a FeCl4 anion, wherein the Fe3+ cation is coordinated by four chlorides arranged in a tetra­hedral geometry. The cation in this structure features three tetra­hedral stereogenic centres: the two carbon atoms associated with the N-bonded cycle and the nitro­gen atoms N1 or N2, which are bonded to the ethanol fragment. The nitro­gen atoms have a labile configuration and both enanti­omers (RN and SN) can occur in solid state and thus represent a further cause of the existing disorder. The more flexible CH2-segments of the side chain contribute to the observed disorder of the –CH2CH2OH fragment as well. This is distributed at atom C2 over positions designated as A and C (CH2 group) as well as B and D (CH3 group) with occupancies of 0.6 and 0.4 respectively. Additionally, the C1 carbon is similarly disordered at positions A and C, also exhibiting occupancies of 0.6 and 0.4 respectively. The relevant distances are summarized in Table 2[link]. The structural analysis reveals hydrogen bonds between the chloride anion and the hydrogen atoms attached to nitro­gen atoms N1 and N2. The N2—H2⋯Cl1 distance is measured at 2.357 (3) Å, while the N1—H1⋯Cl1 distance is 2.221 (3) Å. Additionally, the N1—H1 distance is 0.855 (3) Å, and the N2—H2 distance is 0.878 (3) Å. These hydrogen bonds can be classified as moderate in strength, according to Steiner (Steiner, 2002[Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.]). In contrast, no inter­action is observed between the hydrogen atoms O1A—H1A or O1C—H1C and Cl1, as they are separated by a distance of 3.1245 (5) Å (H1A⋯Cl1) and 3.4958 (5) Å (H1C⋯Cl1).

Table 2
Hydrogen-bond geometry (Å, °) for 2a[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl1 0.855 (3) 2.221 (3) 3.0603 (14) 167 (3)
N2—H2⋯Cl1 0.878 (3) 2.357 (3) 3.1698 (16) 154 (3)
O1C—H1C⋯Cl1i 0.84 2.43 3.229 (3) 159
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of compound 2a with the atom labelling. The structure exhibits a disorder of the –CH2CH2OH fragment at two positions, with occupancies of 0.4 and 0.6 and a disorder of C2, also at two positions with occupancies of 0.4 and 0.6.

3. Supra­molecular features

To better understand the supra­molecular inter­actions, a Hirshfeld surface analysis was performed for compound 1a. In Fig. 3[link], the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) is mapped over dnorm (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]) and red dots are used to represent close contacts between the hydrogen atoms H3, H1A and H10C with the chloride anion Cl1′. The following figure (Fig. 4[link]) shows the Hirshfeld surface with external fragments.

[Figure 3]
Figure 3
Three-dimensional Hirshfeld surface of 1a mapped over dnorm (rescale surface property: −0.2124 − 1.4372).
[Figure 4]
Figure 4
Three-dimensional Hirshfeld surface of 1a mapped over dnorm with external fragments and atom labeling (rescale surface property: −0.2124 − 1.4372).

For further exploration of the inter­molecular inter­actions, two-dimensional fingerprint plots (McKinnon et al., 2007[McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814-3816.]) were generated as shown in Fig. 5[link]. The H⋯Cl inter­action with a contribution of 66.6% has the biggest impact on the packing in the solid state as well as the H⋯H bonds with 28.8%. Fe⋯H inter­actions with 0.9% and Cl⋯Fe inter­actions with 0.3% are less impactful in comparison.

[Figure 5]
Figure 5
Two-dimensional fingerprint plots for 1a showing (b) all inter­actions, and (a) and (c)–(d) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

In contrast, compound 2a forms O—H⋯Cl hydrogen bonds. These inter­actions connect two different moieties of compound 2a by a chloride, resulting in a supra­molecular zigzag structure in the solid state, as shown in Fig. 6[link]. They show distances of 2.43 Å (O1C—H1C⋯Cl1′) and the N2—H2⋯Cl1 distance is measured at 2.357 (3) Å, while the N1—H1⋯Cl1 distance is 2.221 (3) Å. In Fig. 6[link] the disorder with the lower occupancy is omitted for clarity, but shows the O1A—H1A⋯Cl1 hydrogen bond with a distance of 2.22 Å.

[Figure 6]
Figure 6
The supra­molecular structure of compound 2a with the formed hydrogen bonds and the atom labelling of parts of inter­est. The disorder with the lower occupancy (O1A, H1A) was omitted for clarity. Hydrogen bonds are depicted by dashed lines.

