research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structural characterization of the dichloride complex formed by carb­­oxy-functionalized Cu(di­aza­cyclam)2+ cation and its heterometallic coordination polymer with CdCl2

crossmark logo

aL. V. Pisarzhevskii Institute of Physical Chemistry of the National Academy of Sciences of Ukraine, Prospekt Nauki 31, 03028, Kyiv, Ukraine, and b"Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda 41A, RO 700487, Iasi, Romania
*Correspondence e-mail: lampeka@adamant.net

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 24 April 2025; accepted 27 April 2025; online 2 May 2025)

The asymmetric unit of the complex [3,10-bis­(3-carb­oxy­prop­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]di­chlorido­copper(II), [CuCl2(C16H34N6O4)] or [Cu(H2L)Cl2] (I), consists of a centrosymmetric macrocyclic CuII dication and a chloride anion. The components of the heterometallic compound poly[[aqua­[μ3-3,10-bis­(3-carb­oxy­prop­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­dec­ane-κ4N1,N5,N8,N12:κ2O,O′:κ2O′′,O′′′]-μ-chlorido-­copper(II)cadmium(II] 1.25-hydrate], {[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O}n or {[CuCd(L)(H2O)Cl2]·1.25H2O}n (II) are [Cu(L)(H2O)] moieties coordinated to CdCl2 units via the deprotonated carb­oxy­lic groups of the macrocycle, and four water mol­ecules of crystallization with partial occupancies. In each compound, the CuII ion coord­inates in the equatorial plane by the four secondary N atoms of the macrocyclic ligand, which adopts the most energetically stable trans-III conformation, and two mutually trans axial ligands in tetra­gonally elongated trans-CuN4Cl2 and trans-CuN4(H2O)Cl octa­hedral geometries in I and II, respectively. The coordination environment of the CdII ion in II is a CdO4Cl2 distorted octa­hedron formed by two bidentately coordinated deprotonated carb­oxy­lic groups of different macrocycles and two chloride anions, one of which displays a μ2-bridging function between the CuII and CdII ions. The extended structures of both complexes are distinctly lamellar. In particular, due to hydrogen–bonding inter­actions with participation of carb­oxy­lic groups, chloride atoms and secondary amino groups of the macrocycle, the electro-neutral mol­ecules in crystal of I are arranged in chains running in the [101] direction; hydrogen bonding between the chains leads to layers parallel to the (101) plane. In crystal of II, polymeric chains running along the [101] direction are joined into layers parallel to the (101) plane via formation of Cu—Cl bonds and inter­chain hydrogen bonds. There are no hydrogen-bonding inter­actions between the layers and the three-dimensional structure of II is based on the weak C—H⋯O and C—H⋯Cl contacts.

1. Chemical context

Owing to exceptionally high thermodynamic stability and kinetic inertness (Yatsimirskii & Lampeka, 1985[Yatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka.]), first row transition-metal complexes of the tetra­dentate 14-membered aza­macrocyclic ligand 1,4,8,11-tetra­aza­cyclo­tetra­decane (cyclam) and its N3,N10-disubstituted structural analogue 1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (di­aza­cyclam) are common metal-containing nodes for the design of metal–organic frameworks (MOFs), demonstrating many promising applications (Lampeka & Tsymbal, 2004[Lampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345-371.]; Suh & Moon, 2007[Suh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39-79. San Diego: Academic Press.]; Stackhouse & Ma, 2018[Stackhouse, C. A. & Ma, S. (2018). Polyhedron 145, 154-165.]). The NiII and CuII complexes of di­aza­cyclam are readily obtainable via template Mannich condensation of bis­(ethyl­enedi­amine) complexes of these cations with formaldehyde and primary amines (Costisor & Linert, 2000[Costisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 20, 63-127.]). The use of primary amines bearing an additional coordinating groups as locking fragments in these template reactions allows for the preparation of complexes of functionalized di­aza­cyclams. As a result of the inter­action of the donor group of the substituents in these species with other metal-containing nodes they can form coordination polymers, without using additional bridging ligands. Indeed, several examples of polymeric compounds formed by the NiII or CuII complexes of propio­nitrile-substituted di­aza­cyclam have been described (Suh et al., 1994[Suh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509-5514.]; Liu et al., 2002[Liu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm 4, 64-67.]). They are the homometallic products of self-polymerization reactions occurring via coordination of the nitrile groups of the substituents of macrocyclic cation in the axial positions of the metal ions of other macrocyclic units. Similar self-polymerization of building blocks is also characteristic of 3-carb­oxy­propyl-substituted di­aza­cyclam (Lu et al., 2005[Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta 358, 3241-3245.]; Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.] see Database survey). Because carboxyl­ates are known as the most popular bridging units in preparation of MOFs (Rao et al., 2004[Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466-1496.]; Yoshinari & Konno, 2023[Yoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.]), the complexes of this ligand are of particular inter­est because their reactions with other metal ions can lead to formation of new types of heterometallic coordination polymers.

[Scheme 1]

The present work describes the preparation and structural characterization of the mol­ecular CuII dichloride complex of the aza­cyclam ligand 3,10-bis­(3-carb­oxy­prop­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane (H2L), namely, [3,10-bis­(3-carb­oxy­prop­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­decane-κ4N1,N5,N8,N12]di­chlorido­copper(II), [CuCl2(C16H34N6O4)] or [Cu(H2L)Cl2] (I), and the product of its inter­action with CdII ion, namely, poly{[aqua­[μ3-3,10-bis­(3-carb­oxy­prop­yl)-1,3,5,8,10,12-hexa­aza­cyclo­tetra­dec­ane-κ4N1,N5,N8,N12;κ2O,O′:κ2O′′,O′′′]-μ-chlorido­copper(II)cadmium(II] 1.25-hydrate], {[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O}n or {[CuCd(L)(H2O)Cl2]·1.25H2O}n (II), which is the first representative of heterometallic polymeric complexes with carboxyl-substituted Cu-di­aza­cyclam moiety as bridging ligand.

2. Structural commentary

The mol­ecular structures of I and II are shown in Figs. 1[link] and 2[link], respectively, while selected geometric parameters characterizing the coordination environment of the CuII and CdII ions are collected in Tables 1[link] and 2[link]. The asymmetric unit of I (Fig. 1[link]) represents a half of the neutral centrosymmetric [Cu(H2L)Cl2] complex formed by a di­aza­cyclam ligand with protonated carb­oxy­lic groups. The asymmetric unit of II contains a [Cu(L)(H2O)] moiety coordinated to CdCl2 via deprotonated carb­oxy­lic groups of the macrocycle (Fig. 2[link]). Additionally, it includes four water mol­ecules of crystallization with site occupancies 0.5 (O2W) and 0.25 (O3W–O5W) (total 1.25 water mol­ecules).

Table 1
Selected geometric parameters (Å, °) for I[link]

Cu1—Cl1 2.8889 (7) Cu1—N1 2.000 (2)
Cu1—N3 2.003 (2)    
       
N1—Cu1—N3i 85.92 (9) N1—Cu1—N3 94.08 (9)
Symmetry code: (i) [-x+2, -y+1, -z+1].

Table 2
Selected geometric parameters (Å, °) for II[link]

Cd1—Cl1 2.5125 (18) Cu1—N4 1.993 (5)
Cd1—Cl2 2.515 (2) Cu1—N1 2.023 (5)
Cd1—O3i 2.266 (4) Cu1—N6 2.006 (5)
Cd1—O1 2.275 (5) Cu1—N3 2.020 (5)
Cd1—O4i 2.637 (6) Cu1—O1W 2.446 (5)
Cd1—O2 2.494 (6) Cu1—Cl1ii 3.048 (2)
       
Cl1—Cd1—Cl2 104.67 (7) N4—Cu1—N3 86.5 (2)
O3i—Cd1—O4i 52.44 (17) N6—Cu1—N1 86.6 (2)
O1—Cd1—O2 53.54 (19) N3—Cu1—N1 93.0 (2)
N4—Cu1—N6 93.9 (2)    
Symmetry codes: (i) [x+1, y, z+1]; (ii) [-x+1, -y, -z+1].
[Figure 1]
Figure 1
The asymmetric unit in I showing displacement ellipsoids drawn at the 30% probability level. C-bound H atoms are omitted for clarity. Symmetry code: (i) −x + 2, −y + 1, −z + 1.
[Figure 2]
Figure 2
The extended asymmetric unit in II with displacement ellipsoids drawn at the 30% probability level. The semicoordinative Cu—Cl1 bond is shown as dark green capped stick line. C-bound H atoms are omitted for clarity. Water mol­ecules of crystallization are not shown. Symmetry codes: (i) x + 1, y, z + 1; (ii) x - 1, y, z − 1; (iii) −x + 1, −y, −z + 1.

In both compounds the CuII ion coordinates the four secondary N atoms of the macrocycles, which adopt the most energetically stable trans–III (R,R,S,S) conformation (Barefield et al., 1986[Barefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197-4202.]) with the five-membered (N—Ni—N bite angles ca 86°) and six-membered (N—Ni—N bite angles ca 94°) chelate rings adopting gauche and chair conformations, respectively (Tables 1[link] and 2[link]). The macrocyclic ligands are in stretched forms with remote carb­oxy­lic groups. At the same time, the noticeable difference in the distances between their C atoms [C8—C8(–x + 2, –y + 1, –z + 1) of 14.241 (6) Å and C12—C16 of 15.29 (1) Å in I and II, respectively] is caused by different conformations of the tri­methyl­ene fragments of the substituents. The methyl­ene groups bound to the distal nitro­gen atoms in the six-membered chelate rings are axially oriented. Therewith, the sum of the C—N—C angles around these atoms [345.0° for N2 in I and 347.8 and 351.2° for N2 and N5 in II, respectively] indicates their partial sp2 character (Tsymbal et al., 2019[Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1700-1704.]). The C—O bond lengths in the protonated carb­oxy­lic group in I differs significantly [1.319 (4) and 1.204 (3) Å for the C—OH and C=O bond, respectively], while in II they are nearly identical (ca 1.24 Å), thus indicating the lack of electron delocalization in the former and its occurrence in the latter case.

The aza­macrocyclic ligands in the complexes under consideration are coordinated to the CuII ions by four secondary amine N atoms in a planar fashion forming the equatorial planes in the coordination spheres of the metal ions. The axial positions are occupied by the two chloride anions (in I) or by the O atom from the water mol­ecule and chloride anion belonging to another mol­ecule (in II). Because of a large Jahn–Teller distortion inherent in the 3d9 electronic configuration of CuII, the equatorial Cu—N bonds are significantly shorter than the axial Cu—Cl and Cu—O ones (Tables 1[link] and 2[link]), therefore the coordination polyhedra can be described as tetra­gonally elongated trans-CuN4(Cl)2 or trans-CuN4(O)(Cl) octa­hedrons in I and II, respectively. The length of the Cu—Cl bond in I is close to those observed in other CuII–chloride complexes of di­aza­cyclam ligands (see Database survey). At the same time, the distance Cu1—Cl1(−x + 1, −y, −z + 1) [3.048 (2) Å] in II is significantly longer. Nevertheless, it is shorter than the sum of van der Waals radii of these atoms (3.15 Å) thus allowing to consider this Cu—Cl contact as a week coordinative [or semicoordinative (Valach, 1999[Valach, F. (1999). Polyhedron 18, 699-706.])] bond.

The CuN4 moiety in I is strictly planar because of the location of the metal ion on crystallographic inversion center, while in II the CuII ion is displaced by 0.03 Å from the nearly planar (deviations of ±0.015 Å) mean plane of the N4 donor atoms towards the O1W atom of water mol­ecule. The axial Cu—D bonds (D = donor atom) in both compounds are nearly orthogonal to the CuN4 plane with the deviations of the angles N—Cu—D from the normal not exceeding 5°.

The coordination polyhedron of the six-coordinated CdII ion in II is formed by the two bidentately coordinated carb­oxy­lic groups and two chloride ions. The metal ion possesses a deformed octa­hedral environment with cis-situated chloride anions. The values of chelate bite angles of the four-membered chelate rings are determined by the geometrical parameters of the coordinated carboxyl­ate groups and analogously to other CdII carboxyl­ate complexes (see, for example, Popovych et al., 2024[Popovych, A. M., Tsymbal, L. V., Khomenko, D. M., Bargan, A., Lampeka, Y. D. & Lampeka, R. D. (2024). Acta Cryst. E80, 128-132.]) are close to 53° (Table 2[link]). The angle between the mean planes of these chelate rings is 87.8 (2)°. The Cd—Cl bond lengths in II are very similar and are longer than the Cd—O bonds which, in turn, are significantly non-equivalent within each carboxyl­ate group (Table 2[link]).

The macrocyclic di­carboxyl­ate complex anion in II displays a bridging function between two CdII cations. Each metal ion coordinates the carboxyl­ate groups of two different macrocyclic ligands, thus resulting in the formation of a linear (the angle Cd⋯Cd⋯Cd = 180°) coordination polymeric chain, running along the [101] direction, with the shortest intra­chain CdII⋯CdII (and CuII⋯CuII) distances of 19.2082 (8) Å. The distances between hetero metal ions equal 9.296 (1) and 10.414 (1) Å for Cu1⋯Cd1 and Cu1⋯Cd1(x − 1, y, z − 1), respectively (Fig. 2[link]).

3. Supra­molecular features

The complex I is characterized by a distinct lamellar structure, which is due to hydrogen-bonding inter­actions (Table 3[link]). In particular, each carboxyl­ate group of the electro-neutral complex mol­ecule forms a pair of hydrogen bonds to a neighboring one acting as the proton donor for the chloride ion [O1C O1—H1C⋯Cl1(x − 1, y, z − 1)] and as the proton acceptor for the secondary amino group [N1—H1⋯O2(−x + 1, −y + 1, −z)]. This results in the formation of chains running in the [101] direction, with the distance between the metal atoms in a chain equal to 11.1582 (5) Å. These chains inter­act with each other via the formation of a hydrogen bond between another secondary amino group of the macrocycle and a chloride anion [N3—H3⋯Cl1(x, y, z − 1)], thus leading to layers oriented parallel to the (101) plane (Fig. 3[link]). The shortest inter­chain Cu⋯Cu distance is 6.9325 (3) Å. There are no hydrogen-bonding contacts between the layers and the three-dimensional coherence of the crystal is provided by van der Waals inter­actions.

Table 3
Hydrogen-bond geometry (Å, °) for I[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 1.00 2.03 2.877 (3) 141
O1—H1C⋯Cl1ii 0.93 (3) 2.12 (3) 3.030 (2) 168 (3)
N3—H3⋯Cl1iii 1.00 2.52 3.381 (2) 144
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) [x-1, y, z-1]; (iii) [x, y, z-1].
[Figure 3]
Figure 3
The hydrogen-bonded layer in I oriented parallel to the (010) plane. C-bound H atoms have been omitted. The hydrogen bonds resulting in the formation of one-dimensional chains and those joining them into a layer are shown as magenta and orange dashed lines, respectively.

The parallel polymeric chains in the crystal of II inter­act with each other via the formation of semicoordinative Cu—Cl1(−x + 1, −y, −z + 1) bonds between atoms belonging to neighboring chains thus joining them into layers oriented parallel to the (10[\overline{1}]) plane (Fig. 4[link]). Thus, atom Cl1 in this compound displays a μ2-bridging function with a Cu⋯Cd distance and Cu—Cl—Cd angle of 4.807 (1) Å and 119.33 (6)°, respectively. The layers are further consolidated by inter­chain hydrogen bonds formed between coordinated water mol­ecule O1W—H and secondary amino group N4—H as the proton donors and both O atoms of the C16/O3/O4 carb­oxy­lic group as the proton acceptors (Fig. 4[link]), as well as by weaker (DA distances ca 3.4 Å) hydrogen bonds with participation of both chloride atoms as proton acceptors (Table 4[link]). The intra­layer hydrogen-bonding network also includes the water mol­ecule of crystallization O2W (because of the lower site occupancy factors of O3W–O5W mol­ecules their participation in the hydrogen-bonding inter­actions is not considered). There are no significant hydrogen-bonding inter­actions between the layers and the three-dimensional structure of crystal II is based on the weak C—H⋯O and C—H⋯Cl contacts.

Table 4
Hydrogen-bond geometry (Å, °) for II[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O3ii 0.85 2.06 2.787 (7) 143
N4—H4⋯O4iii 0.98 2.08 2.961 (8) 148
N1—H1⋯Cl2iv 0.98 2.54 3.377 (5) 143
N6—H6⋯Cl1i 0.98 2.77 3.379 (5) 121
N3—H3⋯O2W 0.98 2.04 3.006 (13) 167
O1W—H1WA⋯O2W 0.85 2.28 3.037 (14) 149
O2W—H2WA⋯O2iv 0.85 1.93 2.721 (14) 154
Symmetry codes: (i) [-x+1, -y, -z+1]; (ii) [-x, -y+1, -z]; (iii) [-x, -y, -z]; (iv) [-x+1, -y+1, -z+1].
[Figure 4]
Figure 4
The packing in II, showing [101] polymeric chains cross-linked by Cu—Cl semicoordinative bonds (dark-green capped stick lines) to form layers oriented parallel to the (10[\overline{1}]) plane. C-bound H atoms are omitted for clarity. Intra­layer hydrogen bonds are shown as dashed lines. Hydrogen bonds with participation of chloride anion are not shown.

4. Database survey

The Cambridge Structural Database (CSD, version 5.46, September 2024; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) contains four structures formed by di­aza­cyclam ligand H2L with NiII [CSD refcodes NARBAK and NARBEO (Lu et al., 2005[Lu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta 358, 3241-3245.])] and CuII [WAMWEN and WAMWIR (Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.])] ions. Besides, the structure of the CuII complex of parent monosubstituted aza­cyclam ligand 3-(3-carb­oxy­prop­yl)-1,3,5,8,12-penta­aza­cyclo­tetra­decane [NUBFOI (Tsymbal et al., 2019[Tsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1700-1704.])] has been also described. Among these compounds, NARBAK and WAMWEN represent trans-di­aqua mol­ecular complexes with the macrocycle L2– bearing deprotonated but uncoordinated carb­oxy­lic groups. NUBFOI and WAMWIR are one- and two-dimensional coordination polymers, respectively, which are the result of self-polymerization due to the coordination of the carb­oxy­lic groups to the metal ion of another mol­ecules. Inter­estingly, in both cases the CuII ion is bound with the carbonyl O atom of a protonated carboxyl­ate group. In NARBEO the ligand H2L is also present in protonated form and the charge of the cation is compensated by deprotonated but-2-enedioate which acts as bridge between the NiII centres thus resulting in the formation of a one-dimensional coordination polymer without involving in polymerization the carb­oxy­lic groups of the aza­cyclam ligand. Despite differences in the nature of the metal ions and protonation peculiarities, the macrocycles in all compounds possess very similar stretched trans-III (R,R,S,S) conformations with the distances between carb­oxy­lic groups varying between 13.6–15.0 Å, so this distance in II is the longest among all complexes studied.

There are only two examples in the CSD concerning the structure of trans-dichloride complexes of Cu(di­aza­cyclam)2+ cations with 2-hydroxyehyl [MANKOB (Lampeka et al., 1998[Lampeka, Ya. D., Maloshtan, I. M., Lightfoot, Ph. & Hay, R. W. (1998). Theor. Exp. Chem. 34, 327-331.])] and ethyl [MEDRAP (Jiang et al., 2006[Jiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.) 22, 389.])] substituents at distal nitro­gen atoms of the macrocycle. In both cases the Cu—Cl coordination bond lengths are close to that observed in I (ca 2.83 Å), regardless of whether the chloride ion demonstrates monodentate (MEDRAP) or bridging (MANKOB) function. Similar distances are also observed in CuII chloride complexes of cyclam [see, for example, FODWAZ (Samoľová et al., 2019[Samoľová, E., Kuchár, J., Grzimek, V., Kliuikov, A. & Čižmár, E. (2019). Polyhedron 170, 51-59.]) and QASKUU (Heinemann et al., 2022[Heinemann, F. W., Schickaneder, C. & Alsfasser, R. (2022). CSD Communication (refcode QASKUU). CCDC, Cambridge, England.])], though a much shorter Cu—Cl coordination bond was also found [2.446 (4) Å in YEGMEF (Chang et al., 2017[Chang, K.-X., Zhang, N., Du, P., Liu, Y.-Y. & Ma, J.-F. (2017). Polyhedron 138, 287-294.])].

The CSD contains also six hits related to the six-coordinated CdII complexes containing two bidentately coordinated carboxyl­ate ligands and two chloride anions. Four of them represent mol­ecular compounds formed by substituted propionic [NASWUZ (Li & Mak, 1997[Li, S.-L. & Mak, T. C. W. (1997). Inorg. Chim. Acta 258, 11-24.]); VOGKUZ (Galkina et al., 2014[Galkina, I., Tufatullin, A., Krivolapov, D., Bakhtiyarova, Y., Chubukaeva, D., Stakheev, V., Galkin, V., Cherkasov, R., Büchner, B. & Kataeva, O. (2014). CrystEngComm 16, 9010-9024.]); UBILOK (Yang et al., 2021[Yang, F., Wang, Z., Liu, P., Guo, L. & Xian, D. (2021). Z. Kristallogr. New Cryst. Struct. 236, 1109-1111.])] or benzoic [VIQLIR (Deng et al., 2007[Deng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m2834.])] acids, while two other are one-dimensional coordination polymers based on di­carboxyl­ates [KESGEX (Liu et al., 2017[Liu, J.-J., Xia, S.-B., Teng, L., He, C.-X., Cheng, F.-X. & Huang, C.-C. (2017). Z. Anorg. Allg. Chem. 643, 1766-1770.]); KIRFAW (Jin et al., 2023[Jin, Y., Chu, J., Mao, Y., Ma, X., Zhu, B., Zhao, Y., Xing, L., Zuo, M. & Cui, S. (2023). Inorg. Chem. Commun. 153, 110831.])]. Regardless of the structure, the geometrical parameters of the coordination polyhedra of the CdII ion in these compounds are very similar and resemble those observed in II.

5. Synthesis and crystallization

All commercially available chemicals and solvents were used in this work as purchased without further purification. The complex [Cu(H2L)]Cl2·2H2O was synthesized according to a procedure described previously (Ou et al., 2005[Ou, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421-424.]).

The complex [Cu(H2L)Cl2] (I) in form of light-violet prisms was obtained by recrystallization of hydrated compounds (55 mg) from a methanol (10 ml) solution. Yield: 40 mg (60%). Analysis calculated for C16H34Cl2CuN6O4: C 37.76, H 6.73, N 16.51%. Found: C 37.65, H 6.82, N 16.35%.

For the preparation of the complex [CuCd(L)(H2O)Cl2]n·1.25H2O (II), a solution of 47 mg (0.2 mmol) Cd(NO3)2 in 5 ml of ethanol was mixed with 10 ml of aqueous solution containing 109 mg (0.2 mml) of Cu(H2L)Cl2·2H2O and refluxed for 2 h. After filtration, the mixture was kept in a refrigerator. A light violet precipitate formed over several days was filtered off, washed with small amounts of methanol and diethyl ether, and dried in air. Yield: 74 mg (56%). Analysis calculated for C16H36.5 CdCl2CuN6O6.25: C 29.12, H 5.58, N 12.74%. Found: C 29.01, H 5.71, N 12.65%. Single crystals of I and II suitable for X-ray diffraction analysis were selected from the samples resulting from the syntheses.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5[link]. The methyl­ene H, secondary amine H atoms in I and II and water H atoms in II were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) values of 1.2Ueq(C), 1.2Ueq(N) and 1.5Ueq(O), respectively. The carboxyl­ate H atoms in I were positioned geometrically and refined as riding with Uiso(H) = 1.5Ueq(O). Because of low site occupancies the water mol­ecules of crystallization O2W–O5W in II were refined in an isotropic approximation.

Table 5
Experimental details

  I II
Crystal data
Chemical formula [CuCl2(C16H34N6O4)] [CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2O
Mr 508.93 659.85
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 100 273
a, b, c (Å) 10.0036 (5), 15.8231 (7), 6.9325 (3) 10.1565 (4), 10.4249 (5), 14.6531 (7)
α, β, γ (°) 90, 99.808 (2), 90 80.305 (3), 80.117 (3), 64.149 (3)
V3) 1081.29 (9) 1367.82 (11)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 1.29 1.79
Crystal size (mm) 0.12 × 0.07 × 0.06 0.15 × 0.05 × 0.05
 
Data collection
Diffractometer Bruker APEXII CCD Bruker APEXII CCD
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.892, 0.920 0.895, 0.910
No. of measured, independent and observed [I > 2σ(I)] reflections 5849, 1844, 1509 12964, 4762, 3446
Rint 0.089 0.040
(sin θ/λ)max−1) 0.590 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.05 0.050, 0.149, 1.04
No. of reflections 1844 4762
No. of parameters 136 297
No. of restraints 0 3
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.33 1.31, −0.69
Computer programs: CrysAlis PRO (Rigaku OD, 2022[Rigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2018/2 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

[3,10-Bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12]dichloridocopper(II) (I) top
Crystal data top
[CuCl2(C16H34N6O4)]F(000) = 534
Mr = 508.93Dx = 1.563 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.0036 (5) ÅCell parameters from 1452 reflections
b = 15.8231 (7) Åθ = 2.0–24.9°
c = 6.9325 (3) ŵ = 1.29 mm1
β = 99.808 (2)°T = 100 K
V = 1081.29 (9) Å3Prism, clear light violet
Z = 20.12 × 0.07 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
1509 reflections with I > 2σ(I)
φ and ω scansRint = 0.089
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
θmax = 24.8°, θmin = 2.1°
Tmin = 0.892, Tmax = 0.920h = 1111
5849 measured reflectionsk = 1818
1844 independent reflectionsl = 08
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.8397P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
1844 reflectionsΔρmax = 0.30 e Å3
136 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.0000000.5000000.5000000.01515 (14)
Cl11.01968 (7)0.39266 (4)0.84077 (10)0.01969 (18)
N30.9904 (2)0.40064 (14)0.3191 (3)0.0158 (5)
H30.9756580.4224790.1817200.019*
O10.2900 (2)0.30989 (14)0.0055 (3)0.0279 (5)
H1C0.213 (3)0.338 (2)0.068 (4)0.042*
O20.3928 (2)0.39295 (14)0.1942 (3)0.0307 (6)
N10.7985 (2)0.51266 (14)0.4688 (3)0.0155 (5)
H10.7686220.5424960.3416450.019*
N20.7465 (2)0.37665 (15)0.3054 (3)0.0176 (5)
C10.7212 (3)0.43239 (18)0.4585 (4)0.0194 (7)
H1A0.7444680.4027110.5855290.023*
H1B0.6230660.4456660.4384370.023*
C80.3969 (3)0.33740 (19)0.0747 (4)0.0194 (7)
C50.6976 (3)0.40643 (19)0.1045 (4)0.0195 (7)
H5A0.7711700.4375690.0562370.023*
H5B0.6207310.4458000.1047230.023*
C40.7700 (3)0.57019 (18)0.6243 (4)0.0183 (6)
H4A0.7766600.5394590.7499530.022*
H4B0.6774740.5939520.5898650.022*
C70.5245 (3)0.29165 (19)0.0142 (4)0.0211 (7)
H7A0.5199290.2328260.0351230.025*
H7B0.5296560.2893770.1579870.025*
C31.1253 (3)0.35995 (18)0.3585 (4)0.0175 (6)
H3A1.1364790.3211780.2502650.021*
H3B1.1357180.3270190.4815600.021*
C60.6522 (3)0.3330 (2)0.0314 (4)0.0227 (7)
H6A0.6353300.3534320.1683220.027*
H6B0.7257100.2903960.0191890.027*
C20.8799 (3)0.33948 (18)0.3360 (4)0.0176 (6)
H2A0.8817010.2937330.2390620.021*
H2B0.8977610.3136040.4679210.021*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0137 (2)0.0147 (2)0.0171 (3)0.0005 (2)0.0027 (2)0.0023 (2)
Cl10.0213 (4)0.0218 (4)0.0161 (4)0.0002 (3)0.0034 (3)0.0017 (3)
N30.0140 (12)0.0170 (12)0.0155 (12)0.0008 (10)0.0002 (10)0.0024 (9)
O10.0209 (12)0.0300 (13)0.0332 (12)0.0003 (10)0.0056 (10)0.0070 (10)
O20.0233 (12)0.0330 (13)0.0343 (13)0.0010 (10)0.0007 (10)0.0156 (11)
N10.0180 (12)0.0166 (14)0.0122 (12)0.0004 (10)0.0034 (10)0.0009 (10)
N20.0176 (13)0.0188 (13)0.0152 (13)0.0019 (11)0.0010 (10)0.0005 (10)
C10.0178 (16)0.0219 (16)0.0188 (16)0.0027 (13)0.0039 (12)0.0016 (13)
C80.0234 (17)0.0184 (16)0.0164 (15)0.0037 (13)0.0032 (13)0.0041 (13)
C50.0157 (15)0.0231 (17)0.0185 (15)0.0031 (13)0.0005 (12)0.0040 (12)
C40.0146 (15)0.0230 (16)0.0177 (16)0.0051 (13)0.0036 (12)0.0021 (13)
C70.0222 (18)0.0207 (16)0.0191 (15)0.0012 (13)0.0006 (13)0.0000 (13)
C30.0205 (16)0.0183 (16)0.0133 (14)0.0069 (12)0.0021 (12)0.0018 (12)
C60.0213 (17)0.0298 (18)0.0165 (16)0.0032 (14)0.0019 (13)0.0019 (13)
C20.0202 (16)0.0154 (15)0.0162 (15)0.0023 (13)0.0004 (12)0.0015 (12)
Geometric parameters (Å, º) top
Cu1—Cl12.8889 (7)C1—H1B0.9900
Cu1—N32.003 (2)C8—C71.505 (4)
Cu1—N3i2.003 (2)C5—H5A0.9900
Cu1—N1i2.000 (2)C5—H5B0.9900
Cu1—N12.000 (2)C5—C61.516 (4)
N3—H31.0000C4—H4A0.9900
N3—C31.478 (4)C4—H4B0.9900
N3—C21.489 (4)C4—C3i1.513 (4)
O1—H1C0.93 (4)C7—H7A0.9900
O1—C81.319 (4)C7—H7B0.9900
O2—C81.204 (3)C7—C61.515 (4)
N1—H11.0000C3—H3A0.9900
N1—C11.482 (4)C3—H3B0.9900
N1—C41.475 (4)C6—H6A0.9900
N2—C11.436 (4)C6—H6B0.9900
N2—C51.472 (4)C2—H2A0.9900
N2—C21.441 (4)C2—H2B0.9900
C1—H1A0.9900
N3i—Cu1—Cl187.71 (7)N2—C5—H5B109.4
N3—Cu1—Cl192.29 (6)N2—C5—C6111.0 (2)
N3i—Cu1—N3180.0H5A—C5—H5B108.0
N1i—Cu1—Cl185.74 (7)C6—C5—H5A109.4
N1—Cu1—Cl194.26 (7)C6—C5—H5B109.4
N1i—Cu1—N3i94.08 (9)N1—C4—H4A110.3
N1—Cu1—N3i85.92 (9)N1—C4—H4B110.3
N1i—Cu1—N385.92 (9)N1—C4—C3i106.9 (2)
N1—Cu1—N394.08 (9)H4A—C4—H4B108.6
N1—Cu1—N1i180.0C3i—C4—H4A110.3
Cu1—N3—H3108.0C3i—C4—H4B110.3
C3—N3—Cu1106.34 (16)C8—C7—H7A108.9
C3—N3—H3108.0C8—C7—H7B108.9
C3—N3—C2111.7 (2)C8—C7—C6113.2 (2)
C2—N3—Cu1114.69 (17)H7A—C7—H7B107.8
C2—N3—H3108.0C6—C7—H7A108.9
C8—O1—H1C109.5C6—C7—H7B108.9
Cu1—N1—H1106.7N3—C3—C4i107.1 (2)
C1—N1—Cu1115.30 (18)N3—C3—H3A110.3
C1—N1—H1106.7N3—C3—H3B110.3
C4—N1—Cu1107.42 (17)C4i—C3—H3A110.3
C4—N1—H1106.7C4i—C3—H3B110.3
C4—N1—C1113.6 (2)H3A—C3—H3B108.6
C1—N2—C5115.5 (2)C5—C6—H6A109.2
C1—N2—C2114.7 (2)C5—C6—H6B109.2
C2—N2—C5114.8 (2)C7—C6—C5112.0 (2)
N1—C1—H1A108.8C7—C6—H6A109.2
N1—C1—H1B108.8C7—C6—H6B109.2
N2—C1—N1113.9 (2)H6A—C6—H6B107.9
N2—C1—H1A108.8N3—C2—H2A108.8
N2—C1—H1B108.8N3—C2—H2B108.8
H1A—C1—H1B107.7N2—C2—N3113.9 (2)
O1—C8—C7112.1 (3)N2—C2—H2A108.8
O2—C8—O1123.8 (3)N2—C2—H2B108.8
O2—C8—C7124.1 (3)H2A—C2—H2B107.7
N2—C5—H5A109.4
Cu1—N3—C3—C4i43.6 (2)C1—N2—C2—N370.1 (3)
Cu1—N3—C2—N257.0 (3)C8—C7—C6—C582.0 (3)
Cu1—N1—C1—N256.5 (3)C5—N2—C1—N167.4 (3)
Cu1—N1—C4—C3i40.6 (2)C5—N2—C2—N367.2 (3)
O1—C8—C7—C6168.6 (2)C4—N1—C1—N2179.0 (2)
O2—C8—C7—C611.0 (4)C3—N3—C2—N2178.0 (2)
N2—C5—C6—C768.7 (3)C2—N3—C3—C4i169.4 (2)
C1—N1—C4—C3i169.3 (2)C2—N2—C1—N169.6 (3)
C1—N2—C5—C6146.7 (3)C2—N2—C5—C676.4 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2ii1.002.032.877 (3)141
O1—H1C···Cl1iii0.93 (3)2.12 (3)3.030 (2)168 (3)
N3—H3···Cl1iv1.002.523.381 (2)144
Symmetry codes: (ii) x+1, y+1, z; (iii) x1, y, z1; (iv) x, y, z1.
Poly[[aqua[µ3-3,10-bis(3-carboxypropyl)-1,3,5,8,10,12-hexaazacyclotetradecane-κ4N1,N5,N8,N12:κ2O,O':κ2O'',O''']-µ-chloridocopper(II)cadmium(II]] 1.25-hydrate] (II) top
Crystal data top
[CuCd(C16H32N6O4)Cl2(H2O)]·1.25H2OZ = 2
Mr = 659.85F(000) = 671
Triclinic, P1Dx = 1.602 Mg m3
a = 10.1565 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4249 (5) ÅCell parameters from 2340 reflections
c = 14.6531 (7) Åθ = 2.5–25.1°
α = 80.305 (3)°µ = 1.79 mm1
β = 80.117 (3)°T = 273 K
γ = 64.149 (3)°Prism, clear light violet
V = 1367.82 (11) Å30.15 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
3446 reflections with I > 2σ(I)
φ and ω scansRint = 0.040
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2022)
θmax = 25.0°, θmin = 2.5°
Tmin = 0.895, Tmax = 0.910h = 1112
12964 measured reflectionsk = 1212
4762 independent reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.050H-atom parameters constrained
wR(F2) = 0.149 w = 1/[σ2(Fo2) + (0.0757P)2 + 2.6254P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4762 reflectionsΔρmax = 1.31 e Å3
297 parametersΔρmin = 0.69 e Å3
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.59670 (6)0.26853 (5)0.76221 (3)0.04306 (19)
Cu10.33040 (8)0.22435 (8)0.19607 (5)0.0368 (2)
Cl10.51803 (19)0.08287 (18)0.85462 (13)0.0485 (4)
Cl20.3795 (2)0.5038 (2)0.78750 (15)0.0630 (5)
O30.2427 (5)0.2757 (5)0.1510 (4)0.0526 (13)
N40.1402 (5)0.2125 (6)0.1942 (4)0.0387 (13)
H40.1638120.1164200.1787120.046*
O10.6079 (6)0.2308 (6)0.6120 (3)0.0617 (14)
N10.5280 (6)0.2264 (6)0.1986 (4)0.0391 (13)
H10.5097530.3172880.2201790.047*
O40.1352 (6)0.0727 (6)0.2134 (4)0.0642 (15)
N60.3616 (5)0.2651 (5)0.0573 (4)0.0365 (12)
H60.4027970.1730550.0311440.044*
N30.3019 (6)0.1802 (6)0.3358 (4)0.0389 (12)
H30.2685980.2699920.3635020.047*
O1W0.2008 (7)0.4777 (6)0.2217 (4)0.0706 (16)
H1WA0.2093280.4872280.2765630.106*
H1WB0.2448480.5237680.1864230.106*
N20.5593 (6)0.1102 (6)0.3580 (4)0.0433 (14)
N50.1150 (6)0.3123 (6)0.0317 (4)0.0455 (14)
O20.7049 (7)0.3750 (7)0.6212 (4)0.0745 (17)
C160.1341 (8)0.1573 (8)0.1647 (5)0.0432 (16)
C120.6701 (8)0.3075 (8)0.5748 (5)0.0492 (18)
C80.5961 (7)0.2262 (8)0.1016 (5)0.0489 (18)
H8A0.6428260.1292270.0840570.059*
H8B0.6708760.2624380.0951610.059*
C90.5517 (7)0.2254 (8)0.4074 (5)0.0446 (16)
H9A0.4963170.2237510.4681280.053*
H9B0.4997630.3172190.3726950.053*
C60.2278 (7)0.3611 (7)0.0110 (5)0.0445 (16)
H6A0.1907250.4562420.0306160.053*
H6B0.2543700.3683600.0558850.053*
C20.4356 (8)0.0744 (8)0.3782 (5)0.0491 (18)
H2A0.4115410.0643320.4451980.059*
H2B0.4636910.0178910.3564480.059*
C10.6218 (7)0.1091 (8)0.2624 (5)0.0473 (18)
H1A0.6415180.0182620.2415690.057*
H1B0.7152770.1151400.2585050.057*
C70.4782 (8)0.3202 (8)0.0389 (5)0.0483 (17)
H7A0.4370030.4190180.0525790.058*
H7B0.5193490.3158350.0258810.058*
C50.0440 (7)0.3178 (8)0.1249 (5)0.0469 (17)
H5A0.0424630.2997510.1269450.056*
H5B0.0112900.4135320.1424120.056*
C40.0662 (7)0.2235 (9)0.2911 (5)0.0499 (18)
H4A0.0098960.1887340.2990200.060*
H4B0.0208610.3225640.3045980.060*
C130.1324 (8)0.1938 (8)0.0182 (5)0.0501 (18)
H13A0.1569870.1066700.0243500.060*
H13B0.2126350.1780560.0678720.060*
C30.1813 (8)0.1339 (8)0.3557 (5)0.0499 (18)
H3A0.1384710.1454480.4199110.060*
H3B0.2187700.0334360.3466190.060*
C140.0074 (8)0.2270 (8)0.0587 (6)0.056 (2)
H14A0.0839240.2325080.0077320.067*
H14B0.0378380.3207950.0940490.067*
C150.0027 (8)0.1229 (8)0.1198 (6)0.0536 (19)
H15A0.0289090.0301470.0834540.064*
H15B0.0825530.1140880.1688890.064*
C100.7015 (8)0.2104 (10)0.4194 (5)0.059 (2)
H10A0.7563180.2109130.3583180.070*
H10B0.7527780.1178770.4535870.070*
C110.7026 (10)0.3245 (11)0.4692 (5)0.068 (2)
H11A0.6305090.4164700.4453250.081*
H11B0.7984890.3264950.4539790.081*
O5W0.129 (3)0.756 (3)0.3727 (17)0.075 (7)*0.25
H5WA0.1331780.7174430.3272270.113*0.25
H5WB0.0434080.7545030.3635570.113*0.25
O4W0.215 (3)0.686 (3)0.3405 (19)0.085 (7)*0.25
H4WA0.1787470.5939680.3498590.127*0.25
H4WB0.2106370.7257480.3860490.127*0.25
O2W0.1567 (12)0.4480 (13)0.4332 (8)0.074 (3)*0.5
H2WA0.2129140.4894230.4318870.111*0.5
H2WB0.1443040.4196430.4915970.111*0.5
O3W0.142 (3)0.610 (3)0.2733 (19)0.088 (8)*0.25
H3WA0.1670730.6700860.3125650.132*0.25
H3WB0.1672830.5445460.3020750.132*0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0545 (3)0.0486 (3)0.0367 (3)0.0289 (3)0.0119 (2)0.0047 (2)
Cu10.0379 (4)0.0442 (5)0.0340 (5)0.0223 (4)0.0087 (3)0.0006 (4)
Cl10.0588 (10)0.0398 (9)0.0498 (11)0.0251 (8)0.0014 (8)0.0045 (8)
Cl20.0705 (13)0.0480 (11)0.0641 (13)0.0222 (10)0.0027 (10)0.0014 (10)
O30.053 (3)0.054 (3)0.060 (3)0.027 (3)0.022 (2)0.003 (3)
N40.034 (3)0.040 (3)0.045 (3)0.016 (2)0.003 (2)0.011 (3)
O10.093 (4)0.072 (4)0.040 (3)0.054 (3)0.009 (3)0.004 (3)
N10.042 (3)0.049 (3)0.038 (3)0.029 (3)0.004 (2)0.006 (3)
O40.076 (4)0.062 (3)0.075 (4)0.040 (3)0.017 (3)0.017 (3)
N60.044 (3)0.033 (3)0.038 (3)0.019 (2)0.011 (2)0.003 (2)
N30.046 (3)0.046 (3)0.032 (3)0.025 (3)0.008 (2)0.002 (2)
O1W0.100 (4)0.047 (3)0.067 (4)0.032 (3)0.015 (3)0.004 (3)
N20.046 (3)0.052 (3)0.038 (3)0.024 (3)0.014 (3)0.003 (3)
N50.047 (3)0.044 (3)0.047 (4)0.015 (3)0.015 (3)0.008 (3)
O20.098 (4)0.096 (5)0.056 (4)0.061 (4)0.003 (3)0.025 (3)
C160.050 (4)0.042 (4)0.042 (4)0.023 (4)0.011 (3)0.001 (3)
C120.057 (4)0.050 (4)0.047 (4)0.025 (4)0.010 (4)0.012 (4)
C80.044 (4)0.064 (5)0.049 (4)0.031 (4)0.001 (3)0.013 (4)
C90.052 (4)0.052 (4)0.038 (4)0.026 (3)0.008 (3)0.008 (3)
C60.053 (4)0.038 (4)0.045 (4)0.019 (3)0.016 (3)0.001 (3)
C20.063 (5)0.051 (4)0.047 (4)0.034 (4)0.023 (4)0.003 (3)
C10.043 (4)0.054 (4)0.049 (4)0.018 (3)0.016 (3)0.013 (4)
C70.062 (4)0.059 (5)0.040 (4)0.040 (4)0.003 (3)0.010 (3)
C50.043 (4)0.050 (4)0.049 (4)0.015 (3)0.012 (3)0.012 (3)
C40.044 (4)0.065 (5)0.045 (4)0.026 (4)0.002 (3)0.016 (4)
C130.045 (4)0.050 (4)0.050 (4)0.011 (3)0.017 (3)0.007 (4)
C30.058 (4)0.065 (5)0.038 (4)0.039 (4)0.003 (3)0.005 (4)
C140.050 (4)0.054 (5)0.070 (5)0.018 (4)0.022 (4)0.017 (4)
C150.053 (4)0.051 (4)0.060 (5)0.021 (4)0.015 (4)0.009 (4)
C100.063 (5)0.089 (6)0.043 (4)0.048 (5)0.001 (4)0.021 (4)
C110.093 (6)0.106 (7)0.038 (4)0.073 (6)0.002 (4)0.014 (4)
Geometric parameters (Å, º) top
Cd1—Cl12.5125 (18)C8—C71.513 (10)
Cd1—Cl22.515 (2)C9—H9A0.9700
Cd1—O3i2.266 (4)C9—H9B0.9700
Cd1—O12.275 (5)C9—C101.498 (9)
Cd1—O4i2.637 (6)C6—H6A0.9700
Cd1—O22.494 (6)C6—H6B0.9700
Cu1—N41.993 (5)C2—H2A0.9700
Cu1—N12.023 (5)C2—H2B0.9700
Cu1—N62.006 (5)C1—H1A0.9700
Cu1—N32.020 (5)C1—H1B0.9700
Cu1—O1W2.446 (5)C7—H7A0.9700
Cu1—Cl1ii3.048 (2)C7—H7B0.9700
O3—C161.265 (8)C5—H5A0.9700
N4—H40.9800C5—H5B0.9700
N4—C51.491 (8)C4—H4A0.9700
N4—C41.486 (8)C4—H4B0.9700
O1—C121.229 (9)C4—C31.505 (10)
N1—H10.9800C13—H13A0.9700
N1—C81.470 (8)C13—H13B0.9700
N1—C11.478 (8)C13—C141.510 (9)
O4—C161.230 (8)C3—H3A0.9700
N6—H60.9800C3—H3B0.9700
N6—C61.487 (8)C14—H14A0.9700
N6—C71.495 (8)C14—H14B0.9700
N3—H30.9800C14—C151.479 (10)
N3—C21.483 (8)C15—H15A0.9700
N3—C31.471 (8)C15—H15B0.9700
O1W—H1WA0.8500C10—H10A0.9700
O1W—H1WB0.8500C10—H10B0.9700
N2—C91.471 (8)C10—C111.501 (10)
N2—C21.432 (8)C11—H11A0.9700
N2—C11.435 (9)C11—H11B0.9700
N5—C61.416 (9)O5W—H5WA0.8500
N5—C51.428 (9)O5W—H5WB0.8500
N5—C131.470 (9)O4W—H4WA0.8604
O2—C121.242 (8)O4W—H4WB0.8605
C16—C151.513 (9)O2W—H2WA0.8498
C12—C111.522 (10)O2W—H2WB0.8632
C8—H8A0.9700O3W—H3WA0.8501
C8—H8B0.9700O3W—H3WB0.8501
Cl1—Cd1—Cl2104.67 (7)C10—C9—H9A109.2
Cl1—Cd1—O4i84.16 (13)C10—C9—H9B109.2
Cl2—Cd1—O4i153.76 (12)N6—C6—H6A109.0
O3i—Cd1—Cl1103.44 (14)N6—C6—H6B109.0
O3i—Cd1—Cl2101.32 (14)N5—C6—N6112.8 (5)
O3i—Cd1—O1134.6 (2)N5—C6—H6A109.0
O3i—Cd1—O4i52.44 (17)N5—C6—H6B109.0
O3i—Cd1—O290.52 (19)H6A—C6—H6B107.8
O1—Cd1—Cl1103.28 (14)N3—C2—H2A108.6
O1—Cd1—Cl2106.49 (16)N3—C2—H2B108.6
O1—Cd1—O4i95.06 (19)N2—C2—N3114.7 (6)
O1—Cd1—O253.54 (19)N2—C2—H2A108.6
O2—Cd1—Cl1154.86 (14)N2—C2—H2B108.6
O2—Cd1—Cl292.68 (16)H2A—C2—H2B107.6
O2—Cd1—O4i88.2 (2)N1—C1—H1A108.7
N4—Cu1—N1177.4 (2)N1—C1—H1B108.7
N4—Cu1—N693.9 (2)N2—C1—N1114.4 (5)
N4—Cu1—N386.5 (2)N2—C1—H1A108.7
N4—Cu1—O1W91.0 (2)N2—C1—H1B108.7
N1—Cu1—O1W91.6 (2)H1A—C1—H1B107.6
N6—Cu1—N186.6 (2)N6—C7—C8107.2 (6)
N6—Cu1—N3179.1 (2)N6—C7—H7A110.3
N6—Cu1—O1W93.9 (2)N6—C7—H7B110.3
N3—Cu1—N193.0 (2)C8—C7—H7A110.3
N3—Cu1—O1W86.9 (2)C8—C7—H7B110.3
C16—O3—Cd1iii100.6 (4)H7A—C7—H7B108.5
Cu1—N4—H4107.3N4—C5—H5A108.9
C5—N4—Cu1115.2 (4)N4—C5—H5B108.9
C5—N4—H4107.3N5—C5—N4113.5 (5)
C4—N4—Cu1106.6 (4)N5—C5—H5A108.9
C4—N4—H4107.3N5—C5—H5B108.9
C4—N4—C5112.7 (5)H5A—C5—H5B107.7
C12—O1—Cd197.8 (4)N4—C4—H4A110.2
Cu1—N1—H1107.7N4—C4—H4B110.2
C8—N1—Cu1106.7 (4)N4—C4—C3107.7 (5)
C8—N1—H1107.7H4A—C4—H4B108.5
C8—N1—C1113.5 (5)C3—C4—H4A110.2
C1—N1—Cu1113.3 (4)C3—C4—H4B110.2
C1—N1—H1107.7N5—C13—H13A109.5
C16—O4—Cd1iii84.1 (4)N5—C13—H13B109.5
Cu1—N6—H6107.3N5—C13—C14110.8 (6)
C6—N6—Cu1116.0 (4)H13A—C13—H13B108.1
C6—N6—H6107.3C14—C13—H13A109.5
C6—N6—C7112.8 (5)C14—C13—H13B109.5
C7—N6—Cu1105.9 (4)N3—C3—C4108.8 (6)
C7—N6—H6107.3N3—C3—H3A109.9
Cu1—N3—H3107.7N3—C3—H3B109.9
C2—N3—Cu1115.1 (4)C4—C3—H3A109.9
C2—N3—H3107.7C4—C3—H3B109.9
C3—N3—Cu1106.6 (4)H3A—C3—H3B108.3
C3—N3—H3107.7C13—C14—H14A108.4
C3—N3—C2111.9 (5)C13—C14—H14B108.4
Cu1—O1W—H1WA109.1H14A—C14—H14B107.5
Cu1—O1W—H1WB108.8C15—C14—C13115.5 (6)
H1WA—O1W—H1WB104.5C15—C14—H14A108.4
C2—N2—C9116.2 (6)C15—C14—H14B108.4
C2—N2—C1115.4 (5)C16—C15—H15A108.2
C1—N2—C9116.2 (6)C16—C15—H15B108.2
C6—N5—C5117.2 (5)C14—C15—C16116.5 (6)
C6—N5—C13116.7 (6)C14—C15—H15A108.2
C5—N5—C13117.3 (6)C14—C15—H15B108.2
C12—O2—Cd187.1 (5)H15A—C15—H15B107.3
O3—C16—C15117.2 (6)C9—C10—H10A108.5
O4—C16—O3122.9 (6)C9—C10—H10B108.5
O4—C16—C15119.9 (7)C9—C10—C11115.1 (7)
O1—C12—O2121.5 (7)H10A—C10—H10B107.5
O1—C12—C11119.9 (6)C11—C10—H10A108.5
O2—C12—C11118.5 (7)C11—C10—H10B108.5
N1—C8—H8A109.9C12—C11—H11A108.3
N1—C8—H8B109.9C12—C11—H11B108.3
N1—C8—C7108.9 (6)C10—C11—C12115.8 (7)
H8A—C8—H8B108.3C10—C11—H11A108.3
C7—C8—H8A109.9C10—C11—H11B108.3
C7—C8—H8B109.9H11A—C11—H11B107.4
N2—C9—H9A109.2H5WA—O5W—H5WB104.5
N2—C9—H9B109.2H4WA—O4W—H4WB113.5
N2—C9—C10112.0 (6)H2WA—O2W—H2WB103.1
H9A—C9—H9B107.9H3WA—O3W—H3WB104.5
Cd1iii—O3—C16—O40.8 (8)O2—C12—C11—C10162.1 (7)
Cd1iii—O3—C16—C15177.9 (5)C8—N1—C1—N2178.0 (5)
Cd1—O1—C12—O20.0 (8)C9—N2—C2—N374.3 (7)
Cd1—O1—C12—C11178.5 (6)C9—N2—C1—N171.1 (7)
Cd1iii—O4—C16—O30.7 (7)C9—C10—C11—C1278.6 (10)
Cd1iii—O4—C16—C15177.9 (7)C6—N6—C7—C8171.2 (5)
Cd1—O2—C12—O10.0 (8)C6—N5—C5—N469.7 (8)
Cd1—O2—C12—C11178.5 (7)C6—N5—C13—C14131.6 (7)
Cu1—N4—C5—N555.3 (7)C2—N3—C3—C4165.0 (6)
Cu1—N4—C4—C341.9 (6)C2—N2—C9—C10152.8 (6)
Cu1—N1—C8—C738.4 (6)C2—N2—C1—N169.9 (8)
Cu1—N1—C1—N260.1 (6)C1—N1—C8—C7163.9 (5)
Cu1—N6—C6—N555.0 (6)C1—N2—C9—C1066.4 (8)
Cu1—N6—C7—C843.3 (6)C1—N2—C2—N366.8 (8)
Cu1—N3—C2—N255.6 (7)C7—N6—C6—N5177.3 (5)
Cu1—N3—C3—C438.4 (6)C5—N4—C4—C3169.2 (6)
O3—C16—C15—C144.1 (11)C5—N5—C6—N669.0 (8)
N4—C4—C3—N354.4 (7)C5—N5—C13—C1481.8 (8)
O1—C12—C11—C1019.3 (12)C4—N4—C5—N5177.9 (6)
N1—C8—C7—N655.6 (7)C13—N5—C6—N677.7 (7)
O4—C16—C15—C14177.2 (7)C13—N5—C5—N476.8 (7)
N2—C9—C10—C11179.9 (6)C13—C14—C15—C16177.4 (7)
N5—C13—C14—C15173.1 (7)C3—N3—C2—N2177.4 (6)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y, z+1; (iii) x1, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O3iv0.852.062.787 (7)143
N4—H4···O4v0.982.082.961 (8)148
N1—H1···Cl2vi0.982.543.377 (5)143
N6—H6···Cl1ii0.982.773.379 (5)121
N3—H3···O2W0.982.043.006 (13)167
O1W—H1WA···O2W0.852.283.037 (14)149
O2W—H2WA···O2vi0.851.932.721 (14)154
Symmetry codes: (ii) x+1, y, z+1; (iv) x, y+1, z; (v) x, y, z; (vi) x+1, y+1, z+1.
 

References

First citationBarefield, E. K., Bianchi, A., Billo, E. J., Connolly, P. J., Paoletti, P., Summers, J. S. & Van Derveer, D. G. (1986). Inorg. Chem. 25, 4197–4202.  CSD CrossRef CAS Web of Science Google Scholar
First citationChang, K.-X., Zhang, N., Du, P., Liu, Y.-Y. & Ma, J.-F. (2017). Polyhedron 138, 287–294.  CrossRef CAS Google Scholar
First citationCostisor, O. & Linert, W. (2000). Rev. Inorg. Chem. 20, 63–127.  CAS Google Scholar
First citationDeng, Z.-P., Gao, S., Huo, L.-H. & Zhao, H. (2007). Acta Cryst. E63, m2834.  CrossRef IUCr Journals Google Scholar
First citationGalkina, I., Tufatullin, A., Krivolapov, D., Bakhtiyarova, Y., Chubukaeva, D., Stakheev, V., Galkin, V., Cherkasov, R., Büchner, B. & Kataeva, O. (2014). CrystEngComm 16, 9010–9024.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHeinemann, F. W., Schickaneder, C. & Alsfasser, R. (2022). CSD Communication (refcode QASKUU). CCDC, Cambridge, England.  Google Scholar
First citationJiang, L., Lu, W.-G., Feng, X.-L., Xiang, H. & Lu, T.-B. (2006). Wuji Huaxue Xuebao (Chin.) (Chin. J. Inorg. Chem.) 22, 389.  Google Scholar
First citationJin, Y., Chu, J., Mao, Y., Ma, X., Zhu, B., Zhao, Y., Xing, L., Zuo, M. & Cui, S. (2023). Inorg. Chem. Commun. 153, 110831.  CrossRef Google Scholar
First citationLampeka, Ya. D., Maloshtan, I. M., Lightfoot, Ph. & Hay, R. W. (1998). Theor. Exp. Chem. 34, 327–331.  CrossRef CAS Google Scholar
First citationLampeka, Ya. D. & Tsymbal, L. V. (2004). Theor. Exp. Chem. 40, 345–371.  CrossRef CAS Google Scholar
First citationLi, S.-L. & Mak, T. C. W. (1997). Inorg. Chim. Acta 258, 11–24.  CrossRef CAS Google Scholar
First citationLiu, J., Lu, T.-B., Xiang, H., Mao, Z.-W. & Ji, L.-N. (2002). CrystEngComm 4, 64–67.  CrossRef Google Scholar
First citationLiu, J.-J., Xia, S.-B., Teng, L., He, C.-X., Cheng, F.-X. & Huang, C.-C. (2017). Z. Anorg. Allg. Chem. 643, 1766–1770.  CrossRef CAS Google Scholar
First citationLu, T.-B., Ou, G.-C., Jiang, L., Feng, X.-L. & Ji, L.-N. (2005). Inorg. Chim. Acta 358, 3241–3245.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOu, G.-C., Su, C.-Y., Yao, J.-H. & Lu, T.-B. (2005). Inorg. Chem. Commun. 8, 421–424.  Web of Science CSD CrossRef CAS Google Scholar
First citationPopovych, A. M., Tsymbal, L. V., Khomenko, D. M., Bargan, A., Lampeka, Y. D. & Lampeka, R. D. (2024). Acta Cryst. E80, 128–132.  CrossRef IUCr Journals Google Scholar
First citationRao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.  Web of Science CrossRef CAS Google Scholar
First citationRigaku OD (2022). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSamoľová, E., Kuchár, J., Grzimek, V., Kliuikov, A. & Čižmár, E. (2019). Polyhedron 170, 51–59.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStackhouse, C. A. & Ma, S. (2018). Polyhedron 145, 154–165.  CrossRef CAS Google Scholar
First citationSuh, M. P. & Moon, H. R. (2007). Advances in Inorganic Chemistry Vol. 59, edited by R. van Eldik & K. Bowman-James, pp. 39–79. San Diego: Academic Press.  Google Scholar
First citationSuh, M. P., Shim, B. Y. & Yoon, T.-S. (1994). Inorg. Chem. 33, 5509–5514.  CSD CrossRef CAS Web of Science Google Scholar
First citationTsymbal, L. V., Arion, V. B. & Lampeka, Y. D. (2019). Acta Cryst. E75, 1700–1704.  CrossRef IUCr Journals Google Scholar
First citationValach, F. (1999). Polyhedron 18, 699–706.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, F., Wang, Z., Liu, P., Guo, L. & Xian, D. (2021). Z. Kristallogr. New Cryst. Struct. 236, 1109–1111.  CrossRef CAS Google Scholar
First citationYatsimirskii, K. B. & Lampeka, Ya. D. (1985). Physicochemistry of Metal Complexes with Macrocyclic Ligands. Kiev: Naukova Dumka.  Google Scholar
First citationYoshinari, N. & Konno, T. (2023). Coord. Chem. Rev. 474, 214850.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds