

research communications
Synthesis and structural characterization of the dichloride complex formed by carboxy-functionalized Cu(diazacyclam)2+ cation and its heterometallic coordination polymer with CdCl2
aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kyiv, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, RO 700487, Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net
The κ4N1,N5,N8,N12]dichloridocopper(II), [CuCl2(C16H34N6O4)] or [Cu(H2L)Cl2] (I), consists of a centrosymmetric macrocyclic CuII dication and a chloride anion. The components of the heterometallic compound poly[[aqua[μ3-3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12:κ2O,O′:κ2O′′,O′′′]-μ-chlorido-copper(II)cadmium(II] 1.25-hydrate], {[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O}n or {[CuCd(L)(H2O)Cl2]·1.25H2O}n (II) are [Cu(L)(H2O)] moieties coordinated to CdCl2 units via the deprotonated carboxylic groups of the macrocycle, and four water molecules of crystallization with partial occupancies. In each compound, the CuII ion coordinates in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and two mutually trans axial ligands in tetragonally elongated trans-CuN4Cl2 and trans-CuN4(H2O)Cl octahedral geometries in I and II, respectively. The coordination environment of the CdII ion in II is a CdO4Cl2 distorted octahedron formed by two bidentately coordinated deprotonated carboxylic groups of different macrocycles and two chloride anions, one of which displays a μ2-bridging function between the CuII and CdII ions. The extended structures of both complexes are distinctly lamellar. In particular, due to hydrogen–bonding interactions with participation of carboxylic groups, chloride atoms and secondary amino groups of the macrocycle, the electro-neutral molecules in crystal of I are arranged in chains running in the [101] direction; hydrogen bonding between the chains leads to layers parallel to the (101) plane. In crystal of II, polymeric chains running along the [101] direction are joined into layers parallel to the (101) plane via formation of Cu—Cl bonds and interchain hydrogen bonds. There are no hydrogen-bonding interactions between the layers and the three-dimensional structure of II is based on the weak C—H⋯O and C—H⋯Cl contacts.
of the complex [3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-1. Chemical context
Owing to exceptionally high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985), first row transition-metal complexes of the tetradentate 14-membered azamacrocyclic ligand 1,4,8,11-tetraazacyclotetradecane (cyclam) and its N3,N10-disubstituted structural analogue 1,3,5,8,10,12-hexaazacyclotetradecane (diazacyclam) are common metal-containing nodes for the design of metal–organic frameworks (MOFs), demonstrating many promising applications (Lampeka & Tsymbal, 2004
; Suh & Moon, 2007
; Stackhouse & Ma, 2018
). The NiII and CuII complexes of diazacyclam are readily obtainable via template Mannich condensation of bis(ethylenediamine) complexes of these cations with formaldehyde and primary (Costisor & Linert, 2000
). The use of primary bearing an additional coordinating groups as locking fragments in these template reactions allows for the preparation of complexes of functionalized diazacyclams. As a result of the interaction of the donor group of the substituents in these species with other metal-containing nodes they can form coordination polymers, without using additional bridging ligands. Indeed, several examples of polymeric compounds formed by the NiII or CuII complexes of propionitrile-substituted diazacyclam have been described (Suh et al., 1994
; Liu et al., 2002
). They are the homometallic products of self-polymerization reactions occurring via coordination of the nitrile groups of the substituents of macrocyclic cation in the axial positions of the metal ions of other macrocyclic units. Similar self-polymerization of building blocks is also characteristic of 3-carboxypropyl-substituted diazacyclam (Lu et al., 2005
; Ou et al., 2005
see Database survey). Because carboxylates are known as the most popular bridging units in preparation of MOFs (Rao et al., 2004
; Yoshinari & Konno, 2023
), the complexes of this ligand are of particular interest because their reactions with other metal ions can lead to formation of new types of heterometallic coordination polymers.
The present work describes the preparation and structural characterization of the molecular CuII dichloride complex of the azacyclam ligand 3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane (H2L), namely, [3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12]dichloridocopper(II), [CuCl2(C16H34N6O4)] or [Cu(H2L)Cl2] (I), and the product of its interaction with CdII ion, namely, poly{[aqua[μ3-3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12;κ2O,O′:κ2O′′,O′′′]-μ-chloridocopper(II)cadmium(II] 1.25-hydrate], {[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O}n or {[CuCd(L)(H2O)Cl2]·1.25H2O}n (II), which is the first representative of heterometallic polymeric complexes with carboxyl-substituted Cu-diazacyclam moiety as bridging ligand.
2. Structural commentary
The molecular structures of I and II are shown in Figs. 1 and 2
, respectively, while selected geometric parameters characterizing the coordination environment of the CuII and CdII ions are collected in Tables 1
and 2
. The of I (Fig. 1
) represents a half of the neutral centrosymmetric [Cu(H2L)Cl2] complex formed by a diazacyclam ligand with protonated carboxylic groups. The of II contains a [Cu(L)(H2O)] moiety coordinated to CdCl2 via deprotonated carboxylic groups of the macrocycle (Fig. 2
). Additionally, it includes four water molecules of crystallization with site occupancies 0.5 (O2W) and 0.25 (O3W–O5W) (total 1.25 water molecules).
|
|
![]() | Figure 1 The asymmetric unit in I showing displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Symmetry code: (i) −x + 2, −y + 1, −z + 1. |
![]() | Figure 2 The extended asymmetric unit in II with displacement ellipsoids drawn at the 30% probability level. The semicoordinative Cu—Cl1 bond is shown as dark green capped stick line. C-bound H atoms are omitted for clarity. Water molecules of crystallization are not shown. Symmetry codes: (i) x + 1, y, z + 1; (ii) x - 1, y, z − 1; (iii) −x + 1, −y, −z + 1. |
In both compounds the CuII ion coordinates the four secondary N atoms of the macrocycles, which adopt the most energetically stable trans–III (R,R,S,S) conformation (Barefield et al., 1986) with the five-membered (N—Ni—N bite angles ca 86°) and six-membered (N—Ni—N bite angles ca 94°) chelate rings adopting gauche and chair conformations, respectively (Tables 1
and 2
). The macrocyclic ligands are in stretched forms with remote carboxylic groups. At the same time, the noticeable difference in the distances between their C atoms [C8—C8(–x + 2, –y + 1, –z + 1) of 14.241 (6) Å and C12—C16 of 15.29 (1) Å in I and II, respectively] is caused by different conformations of the trimethylene fragments of the substituents. The methylene groups bound to the distal nitrogen atoms in the six-membered chelate rings are axially oriented. Therewith, the sum of the C—N—C angles around these atoms [345.0° for N2 in I and 347.8 and 351.2° for N2 and N5 in II, respectively] indicates their partial sp2 character (Tsymbal et al., 2019
). The C—O bond lengths in the protonated carboxylic group in I differs significantly [1.319 (4) and 1.204 (3) Å for the C—OH and C=O bond, respectively], while in II they are nearly identical (ca 1.24 Å), thus indicating the lack of electron delocalization in the former and its occurrence in the latter case.
The azamacrocyclic ligands in the complexes under consideration are coordinated to the CuII ions by four secondary amine N atoms in a planar fashion forming the equatorial planes in the coordination spheres of the metal ions. The axial positions are occupied by the two chloride anions (in I) or by the O atom from the water molecule and chloride anion belonging to another molecule (in II). Because of a large Jahn–Teller distortion inherent in the 3d9 of CuII, the equatorial Cu—N bonds are significantly shorter than the axial Cu—Cl and Cu—O ones (Tables 1 and 2
), therefore the coordination polyhedra can be described as tetragonally elongated trans-CuN4(Cl)2 or trans-CuN4(O)(Cl) octahedrons in I and II, respectively. The length of the Cu—Cl bond in I is close to those observed in other CuII–chloride complexes of diazacyclam ligands (see Database survey). At the same time, the distance Cu1—Cl1(−x + 1, −y, −z + 1) [3.048 (2) Å] in II is significantly longer. Nevertheless, it is shorter than the sum of van der Waals radii of these atoms (3.15 Å) thus allowing to consider this Cu—Cl contact as a week coordinative [or semicoordinative (Valach, 1999
)] bond.
The CuN4 moiety in I is strictly planar because of the location of the metal ion on crystallographic inversion center, while in II the CuII ion is displaced by 0.03 Å from the nearly planar (deviations of ±0.015 Å) mean plane of the N4 donor atoms towards the O1W atom of water molecule. The axial Cu—D bonds (D = donor atom) in both compounds are nearly orthogonal to the CuN4 plane with the deviations of the angles N—Cu—D from the normal not exceeding 5°.
The II ion in II is formed by the two bidentately coordinated carboxylic groups and two chloride ions. The metal ion possesses a deformed octahedral environment with cis-situated chloride anions. The values of chelate bite angles of the four-membered chelate rings are determined by the geometrical parameters of the coordinated carboxylate groups and analogously to other CdII carboxylate complexes (see, for example, Popovych et al., 2024) are close to 53° (Table 2
). The angle between the mean planes of these chelate rings is 87.8 (2)°. The Cd—Cl bond lengths in II are very similar and are longer than the Cd—O bonds which, in turn, are significantly non-equivalent within each carboxylate group (Table 2
).
The macrocyclic dicarboxylate complex anion in II displays a bridging function between two CdII cations. Each metal ion coordinates the carboxylate groups of two different macrocyclic ligands, thus resulting in the formation of a linear (the angle Cd⋯Cd⋯Cd = 180°) coordination polymeric chain, running along the [101] direction, with the shortest intrachain CdII⋯CdII (and CuII⋯CuII) distances of 19.2082 (8) Å. The distances between hetero metal ions equal 9.296 (1) and 10.414 (1) Å for Cu1⋯Cd1 and Cu1⋯Cd1(x − 1, y, z − 1), respectively (Fig. 2).
3. Supramolecular features
The complex I is characterized by a distinct lamellar structure, which is due to hydrogen-bonding interactions (Table 3). In particular, each carboxylate group of the electro-neutral complex molecule forms a pair of hydrogen bonds to a neighboring one acting as the proton donor for the chloride ion [O1C O1—H1C⋯Cl1(x − 1, y, z − 1)] and as the proton acceptor for the secondary amino group [N1—H1⋯O2(−x + 1, −y + 1, −z)]. This results in the formation of chains running in the [101] direction, with the distance between the metal atoms in a chain equal to 11.1582 (5) Å. These chains interact with each other via the formation of a hydrogen bond between another secondary amino group of the macrocycle and a chloride anion [N3—H3⋯Cl1(x, y, z − 1)], thus leading to layers oriented parallel to the (101) plane (Fig. 3
). The shortest interchain Cu⋯Cu distance is 6.9325 (3) Å. There are no hydrogen-bonding contacts between the layers and the three-dimensional coherence of the crystal is provided by van der Waals interactions.
|
![]() | Figure 3 The hydrogen-bonded layer in I oriented parallel to the (010) plane. C-bound H atoms have been omitted. The hydrogen bonds resulting in the formation of one-dimensional chains and those joining them into a layer are shown as magenta and orange dashed lines, respectively. |
The parallel polymeric chains in the crystal of II interact with each other via the formation of semicoordinative Cu—Cl1(−x + 1, −y, −z + 1) bonds between atoms belonging to neighboring chains thus joining them into layers oriented parallel to the (10) plane (Fig. 4
). Thus, atom Cl1 in this compound displays a μ2-bridging function with a Cu⋯Cd distance and Cu—Cl—Cd angle of 4.807 (1) Å and 119.33 (6)°, respectively. The layers are further consolidated by interchain hydrogen bonds formed between coordinated water molecule O1W—H and secondary amino group N4—H as the proton donors and both O atoms of the C16/O3/O4 carboxylic group as the proton acceptors (Fig. 4
), as well as by weaker (D⋯A distances ca 3.4 Å) hydrogen bonds with participation of both chloride atoms as proton acceptors (Table 4
). The intralayer hydrogen-bonding network also includes the water molecule of crystallization O2W (because of the lower site occupancy factors of O3W–O5W molecules their participation in the hydrogen-bonding interactions is not considered). There are no significant hydrogen-bonding interactions between the layers and the three-dimensional structure of crystal II is based on the weak C—H⋯O and C—H⋯Cl contacts.
|
![]() | Figure 4 The packing in II, showing [101] polymeric chains cross-linked by Cu—Cl semicoordinative bonds (dark-green capped stick lines) to form layers oriented parallel to the (10 |
4. Database survey
The Cambridge Structural Database (CSD, version 5.46, September 2024; Groom et al., 2016) contains four structures formed by diazacyclam ligand H2L with NiII [CSD refcodes NARBAK and NARBEO (Lu et al., 2005
)] and CuII [WAMWEN and WAMWIR (Ou et al., 2005
)] ions. Besides, the structure of the CuII complex of parent monosubstituted azacyclam ligand 3-(3-carboxypropyl)-1,3,5,8,12-pentaazacyclotetradecane [NUBFOI (Tsymbal et al., 2019
)] has been also described. Among these compounds, NARBAK and WAMWEN represent trans-diaqua molecular complexes with the macrocycle L2– bearing deprotonated but uncoordinated carboxylic groups. NUBFOI and WAMWIR are one- and two-dimensional coordination polymers, respectively, which are the result of self-polymerization due to the coordination of the carboxylic groups to the metal ion of another molecules. Interestingly, in both cases the CuII ion is bound with the carbonyl O atom of a protonated carboxylate group. In NARBEO the ligand H2L is also present in protonated form and the charge of the cation is compensated by deprotonated but-2-enedioate which acts as bridge between the NiII centres thus resulting in the formation of a one-dimensional coordination polymer without involving in polymerization the carboxylic groups of the azacyclam ligand. Despite differences in the nature of the metal ions and protonation peculiarities, the macrocycles in all compounds possess very similar stretched trans-III (R,R,S,S) conformations with the distances between carboxylic groups varying between 13.6–15.0 Å, so this distance in II is the longest among all complexes studied.
There are only two examples in the CSD concerning the structure of trans-dichloride complexes of Cu(diazacyclam)2+ cations with 2-hydroxyehyl [MANKOB (Lampeka et al., 1998)] and ethyl [MEDRAP (Jiang et al., 2006
)] substituents at distal nitrogen atoms of the macrocycle. In both cases the Cu—Cl coordination bond lengths are close to that observed in I (ca 2.83 Å), regardless of whether the chloride ion demonstrates monodentate (MEDRAP) or bridging (MANKOB) function. Similar distances are also observed in CuII chloride complexes of cyclam [see, for example, FODWAZ (Samoľová et al., 2019
) and QASKUU (Heinemann et al., 2022
)], though a much shorter Cu—Cl coordination bond was also found [2.446 (4) Å in YEGMEF (Chang et al., 2017
)].
The CSD contains also six hits related to the six-coordinated CdII complexes containing two bidentately coordinated carboxylate ligands and two chloride anions. Four of them represent molecular compounds formed by substituted propionic [NASWUZ (Li & Mak, 1997); VOGKUZ (Galkina et al., 2014
); UBILOK (Yang et al., 2021
)] or benzoic [VIQLIR (Deng et al., 2007
)] acids, while two other are one-dimensional coordination polymers based on dicarboxylates [KESGEX (Liu et al., 2017
); KIRFAW (Jin et al., 2023
)]. Regardless of the structure, the geometrical parameters of the coordination polyhedra of the CdII ion in these compounds are very similar and resemble those observed in II.
5. Synthesis and crystallization
All commercially available chemicals and solvents were used in this work as purchased without further purification. The complex [Cu(H2L)]Cl2·2H2O was synthesized according to a procedure described previously (Ou et al., 2005).
The complex [Cu(H2L)Cl2] (I) in form of light-violet prisms was obtained by recrystallization of hydrated compounds (55 mg) from a methanol (10 ml) solution. Yield: 40 mg (60%). Analysis calculated for C16H34Cl2CuN6O4: C 37.76, H 6.73, N 16.51%. Found: C 37.65, H 6.82, N 16.35%.
For the preparation of the complex [CuCd(L)(H2O)Cl2]n·1.25H2O (II), a solution of 47 mg (0.2 mmol) Cd(NO3)2 in 5 ml of ethanol was mixed with 10 ml of aqueous solution containing 109 mg (0.2 mml) of Cu(H2L)Cl2·2H2O and refluxed for 2 h. After filtration, the mixture was kept in a refrigerator. A light violet precipitate formed over several days was filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 74 mg (56%). Analysis calculated for C16H36.5 CdCl2CuN6O6.25: C 29.12, H 5.58, N 12.74%. Found: C 29.01, H 5.71, N 12.65%. Single crystals of I and II suitable for X-ray were selected from the samples resulting from the syntheses.
6. Refinement
Crystal data, data collection and structure . The methylene H, secondary amine H atoms in I and II and water H atoms in II were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C), 1.2Ueq(N) and 1.5Ueq(O), respectively. The carboxylate H atoms in I were positioned geometrically and refined as riding with Uiso(H) = 1.5Ueq(O). Because of low site occupancies the water molecules of crystallization O2W–O5W in II were refined in an isotropic approximation.
|
Supporting information
https://doi.org/10.1107/S2056989025003792/hb8137sup1.cif
contains datablocks I, II. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025003792/hb8137Isup2.hkl
Structure factors: contains datablock II. DOI: https://doi.org/10.1107/S2056989025003792/hb8137IIsup3.hkl
[CuCl2(C16H34N6O4)] | F(000) = 534 |
Mr = 508.93 | Dx = 1.563 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 10.0036 (5) Å | Cell parameters from 1452 reflections |
b = 15.8231 (7) Å | θ = 2.0–24.9° |
c = 6.9325 (3) Å | µ = 1.29 mm−1 |
β = 99.808 (2)° | T = 100 K |
V = 1081.29 (9) Å3 | Prism, clear light violet |
Z = 2 | 0.12 × 0.07 × 0.06 mm |
Bruker APEXII CCD diffractometer | 1509 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.089 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | θmax = 24.8°, θmin = 2.1° |
Tmin = 0.892, Tmax = 0.920 | h = −11→11 |
5849 measured reflections | k = −18→18 |
1844 independent reflections | l = 0→8 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.029 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.067 | w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8397P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
1844 reflections | Δρmax = 0.30 e Å−3 |
136 parameters | Δρmin = −0.33 e Å−3 |
0 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 1.000000 | 0.500000 | 0.500000 | 0.01515 (14) | |
Cl1 | 1.01968 (7) | 0.39266 (4) | 0.84077 (10) | 0.01969 (18) | |
N3 | 0.9904 (2) | 0.40064 (14) | 0.3191 (3) | 0.0158 (5) | |
H3 | 0.975658 | 0.422479 | 0.181720 | 0.019* | |
O1 | 0.2900 (2) | 0.30989 (14) | −0.0055 (3) | 0.0279 (5) | |
H1C | 0.213 (3) | 0.338 (2) | −0.068 (4) | 0.042* | |
O2 | 0.3928 (2) | 0.39295 (14) | −0.1942 (3) | 0.0307 (6) | |
N1 | 0.7985 (2) | 0.51266 (14) | 0.4688 (3) | 0.0155 (5) | |
H1 | 0.768622 | 0.542496 | 0.341645 | 0.019* | |
N2 | 0.7465 (2) | 0.37665 (15) | 0.3054 (3) | 0.0176 (5) | |
C1 | 0.7212 (3) | 0.43239 (18) | 0.4585 (4) | 0.0194 (7) | |
H1A | 0.744468 | 0.402711 | 0.585529 | 0.023* | |
H1B | 0.623066 | 0.445666 | 0.438437 | 0.023* | |
C8 | 0.3969 (3) | 0.33740 (19) | −0.0747 (4) | 0.0194 (7) | |
C5 | 0.6976 (3) | 0.40643 (19) | 0.1045 (4) | 0.0195 (7) | |
H5A | 0.771170 | 0.437569 | 0.056237 | 0.023* | |
H5B | 0.620731 | 0.445800 | 0.104723 | 0.023* | |
C4 | 0.7700 (3) | 0.57019 (18) | 0.6243 (4) | 0.0183 (6) | |
H4A | 0.776660 | 0.539459 | 0.749953 | 0.022* | |
H4B | 0.677474 | 0.593952 | 0.589865 | 0.022* | |
C7 | 0.5245 (3) | 0.29165 (19) | 0.0142 (4) | 0.0211 (7) | |
H7A | 0.519929 | 0.232826 | −0.035123 | 0.025* | |
H7B | 0.529656 | 0.289377 | 0.157987 | 0.025* | |
C3 | 1.1253 (3) | 0.35995 (18) | 0.3585 (4) | 0.0175 (6) | |
H3A | 1.136479 | 0.321178 | 0.250265 | 0.021* | |
H3B | 1.135718 | 0.327019 | 0.481560 | 0.021* | |
C6 | 0.6522 (3) | 0.3330 (2) | −0.0314 (4) | 0.0227 (7) | |
H6A | 0.635330 | 0.353432 | −0.168322 | 0.027* | |
H6B | 0.725710 | 0.290396 | −0.019189 | 0.027* | |
C2 | 0.8799 (3) | 0.33948 (18) | 0.3360 (4) | 0.0176 (6) | |
H2A | 0.881701 | 0.293733 | 0.239062 | 0.021* | |
H2B | 0.897761 | 0.313604 | 0.467921 | 0.021* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0137 (2) | 0.0147 (2) | 0.0171 (3) | −0.0005 (2) | 0.0027 (2) | −0.0023 (2) |
Cl1 | 0.0213 (4) | 0.0218 (4) | 0.0161 (4) | −0.0002 (3) | 0.0034 (3) | 0.0017 (3) |
N3 | 0.0140 (12) | 0.0170 (12) | 0.0155 (12) | −0.0008 (10) | −0.0002 (10) | 0.0024 (9) |
O1 | 0.0209 (12) | 0.0300 (13) | 0.0332 (12) | −0.0003 (10) | 0.0056 (10) | 0.0070 (10) |
O2 | 0.0233 (12) | 0.0330 (13) | 0.0343 (13) | 0.0010 (10) | 0.0007 (10) | 0.0156 (11) |
N1 | 0.0180 (12) | 0.0166 (14) | 0.0122 (12) | 0.0004 (10) | 0.0034 (10) | 0.0009 (10) |
N2 | 0.0176 (13) | 0.0188 (13) | 0.0152 (13) | −0.0019 (11) | −0.0010 (10) | 0.0005 (10) |
C1 | 0.0178 (16) | 0.0219 (16) | 0.0188 (16) | −0.0027 (13) | 0.0039 (12) | 0.0016 (13) |
C8 | 0.0234 (17) | 0.0184 (16) | 0.0164 (15) | −0.0037 (13) | 0.0032 (13) | −0.0041 (13) |
C5 | 0.0157 (15) | 0.0231 (17) | 0.0185 (15) | −0.0031 (13) | −0.0005 (12) | 0.0040 (12) |
C4 | 0.0146 (15) | 0.0230 (16) | 0.0177 (16) | 0.0051 (13) | 0.0036 (12) | −0.0021 (13) |
C7 | 0.0222 (18) | 0.0207 (16) | 0.0191 (15) | −0.0012 (13) | −0.0006 (13) | 0.0000 (13) |
C3 | 0.0205 (16) | 0.0183 (16) | 0.0133 (14) | 0.0069 (12) | 0.0021 (12) | −0.0018 (12) |
C6 | 0.0213 (17) | 0.0298 (18) | 0.0165 (16) | 0.0032 (14) | 0.0019 (13) | −0.0019 (13) |
C2 | 0.0202 (16) | 0.0154 (15) | 0.0162 (15) | −0.0023 (13) | 0.0004 (12) | 0.0015 (12) |
Cu1—Cl1 | 2.8889 (7) | C1—H1B | 0.9900 |
Cu1—N3 | 2.003 (2) | C8—C7 | 1.505 (4) |
Cu1—N3i | 2.003 (2) | C5—H5A | 0.9900 |
Cu1—N1i | 2.000 (2) | C5—H5B | 0.9900 |
Cu1—N1 | 2.000 (2) | C5—C6 | 1.516 (4) |
N3—H3 | 1.0000 | C4—H4A | 0.9900 |
N3—C3 | 1.478 (4) | C4—H4B | 0.9900 |
N3—C2 | 1.489 (4) | C4—C3i | 1.513 (4) |
O1—H1C | 0.93 (4) | C7—H7A | 0.9900 |
O1—C8 | 1.319 (4) | C7—H7B | 0.9900 |
O2—C8 | 1.204 (3) | C7—C6 | 1.515 (4) |
N1—H1 | 1.0000 | C3—H3A | 0.9900 |
N1—C1 | 1.482 (4) | C3—H3B | 0.9900 |
N1—C4 | 1.475 (4) | C6—H6A | 0.9900 |
N2—C1 | 1.436 (4) | C6—H6B | 0.9900 |
N2—C5 | 1.472 (4) | C2—H2A | 0.9900 |
N2—C2 | 1.441 (4) | C2—H2B | 0.9900 |
C1—H1A | 0.9900 | ||
N3i—Cu1—Cl1 | 87.71 (7) | N2—C5—H5B | 109.4 |
N3—Cu1—Cl1 | 92.29 (6) | N2—C5—C6 | 111.0 (2) |
N3i—Cu1—N3 | 180.0 | H5A—C5—H5B | 108.0 |
N1i—Cu1—Cl1 | 85.74 (7) | C6—C5—H5A | 109.4 |
N1—Cu1—Cl1 | 94.26 (7) | C6—C5—H5B | 109.4 |
N1i—Cu1—N3i | 94.08 (9) | N1—C4—H4A | 110.3 |
N1—Cu1—N3i | 85.92 (9) | N1—C4—H4B | 110.3 |
N1i—Cu1—N3 | 85.92 (9) | N1—C4—C3i | 106.9 (2) |
N1—Cu1—N3 | 94.08 (9) | H4A—C4—H4B | 108.6 |
N1—Cu1—N1i | 180.0 | C3i—C4—H4A | 110.3 |
Cu1—N3—H3 | 108.0 | C3i—C4—H4B | 110.3 |
C3—N3—Cu1 | 106.34 (16) | C8—C7—H7A | 108.9 |
C3—N3—H3 | 108.0 | C8—C7—H7B | 108.9 |
C3—N3—C2 | 111.7 (2) | C8—C7—C6 | 113.2 (2) |
C2—N3—Cu1 | 114.69 (17) | H7A—C7—H7B | 107.8 |
C2—N3—H3 | 108.0 | C6—C7—H7A | 108.9 |
C8—O1—H1C | 109.5 | C6—C7—H7B | 108.9 |
Cu1—N1—H1 | 106.7 | N3—C3—C4i | 107.1 (2) |
C1—N1—Cu1 | 115.30 (18) | N3—C3—H3A | 110.3 |
C1—N1—H1 | 106.7 | N3—C3—H3B | 110.3 |
C4—N1—Cu1 | 107.42 (17) | C4i—C3—H3A | 110.3 |
C4—N1—H1 | 106.7 | C4i—C3—H3B | 110.3 |
C4—N1—C1 | 113.6 (2) | H3A—C3—H3B | 108.6 |
C1—N2—C5 | 115.5 (2) | C5—C6—H6A | 109.2 |
C1—N2—C2 | 114.7 (2) | C5—C6—H6B | 109.2 |
C2—N2—C5 | 114.8 (2) | C7—C6—C5 | 112.0 (2) |
N1—C1—H1A | 108.8 | C7—C6—H6A | 109.2 |
N1—C1—H1B | 108.8 | C7—C6—H6B | 109.2 |
N2—C1—N1 | 113.9 (2) | H6A—C6—H6B | 107.9 |
N2—C1—H1A | 108.8 | N3—C2—H2A | 108.8 |
N2—C1—H1B | 108.8 | N3—C2—H2B | 108.8 |
H1A—C1—H1B | 107.7 | N2—C2—N3 | 113.9 (2) |
O1—C8—C7 | 112.1 (3) | N2—C2—H2A | 108.8 |
O2—C8—O1 | 123.8 (3) | N2—C2—H2B | 108.8 |
O2—C8—C7 | 124.1 (3) | H2A—C2—H2B | 107.7 |
N2—C5—H5A | 109.4 | ||
Cu1—N3—C3—C4i | −43.6 (2) | C1—N2—C2—N3 | −70.1 (3) |
Cu1—N3—C2—N2 | 57.0 (3) | C8—C7—C6—C5 | 82.0 (3) |
Cu1—N1—C1—N2 | −56.5 (3) | C5—N2—C1—N1 | −67.4 (3) |
Cu1—N1—C4—C3i | 40.6 (2) | C5—N2—C2—N3 | 67.2 (3) |
O1—C8—C7—C6 | −168.6 (2) | C4—N1—C1—N2 | 179.0 (2) |
O2—C8—C7—C6 | 11.0 (4) | C3—N3—C2—N2 | 178.0 (2) |
N2—C5—C6—C7 | 68.7 (3) | C2—N3—C3—C4i | −169.4 (2) |
C1—N1—C4—C3i | 169.3 (2) | C2—N2—C1—N1 | 69.6 (3) |
C1—N2—C5—C6 | −146.7 (3) | C2—N2—C5—C6 | 76.4 (3) |
Symmetry code: (i) −x+2, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2ii | 1.00 | 2.03 | 2.877 (3) | 141 |
O1—H1C···Cl1iii | 0.93 (3) | 2.12 (3) | 3.030 (2) | 168 (3) |
N3—H3···Cl1iv | 1.00 | 2.52 | 3.381 (2) | 144 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) x−1, y, z−1; (iv) x, y, z−1. |
[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O | Z = 2 |
Mr = 659.85 | F(000) = 671 |
Triclinic, P1 | Dx = 1.602 Mg m−3 |
a = 10.1565 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.4249 (5) Å | Cell parameters from 2340 reflections |
c = 14.6531 (7) Å | θ = 2.5–25.1° |
α = 80.305 (3)° | µ = 1.79 mm−1 |
β = 80.117 (3)° | T = 273 K |
γ = 64.149 (3)° | Prism, clear light violet |
V = 1367.82 (11) Å3 | 0.15 × 0.05 × 0.05 mm |
Bruker APEXII CCD diffractometer | 3446 reflections with I > 2σ(I) |
φ and ω scans | Rint = 0.040 |
Absorption correction: multi-scan (CrysAlis PRO; Rigaku OD, 2022) | θmax = 25.0°, θmin = 2.5° |
Tmin = 0.895, Tmax = 0.910 | h = −11→12 |
12964 measured reflections | k = −12→12 |
4762 independent reflections | l = −15→17 |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Hydrogen site location: mixed |
R[F2 > 2σ(F2)] = 0.050 | H-atom parameters constrained |
wR(F2) = 0.149 | w = 1/[σ2(Fo2) + (0.0757P)2 + 2.6254P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4762 reflections | Δρmax = 1.31 e Å−3 |
297 parameters | Δρmin = −0.69 e Å−3 |
3 restraints |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.59670 (6) | 0.26853 (5) | 0.76221 (3) | 0.04306 (19) | |
Cu1 | 0.33040 (8) | 0.22435 (8) | 0.19607 (5) | 0.0368 (2) | |
Cl1 | 0.51803 (19) | 0.08287 (18) | 0.85462 (13) | 0.0485 (4) | |
Cl2 | 0.3795 (2) | 0.5038 (2) | 0.78750 (15) | 0.0630 (5) | |
O3 | −0.2427 (5) | 0.2757 (5) | −0.1510 (4) | 0.0526 (13) | |
N4 | 0.1402 (5) | 0.2125 (6) | 0.1942 (4) | 0.0387 (13) | |
H4 | 0.163812 | 0.116420 | 0.178712 | 0.046* | |
O1 | 0.6079 (6) | 0.2308 (6) | 0.6120 (3) | 0.0617 (14) | |
N1 | 0.5280 (6) | 0.2264 (6) | 0.1986 (4) | 0.0391 (13) | |
H1 | 0.509753 | 0.317288 | 0.220179 | 0.047* | |
O4 | −0.1352 (6) | 0.0727 (6) | −0.2134 (4) | 0.0642 (15) | |
N6 | 0.3616 (5) | 0.2651 (5) | 0.0573 (4) | 0.0365 (12) | |
H6 | 0.402797 | 0.173055 | 0.031144 | 0.044* | |
N3 | 0.3019 (6) | 0.1802 (6) | 0.3358 (4) | 0.0389 (12) | |
H3 | 0.268598 | 0.269992 | 0.363502 | 0.047* | |
O1W | 0.2008 (7) | 0.4777 (6) | 0.2217 (4) | 0.0706 (16) | |
H1WA | 0.209328 | 0.487228 | 0.276563 | 0.106* | |
H1WB | 0.244848 | 0.523768 | 0.186423 | 0.106* | |
N2 | 0.5593 (6) | 0.1102 (6) | 0.3580 (4) | 0.0433 (14) | |
N5 | 0.1150 (6) | 0.3123 (6) | 0.0317 (4) | 0.0455 (14) | |
O2 | 0.7049 (7) | 0.3750 (7) | 0.6212 (4) | 0.0745 (17) | |
C16 | −0.1341 (8) | 0.1573 (8) | −0.1647 (5) | 0.0432 (16) | |
C12 | 0.6701 (8) | 0.3075 (8) | 0.5748 (5) | 0.0492 (18) | |
C8 | 0.5961 (7) | 0.2262 (8) | 0.1016 (5) | 0.0489 (18) | |
H8A | 0.642826 | 0.129227 | 0.084057 | 0.059* | |
H8B | 0.670876 | 0.262438 | 0.095161 | 0.059* | |
C9 | 0.5517 (7) | 0.2254 (8) | 0.4074 (5) | 0.0446 (16) | |
H9A | 0.496317 | 0.223751 | 0.468128 | 0.053* | |
H9B | 0.499763 | 0.317219 | 0.372695 | 0.053* | |
C6 | 0.2278 (7) | 0.3611 (7) | 0.0110 (5) | 0.0445 (16) | |
H6A | 0.190725 | 0.456242 | 0.030616 | 0.053* | |
H6B | 0.254370 | 0.368360 | −0.055885 | 0.053* | |
C2 | 0.4356 (8) | 0.0744 (8) | 0.3782 (5) | 0.0491 (18) | |
H2A | 0.411541 | 0.064332 | 0.445198 | 0.059* | |
H2B | 0.463691 | −0.017891 | 0.356448 | 0.059* | |
C1 | 0.6218 (7) | 0.1091 (8) | 0.2624 (5) | 0.0473 (18) | |
H1A | 0.641518 | 0.018262 | 0.241569 | 0.057* | |
H1B | 0.715277 | 0.115140 | 0.258505 | 0.057* | |
C7 | 0.4782 (8) | 0.3202 (8) | 0.0389 (5) | 0.0483 (17) | |
H7A | 0.437003 | 0.419018 | 0.052579 | 0.058* | |
H7B | 0.519349 | 0.315835 | −0.025881 | 0.058* | |
C5 | 0.0440 (7) | 0.3178 (8) | 0.1249 (5) | 0.0469 (17) | |
H5A | −0.042463 | 0.299751 | 0.126945 | 0.056* | |
H5B | 0.011290 | 0.413532 | 0.142412 | 0.056* | |
C4 | 0.0662 (7) | 0.2235 (9) | 0.2911 (5) | 0.0499 (18) | |
H4A | −0.009896 | 0.188734 | 0.299020 | 0.060* | |
H4B | 0.020861 | 0.322564 | 0.304598 | 0.060* | |
C13 | 0.1324 (8) | 0.1938 (8) | −0.0182 (5) | 0.0501 (18) | |
H13A | 0.156987 | 0.106670 | 0.024350 | 0.060* | |
H13B | 0.212635 | 0.178056 | −0.067872 | 0.060* | |
C3 | 0.1813 (8) | 0.1339 (8) | 0.3557 (5) | 0.0499 (18) | |
H3A | 0.138471 | 0.145448 | 0.419911 | 0.060* | |
H3B | 0.218770 | 0.033436 | 0.346619 | 0.060* | |
C14 | −0.0074 (8) | 0.2270 (8) | −0.0587 (6) | 0.056 (2) | |
H14A | −0.083924 | 0.232508 | −0.007732 | 0.067* | |
H14B | −0.037838 | 0.320795 | −0.094049 | 0.067* | |
C15 | 0.0027 (8) | 0.1229 (8) | −0.1198 (6) | 0.0536 (19) | |
H15A | 0.028909 | 0.030147 | −0.083454 | 0.064* | |
H15B | 0.082553 | 0.114088 | −0.168889 | 0.064* | |
C10 | 0.7015 (8) | 0.2104 (10) | 0.4194 (5) | 0.059 (2) | |
H10A | 0.756318 | 0.210913 | 0.358318 | 0.070* | |
H10B | 0.752778 | 0.117877 | 0.453587 | 0.070* | |
C11 | 0.7026 (10) | 0.3245 (11) | 0.4692 (5) | 0.068 (2) | |
H11A | 0.630509 | 0.416470 | 0.445325 | 0.081* | |
H11B | 0.798489 | 0.326495 | 0.453979 | 0.081* | |
O5W | −0.129 (3) | 0.756 (3) | 0.3727 (17) | 0.075 (7)* | 0.25 |
H5WA | −0.133178 | 0.717443 | 0.327227 | 0.113* | 0.25 |
H5WB | −0.043408 | 0.754503 | 0.363557 | 0.113* | 0.25 |
O4W | −0.215 (3) | 0.686 (3) | 0.3405 (19) | 0.085 (7)* | 0.25 |
H4WA | −0.178747 | 0.593968 | 0.349859 | 0.127* | 0.25 |
H4WB | −0.210637 | 0.725748 | 0.386049 | 0.127* | 0.25 |
O2W | 0.1567 (12) | 0.4480 (13) | 0.4332 (8) | 0.074 (3)* | 0.5 |
H2WA | 0.212914 | 0.489423 | 0.431887 | 0.111* | 0.5 |
H2WB | 0.144304 | 0.419643 | 0.491597 | 0.111* | 0.5 |
O3W | −0.142 (3) | 0.610 (3) | 0.2733 (19) | 0.088 (8)* | 0.25 |
H3WA | −0.167073 | 0.670086 | 0.312565 | 0.132* | 0.25 |
H3WB | −0.167283 | 0.544546 | 0.302075 | 0.132* | 0.25 |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0545 (3) | 0.0486 (3) | 0.0367 (3) | −0.0289 (3) | −0.0119 (2) | −0.0047 (2) |
Cu1 | 0.0379 (4) | 0.0442 (5) | 0.0340 (5) | −0.0223 (4) | −0.0087 (3) | 0.0006 (4) |
Cl1 | 0.0588 (10) | 0.0398 (9) | 0.0498 (11) | −0.0251 (8) | −0.0014 (8) | −0.0045 (8) |
Cl2 | 0.0705 (13) | 0.0480 (11) | 0.0641 (13) | −0.0222 (10) | −0.0027 (10) | −0.0014 (10) |
O3 | 0.053 (3) | 0.054 (3) | 0.060 (3) | −0.027 (3) | −0.022 (2) | −0.003 (3) |
N4 | 0.034 (3) | 0.040 (3) | 0.045 (3) | −0.016 (2) | −0.003 (2) | −0.011 (3) |
O1 | 0.093 (4) | 0.072 (4) | 0.040 (3) | −0.054 (3) | −0.009 (3) | −0.004 (3) |
N1 | 0.042 (3) | 0.049 (3) | 0.038 (3) | −0.029 (3) | −0.004 (2) | −0.006 (3) |
O4 | 0.076 (4) | 0.062 (3) | 0.075 (4) | −0.040 (3) | −0.017 (3) | −0.017 (3) |
N6 | 0.044 (3) | 0.033 (3) | 0.038 (3) | −0.019 (2) | −0.011 (2) | −0.003 (2) |
N3 | 0.046 (3) | 0.046 (3) | 0.032 (3) | −0.025 (3) | −0.008 (2) | −0.002 (2) |
O1W | 0.100 (4) | 0.047 (3) | 0.067 (4) | −0.032 (3) | −0.015 (3) | −0.004 (3) |
N2 | 0.046 (3) | 0.052 (3) | 0.038 (3) | −0.024 (3) | −0.014 (3) | −0.003 (3) |
N5 | 0.047 (3) | 0.044 (3) | 0.047 (4) | −0.015 (3) | −0.015 (3) | −0.008 (3) |
O2 | 0.098 (4) | 0.096 (5) | 0.056 (4) | −0.061 (4) | −0.003 (3) | −0.025 (3) |
C16 | 0.050 (4) | 0.042 (4) | 0.042 (4) | −0.023 (4) | −0.011 (3) | −0.001 (3) |
C12 | 0.057 (4) | 0.050 (4) | 0.047 (4) | −0.025 (4) | −0.010 (4) | −0.012 (4) |
C8 | 0.044 (4) | 0.064 (5) | 0.049 (4) | −0.031 (4) | −0.001 (3) | −0.013 (4) |
C9 | 0.052 (4) | 0.052 (4) | 0.038 (4) | −0.026 (3) | −0.008 (3) | −0.008 (3) |
C6 | 0.053 (4) | 0.038 (4) | 0.045 (4) | −0.019 (3) | −0.016 (3) | −0.001 (3) |
C2 | 0.063 (5) | 0.051 (4) | 0.047 (4) | −0.034 (4) | −0.023 (4) | 0.003 (3) |
C1 | 0.043 (4) | 0.054 (4) | 0.049 (4) | −0.018 (3) | −0.016 (3) | −0.013 (4) |
C7 | 0.062 (4) | 0.059 (5) | 0.040 (4) | −0.040 (4) | 0.003 (3) | −0.010 (3) |
C5 | 0.043 (4) | 0.050 (4) | 0.049 (4) | −0.015 (3) | −0.012 (3) | −0.012 (3) |
C4 | 0.044 (4) | 0.065 (5) | 0.045 (4) | −0.026 (4) | 0.002 (3) | −0.016 (4) |
C13 | 0.045 (4) | 0.050 (4) | 0.050 (4) | −0.011 (3) | −0.017 (3) | −0.007 (4) |
C3 | 0.058 (4) | 0.065 (5) | 0.038 (4) | −0.039 (4) | 0.003 (3) | −0.005 (4) |
C14 | 0.050 (4) | 0.054 (5) | 0.070 (5) | −0.018 (4) | −0.022 (4) | −0.017 (4) |
C15 | 0.053 (4) | 0.051 (4) | 0.060 (5) | −0.021 (4) | −0.015 (4) | −0.009 (4) |
C10 | 0.063 (5) | 0.089 (6) | 0.043 (4) | −0.048 (5) | −0.001 (4) | −0.021 (4) |
C11 | 0.093 (6) | 0.106 (7) | 0.038 (4) | −0.073 (6) | −0.002 (4) | −0.014 (4) |
Cd1—Cl1 | 2.5125 (18) | C8—C7 | 1.513 (10) |
Cd1—Cl2 | 2.515 (2) | C9—H9A | 0.9700 |
Cd1—O3i | 2.266 (4) | C9—H9B | 0.9700 |
Cd1—O1 | 2.275 (5) | C9—C10 | 1.498 (9) |
Cd1—O4i | 2.637 (6) | C6—H6A | 0.9700 |
Cd1—O2 | 2.494 (6) | C6—H6B | 0.9700 |
Cu1—N4 | 1.993 (5) | C2—H2A | 0.9700 |
Cu1—N1 | 2.023 (5) | C2—H2B | 0.9700 |
Cu1—N6 | 2.006 (5) | C1—H1A | 0.9700 |
Cu1—N3 | 2.020 (5) | C1—H1B | 0.9700 |
Cu1—O1W | 2.446 (5) | C7—H7A | 0.9700 |
Cu1—Cl1ii | 3.048 (2) | C7—H7B | 0.9700 |
O3—C16 | 1.265 (8) | C5—H5A | 0.9700 |
N4—H4 | 0.9800 | C5—H5B | 0.9700 |
N4—C5 | 1.491 (8) | C4—H4A | 0.9700 |
N4—C4 | 1.486 (8) | C4—H4B | 0.9700 |
O1—C12 | 1.229 (9) | C4—C3 | 1.505 (10) |
N1—H1 | 0.9800 | C13—H13A | 0.9700 |
N1—C8 | 1.470 (8) | C13—H13B | 0.9700 |
N1—C1 | 1.478 (8) | C13—C14 | 1.510 (9) |
O4—C16 | 1.230 (8) | C3—H3A | 0.9700 |
N6—H6 | 0.9800 | C3—H3B | 0.9700 |
N6—C6 | 1.487 (8) | C14—H14A | 0.9700 |
N6—C7 | 1.495 (8) | C14—H14B | 0.9700 |
N3—H3 | 0.9800 | C14—C15 | 1.479 (10) |
N3—C2 | 1.483 (8) | C15—H15A | 0.9700 |
N3—C3 | 1.471 (8) | C15—H15B | 0.9700 |
O1W—H1WA | 0.8500 | C10—H10A | 0.9700 |
O1W—H1WB | 0.8500 | C10—H10B | 0.9700 |
N2—C9 | 1.471 (8) | C10—C11 | 1.501 (10) |
N2—C2 | 1.432 (8) | C11—H11A | 0.9700 |
N2—C1 | 1.435 (9) | C11—H11B | 0.9700 |
N5—C6 | 1.416 (9) | O5W—H5WA | 0.8500 |
N5—C5 | 1.428 (9) | O5W—H5WB | 0.8500 |
N5—C13 | 1.470 (9) | O4W—H4WA | 0.8604 |
O2—C12 | 1.242 (8) | O4W—H4WB | 0.8605 |
C16—C15 | 1.513 (9) | O2W—H2WA | 0.8498 |
C12—C11 | 1.522 (10) | O2W—H2WB | 0.8632 |
C8—H8A | 0.9700 | O3W—H3WA | 0.8501 |
C8—H8B | 0.9700 | O3W—H3WB | 0.8501 |
Cl1—Cd1—Cl2 | 104.67 (7) | C10—C9—H9A | 109.2 |
Cl1—Cd1—O4i | 84.16 (13) | C10—C9—H9B | 109.2 |
Cl2—Cd1—O4i | 153.76 (12) | N6—C6—H6A | 109.0 |
O3i—Cd1—Cl1 | 103.44 (14) | N6—C6—H6B | 109.0 |
O3i—Cd1—Cl2 | 101.32 (14) | N5—C6—N6 | 112.8 (5) |
O3i—Cd1—O1 | 134.6 (2) | N5—C6—H6A | 109.0 |
O3i—Cd1—O4i | 52.44 (17) | N5—C6—H6B | 109.0 |
O3i—Cd1—O2 | 90.52 (19) | H6A—C6—H6B | 107.8 |
O1—Cd1—Cl1 | 103.28 (14) | N3—C2—H2A | 108.6 |
O1—Cd1—Cl2 | 106.49 (16) | N3—C2—H2B | 108.6 |
O1—Cd1—O4i | 95.06 (19) | N2—C2—N3 | 114.7 (6) |
O1—Cd1—O2 | 53.54 (19) | N2—C2—H2A | 108.6 |
O2—Cd1—Cl1 | 154.86 (14) | N2—C2—H2B | 108.6 |
O2—Cd1—Cl2 | 92.68 (16) | H2A—C2—H2B | 107.6 |
O2—Cd1—O4i | 88.2 (2) | N1—C1—H1A | 108.7 |
N4—Cu1—N1 | 177.4 (2) | N1—C1—H1B | 108.7 |
N4—Cu1—N6 | 93.9 (2) | N2—C1—N1 | 114.4 (5) |
N4—Cu1—N3 | 86.5 (2) | N2—C1—H1A | 108.7 |
N4—Cu1—O1W | 91.0 (2) | N2—C1—H1B | 108.7 |
N1—Cu1—O1W | 91.6 (2) | H1A—C1—H1B | 107.6 |
N6—Cu1—N1 | 86.6 (2) | N6—C7—C8 | 107.2 (6) |
N6—Cu1—N3 | 179.1 (2) | N6—C7—H7A | 110.3 |
N6—Cu1—O1W | 93.9 (2) | N6—C7—H7B | 110.3 |
N3—Cu1—N1 | 93.0 (2) | C8—C7—H7A | 110.3 |
N3—Cu1—O1W | 86.9 (2) | C8—C7—H7B | 110.3 |
C16—O3—Cd1iii | 100.6 (4) | H7A—C7—H7B | 108.5 |
Cu1—N4—H4 | 107.3 | N4—C5—H5A | 108.9 |
C5—N4—Cu1 | 115.2 (4) | N4—C5—H5B | 108.9 |
C5—N4—H4 | 107.3 | N5—C5—N4 | 113.5 (5) |
C4—N4—Cu1 | 106.6 (4) | N5—C5—H5A | 108.9 |
C4—N4—H4 | 107.3 | N5—C5—H5B | 108.9 |
C4—N4—C5 | 112.7 (5) | H5A—C5—H5B | 107.7 |
C12—O1—Cd1 | 97.8 (4) | N4—C4—H4A | 110.2 |
Cu1—N1—H1 | 107.7 | N4—C4—H4B | 110.2 |
C8—N1—Cu1 | 106.7 (4) | N4—C4—C3 | 107.7 (5) |
C8—N1—H1 | 107.7 | H4A—C4—H4B | 108.5 |
C8—N1—C1 | 113.5 (5) | C3—C4—H4A | 110.2 |
C1—N1—Cu1 | 113.3 (4) | C3—C4—H4B | 110.2 |
C1—N1—H1 | 107.7 | N5—C13—H13A | 109.5 |
C16—O4—Cd1iii | 84.1 (4) | N5—C13—H13B | 109.5 |
Cu1—N6—H6 | 107.3 | N5—C13—C14 | 110.8 (6) |
C6—N6—Cu1 | 116.0 (4) | H13A—C13—H13B | 108.1 |
C6—N6—H6 | 107.3 | C14—C13—H13A | 109.5 |
C6—N6—C7 | 112.8 (5) | C14—C13—H13B | 109.5 |
C7—N6—Cu1 | 105.9 (4) | N3—C3—C4 | 108.8 (6) |
C7—N6—H6 | 107.3 | N3—C3—H3A | 109.9 |
Cu1—N3—H3 | 107.7 | N3—C3—H3B | 109.9 |
C2—N3—Cu1 | 115.1 (4) | C4—C3—H3A | 109.9 |
C2—N3—H3 | 107.7 | C4—C3—H3B | 109.9 |
C3—N3—Cu1 | 106.6 (4) | H3A—C3—H3B | 108.3 |
C3—N3—H3 | 107.7 | C13—C14—H14A | 108.4 |
C3—N3—C2 | 111.9 (5) | C13—C14—H14B | 108.4 |
Cu1—O1W—H1WA | 109.1 | H14A—C14—H14B | 107.5 |
Cu1—O1W—H1WB | 108.8 | C15—C14—C13 | 115.5 (6) |
H1WA—O1W—H1WB | 104.5 | C15—C14—H14A | 108.4 |
C2—N2—C9 | 116.2 (6) | C15—C14—H14B | 108.4 |
C2—N2—C1 | 115.4 (5) | C16—C15—H15A | 108.2 |
C1—N2—C9 | 116.2 (6) | C16—C15—H15B | 108.2 |
C6—N5—C5 | 117.2 (5) | C14—C15—C16 | 116.5 (6) |
C6—N5—C13 | 116.7 (6) | C14—C15—H15A | 108.2 |
C5—N5—C13 | 117.3 (6) | C14—C15—H15B | 108.2 |
C12—O2—Cd1 | 87.1 (5) | H15A—C15—H15B | 107.3 |
O3—C16—C15 | 117.2 (6) | C9—C10—H10A | 108.5 |
O4—C16—O3 | 122.9 (6) | C9—C10—H10B | 108.5 |
O4—C16—C15 | 119.9 (7) | C9—C10—C11 | 115.1 (7) |
O1—C12—O2 | 121.5 (7) | H10A—C10—H10B | 107.5 |
O1—C12—C11 | 119.9 (6) | C11—C10—H10A | 108.5 |
O2—C12—C11 | 118.5 (7) | C11—C10—H10B | 108.5 |
N1—C8—H8A | 109.9 | C12—C11—H11A | 108.3 |
N1—C8—H8B | 109.9 | C12—C11—H11B | 108.3 |
N1—C8—C7 | 108.9 (6) | C10—C11—C12 | 115.8 (7) |
H8A—C8—H8B | 108.3 | C10—C11—H11A | 108.3 |
C7—C8—H8A | 109.9 | C10—C11—H11B | 108.3 |
C7—C8—H8B | 109.9 | H11A—C11—H11B | 107.4 |
N2—C9—H9A | 109.2 | H5WA—O5W—H5WB | 104.5 |
N2—C9—H9B | 109.2 | H4WA—O4W—H4WB | 113.5 |
N2—C9—C10 | 112.0 (6) | H2WA—O2W—H2WB | 103.1 |
H9A—C9—H9B | 107.9 | H3WA—O3W—H3WB | 104.5 |
Cd1iii—O3—C16—O4 | −0.8 (8) | O2—C12—C11—C10 | 162.1 (7) |
Cd1iii—O3—C16—C15 | 177.9 (5) | C8—N1—C1—N2 | 178.0 (5) |
Cd1—O1—C12—O2 | 0.0 (8) | C9—N2—C2—N3 | 74.3 (7) |
Cd1—O1—C12—C11 | −178.5 (6) | C9—N2—C1—N1 | −71.1 (7) |
Cd1iii—O4—C16—O3 | 0.7 (7) | C9—C10—C11—C12 | 78.6 (10) |
Cd1iii—O4—C16—C15 | −177.9 (7) | C6—N6—C7—C8 | 171.2 (5) |
Cd1—O2—C12—O1 | 0.0 (8) | C6—N5—C5—N4 | −69.7 (8) |
Cd1—O2—C12—C11 | 178.5 (7) | C6—N5—C13—C14 | −131.6 (7) |
Cu1—N4—C5—N5 | 55.3 (7) | C2—N3—C3—C4 | −165.0 (6) |
Cu1—N4—C4—C3 | −41.9 (6) | C2—N2—C9—C10 | 152.8 (6) |
Cu1—N1—C8—C7 | 38.4 (6) | C2—N2—C1—N1 | 69.9 (8) |
Cu1—N1—C1—N2 | −60.1 (6) | C1—N1—C8—C7 | 163.9 (5) |
Cu1—N6—C6—N5 | −55.0 (6) | C1—N2—C9—C10 | −66.4 (8) |
Cu1—N6—C7—C8 | 43.3 (6) | C1—N2—C2—N3 | −66.8 (8) |
Cu1—N3—C2—N2 | 55.6 (7) | C7—N6—C6—N5 | −177.3 (5) |
Cu1—N3—C3—C4 | −38.4 (6) | C5—N4—C4—C3 | −169.2 (6) |
O3—C16—C15—C14 | 4.1 (11) | C5—N5—C6—N6 | 69.0 (8) |
N4—C4—C3—N3 | 54.4 (7) | C5—N5—C13—C14 | 81.8 (8) |
O1—C12—C11—C10 | −19.3 (12) | C4—N4—C5—N5 | 177.9 (6) |
N1—C8—C7—N6 | −55.6 (7) | C13—N5—C6—N6 | −77.7 (7) |
O4—C16—C15—C14 | −177.2 (7) | C13—N5—C5—N4 | 76.8 (7) |
N2—C9—C10—C11 | 179.9 (6) | C13—C14—C15—C16 | −177.4 (7) |
N5—C13—C14—C15 | 173.1 (7) | C3—N3—C2—N2 | 177.4 (6) |
Symmetry codes: (i) x+1, y, z+1; (ii) −x+1, −y, −z+1; (iii) x−1, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O3iv | 0.85 | 2.06 | 2.787 (7) | 143 |
N4—H4···O4v | 0.98 | 2.08 | 2.961 (8) | 148 |
N1—H1···Cl2vi | 0.98 | 2.54 | 3.377 (5) | 143 |
N6—H6···Cl1ii | 0.98 | 2.77 | 3.379 (5) | 121 |
N3—H3···O2W | 0.98 | 2.04 | 3.006 (13) | 167 |
O1W—H1WA···O2W | 0.85 | 2.28 | 3.037 (14) | 149 |
O2W—H2WA···O2vi | 0.85 | 1.93 | 2.721 (14) | 154 |
Symmetry codes: (ii) −x+1, −y, −z+1; (iv) −x, −y+1, −z; (v) −x, −y, −z; (vi) −x+1, −y+1, −z+1. |
References
Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202. CSD CrossRef CAS Web of Science Google Scholar
Chang, K.-X., Zhang, N., Du, P., Liu, Y.-Y. & Ma, J.-F. (2017). Polyhedron 138, 287–294. CrossRef CAS Google Scholar
Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 20, 63–127. CAS Google Scholar
Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m2834. CrossRef IUCr Journals Google Scholar
Galkina, I., Tufatullin, A., Krivolapov, D., Bakhtiyarova, Y., Chubukaeva, D., Stakheev, V., Galkin, V., Cherkasov, R., Büchner, B. & Kataeva, O. (2014). CrystEngComm 16, 9010–9024. CrossRef CAS Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Heinemann, F. W., Schickaneder, C. & Alsfasser, R. (2022). CSD Communication (refcode QASKUU). CCDC, Cambridge, England. Google Scholar
Jiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.) 22, 389. Google Scholar
Jin, Y., Chu, J., Mao, Y., Ma, X., Zhu, B., Zhao, Y., Xing, L., Zuo, M. & Cui, S. (2023). Inorg. Chem. Commun. 153, 110831. CrossRef Google Scholar
Lampeka, Ya. D., Maloshtan, I. M., Lightfoot, Ph. & Hay, R. W. (1998). Theor. Exp. Chem. 34, 327–331. CrossRef CAS Google Scholar
Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371. CrossRef CAS Google Scholar
Li, S.-L. & Mak, T. C. W. (1997). Inorg. Chim. Acta 258, 11–24. CrossRef CAS Google Scholar
Liu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm 4, 64–67. CrossRef Google Scholar
Liu, J.-J., Xia, S.-B., Teng, L., He, C.-X., Cheng, F.-X. & Huang, C.-C. (2017). Z. Anorg. Allg. Chem. 643, 1766–1770. CrossRef CAS Google Scholar
Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta 358, 3241–3245. CrossRef CAS Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421–424. Web of Science CSD CrossRef CAS Google Scholar
Popovych, A. M., Tsymbal, L. V., Khomenko, D. M., Bargan, A., Lampeka, Y. D. & Lampeka, R. D. (2024). Acta Cryst. E80, 128–132. CrossRef IUCr Journals Google Scholar
Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496. Web of Science CrossRef CAS Google Scholar
Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Samoľová, E., Kuchár, J., Grzimek, V., Kliuikov, A. & Čižmár, E. (2019). Polyhedron 170, 51–59. Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Stackhouse, C. A. & Ma, S. (2018). Polyhedron 145, 154–165. CrossRef CAS Google Scholar
Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press. Google Scholar
Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509–5514. CSD CrossRef CAS Web of Science Google Scholar
Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1700–1704. CrossRef IUCr Journals Google Scholar
Valach, F. (1999). Polyhedron 18, 699–706. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, F., Wang, Z., Liu, P., Guo, L. & Xian, D. (2021). Z. Kristallogr. New Cryst. Struct. 236, 1109–1111. CrossRef CAS Google Scholar
Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka. Google Scholar
Yoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850. Web of Science CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.