4. Database survey

A search of the Cambridge Structural Database (CSD version 5.43, November 2021; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for structures containing (R,R)-TMCDA and its ethanol derivative both doubly protonated leads to three relevant and similar structures in common CUZZEC, CUZZIG (Duesler et al., 1985[Duesler, E. N., Tapscott, R. E., Garcia-Basallote, M. & Gonzalez-Vílchez, F. (1985). Acta Cryst. C41, 678-681.]) and POMMIO (Lian et al., 2009[Lian, P., Hu, Q.-S., Xie, Y.-R. & Guo, H.-X. (2009). Acta Cryst. E65, m32-m33.]). In these three cases, the amine substituents are –CH2COOH fragments. Also, in all three cases there is a single anion, being either CdCl42−, PdCl42− or PtCl42− and none of the compounds presents a space group that matches 1a or 2a. Another search of structures involving non-protonated (R,R)-TMCDA leads to several related structures, some of them being: FEJFAD, FEJFIL and FEJFOR (Eckert et al., 2013[Eckert, P. K., dos Santos Vieira, I., Gessner, V. H., Borner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151-157.]), KOBCAH (Eckert et al., 2014[Eckert, P. K., Schnura, B. & Strohmann, C. (2014). Chem. Commun. 50, 2532-2534.]) and LECRUI (Eckert et al., 2012[Eckert, P. K., Gessner, V. H., Knorr, M. & Strohmann, C. (2012). Inorg. Chem. 51, 8516-8523.]). FEJFAD and LECRUI show the same space group as 2a and KOBCAH with 1a. However, all the latter structures show direct coordination to the metal unlike compounds 1a and 2a.

5. Synthesis and crystallization

The syntheses of compounds 1a and 2a were conducted according to the previously established procedure (Gessner, 2009[Gessner, V. H. (2009). Dissertation, TU Dortmund University.]), which involves the mixing of equimolar amounts of FeCl3·H2O with (R,R)-TMCDA (1) and with 2-{[(1R,2R)-2-(di­methyl­amino)­cyclo­hex­yl](meth­yl)amino}­ethan-1-ol (2), respectively, to yield each compound. In both instances, the reactions were performed in a 3:2 mixture of acetone and 2.5 M of HCl at room temperature (see Fig. 7[link]). Upon complete dissolution of the reactants, a homogeneous yellow solution was obtained, which was then allowed to stand at room temperature until complete evaporation of the solvent. After one week, yellow crystals were formed; specifically, needle-shaped crystals were obtained for compound 1a, while prism-shaped crystals were obtained for compound 2a.

[Figure 7]
Figure 7
The synthesis of the title compounds.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. Hydrogen atoms except for the protons attached to the nitro­gen and oxygen atoms in both structures were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms.

Table 3
Experimental details

  1a 2a
Crystal data
Chemical formula (C10H24N2)[FeCl4]Cl (C11H26N2O)[FeCl4]Cl
Mr 405.41 435.44
Crystal system, space group Monoclinic, P21 Orthorhombic, P212121
Temperature (K) 100 100
a, b, c (Å) 10.2322 (3), 9.2378 (5), 10.7384 (4) 7.6070 (5), 11.5870 (6), 21.8705 (13)
α, β, γ (°) 90, 116.797 (1), 90 90, 90, 90
V3) 906.02 (7) 1927.7 (2)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.56 1.47
Crystal size (mm) 0.50 × 0.43 × 0.38 0.8 × 0.43 × 0.18
 
Data collection
Diffractometer Bruker D8 VENTURE area detector Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.472, 0.567
No. of measured, independent and observed [I > 2σ(I)] reflections 69005, 8763, 8442 144077, 8488, 8082
Rint 0.030 0.046
(sin θ/λ)max−1) 0.834 0.807
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.018, 0.037, 1.06 0.026, 0.063, 1.07
No. of reflections 8763 8488
No. of parameters 175 231
No. of restraints 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.23, −0.34 0.61, −0.48
Absolute structure Flack x determined using 3826 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.]) Flack x determined using 3373 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter −0.009 (3) −0.013 (4)
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

(R,R)-N1-(2-Hydroxyethyl)-N1,N2,N2-trimethylcyclohexane-1,2-bis(aminium) tetrachloridoferrate chloride (2a) top
Crystal data top
(C11H26N2O)[FeCl4]ClDx = 1.500 Mg m3
Mr = 435.44Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 9581 reflections
a = 7.6070 (5) Åθ = 2.6–34.8°
b = 11.5870 (6) ŵ = 1.47 mm1
c = 21.8705 (13) ÅT = 100 K
V = 1927.7 (2) Å3Needle, yellow
Z = 40.8 × 0.43 × 0.18 mm
F(000) = 900
Data collection top
Bruker APEXII CCD
diffractometer
8488 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs8082 reflections with I > 2σ(I)
HELIOS mirror optics monochromatorRint = 0.046
Detector resolution: 10.4167 pixels mm-1θmax = 35.0°, θmin = 1.9°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1818
Tmin = 0.472, Tmax = 0.567l = 3535
144077 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.026 w = 1/[σ2(Fo2) + (0.0263P)2 + 0.5573P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.61 e Å3
8488 reflectionsΔρmin = 0.48 e Å3
231 parametersAbsolute structure: Flack x determined using 3373 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.013 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.38908 (3)0.32831 (2)0.64131 (2)0.02140 (5)
Cl10.32469 (6)0.71475 (4)0.52176 (2)0.02393 (7)
Cl50.40990 (7)0.16915 (4)0.69535 (2)0.03204 (10)
Cl40.63253 (7)0.34762 (4)0.58818 (2)0.02908 (9)
Cl30.36082 (7)0.47621 (5)0.70394 (3)0.03907 (12)
Cl20.16007 (8)0.31529 (4)0.58067 (3)0.04136 (13)
N10.36655 (19)0.80677 (11)0.39141 (6)0.0176 (2)
C40.49489 (19)0.73202 (12)0.35567 (7)0.0167 (2)
H40.6107190.7349660.3772320.020*
C90.4413 (2)0.60442 (13)0.35010 (7)0.0190 (3)
H90.3305780.6006590.3255120.023*
N20.4066 (2)0.54577 (12)0.41140 (7)0.0229 (3)
C2A0.1906 (10)0.8308 (10)0.3630 (5)0.0204 (19)0.6
H2AA0.2046580.8863440.3295350.031*0.6
H2AB0.1112960.8630050.3939310.031*0.6
H2AC0.1409390.7588960.3469660.031*0.6
C80.5840 (3)0.53894 (15)0.31517 (9)0.0285 (4)
H8A0.6952350.5422370.3386270.034*
H8B0.5494120.4568780.3114330.034*
C50.5215 (3)0.78172 (17)0.29127 (8)0.0283 (4)
H5A0.4092770.7776670.2684590.034*
H5B0.5557740.8639280.2944750.034*
C70.6146 (3)0.58882 (18)0.25142 (9)0.0329 (4)
H7A0.7105240.5460510.2308990.040*
H7B0.5065860.5801150.2265740.040*
C100.5676 (3)0.51474 (19)0.44679 (11)0.0380 (5)
H10A0.6325140.4543390.4250110.057*
H10B0.5336460.4864230.4873230.057*
H10C0.6423870.5830970.4512610.057*
C60.6630 (3)0.71594 (19)0.25612 (10)0.0360 (5)
H6A0.6753030.7489890.2145980.043*
H6B0.7772420.7239850.2773720.043*
C30.4494 (3)0.92074 (14)0.40779 (9)0.0261 (3)
H3A0.5667360.9073710.4249130.039*
H3B0.3761860.9603500.4380980.039*
H3C0.4593080.9686470.3710230.039*
C2C0.3030 (10)0.4364 (7)0.4077 (4)0.0352 (15)0.6
H2CA0.3531420.3757080.4343300.042*0.6
H2CB0.2960990.4073770.3651790.042*0.6
O1C0.0357 (4)0.5852 (2)0.40633 (12)0.0303 (5)0.6
H1C0.0267430.6222780.4311710.045*0.6
O1A0.0770 (5)0.6464 (3)0.40150 (16)0.0268 (6)0.4
H1A0.0155470.6714920.4305320.040*0.4
C1C0.0962 (5)0.4832 (3)0.43433 (15)0.0273 (6)0.6
H1CA0.0091400.4211370.4271700.033*0.6
H1CB0.1036270.4960200.4790060.033*0.6
C1A0.0736 (6)0.7274 (4)0.3522 (2)0.0242 (7)0.4
H1AA0.0477300.7565920.3468350.029*0.4
H1AB0.1086670.6880300.3139340.029*0.4
H20.351 (4)0.594 (2)0.4354 (13)0.033 (7)*
C2D0.2584 (14)0.4516 (10)0.3996 (6)0.0256 (17)0.4
H2DA0.2309050.4486660.3558850.038*0.4
H2DB0.1523640.4722460.4226080.038*0.4
H2DC0.3006080.3758860.4131540.038*0.4
H10.342 (4)0.774 (2)0.4253 (13)0.037 (7)*
C2B0.1897 (17)0.8228 (16)0.3631 (7)0.028 (4)0.4
H2BA0.1250180.8782800.3892300.034*0.4
H2BB0.2085840.8613860.3232790.034*0.4
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02100 (10)0.02097 (10)0.02223 (10)0.00210 (8)0.00138 (8)0.00180 (8)
Cl10.02587 (17)0.03036 (18)0.01556 (13)0.00029 (15)0.00178 (13)0.00037 (13)
Cl50.0315 (2)0.0350 (2)0.02956 (19)0.00769 (18)0.00039 (16)0.01233 (18)
Cl40.0340 (2)0.02166 (16)0.03163 (19)0.00026 (15)0.01043 (17)0.00573 (14)
Cl30.0339 (2)0.0387 (2)0.0446 (3)0.0104 (2)0.0089 (2)0.0217 (2)
Cl20.0391 (3)0.0284 (2)0.0566 (3)0.00584 (19)0.0261 (2)0.0091 (2)
N10.0228 (6)0.0148 (5)0.0151 (5)0.0018 (4)0.0004 (4)0.0001 (4)
C40.0181 (6)0.0152 (5)0.0168 (6)0.0002 (4)0.0009 (5)0.0016 (5)
C90.0223 (6)0.0177 (6)0.0171 (6)0.0033 (5)0.0017 (5)0.0042 (5)
N20.0330 (7)0.0138 (5)0.0220 (6)0.0028 (5)0.0049 (6)0.0017 (5)
C2A0.018 (3)0.0139 (19)0.030 (4)0.0001 (17)0.006 (2)0.0035 (19)
C80.0345 (9)0.0208 (7)0.0303 (8)0.0009 (6)0.0101 (7)0.0093 (6)
C50.0386 (10)0.0254 (8)0.0209 (7)0.0002 (7)0.0093 (7)0.0029 (6)
C70.0374 (10)0.0344 (9)0.0270 (8)0.0042 (8)0.0141 (8)0.0121 (7)
C100.0487 (13)0.0285 (9)0.0368 (10)0.0111 (9)0.0049 (9)0.0087 (8)
C60.0425 (11)0.0328 (9)0.0326 (9)0.0076 (9)0.0215 (9)0.0044 (7)
C30.0321 (9)0.0164 (6)0.0299 (8)0.0006 (6)0.0035 (7)0.0057 (6)
C2C0.053 (5)0.024 (3)0.029 (2)0.019 (3)0.004 (3)0.0007 (19)
O1C0.0374 (13)0.0201 (10)0.0335 (12)0.0007 (9)0.0022 (10)0.0058 (9)
O1A0.0258 (15)0.0288 (17)0.0258 (15)0.0005 (13)0.0024 (11)0.0015 (13)
C1C0.0348 (15)0.0202 (11)0.0269 (13)0.0052 (11)0.0076 (12)0.0023 (10)
C1A0.0215 (17)0.0282 (19)0.0229 (17)0.0013 (14)0.0015 (14)0.0029 (15)
C2D0.030 (4)0.011 (2)0.035 (4)0.003 (2)0.006 (3)0.001 (2)
C2B0.027 (6)0.035 (7)0.023 (5)0.008 (4)0.011 (4)0.002 (4)
Geometric parameters (Å, º) top
Fe1—Cl52.1962 (5)C7—H7A0.9900
Fe1—Cl42.1976 (5)C7—H7B0.9900
Fe1—Cl32.2044 (5)C7—C61.522 (3)
Fe1—Cl22.1946 (6)C10—H10A0.9800
N1—C41.521 (2)C10—H10B0.9800
N1—C2A1.502 (7)C10—H10C0.9800
N1—C31.507 (2)C6—H6A0.9900
N1—H10.86 (3)C6—H6B0.9900
N1—C2B1.492 (13)C3—H3A0.9800
C4—H41.0000C3—H3B0.9800
C4—C91.539 (2)C3—H3C0.9800
C4—C51.535 (2)C2C—H2CA0.9900
C9—H91.0000C2C—H2CB0.9900
C9—N21.526 (2)C2C—C1C1.763 (9)
C9—C81.529 (2)O1C—H1C0.8400
N2—C101.493 (3)O1C—C1C1.408 (4)
N2—C2C1.494 (9)O1A—H1A0.8400
N2—H20.88 (3)O1A—C1A1.429 (6)
N2—C2D1.590 (13)C1C—H1CA0.9900
C2A—H2AA0.9800C1C—H1CB0.9900
C2A—H2AB0.9800C1A—H1AA0.9900
C2A—H2AC0.9800C1A—H1AB0.9900
C8—H8A0.9900C1A—C2B1.435 (18)
C8—H8B0.9900C2D—H2DA0.9800
C8—C71.527 (3)C2D—H2DB0.9800
C5—H5A0.9900C2D—H2DC0.9800
C5—H5B0.9900C2B—H2BA0.9900
C5—C61.526 (3)C2B—H2BB0.9900
Cl5—Fe1—Cl4108.02 (2)C8—C7—H7B109.7
Cl5—Fe1—Cl3108.99 (3)H7A—C7—H7B108.2
Cl4—Fe1—Cl3109.37 (2)C6—C7—C8109.97 (16)
Cl2—Fe1—Cl5108.95 (2)C6—C7—H7A109.7
Cl2—Fe1—Cl4110.88 (3)C6—C7—H7B109.7
Cl2—Fe1—Cl3110.58 (2)N2—C10—H10A109.5
C4—N1—H1109 (2)N2—C10—H10B109.5
C2A—N1—C4117.7 (4)N2—C10—H10C109.5
C2A—N1—C3108.0 (4)H10A—C10—H10B109.5
C2A—N1—H1104 (2)H10A—C10—H10C109.5
C3—N1—C4110.65 (13)H10B—C10—H10C109.5
C3—N1—H1106.0 (19)C5—C6—H6A109.6
C2B—N1—C4115.9 (6)C5—C6—H6B109.6
C2B—N1—C3111.5 (7)C7—C6—C5110.28 (17)
C2B—N1—H1103 (2)C7—C6—H6A109.6
N1—C4—H4107.7C7—C6—H6B109.6
N1—C4—C9114.68 (12)H6A—C6—H6B108.1
N1—C4—C5110.03 (13)N1—C3—H3A109.5
C9—C4—H4107.7N1—C3—H3B109.5
C5—C4—H4107.7N1—C3—H3C109.5
C5—C4—C9108.84 (13)H3A—C3—H3B109.5
C4—C9—H9107.9H3A—C3—H3C109.5
N2—C9—C4113.85 (12)H3B—C3—H3C109.5
N2—C9—H9107.9N2—C2C—H2CA111.6
N2—C9—C8109.91 (14)N2—C2C—H2CB111.6
C8—C9—C4109.14 (13)N2—C2C—C1C101.1 (5)
C8—C9—H9107.9H2CA—C2C—H2CB109.4
C9—N2—H2108.7 (18)C1C—C2C—H2CA111.6
C9—N2—C2D106.6 (5)C1C—C2C—H2CB111.6
C10—N2—C9114.90 (15)C1C—O1C—H1C109.5
C10—N2—C2C104.9 (3)C1A—O1A—H1A109.5
C10—N2—H2103.8 (18)C2C—C1C—H1CA108.8
C10—N2—C2D120.0 (3)C2C—C1C—H1CB108.8
C2C—N2—C9114.9 (4)O1C—C1C—C2C113.9 (3)
C2C—N2—H2109.0 (18)O1C—C1C—H1CA108.8
C2D—N2—H2101.4 (19)O1C—C1C—H1CB108.8
N1—C2A—H2AA109.5H1CA—C1C—H1CB107.7
N1—C2A—H2AB109.5O1A—C1A—H1AA109.3
N1—C2A—H2AC109.5O1A—C1A—H1AB109.3
H2AA—C2A—H2AB109.5O1A—C1A—C2B111.7 (7)
H2AA—C2A—H2AC109.5H1AA—C1A—H1AB107.9
H2AB—C2A—H2AC109.5C2B—C1A—H1AA109.3
C9—C8—H8A109.2C2B—C1A—H1AB109.3
C9—C8—H8B109.2N2—C2D—H2DA109.5
H8A—C8—H8B107.9N2—C2D—H2DB109.5
C7—C8—C9112.10 (16)N2—C2D—H2DC109.5
C7—C8—H8A109.2H2DA—C2D—H2DB109.5
C7—C8—H8B109.2H2DA—C2D—H2DC109.5
C4—C5—H5A109.3H2DB—C2D—H2DC109.5
C4—C5—H5B109.3N1—C2B—H2BA106.9
H5A—C5—H5B108.0N1—C2B—H2BB106.9
C6—C5—C4111.58 (16)C1A—C2B—N1121.8 (12)
C6—C5—H5A109.3C1A—C2B—H2BA106.9
C6—C5—H5B109.3C1A—C2B—H2BB106.9
C8—C7—H7A109.7H2BA—C2B—H2BB106.7
N1—C4—C9—N254.93 (18)C2A—N1—C4—C553.8 (5)
N1—C4—C9—C8178.13 (14)C8—C9—N2—C1046.55 (19)
N1—C4—C5—C6174.42 (16)C8—C9—N2—C2C75.3 (4)
C4—N1—C2B—C1A61.9 (12)C8—C9—N2—C2D89.0 (4)
C4—C9—N2—C1076.24 (18)C8—C7—C6—C555.7 (3)
C4—C9—N2—C2C161.9 (3)C5—C4—C9—N2178.65 (14)
C4—C9—N2—C2D148.2 (4)C5—C4—C9—C858.15 (18)
C4—C9—C8—C758.7 (2)C10—N2—C2C—C1C128.1 (3)
C4—C5—C6—C758.1 (2)C3—N1—C4—C9165.95 (13)
C9—C4—C5—C659.1 (2)C3—N1—C4—C570.97 (17)
C9—N2—C2C—C1C104.8 (4)C3—N1—C2B—C1A170.3 (8)
C9—C8—C7—C657.3 (2)O1A—C1A—C2B—N140.0 (12)
N2—C9—C8—C7175.82 (15)C2B—N1—C4—C965.9 (8)
N2—C2C—C1C—O1C48.6 (5)C2B—N1—C4—C557.2 (8)
C2A—N1—C4—C969.3 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.855 (3)2.221 (3)3.0603 (14)167 (3)
N2—H2···Cl10.878 (3)2.357 (3)3.1698 (16)154 (3)
O1C—H1C···Cl1i0.842.433.229 (3)159
Symmetry code: (i) x1/2, y+3/2, z+1.
(R,R)-N1,N1,N2,N2-Tetramethylcyclohexane-1,2-bis(aminium) tetrachloridoferrate chloride (1a) top
Crystal data top
(C10H24N2)[FeCl4]ClF(000) = 418
Mr = 405.41Dx = 1.486 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.2322 (3) ÅCell parameters from 1350 reflections
b = 9.2378 (5) Åθ = 4.3–31.7°
c = 10.7384 (4) ŵ = 1.56 mm1
β = 116.797 (1)°T = 100 K
V = 906.02 (7) Å3Prism, yellow
Z = 20.50 × 0.43 × 0.38 mm
Data collection top
Bruker D8 VENTURE area detector
diffractometer
8442 reflections with I > 2σ(I)
Radiation source: microfocus sealed X-ray tube, Incoatec IµsRint = 0.030
HELIOS mirror optics monochromatorθmax = 36.3°, θmin = 2.1°
Detector resolution: 10.4167 pixels mm-1h = 1317
ω and φ scansk = 1515
69005 measured reflectionsl = 1717
8763 independent reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.018 w = 1/[σ2(Fo2) + (0.0156P)2 + 0.078P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.037(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.23 e Å3
8763 reflectionsΔρmin = 0.33 e Å3
175 parametersAbsolute structure: Flack x determined using 3826 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.009 (3)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.73543 (2)0.37018 (2)0.11080 (2)0.01357 (3)
Cl20.76183 (3)0.51878 (3)0.28052 (3)0.01944 (5)
Cl50.76963 (3)0.49518 (3)0.04548 (3)0.01960 (5)
Cl10.35677 (3)0.17053 (3)0.42055 (3)0.01882 (5)
Cl30.52216 (3)0.26207 (4)0.02175 (3)0.02597 (6)
Cl40.90709 (3)0.20084 (3)0.19738 (3)0.02248 (5)
N10.28286 (10)0.44077 (10)0.53384 (9)0.01356 (15)
N20.26193 (10)0.43743 (10)0.23871 (9)0.01275 (14)
C80.18173 (11)0.54564 (11)0.28693 (10)0.01174 (15)
H80.08350.50420.26520.014*
C90.17020 (12)0.38898 (13)0.09145 (11)0.01754 (19)
H9A0.07220.36290.07900.026*
H9B0.21590.30460.07170.026*
H9C0.16250.46770.02740.026*
C70.15769 (13)0.68716 (12)0.20441 (11)0.01745 (19)
H7A0.25360.72510.21780.021*
H7B0.09830.66670.10380.021*
C30.26269 (11)0.57574 (11)0.44544 (10)0.01184 (15)
H30.36230.61330.46700.014*
C60.08042 (13)0.80253 (12)0.24935 (12)0.01837 (19)
H6A0.07000.89270.19580.022*
H6B0.01870.76850.22990.022*
C10.40538 (13)0.45802 (15)0.67836 (11)0.0231 (2)
H1A0.49460.48760.67280.035*
H1B0.42260.36570.72820.035*
H1C0.37900.53200.72840.035*
C50.16937 (13)0.83247 (12)0.40466 (12)0.01787 (19)
H5A0.12010.90770.43410.021*
H5B0.26770.86860.42380.021*
C100.40958 (12)0.48351 (14)0.25595 (12)0.0200 (2)
H10A0.39790.56020.18870.030*
H10B0.45950.40050.23960.030*
H10C0.46790.52000.35090.030*
C40.18391 (12)0.69326 (12)0.48655 (11)0.01606 (18)
H4A0.08530.65840.46810.019*
H4B0.23940.71330.58770.019*
C20.14826 (12)0.38899 (13)0.54129 (12)0.0194 (2)
H2A0.12530.45450.60050.029*
H2B0.16510.29130.58100.029*
H2C0.06610.38720.44730.029*
H10.3094 (18)0.366 (2)0.4978 (18)0.025 (4)*
H20.2756 (17)0.3539 (19)0.2862 (17)0.022 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01513 (6)0.01373 (6)0.01181 (6)0.00141 (5)0.00605 (5)0.00101 (5)
Cl20.02272 (11)0.01915 (11)0.01510 (10)0.00063 (9)0.00734 (9)0.00412 (9)
Cl50.02426 (12)0.01906 (12)0.01887 (10)0.00237 (10)0.01270 (9)0.00438 (9)
Cl10.02039 (11)0.01434 (10)0.02008 (11)0.00533 (9)0.00767 (9)0.00351 (9)
Cl30.02241 (13)0.03108 (15)0.02344 (13)0.01235 (12)0.00946 (11)0.00656 (11)
Cl40.02828 (13)0.01860 (12)0.02112 (11)0.00725 (10)0.01163 (10)0.00335 (9)
N10.0145 (4)0.0146 (4)0.0109 (3)0.0009 (3)0.0052 (3)0.0020 (3)
N20.0138 (3)0.0133 (4)0.0110 (3)0.0011 (3)0.0054 (3)0.0002 (3)
C80.0124 (4)0.0121 (4)0.0103 (3)0.0013 (3)0.0047 (3)0.0003 (3)
C90.0200 (4)0.0178 (5)0.0126 (4)0.0006 (4)0.0054 (3)0.0040 (3)
C70.0249 (5)0.0150 (5)0.0138 (4)0.0053 (4)0.0099 (4)0.0039 (3)
C30.0131 (4)0.0120 (4)0.0101 (3)0.0003 (3)0.0050 (3)0.0010 (3)
C60.0229 (5)0.0152 (4)0.0172 (4)0.0058 (4)0.0092 (4)0.0032 (4)
C10.0212 (5)0.0290 (6)0.0122 (4)0.0021 (4)0.0015 (4)0.0043 (4)
C50.0241 (5)0.0123 (4)0.0190 (5)0.0013 (4)0.0112 (4)0.0005 (3)
C100.0150 (4)0.0256 (5)0.0216 (5)0.0018 (4)0.0101 (4)0.0058 (4)
C40.0217 (5)0.0143 (4)0.0151 (4)0.0019 (4)0.0109 (4)0.0003 (3)
C20.0190 (4)0.0194 (5)0.0216 (5)0.0018 (4)0.0106 (4)0.0053 (4)
Geometric parameters (Å, º) top
Fe1—Cl22.1989 (3)C7—C61.5290 (15)
Fe1—Cl52.1913 (3)C3—H31.0000
Fe1—Cl32.1891 (3)C3—C41.5310 (14)
Fe1—Cl42.2191 (3)C6—H6A0.9900
N1—C31.5237 (13)C6—H6B0.9900
N1—C11.5004 (14)C6—C51.5224 (16)
N1—C21.4939 (13)C1—H1A0.9800
N1—H10.891 (19)C1—H1B0.9800
N2—C81.5245 (13)C1—H1C0.9800
N2—C91.4978 (13)C5—H5A0.9900
N2—C101.4985 (14)C5—H5B0.9900
N2—H20.900 (18)C5—C41.5269 (15)
C8—H81.0000C10—H10A0.9800
C8—C71.5358 (14)C10—H10B0.9800
C8—C31.5458 (13)C10—H10C0.9800
C9—H9A0.9800C4—H4A0.9900
C9—H9B0.9800C4—H4B0.9900
C9—H9C0.9800C2—H2A0.9800
C7—H7A0.9900C2—H2B0.9800
C7—H7B0.9900C2—H2C0.9800
Cl2—Fe1—Cl4108.335 (12)C8—C3—H3107.6
Cl5—Fe1—Cl2107.664 (13)C4—C3—C8110.77 (8)
Cl5—Fe1—Cl4108.833 (12)C4—C3—H3107.6
Cl3—Fe1—Cl2111.878 (13)C7—C6—H6A109.8
Cl3—Fe1—Cl5112.196 (13)C7—C6—H6B109.8
Cl3—Fe1—Cl4107.837 (15)H6A—C6—H6B108.2
C3—N1—H1110.2 (11)C5—C6—C7109.49 (9)
C1—N1—C3111.89 (9)C5—C6—H6A109.8
C1—N1—H1104.8 (11)C5—C6—H6B109.8
C2—N1—C3115.23 (8)N1—C1—H1A109.5
C2—N1—C1109.82 (9)N1—C1—H1B109.5
C2—N1—H1104.1 (11)N1—C1—H1C109.5
C8—N2—H2109.8 (10)H1A—C1—H1B109.5
C9—N2—C8112.18 (8)H1A—C1—H1C109.5
C9—N2—C10109.41 (8)H1B—C1—H1C109.5
C9—N2—H2101.9 (11)C6—C5—H5A109.8
C10—N2—C8116.03 (8)C6—C5—H5B109.8
C10—N2—H2106.4 (10)C6—C5—C4109.44 (9)
N2—C8—H8108.0H5A—C5—H5B108.2
N2—C8—C7109.45 (8)C4—C5—H5A109.8
N2—C8—C3112.87 (8)C4—C5—H5B109.8
C7—C8—H8108.0N2—C10—H10A109.5
C7—C8—C3110.43 (8)N2—C10—H10B109.5
C3—C8—H8108.0N2—C10—H10C109.5
N2—C9—H9A109.5H10A—C10—H10B109.5
N2—C9—H9B109.5H10A—C10—H10C109.5
N2—C9—H9C109.5H10B—C10—H10C109.5
H9A—C9—H9B109.5C3—C4—H4A109.4
H9A—C9—H9C109.5C3—C4—H4B109.4
H9B—C9—H9C109.5C5—C4—C3111.00 (8)
C8—C7—H7A109.1C5—C4—H4A109.4
C8—C7—H7B109.1C5—C4—H4B109.4
H7A—C7—H7B107.8H4A—C4—H4B108.0
C6—C7—C8112.48 (9)N1—C2—H2A109.5
C6—C7—H7A109.1N1—C2—H2B109.5
C6—C7—H7B109.1N1—C2—H2C109.5
N1—C3—C8113.18 (8)H2A—C2—H2B109.5
N1—C3—H3107.6H2A—C2—H2C109.5
N1—C3—C4109.98 (8)H2B—C2—H2C109.5
N1—C3—C4—C5177.07 (8)C7—C6—C5—C459.87 (12)
N2—C8—C7—C6178.78 (9)C3—C8—C7—C653.93 (12)
N2—C8—C3—N160.24 (11)C6—C5—C4—C360.65 (12)
N2—C8—C3—C4175.71 (8)C1—N1—C3—C8158.64 (9)
C8—C7—C6—C557.65 (13)C1—N1—C3—C476.88 (11)
C8—C3—C4—C557.08 (11)C10—N2—C8—C759.79 (11)
C9—N2—C8—C766.97 (11)C10—N2—C8—C363.63 (11)
C9—N2—C8—C3169.61 (9)C2—N1—C3—C874.97 (11)
C7—C8—C3—N1176.89 (8)C2—N1—C3—C449.51 (11)
C7—C8—C3—C452.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl10.891 (19)2.133 (19)3.0189 (11)172.7 (19)
N2—H2···Cl10.900 (18)2.135 (17)3.0208 (10)165 (14)
 

Funding information

Funding for this research was provided by a scholarship from the Studienstiftung des Deutschen Volkes to FK.

References

First citationBeak, P. & Meyers, A. I. (1986). Acc. Chem. Res. 19, 356–363.  CrossRef CAS Google Scholar
First citationBreit, B. (2000). Chem. Eur. J. 6, 1519–1524.  CrossRef PubMed CAS Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuesler, E. N., Tapscott, R. E., Garcia-Basallote, M. & Gonzalez-Vílchez, F. (1985). Acta Cryst. C41, 678–681.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationEckert, P. K., Gessner, V. H., Knorr, M. & Strohmann, C. (2012). Inorg. Chem. 51, 8516–8523.  CSD CrossRef CAS PubMed Google Scholar
First citationEckert, P. K., Schill, V. & Strohmann, C. (2011). Inorg. Chim. Acta, 376, 634–637.  CSD CrossRef CAS Google Scholar
First citationEckert, P. K., Schnura, B. & Strohmann, C. (2014). Chem. Commun. 50, 2532–2534.  Web of Science CSD CrossRef CAS Google Scholar
First citationEckert, P. K., dos Santos Vieira, I., Gessner, V. H., Borner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151–157.  CSD CrossRef CAS Google Scholar
First citationGessner, V. H. (2009). Dissertation, TU Dortmund University.  Google Scholar
First citationGessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640–5649.  Web of Science CSD CrossRef Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHoveyda, A. H., Evans, D. A. & Fu, G. C. (1993). Chem. Rev. 93, 1307–1370.  CrossRef CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationLian, P., Hu, Q.-S., Xie, Y.-R. & Guo, H.-X. (2009). Acta Cryst. E65, m32–m33.  CSD CrossRef IUCr Journals Google Scholar
First citationMcKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816.  Web of Science CrossRef Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76.  Web of Science CrossRef CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2007). Angew. Chem. Int. Ed. 46, 8281–8283.  CSD CrossRef CAS Google Scholar
First citationStrohmann, C. & Gessner, V. H. (2008). J. Am. Chem. Soc. 130, 11719–11725.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWhisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. (2004). Angew. Chem. Int. Ed. 43, 2206–2225.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds