

research communications
Synthesis and R,R)-TMCDA ethanol derivatives doubly protonated with FeCl4− and Cl− as counter-ions
study of (aInorganic Chemistry, TU Dortmund University, Otto-Hahn Str. 6, 44227 Dortmund, Germany, and bQuímica Inorgánica, Universidad de Valladolid, Paseo Belén 7, 47011 Valladolid, Spain
*Correspondence e-mail: carsten.strohmann@tu-dortmund.de
The synthesis and structural characterization of the crystal forms of (R,R)-TMCDA and its ethanol derivative, both doubly protonated with FeCl4− and Cl− as counter-ions, are reported, namely, (R,R)-N1,N1,N2,N2-tetramethylcyclohexane-1,2-bis(aminium) tetrachloridoferrate chloride, (C10H24N2)[FeCl4]Cl (1a), and (R,R)-N1-(2-hydroxyethyl)-N1,N2,N2-trimethylcyclohexane-1,2-bis(aminium) tetrachloridoferrate chloride (C11H26N2O)[FeCl4]Cl (2a). A notable feature across both synthesized compounds is the presence of N—H⋯Cl hydrogen bonds of moderate strength in the solid state. In the case of the ethanol derivative of (R,R)-TMCDA, the structure also reveals the formation of intermolecular O—H⋯Cl hydrogen bonds.
1. Chemical context
Nitrogen-containing compounds have numerous applications in coordination chemistry. Of particular interest is the molecule (R,R)-TMCDA (1), which contains two stereogenic carbon centers, enabling it to function as a bidentate, chiral ligand.
Selective deprotonation reactions play a critical role in the functionalization of certain molecules, facilitating the incorporation of new functional groups and enhancing molecular properties.
In organolithium chemistry, polyamines are the only tertiary et al., 2010). This phenomenon is widely known as the complex-induced proximity effect (CIPE) (Gessner et al., 2010
; Whisler et al., 2004
; Breit, 2000
; Hoveyda et al., 1993
; Beak & Meyers, 1986
).
Additionally, the synthesis of new ligands with stereogenic centers presents a persistent challenge. The inherent R,R)-TMCDA (1) coupled with its high reactivity towards lithiated bases, renders this molecule a promising precursor for the synthesis of other novel ligands. A notable example is compound 2, which displays interesting characteristics including and its function as an N,N,O-scorpionate ligand. In light of these characteristics, our research group has previously investigated compound 2 and related ligands (Gessner et al., 2010) as well as with (R,R)-TMCDA (Eckert et al., 2011
; Strohmann & Gessner, 2008
; Strohmann & Gessner, 2007
). Building upon this foundation, compounds 1a and 2a, incorporating the aforementioned ligands, have been successfully synthesized and crystallized in this work.
2. Structural commentary
The structure of compound 1a, as depicted in Fig. 1, comprises a cation and two anions. The cation consists of a doubly protonated (R,R)-TMCDA molecule, with the cyclohexane ring adopting a chair conformation. The two counter-ions are a chloride anion, that forms two N—H⋯Cl hydrogen bonds, and a FeCl4− anion, in which the Fe3+ cation is coordinated by four chlorides in a tetrahedral geometry.
![]() | Figure 1 The molecular structure of compound 1a with the atom labelling and displacement ellipsoids drawn at the 50% probability level. |
The distances of interest are shown in Table 1. Hydrogen bonds between the chloride and the hydrogen atoms bonded to either N1 or N2 were observed in the with N1—H1⋯Cl1 distances of 2.133 (19) Å and N2—H2⋯Cl1 distances of 2.135 (17) Å and N1—H1 distances of 0.891 (19) Å and N2—H2 distances of 0.900 (18) Å. These hydrogen bonds could be classified as moderate (Steiner, 2002
).
|
The structure of compound 2a, illustrated in Fig. 2, consists of a cation and two anions. The cation is derived from an ethanol-substituted, doubly protonated (R,R)-TMCDA molecule, characterized by a cyclohexane ring adopting a chair conformation. The two counter-ions include a chloride, which forms N—H⋯Cl hydrogen bonds, and a FeCl4− anion, wherein the Fe3+ cation is coordinated by four chlorides arranged in a tetrahedral geometry. The cation in this structure features three tetrahedral stereogenic centres: the two carbon atoms associated with the N-bonded cycle and the nitrogen atoms N1 or N2, which are bonded to the ethanol fragment. The nitrogen atoms have a labile configuration and both enantiomers (RN and SN) can occur in solid state and thus represent a further cause of the existing disorder. The more flexible CH2-segments of the side chain contribute to the observed disorder of the –CH2CH2OH fragment as well. This is distributed at atom C2 over positions designated as A and C (CH2 group) as well as B and D (CH3 group) with occupancies of 0.6 and 0.4 respectively. Additionally, the C1 carbon is similarly disordered at positions A and C, also exhibiting occupancies of 0.6 and 0.4 respectively. The relevant distances are summarized in Table 2
. The structural analysis reveals hydrogen bonds between the chloride anion and the hydrogen atoms attached to nitrogen atoms N1 and N2. The N2—H2⋯Cl1 distance is measured at 2.357 (3) Å, while the N1—H1⋯Cl1 distance is 2.221 (3) Å. Additionally, the N1—H1 distance is 0.855 (3) Å, and the N2—H2 distance is 0.878 (3) Å. These hydrogen bonds can be classified as moderate in strength, according to Steiner (Steiner, 2002
). In contrast, no interaction is observed between the hydrogen atoms O1A—H1A or O1C—H1C and Cl1, as they are separated by a distance of 3.1245 (5) Å (H1A⋯Cl1) and 3.4958 (5) Å (H1C⋯Cl1).
|
![]() | Figure 2 The molecular structure of compound 2a with the atom labelling. The structure exhibits a disorder of the –CH2CH2OH fragment at two positions, with occupancies of 0.4 and 0.6 and a disorder of C2, also at two positions with occupancies of 0.4 and 0.6. |
3. Supramolecular features
To better understand the supramolecular interactions, a Hirshfeld surface analysis was performed for compound 1a. In Fig. 3, the Hirshfeld surface generated by CrystalExplorer21 (Spackman et al., 2021
) is mapped over dnorm (Spackman & Jayatilaka, 2009
) and red dots are used to represent close contacts between the hydrogen atoms H3, H1A and H10C with the chloride anion Cl1′. The following figure (Fig. 4
) shows the Hirshfeld surface with external fragments.
![]() | Figure 3 Three-dimensional Hirshfeld surface of 1a mapped over dnorm (rescale surface property: −0.2124 − 1.4372). |
![]() | Figure 4 Three-dimensional Hirshfeld surface of 1a mapped over dnorm with external fragments and atom labeling (rescale surface property: −0.2124 − 1.4372). |
For further exploration of the intermolecular interactions, two-dimensional fingerprint plots (McKinnon et al., 2007) were generated as shown in Fig. 5
. The H⋯Cl interaction with a contribution of 66.6% has the biggest impact on the packing in the solid state as well as the H⋯H bonds with 28.8%. Fe⋯H interactions with 0.9% and Cl⋯Fe interactions with 0.3% are less impactful in comparison.
![]() | Figure 5 Two-dimensional fingerprint plots for 1a showing (b) all interactions, and (a) and (c)–(d) delineated into contributions from other contacts (blue areas) [de and di represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (internal) the surface, respectively]. |
In contrast, compound 2a forms O—H⋯Cl hydrogen bonds. These interactions connect two different moieties of compound 2a by a chloride, resulting in a supramolecular zigzag structure in the solid state, as shown in Fig. 6. They show distances of 2.43 Å (O1C—H1C⋯Cl1′) and the N2—H2⋯Cl1 distance is measured at 2.357 (3) Å, while the N1—H1⋯Cl1 distance is 2.221 (3) Å. In Fig. 6
the disorder with the lower occupancy is omitted for clarity, but shows the O1A—H1A⋯Cl1 hydrogen bond with a distance of 2.22 Å.
![]() | Figure 6 The supramolecular structure of compound 2a with the formed hydrogen bonds and the atom labelling of parts of interest. The disorder with the lower occupancy (O1A, H1A) was omitted for clarity. Hydrogen bonds are depicted by dashed lines. |
4. Database survey
A search of the Cambridge Structural Database (CSD version 5.43, November 2021; Groom et al., 2016) for structures containing (R,R)-TMCDA and its ethanol derivative both doubly protonated leads to three relevant and similar structures in common CUZZEC, CUZZIG (Duesler et al., 1985
) and POMMIO (Lian et al., 2009
). In these three cases, the amine substituents are –CH2COOH fragments. Also, in all three cases there is a single anion, being either CdCl42−, PdCl42− or PtCl42− and none of the compounds presents a that matches 1a or 2a. Another search of structures involving non-protonated (R,R)-TMCDA leads to several related structures, some of them being: FEJFAD, FEJFIL and FEJFOR (Eckert et al., 2013
), KOBCAH (Eckert et al., 2014
) and LECRUI (Eckert et al., 2012
). FEJFAD and LECRUI show the same as 2a and KOBCAH with 1a. However, all the latter structures show direct coordination to the metal unlike compounds 1a and 2a.
5. Synthesis and crystallization
The syntheses of compounds 1a and 2a were conducted according to the previously established procedure (Gessner, 2009), which involves the mixing of equimolar amounts of FeCl3·H2O with (R,R)-TMCDA (1) and with 2-{[(1R,2R)-2-(dimethylamino)cyclohexyl](methyl)amino}ethan-1-ol (2), respectively, to yield each compound. In both instances, the reactions were performed in a 3:2 mixture of acetone and 2.5 M of HCl at room temperature (see Fig. 7
). Upon complete dissolution of the reactants, a homogeneous yellow solution was obtained, which was then allowed to stand at room temperature until complete evaporation of the solvent. After one week, yellow crystals were formed; specifically, needle-shaped crystals were obtained for compound 1a, while prism-shaped crystals were obtained for compound 2a.
![]() | Figure 7 The synthesis of the title compounds. |
6. Refinement
Crystal data, data collection and structure . Hydrogen atoms except for the protons attached to the nitrogen and oxygen atoms in both structures were positioned geometrically (C—H = 0.95–1.00 Å) and were refined using a riding model, with Uiso(H) = 1.2Ueq(C) for CH2 hydrogen atoms and Uiso(H) = 1.5Ueq(C) for CH3 hydrogen atoms.
|
Supporting information
https://doi.org/10.1107/S2056989025003019/zn2042sup1.cif
contains datablocks 2a, 1a. DOI:Structure factors: contains datablock 1a. DOI: https://doi.org/10.1107/S2056989025003019/zn20421asup2.hkl
Structure factors: contains datablock 2a. DOI: https://doi.org/10.1107/S2056989025003019/zn20422asup3.hkl
(C11H26N2O)[FeCl4]Cl | Dx = 1.500 Mg m−3 |
Mr = 435.44 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, P212121 | Cell parameters from 9581 reflections |
a = 7.6070 (5) Å | θ = 2.6–34.8° |
b = 11.5870 (6) Å | µ = 1.47 mm−1 |
c = 21.8705 (13) Å | T = 100 K |
V = 1927.7 (2) Å3 | Needle, yellow |
Z = 4 | 0.8 × 0.43 × 0.18 mm |
F(000) = 900 |
Bruker APEXII CCD diffractometer | 8488 independent reflections |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | 8082 reflections with I > 2σ(I) |
HELIOS mirror optics monochromator | Rint = 0.046 |
Detector resolution: 10.4167 pixels mm-1 | θmax = 35.0°, θmin = 1.9° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Krause et al., 2015) | k = −18→18 |
Tmin = 0.472, Tmax = 0.567 | l = −35→35 |
144077 measured reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.026 | w = 1/[σ2(Fo2) + (0.0263P)2 + 0.5573P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max = 0.001 |
S = 1.07 | Δρmax = 0.61 e Å−3 |
8488 reflections | Δρmin = −0.48 e Å−3 |
231 parameters | Absolute structure: Flack x determined using 3373 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.013 (4) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Fe1 | 0.38908 (3) | 0.32831 (2) | 0.64131 (2) | 0.02140 (5) | |
Cl1 | 0.32469 (6) | 0.71475 (4) | 0.52176 (2) | 0.02393 (7) | |
Cl5 | 0.40990 (7) | 0.16915 (4) | 0.69535 (2) | 0.03204 (10) | |
Cl4 | 0.63253 (7) | 0.34762 (4) | 0.58818 (2) | 0.02908 (9) | |
Cl3 | 0.36082 (7) | 0.47621 (5) | 0.70394 (3) | 0.03907 (12) | |
Cl2 | 0.16007 (8) | 0.31529 (4) | 0.58067 (3) | 0.04136 (13) | |
N1 | 0.36655 (19) | 0.80677 (11) | 0.39141 (6) | 0.0176 (2) | |
C4 | 0.49489 (19) | 0.73202 (12) | 0.35567 (7) | 0.0167 (2) | |
H4 | 0.610719 | 0.734966 | 0.377232 | 0.020* | |
C9 | 0.4413 (2) | 0.60442 (13) | 0.35010 (7) | 0.0190 (3) | |
H9 | 0.330578 | 0.600659 | 0.325512 | 0.023* | |
N2 | 0.4066 (2) | 0.54577 (12) | 0.41140 (7) | 0.0229 (3) | |
C2A | 0.1906 (10) | 0.8308 (10) | 0.3630 (5) | 0.0204 (19) | 0.6 |
H2AA | 0.204658 | 0.886344 | 0.329535 | 0.031* | 0.6 |
H2AB | 0.111296 | 0.863005 | 0.393931 | 0.031* | 0.6 |
H2AC | 0.140939 | 0.758896 | 0.346966 | 0.031* | 0.6 |
C8 | 0.5840 (3) | 0.53894 (15) | 0.31517 (9) | 0.0285 (4) | |
H8A | 0.695235 | 0.542237 | 0.338627 | 0.034* | |
H8B | 0.549412 | 0.456878 | 0.311433 | 0.034* | |
C5 | 0.5215 (3) | 0.78172 (17) | 0.29127 (8) | 0.0283 (4) | |
H5A | 0.409277 | 0.777667 | 0.268459 | 0.034* | |
H5B | 0.555774 | 0.863928 | 0.294475 | 0.034* | |
C7 | 0.6146 (3) | 0.58882 (18) | 0.25142 (9) | 0.0329 (4) | |
H7A | 0.710524 | 0.546051 | 0.230899 | 0.040* | |
H7B | 0.506586 | 0.580115 | 0.226574 | 0.040* | |
C10 | 0.5676 (3) | 0.51474 (19) | 0.44679 (11) | 0.0380 (5) | |
H10A | 0.632514 | 0.454339 | 0.425011 | 0.057* | |
H10B | 0.533646 | 0.486423 | 0.487323 | 0.057* | |
H10C | 0.642387 | 0.583097 | 0.451261 | 0.057* | |
C6 | 0.6630 (3) | 0.71594 (19) | 0.25612 (10) | 0.0360 (5) | |
H6A | 0.675303 | 0.748989 | 0.214598 | 0.043* | |
H6B | 0.777242 | 0.723985 | 0.277372 | 0.043* | |
C3 | 0.4494 (3) | 0.92074 (14) | 0.40779 (9) | 0.0261 (3) | |
H3A | 0.566736 | 0.907371 | 0.424913 | 0.039* | |
H3B | 0.376186 | 0.960350 | 0.438098 | 0.039* | |
H3C | 0.459308 | 0.968647 | 0.371023 | 0.039* | |
C2C | 0.3030 (10) | 0.4364 (7) | 0.4077 (4) | 0.0352 (15) | 0.6 |
H2CA | 0.353142 | 0.375708 | 0.434330 | 0.042* | 0.6 |
H2CB | 0.296099 | 0.407377 | 0.365179 | 0.042* | 0.6 |
O1C | 0.0357 (4) | 0.5852 (2) | 0.40633 (12) | 0.0303 (5) | 0.6 |
H1C | −0.026743 | 0.622278 | 0.431171 | 0.045* | 0.6 |
O1A | 0.0770 (5) | 0.6464 (3) | 0.40150 (16) | 0.0268 (6) | 0.4 |
H1A | 0.015547 | 0.671492 | 0.430532 | 0.040* | 0.4 |
C1C | 0.0962 (5) | 0.4832 (3) | 0.43433 (15) | 0.0273 (6) | 0.6 |
H1CA | 0.009140 | 0.421137 | 0.427170 | 0.033* | 0.6 |
H1CB | 0.103627 | 0.496020 | 0.479006 | 0.033* | 0.6 |
C1A | 0.0736 (6) | 0.7274 (4) | 0.3522 (2) | 0.0242 (7) | 0.4 |
H1AA | −0.047730 | 0.756592 | 0.346835 | 0.029* | 0.4 |
H1AB | 0.108667 | 0.688030 | 0.313934 | 0.029* | 0.4 |
H2 | 0.351 (4) | 0.594 (2) | 0.4354 (13) | 0.033 (7)* | |
C2D | 0.2584 (14) | 0.4516 (10) | 0.3996 (6) | 0.0256 (17) | 0.4 |
H2DA | 0.230905 | 0.448666 | 0.355885 | 0.038* | 0.4 |
H2DB | 0.152364 | 0.472246 | 0.422608 | 0.038* | 0.4 |
H2DC | 0.300608 | 0.375886 | 0.413154 | 0.038* | 0.4 |
H1 | 0.342 (4) | 0.774 (2) | 0.4253 (13) | 0.037 (7)* | |
C2B | 0.1897 (17) | 0.8228 (16) | 0.3631 (7) | 0.028 (4) | 0.4 |
H2BA | 0.125018 | 0.878280 | 0.389230 | 0.034* | 0.4 |
H2BB | 0.208584 | 0.861386 | 0.323279 | 0.034* | 0.4 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.02100 (10) | 0.02097 (10) | 0.02223 (10) | −0.00210 (8) | −0.00138 (8) | −0.00180 (8) |
Cl1 | 0.02587 (17) | 0.03036 (18) | 0.01556 (13) | −0.00029 (15) | 0.00178 (13) | −0.00037 (13) |
Cl5 | 0.0315 (2) | 0.0350 (2) | 0.02956 (19) | −0.00769 (18) | 0.00039 (16) | 0.01233 (18) |
Cl4 | 0.0340 (2) | 0.02166 (16) | 0.03163 (19) | 0.00026 (15) | 0.01043 (17) | 0.00573 (14) |
Cl3 | 0.0339 (2) | 0.0387 (2) | 0.0446 (3) | −0.0104 (2) | 0.0089 (2) | −0.0217 (2) |
Cl2 | 0.0391 (3) | 0.0284 (2) | 0.0566 (3) | 0.00584 (19) | −0.0261 (2) | −0.0091 (2) |
N1 | 0.0228 (6) | 0.0148 (5) | 0.0151 (5) | 0.0018 (4) | 0.0004 (4) | −0.0001 (4) |
C4 | 0.0181 (6) | 0.0152 (5) | 0.0168 (6) | −0.0002 (4) | 0.0009 (5) | −0.0016 (5) |
C9 | 0.0223 (6) | 0.0177 (6) | 0.0171 (6) | −0.0033 (5) | 0.0017 (5) | −0.0042 (5) |
N2 | 0.0330 (7) | 0.0138 (5) | 0.0220 (6) | −0.0028 (5) | 0.0049 (6) | −0.0017 (5) |
C2A | 0.018 (3) | 0.0139 (19) | 0.030 (4) | 0.0001 (17) | −0.006 (2) | 0.0035 (19) |
C8 | 0.0345 (9) | 0.0208 (7) | 0.0303 (8) | 0.0009 (6) | 0.0101 (7) | −0.0093 (6) |
C5 | 0.0386 (10) | 0.0254 (8) | 0.0209 (7) | 0.0002 (7) | 0.0093 (7) | 0.0029 (6) |
C7 | 0.0374 (10) | 0.0344 (9) | 0.0270 (8) | −0.0042 (8) | 0.0141 (8) | −0.0121 (7) |
C10 | 0.0487 (13) | 0.0285 (9) | 0.0368 (10) | 0.0111 (9) | −0.0049 (9) | 0.0087 (8) |
C6 | 0.0425 (11) | 0.0328 (9) | 0.0326 (9) | −0.0076 (9) | 0.0215 (9) | −0.0044 (7) |
C3 | 0.0321 (9) | 0.0164 (6) | 0.0299 (8) | 0.0006 (6) | −0.0035 (7) | −0.0057 (6) |
C2C | 0.053 (5) | 0.024 (3) | 0.029 (2) | −0.019 (3) | 0.004 (3) | −0.0007 (19) |
O1C | 0.0374 (13) | 0.0201 (10) | 0.0335 (12) | 0.0007 (9) | 0.0022 (10) | −0.0058 (9) |
O1A | 0.0258 (15) | 0.0288 (17) | 0.0258 (15) | 0.0005 (13) | 0.0024 (11) | −0.0015 (13) |
C1C | 0.0348 (15) | 0.0202 (11) | 0.0269 (13) | −0.0052 (11) | 0.0076 (12) | −0.0023 (10) |
C1A | 0.0215 (17) | 0.0282 (19) | 0.0229 (17) | 0.0013 (14) | −0.0015 (14) | −0.0029 (15) |
C2D | 0.030 (4) | 0.011 (2) | 0.035 (4) | −0.003 (2) | 0.006 (3) | −0.001 (2) |
C2B | 0.027 (6) | 0.035 (7) | 0.023 (5) | 0.008 (4) | 0.011 (4) | −0.002 (4) |
Fe1—Cl5 | 2.1962 (5) | C7—H7A | 0.9900 |
Fe1—Cl4 | 2.1976 (5) | C7—H7B | 0.9900 |
Fe1—Cl3 | 2.2044 (5) | C7—C6 | 1.522 (3) |
Fe1—Cl2 | 2.1946 (6) | C10—H10A | 0.9800 |
N1—C4 | 1.521 (2) | C10—H10B | 0.9800 |
N1—C2A | 1.502 (7) | C10—H10C | 0.9800 |
N1—C3 | 1.507 (2) | C6—H6A | 0.9900 |
N1—H1 | 0.86 (3) | C6—H6B | 0.9900 |
N1—C2B | 1.492 (13) | C3—H3A | 0.9800 |
C4—H4 | 1.0000 | C3—H3B | 0.9800 |
C4—C9 | 1.539 (2) | C3—H3C | 0.9800 |
C4—C5 | 1.535 (2) | C2C—H2CA | 0.9900 |
C9—H9 | 1.0000 | C2C—H2CB | 0.9900 |
C9—N2 | 1.526 (2) | C2C—C1C | 1.763 (9) |
C9—C8 | 1.529 (2) | O1C—H1C | 0.8400 |
N2—C10 | 1.493 (3) | O1C—C1C | 1.408 (4) |
N2—C2C | 1.494 (9) | O1A—H1A | 0.8400 |
N2—H2 | 0.88 (3) | O1A—C1A | 1.429 (6) |
N2—C2D | 1.590 (13) | C1C—H1CA | 0.9900 |
C2A—H2AA | 0.9800 | C1C—H1CB | 0.9900 |
C2A—H2AB | 0.9800 | C1A—H1AA | 0.9900 |
C2A—H2AC | 0.9800 | C1A—H1AB | 0.9900 |
C8—H8A | 0.9900 | C1A—C2B | 1.435 (18) |
C8—H8B | 0.9900 | C2D—H2DA | 0.9800 |
C8—C7 | 1.527 (3) | C2D—H2DB | 0.9800 |
C5—H5A | 0.9900 | C2D—H2DC | 0.9800 |
C5—H5B | 0.9900 | C2B—H2BA | 0.9900 |
C5—C6 | 1.526 (3) | C2B—H2BB | 0.9900 |
Cl5—Fe1—Cl4 | 108.02 (2) | C8—C7—H7B | 109.7 |
Cl5—Fe1—Cl3 | 108.99 (3) | H7A—C7—H7B | 108.2 |
Cl4—Fe1—Cl3 | 109.37 (2) | C6—C7—C8 | 109.97 (16) |
Cl2—Fe1—Cl5 | 108.95 (2) | C6—C7—H7A | 109.7 |
Cl2—Fe1—Cl4 | 110.88 (3) | C6—C7—H7B | 109.7 |
Cl2—Fe1—Cl3 | 110.58 (2) | N2—C10—H10A | 109.5 |
C4—N1—H1 | 109 (2) | N2—C10—H10B | 109.5 |
C2A—N1—C4 | 117.7 (4) | N2—C10—H10C | 109.5 |
C2A—N1—C3 | 108.0 (4) | H10A—C10—H10B | 109.5 |
C2A—N1—H1 | 104 (2) | H10A—C10—H10C | 109.5 |
C3—N1—C4 | 110.65 (13) | H10B—C10—H10C | 109.5 |
C3—N1—H1 | 106.0 (19) | C5—C6—H6A | 109.6 |
C2B—N1—C4 | 115.9 (6) | C5—C6—H6B | 109.6 |
C2B—N1—C3 | 111.5 (7) | C7—C6—C5 | 110.28 (17) |
C2B—N1—H1 | 103 (2) | C7—C6—H6A | 109.6 |
N1—C4—H4 | 107.7 | C7—C6—H6B | 109.6 |
N1—C4—C9 | 114.68 (12) | H6A—C6—H6B | 108.1 |
N1—C4—C5 | 110.03 (13) | N1—C3—H3A | 109.5 |
C9—C4—H4 | 107.7 | N1—C3—H3B | 109.5 |
C5—C4—H4 | 107.7 | N1—C3—H3C | 109.5 |
C5—C4—C9 | 108.84 (13) | H3A—C3—H3B | 109.5 |
C4—C9—H9 | 107.9 | H3A—C3—H3C | 109.5 |
N2—C9—C4 | 113.85 (12) | H3B—C3—H3C | 109.5 |
N2—C9—H9 | 107.9 | N2—C2C—H2CA | 111.6 |
N2—C9—C8 | 109.91 (14) | N2—C2C—H2CB | 111.6 |
C8—C9—C4 | 109.14 (13) | N2—C2C—C1C | 101.1 (5) |
C8—C9—H9 | 107.9 | H2CA—C2C—H2CB | 109.4 |
C9—N2—H2 | 108.7 (18) | C1C—C2C—H2CA | 111.6 |
C9—N2—C2D | 106.6 (5) | C1C—C2C—H2CB | 111.6 |
C10—N2—C9 | 114.90 (15) | C1C—O1C—H1C | 109.5 |
C10—N2—C2C | 104.9 (3) | C1A—O1A—H1A | 109.5 |
C10—N2—H2 | 103.8 (18) | C2C—C1C—H1CA | 108.8 |
C10—N2—C2D | 120.0 (3) | C2C—C1C—H1CB | 108.8 |
C2C—N2—C9 | 114.9 (4) | O1C—C1C—C2C | 113.9 (3) |
C2C—N2—H2 | 109.0 (18) | O1C—C1C—H1CA | 108.8 |
C2D—N2—H2 | 101.4 (19) | O1C—C1C—H1CB | 108.8 |
N1—C2A—H2AA | 109.5 | H1CA—C1C—H1CB | 107.7 |
N1—C2A—H2AB | 109.5 | O1A—C1A—H1AA | 109.3 |
N1—C2A—H2AC | 109.5 | O1A—C1A—H1AB | 109.3 |
H2AA—C2A—H2AB | 109.5 | O1A—C1A—C2B | 111.7 (7) |
H2AA—C2A—H2AC | 109.5 | H1AA—C1A—H1AB | 107.9 |
H2AB—C2A—H2AC | 109.5 | C2B—C1A—H1AA | 109.3 |
C9—C8—H8A | 109.2 | C2B—C1A—H1AB | 109.3 |
C9—C8—H8B | 109.2 | N2—C2D—H2DA | 109.5 |
H8A—C8—H8B | 107.9 | N2—C2D—H2DB | 109.5 |
C7—C8—C9 | 112.10 (16) | N2—C2D—H2DC | 109.5 |
C7—C8—H8A | 109.2 | H2DA—C2D—H2DB | 109.5 |
C7—C8—H8B | 109.2 | H2DA—C2D—H2DC | 109.5 |
C4—C5—H5A | 109.3 | H2DB—C2D—H2DC | 109.5 |
C4—C5—H5B | 109.3 | N1—C2B—H2BA | 106.9 |
H5A—C5—H5B | 108.0 | N1—C2B—H2BB | 106.9 |
C6—C5—C4 | 111.58 (16) | C1A—C2B—N1 | 121.8 (12) |
C6—C5—H5A | 109.3 | C1A—C2B—H2BA | 106.9 |
C6—C5—H5B | 109.3 | C1A—C2B—H2BB | 106.9 |
C8—C7—H7A | 109.7 | H2BA—C2B—H2BB | 106.7 |
N1—C4—C9—N2 | −54.93 (18) | C2A—N1—C4—C5 | 53.8 (5) |
N1—C4—C9—C8 | −178.13 (14) | C8—C9—N2—C10 | 46.55 (19) |
N1—C4—C5—C6 | 174.42 (16) | C8—C9—N2—C2C | −75.3 (4) |
C4—N1—C2B—C1A | 61.9 (12) | C8—C9—N2—C2D | −89.0 (4) |
C4—C9—N2—C10 | −76.24 (18) | C8—C7—C6—C5 | −55.7 (3) |
C4—C9—N2—C2C | 161.9 (3) | C5—C4—C9—N2 | −178.65 (14) |
C4—C9—N2—C2D | 148.2 (4) | C5—C4—C9—C8 | 58.15 (18) |
C4—C9—C8—C7 | −58.7 (2) | C10—N2—C2C—C1C | 128.1 (3) |
C4—C5—C6—C7 | 58.1 (2) | C3—N1—C4—C9 | 165.95 (13) |
C9—C4—C5—C6 | −59.1 (2) | C3—N1—C4—C5 | −70.97 (17) |
C9—N2—C2C—C1C | −104.8 (4) | C3—N1—C2B—C1A | −170.3 (8) |
C9—C8—C7—C6 | 57.3 (2) | O1A—C1A—C2B—N1 | 40.0 (12) |
N2—C9—C8—C7 | 175.82 (15) | C2B—N1—C4—C9 | −65.9 (8) |
N2—C2C—C1C—O1C | 48.6 (5) | C2B—N1—C4—C5 | 57.2 (8) |
C2A—N1—C4—C9 | −69.3 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.855 (3) | 2.221 (3) | 3.0603 (14) | 167 (3) |
N2—H2···Cl1 | 0.878 (3) | 2.357 (3) | 3.1698 (16) | 154 (3) |
O1C—H1C···Cl1i | 0.84 | 2.43 | 3.229 (3) | 159 |
Symmetry code: (i) x−1/2, −y+3/2, −z+1. |
(C10H24N2)[FeCl4]Cl | F(000) = 418 |
Mr = 405.41 | Dx = 1.486 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.2322 (3) Å | Cell parameters from 1350 reflections |
b = 9.2378 (5) Å | θ = 4.3–31.7° |
c = 10.7384 (4) Å | µ = 1.56 mm−1 |
β = 116.797 (1)° | T = 100 K |
V = 906.02 (7) Å3 | Prism, yellow |
Z = 2 | 0.50 × 0.43 × 0.38 mm |
Bruker D8 VENTURE area detector diffractometer | 8442 reflections with I > 2σ(I) |
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs | Rint = 0.030 |
HELIOS mirror optics monochromator | θmax = 36.3°, θmin = 2.1° |
Detector resolution: 10.4167 pixels mm-1 | h = −13→17 |
ω and φ scans | k = −15→15 |
69005 measured reflections | l = −17→17 |
8763 independent reflections |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.018 | w = 1/[σ2(Fo2) + (0.0156P)2 + 0.078P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.037 | (Δ/σ)max = 0.001 |
S = 1.06 | Δρmax = 0.23 e Å−3 |
8763 reflections | Δρmin = −0.33 e Å−3 |
175 parameters | Absolute structure: Flack x determined using 3826 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
1 restraint | Absolute structure parameter: −0.009 (3) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Fe1 | 0.73543 (2) | 0.37018 (2) | 0.11080 (2) | 0.01357 (3) | |
Cl2 | 0.76183 (3) | 0.51878 (3) | 0.28052 (3) | 0.01944 (5) | |
Cl5 | 0.76963 (3) | 0.49518 (3) | −0.04548 (3) | 0.01960 (5) | |
Cl1 | 0.35677 (3) | 0.17053 (3) | 0.42055 (3) | 0.01882 (5) | |
Cl3 | 0.52216 (3) | 0.26207 (4) | 0.02175 (3) | 0.02597 (6) | |
Cl4 | 0.90709 (3) | 0.20084 (3) | 0.19738 (3) | 0.02248 (5) | |
N1 | 0.28286 (10) | 0.44077 (10) | 0.53384 (9) | 0.01356 (15) | |
N2 | 0.26193 (10) | 0.43743 (10) | 0.23871 (9) | 0.01275 (14) | |
C8 | 0.18173 (11) | 0.54564 (11) | 0.28693 (10) | 0.01174 (15) | |
H8 | 0.0835 | 0.5042 | 0.2652 | 0.014* | |
C9 | 0.17020 (12) | 0.38898 (13) | 0.09145 (11) | 0.01754 (19) | |
H9A | 0.0722 | 0.3629 | 0.0790 | 0.026* | |
H9B | 0.2159 | 0.3046 | 0.0717 | 0.026* | |
H9C | 0.1625 | 0.4677 | 0.0274 | 0.026* | |
C7 | 0.15769 (13) | 0.68716 (12) | 0.20441 (11) | 0.01745 (19) | |
H7A | 0.2536 | 0.7251 | 0.2178 | 0.021* | |
H7B | 0.0983 | 0.6667 | 0.1038 | 0.021* | |
C3 | 0.26269 (11) | 0.57574 (11) | 0.44544 (10) | 0.01184 (15) | |
H3 | 0.3623 | 0.6133 | 0.4670 | 0.014* | |
C6 | 0.08042 (13) | 0.80253 (12) | 0.24935 (12) | 0.01837 (19) | |
H6A | 0.0700 | 0.8927 | 0.1958 | 0.022* | |
H6B | −0.0187 | 0.7685 | 0.2299 | 0.022* | |
C1 | 0.40538 (13) | 0.45802 (15) | 0.67836 (11) | 0.0231 (2) | |
H1A | 0.4946 | 0.4876 | 0.6728 | 0.035* | |
H1B | 0.4226 | 0.3657 | 0.7282 | 0.035* | |
H1C | 0.3790 | 0.5320 | 0.7284 | 0.035* | |
C5 | 0.16937 (13) | 0.83247 (12) | 0.40466 (12) | 0.01787 (19) | |
H5A | 0.1201 | 0.9077 | 0.4341 | 0.021* | |
H5B | 0.2677 | 0.8686 | 0.4238 | 0.021* | |
C10 | 0.40958 (12) | 0.48351 (14) | 0.25595 (12) | 0.0200 (2) | |
H10A | 0.3979 | 0.5602 | 0.1887 | 0.030* | |
H10B | 0.4595 | 0.4005 | 0.2396 | 0.030* | |
H10C | 0.4679 | 0.5200 | 0.3509 | 0.030* | |
C4 | 0.18391 (12) | 0.69326 (12) | 0.48655 (11) | 0.01606 (18) | |
H4A | 0.0853 | 0.6584 | 0.4681 | 0.019* | |
H4B | 0.2394 | 0.7133 | 0.5877 | 0.019* | |
C2 | 0.14826 (12) | 0.38899 (13) | 0.54129 (12) | 0.0194 (2) | |
H2A | 0.1253 | 0.4545 | 0.6005 | 0.029* | |
H2B | 0.1651 | 0.2913 | 0.5810 | 0.029* | |
H2C | 0.0661 | 0.3872 | 0.4473 | 0.029* | |
H1 | 0.3094 (18) | 0.366 (2) | 0.4978 (18) | 0.025 (4)* | |
H2 | 0.2756 (17) | 0.3539 (19) | 0.2862 (17) | 0.022 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Fe1 | 0.01513 (6) | 0.01373 (6) | 0.01181 (6) | −0.00141 (5) | 0.00605 (5) | −0.00101 (5) |
Cl2 | 0.02272 (11) | 0.01915 (11) | 0.01510 (10) | 0.00063 (9) | 0.00734 (9) | −0.00412 (9) |
Cl5 | 0.02426 (12) | 0.01906 (12) | 0.01887 (10) | 0.00237 (10) | 0.01270 (9) | 0.00438 (9) |
Cl1 | 0.02039 (11) | 0.01434 (10) | 0.02008 (11) | 0.00533 (9) | 0.00767 (9) | 0.00351 (9) |
Cl3 | 0.02241 (13) | 0.03108 (15) | 0.02344 (13) | −0.01235 (12) | 0.00946 (11) | −0.00656 (11) |
Cl4 | 0.02828 (13) | 0.01860 (12) | 0.02112 (11) | 0.00725 (10) | 0.01163 (10) | 0.00335 (9) |
N1 | 0.0145 (4) | 0.0146 (4) | 0.0109 (3) | 0.0009 (3) | 0.0052 (3) | 0.0020 (3) |
N2 | 0.0138 (3) | 0.0133 (4) | 0.0110 (3) | 0.0011 (3) | 0.0054 (3) | −0.0002 (3) |
C8 | 0.0124 (4) | 0.0121 (4) | 0.0103 (3) | 0.0013 (3) | 0.0047 (3) | 0.0003 (3) |
C9 | 0.0200 (4) | 0.0178 (5) | 0.0126 (4) | −0.0006 (4) | 0.0054 (3) | −0.0040 (3) |
C7 | 0.0249 (5) | 0.0150 (5) | 0.0138 (4) | 0.0053 (4) | 0.0099 (4) | 0.0039 (3) |
C3 | 0.0131 (4) | 0.0120 (4) | 0.0101 (3) | −0.0003 (3) | 0.0050 (3) | 0.0010 (3) |
C6 | 0.0229 (5) | 0.0152 (4) | 0.0172 (4) | 0.0058 (4) | 0.0092 (4) | 0.0032 (4) |
C1 | 0.0212 (5) | 0.0290 (6) | 0.0122 (4) | −0.0021 (4) | 0.0015 (4) | 0.0043 (4) |
C5 | 0.0241 (5) | 0.0123 (4) | 0.0190 (5) | 0.0013 (4) | 0.0112 (4) | −0.0005 (3) |
C10 | 0.0150 (4) | 0.0256 (5) | 0.0216 (5) | −0.0018 (4) | 0.0101 (4) | −0.0058 (4) |
C4 | 0.0217 (5) | 0.0143 (4) | 0.0151 (4) | 0.0019 (4) | 0.0109 (4) | −0.0003 (3) |
C2 | 0.0190 (4) | 0.0194 (5) | 0.0216 (5) | −0.0018 (4) | 0.0106 (4) | 0.0053 (4) |
Fe1—Cl2 | 2.1989 (3) | C7—C6 | 1.5290 (15) |
Fe1—Cl5 | 2.1913 (3) | C3—H3 | 1.0000 |
Fe1—Cl3 | 2.1891 (3) | C3—C4 | 1.5310 (14) |
Fe1—Cl4 | 2.2191 (3) | C6—H6A | 0.9900 |
N1—C3 | 1.5237 (13) | C6—H6B | 0.9900 |
N1—C1 | 1.5004 (14) | C6—C5 | 1.5224 (16) |
N1—C2 | 1.4939 (13) | C1—H1A | 0.9800 |
N1—H1 | 0.891 (19) | C1—H1B | 0.9800 |
N2—C8 | 1.5245 (13) | C1—H1C | 0.9800 |
N2—C9 | 1.4978 (13) | C5—H5A | 0.9900 |
N2—C10 | 1.4985 (14) | C5—H5B | 0.9900 |
N2—H2 | 0.900 (18) | C5—C4 | 1.5269 (15) |
C8—H8 | 1.0000 | C10—H10A | 0.9800 |
C8—C7 | 1.5358 (14) | C10—H10B | 0.9800 |
C8—C3 | 1.5458 (13) | C10—H10C | 0.9800 |
C9—H9A | 0.9800 | C4—H4A | 0.9900 |
C9—H9B | 0.9800 | C4—H4B | 0.9900 |
C9—H9C | 0.9800 | C2—H2A | 0.9800 |
C7—H7A | 0.9900 | C2—H2B | 0.9800 |
C7—H7B | 0.9900 | C2—H2C | 0.9800 |
Cl2—Fe1—Cl4 | 108.335 (12) | C8—C3—H3 | 107.6 |
Cl5—Fe1—Cl2 | 107.664 (13) | C4—C3—C8 | 110.77 (8) |
Cl5—Fe1—Cl4 | 108.833 (12) | C4—C3—H3 | 107.6 |
Cl3—Fe1—Cl2 | 111.878 (13) | C7—C6—H6A | 109.8 |
Cl3—Fe1—Cl5 | 112.196 (13) | C7—C6—H6B | 109.8 |
Cl3—Fe1—Cl4 | 107.837 (15) | H6A—C6—H6B | 108.2 |
C3—N1—H1 | 110.2 (11) | C5—C6—C7 | 109.49 (9) |
C1—N1—C3 | 111.89 (9) | C5—C6—H6A | 109.8 |
C1—N1—H1 | 104.8 (11) | C5—C6—H6B | 109.8 |
C2—N1—C3 | 115.23 (8) | N1—C1—H1A | 109.5 |
C2—N1—C1 | 109.82 (9) | N1—C1—H1B | 109.5 |
C2—N1—H1 | 104.1 (11) | N1—C1—H1C | 109.5 |
C8—N2—H2 | 109.8 (10) | H1A—C1—H1B | 109.5 |
C9—N2—C8 | 112.18 (8) | H1A—C1—H1C | 109.5 |
C9—N2—C10 | 109.41 (8) | H1B—C1—H1C | 109.5 |
C9—N2—H2 | 101.9 (11) | C6—C5—H5A | 109.8 |
C10—N2—C8 | 116.03 (8) | C6—C5—H5B | 109.8 |
C10—N2—H2 | 106.4 (10) | C6—C5—C4 | 109.44 (9) |
N2—C8—H8 | 108.0 | H5A—C5—H5B | 108.2 |
N2—C8—C7 | 109.45 (8) | C4—C5—H5A | 109.8 |
N2—C8—C3 | 112.87 (8) | C4—C5—H5B | 109.8 |
C7—C8—H8 | 108.0 | N2—C10—H10A | 109.5 |
C7—C8—C3 | 110.43 (8) | N2—C10—H10B | 109.5 |
C3—C8—H8 | 108.0 | N2—C10—H10C | 109.5 |
N2—C9—H9A | 109.5 | H10A—C10—H10B | 109.5 |
N2—C9—H9B | 109.5 | H10A—C10—H10C | 109.5 |
N2—C9—H9C | 109.5 | H10B—C10—H10C | 109.5 |
H9A—C9—H9B | 109.5 | C3—C4—H4A | 109.4 |
H9A—C9—H9C | 109.5 | C3—C4—H4B | 109.4 |
H9B—C9—H9C | 109.5 | C5—C4—C3 | 111.00 (8) |
C8—C7—H7A | 109.1 | C5—C4—H4A | 109.4 |
C8—C7—H7B | 109.1 | C5—C4—H4B | 109.4 |
H7A—C7—H7B | 107.8 | H4A—C4—H4B | 108.0 |
C6—C7—C8 | 112.48 (9) | N1—C2—H2A | 109.5 |
C6—C7—H7A | 109.1 | N1—C2—H2B | 109.5 |
C6—C7—H7B | 109.1 | N1—C2—H2C | 109.5 |
N1—C3—C8 | 113.18 (8) | H2A—C2—H2B | 109.5 |
N1—C3—H3 | 107.6 | H2A—C2—H2C | 109.5 |
N1—C3—C4 | 109.98 (8) | H2B—C2—H2C | 109.5 |
N1—C3—C4—C5 | 177.07 (8) | C7—C6—C5—C4 | −59.87 (12) |
N2—C8—C7—C6 | −178.78 (9) | C3—C8—C7—C6 | −53.93 (12) |
N2—C8—C3—N1 | −60.24 (11) | C6—C5—C4—C3 | 60.65 (12) |
N2—C8—C3—C4 | 175.71 (8) | C1—N1—C3—C8 | 158.64 (9) |
C8—C7—C6—C5 | 57.65 (13) | C1—N1—C3—C4 | −76.88 (11) |
C8—C3—C4—C5 | −57.08 (11) | C10—N2—C8—C7 | 59.79 (11) |
C9—N2—C8—C7 | −66.97 (11) | C10—N2—C8—C3 | −63.63 (11) |
C9—N2—C8—C3 | 169.61 (9) | C2—N1—C3—C8 | −74.97 (11) |
C7—C8—C3—N1 | 176.89 (8) | C2—N1—C3—C4 | 49.51 (11) |
C7—C8—C3—C4 | 52.84 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···Cl1 | 0.891 (19) | 2.133 (19) | 3.0189 (11) | 172.7 (19) |
N2—H2···Cl1 | 0.900 (18) | 2.135 (17) | 3.0208 (10) | 165 (14) |
Funding information
Funding for this research was provided by a scholarship from the Studienstiftung des Deutschen Volkes to FK.
References
Beak, P. & Meyers, A. I. (1986). Acc. Chem. Res. 19, 356–363. CrossRef CAS Google Scholar
Breit, B. (2000). Chem. Eur. J. 6, 1519–1524. CrossRef PubMed CAS Google Scholar
Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341. Web of Science CrossRef CAS IUCr Journals Google Scholar
Duesler, E. N., Tapscott, R. E., Garcia-Basallote, M. & Gonzalez-Vílchez, F. (1985). Acta Cryst. C41, 678–681. CSD CrossRef CAS IUCr Journals Google Scholar
Eckert, P. K., Gessner, V. H., Knorr, M. & Strohmann, C. (2012). Inorg. Chem. 51, 8516–8523. CSD CrossRef CAS PubMed Google Scholar
Eckert, P. K., Schill, V. & Strohmann, C. (2011). Inorg. Chim. Acta, 376, 634–637. CSD CrossRef CAS Google Scholar
Eckert, P. K., Schnura, B. & Strohmann, C. (2014). Chem. Commun. 50, 2532–2534. Web of Science CSD CrossRef CAS Google Scholar
Eckert, P. K., dos Santos Vieira, I., Gessner, V. H., Borner, J., Strohmann, C. & Herres-Pawlis, S. (2013). Polyhedron, 49, 151–157. CSD CrossRef CAS Google Scholar
Gessner, V. H. (2009). Dissertation, TU Dortmund University. Google Scholar
Gessner, V. H., Fröhlich, B. & Strohmann, C. (2010). Eur. J. Inorg. Chem. pp. 5640–5649. Web of Science CSD CrossRef Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Hoveyda, A. H., Evans, D. A. & Fu, G. C. (1993). Chem. Rev. 93, 1307–1370. CrossRef CAS Google Scholar
Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
Lian, P., Hu, Q.-S., Xie, Y.-R. & Guo, H.-X. (2009). Acta Cryst. E65, m32–m33. CSD CrossRef IUCr Journals Google Scholar
McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. Web of Science CrossRef Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32. Web of Science CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48–76. Web of Science CrossRef CAS Google Scholar
Strohmann, C. & Gessner, V. H. (2007). Angew. Chem. Int. Ed. 46, 8281–8283. CSD CrossRef CAS Google Scholar
Strohmann, C. & Gessner, V. H. (2008). J. Am. Chem. Soc. 130, 11719–11725. Web of Science CSD CrossRef PubMed CAS Google Scholar
Whisler, M. C., MacNeil, S., Snieckus, V. & Beak, P. (2004). Angew. Chem. Int. Ed. 43, 2206–2225. CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.