

research communications
Bis(μ-thiosemicarbazide-κ3N1,S:S;κ3S:N1,S)bis[(dimethylformamide-κO)(thiosemicarbazide-κ2N1,S)cadmium(II)] tetrakis(2,4,6-trinitrophenolate): synthesis, and Hirshfeld surface analysis
aDepartment of Physics, Government. Arts College for Women(Autonomous), Pudukkottai-622 001, Tamil Nadu, India, bCrystal Growth and Thin Film Laboratory, Department of Physics and, Nanotechnology, Faculty of Engineering Technology, SRM University, Kattankulathur-603 203, Tamil Nadu, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, New Hampshire, 03435-2001, USA, dNanotechnology and Catalysis Research Centre, Universiti Malaya, Kuala Lumpur-50603, Malaysia, and eInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
*Correspondence e-mail: santhasrinithi@yahoo.co.in, helen.stoeckli-evans@unine.ch
In the title complex salt, [Cd2(C3H7NO)2(CH5N3S)4](C6H2N3O7)4, (I), the binuclear cation is located about a crystallographic center of symmetry. The of the complex cation is composed of two bidentate thiosemicarbazide ligands and one molecule of dimethylformamide coordinated to a cadmium(II) atom. The S atom of one of the thiosemicarbazide ligands bridges the cadmium atoms about the inversion center. The positive charge of the complex is balanced by picrate anions. In the crystal, the cation is linked to the picrate anions by side-by-side bifurcated N—H⋯(O,O) hydrogen bonds in which the central O atom acts as a double acceptor for two such bonds, enclosing R12(6) and R21(6) ring motifs. In the crystal, further N—H⋯O hydrogen bonds link the various units to form slabs lying parallel to the (001) plane and the slabs are linked by C—H⋯O hydrogen bonds, thereby forming a three-dimensional network.
Keywords: crystal structure; cadmium complex; thiosemicarbazide; picrate; hydrogen bonding; Hirshfeld surface; fingerprint plots.
CCDC reference: 2081043
1. Chemical context
Organic molecules containing π-electron conjugated systems, asymmetrized by the and acceptor groups, are highly polarizable entities for non-linear optical (NLO) applications (Long, 1995; Verbiest et al., 1997
; Pal et al., 2004
). Furthermore, in metal–organic complexes the metal-to-ligand bonding is expected to display a large molecular hyper–polarizability due to the transfer of electron density between the metal atom and the conjugated ligand system (McArdle et al., 1974
; Arivanandhan et al., 2005
). A key factor is that the diversity of the central metal, its and the ligands make it possible to optimize the charge-transfer interactions. In the case of metal–organic coordination complexes, group 12 (group IIB) metals are extensively chosen, as their complexes usually achieve high transparency in the UV region because of their closed d10 shell (Sun et al., 2003
; Ushasree et al., 1999
), hence d–d electronic transitions are not possible.
Picric acid (2,4,6-trinitrophenol) is an electron-acceptor forming charge-transfer molecular complexes with a number of et al., 2005; Saminathan et al., 2005
; Muthamizhchelvan et al., 2005
; Muthu & Meenakshisundaram, 2012
). As a result of the formation of the conjugated base on proton loss to form picrate anions, the magnitude of the molecular hyperpolarizability is increased (Anandha Babu et al., 2010
). Picric acid forms salts with amino acids, such as L-valine and L-asparagine (Anitha et al., 2004
; Braga et al., 2004
). Hydrogen bonds play an important role in the supramolecular packing and in the generation of non-centrosymmetric structures (Berkovitch-Yellin & Leiserowitz, 1984
; Min Jin et al., 2003
; Frankenbach & Etter, 1992
; Etter & Huang, 1992
; Sherwood, 1998
). Hence, thiosemicarbazide (CH5N3S) is an interesting candidate, as it binds well to most transition metals of groups 7–10. The of thiosemicarbazidium picrate monohydrate has been reported (Xie, 2007
) in which extensive hydrogen bonding lead to the formation of a three-dimensional supramolecular structure.
The title compound (I), a cadmium thiosemicarbazide picrate, was prepared using dimethylformamide as solvent. A search of the Cambridge Structural Database (CSD; V5.46, last update February 2025; Groom et al., 2016) for cadmium–thiosemicarbazide complexes gave 15 hits. Only one compound involves picrate as anion, namely trans-bis(dimethyl sulfoxide-κO)bis(thiosemicarbazide-κ2N1,S)cadmium bis(2,4,6-trinitrophenolate) dihydrate (II) (CSD refcode QAJDOW; Shanthakumari et al., 2011
), which was prepared using dimethyl sulfoxide (DMSO) as solvent. In both cases the solvent molecule coordinates to the cadmium(II) atom via its O atom. Herein, the structures and Hirshfeld surfaces of compounds (I) and (II) are compared.
2. Structural commentary
The title complex (I), is composed of a [Cd2(thiosemicarbazide)4(dimethyl formamide)2]4+ cation, located about an inversion center, and two crystallographically distinct picrate (2,4,6-trinitrophenolate) anions. The cadmium atom coordinates to atom O1 of a DMF molecule, and to the sulfur (S1 and S2) and nitrogen (N3 and N6) atoms of two bidentate thiosemicarbazide ligands (Fig. 1). Atom S2 bridges the cadmium atoms about the inversion center. Selected bond lengths and bond angles for complexes (I) and (II) are listed in Table 1
.
|
![]() | Figure 1 The molecular structure of the complex cation of compound (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code (i): −x + 1, −y + 2, −z + 1.] |
In the cation of (I), atom Cd1 is sixfold coordinated, CdS2O2N2, in a distorted octahedral geometry. The structural index, τ6, describing the deformation of an octahedral coordination sphere has a value of [540° – (160.89 + 167.97° + 171.43°)]/180° = 0.22 for Cd1 (τ6 = 0 for a perfect octahedral geometry; 0.75 for a trigonal prismatic geometry, and = 1 for a pentagonal pyramidal geometry; Stoeckli-Evans et al., 2025). In complex (II), the Cd atom is located on an inversion center and is coordinated to the O atom of two DMSO molecules, and to the N and S atoms of two bidentate thiosemicarbazide ligands. The structural index, τ6, of the sixfold coordination sphere of the cadmium atom (CdS2O2N2) is [540° – (3 × 180°)]/180° = 0.
In (I) the cadmium–nitrogen bond lengths, Cd1—N3 and Cd1—N6, are similar and close to the value observed for complex (II), viz., 2.398 (3) and 2.421 (3) Å, respectively in (I) compared to 2.382 (2) Å in (II). The equivalent Cd—S bond length Cd1—S1 in (I) is 2.540 (1) Å compared to 2.551 (1) Å in (II). The Cd—S bond lengths involving the bridging S atom (S2) in complex (I) are much longer that the terminal bonds, at 2.627 (1) and 2.841 (1) Å.
The difference in the Cd1—O bond lengths involving the dimethylformamide group in (I) and the dimethyl sulfoxide group in (II) is considerable; 2.275 (2) Å in (I) compared to 2.401 (2) Å in (II). However, a search of the CSD for compounds containing a Cd—O(DMF) or a Cd—O(DMSO) bond (with the following restrictions: three-dimensional coordinates determined, R factor ≤ 0.075, no disorder, no errors, not polymeric, no ions,and single crystals only) gave 37 hits for the former and 19 for the latter. The mean value for the Cd—O(DMF) bond length was found to be 2.33 (5) Å (varying from 2.225 to 2.482 Å). The mean value for the Cd—O(DMSO) bond length was found to be 2.33 (4) Å (varying from 2.25 to 2.412 Å). Thus, the Cd—O bond length observed for (I) is near the lower limit while the value observed for (II) is near the upper limit.
In the picrate anions in (I) the nitro groups are inclined by different degrees to the phenolate rings to which they are attached: nitro groups N10/O3/O4, N11/O5/O6 and N12/O7/O8 are inclined to ring C6–C11 by 34.6 (5), 9.9 (4) and 19.3 (4)°, respectively, while nitro groups N13/O10/O11A, N14/O12/O13 and N15/O14/O15 are inclined to the C12–C17 ring by 18.0 (4), 4.8 (5) and 2.8 (6)°, respectively. The picrate anions accept N—H⋯O hydrogen bonds from the cation, as shown in Fig. 2 (see also Table 2
). These hydrogen bonds, involving the phenolate O atoms (O2 and O9) and the adjacent nitro groups, are bifurcated, viz. two N—H⋯(O,O) links enclosing R12(6) ring motifs, which results in the central phenolate O atom acting as a double acceptor enclosing an R21(6) motif. This situation was also observed in the crystal of complex (II), and in the of thiosemicarbazidium picrate monohydrate mentioned above (YIFXUH; Xie, 2007
).
|
![]() | Figure 2 A view of the picrate anions hydrogen bonded to the complex cation (dashed lines, Table 2 ![]() |
3. Supramolecular features
In the crystal of (I), there are a large number of N—H⋯O hydrogen bonds present (Table 2). Apart from those noted above linking the complex cation and the picrate anions (Fig. 2
) there are further N—H⋯O hydrogen bonds linking these units to form slabs lying parallel to the ab plane, as shown in Fig. 3
. Within the slabs, parallel displaced π–π stacking interactions occur between inversion-related benzene rings (C6–C11) of a picrate anion: the centroid–centroid distance is 3.712 (2) Å, interplanar distance = 3.375 (1) Å, slippage = 1.545 Å (shown in Fig. 3
as black double arrows). The slabs are linked by C—H⋯O hydrogen bonds (Table 2
)
![]() | Figure 3 A view along the b axis of the crystal packing of compound (I). The N—H⋯O hydrogen bonds (Table 1 ![]() |
4. Hirshfeld surface analysis and two-dimensional fingerprint plots
The Hirshfeld surface (HS) analyses and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021) and interpreted following the protocol of Tan et al. (2019
). The Hirshfeld surfaces for compounds (I) and (II) are illustrated in Fig. 4
a and 4c, respectively. A number of large red spots are observed in the HS which indicates that short contacts are highly significant in the crystal packing of both compounds.
![]() | Figure 4 (a) The Hirshfeld surface of compound (I), mapped over dnorm, (b) the full two-dimensional fingerprint plot for compound (I), (c) the Hirshfeld surface of compound (II), mapped over dnorm and (d) the full two-dimensional fingerprint plot for compound (II). |
The full two-dimensional fingerprint plots for compounds (I) and (II) are given in Fig. 4b and 4d, respectively. The principal percentage contributions of interatomic contacts to the Hirshfeld surfaces of (I) and (II) are compared in Table 3
. Selected two-dimensional fingerprint plots for the two compounds are given in Fig. 5
. For both crystal structures the major contributions are from O⋯H/H⋯O interactions; viz. 54.5% for (I) and 44.2% for (II). Both have sharp pincer-like spikes at de + di ≃ 1.85 Å. The H⋯H contacts also make significant contributions to the HS; 12.7% for (I) and 24.6% for (II). The S⋯H/H⋯S contributions are much more important for compound (II) at 10.9% than for compound (I) at 2.6%. Again both have sharp pincer-like spikes at de + di ≃ 2.8 Å for (I) and 2.5 Å for (II). These values can be correlated with the various hydrogen bonds and other interatomic interactions in the crystal (Table 2
).
|
![]() | Figure 5 The principal two-dimensional fingerprint plots for compounds (I) and (II), delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯O, O⋯H/H⋯O and S⋯H/H⋯S contacts. |
5. Synthesis and characterization
An equimolar ratio (1:1:1) of analytical grade reagents was used. Thiosemicarbazide (0.9 g) and CdCl2 (1.8 g) were dissolved in distilled water, then picric acid (2.3 g) dissolved in acetone was added under stirring. The mixture was refluxed at 373 K for 3 h, yielding a yellow crystalline precipitate. It was dissolved in DMF and a at 303 K was prepared. The solvent was then allowed to evaporate slowly at room temperature, yielding large (ca 8 mm × 7 mm × 3 mm) yellow–orange block-like crystals of the title compound (I) [m.p. 412 (1) K], after a growth period of 32 days. Selected FTIR (KBr pellet, cm−1): 3419 (NH2 asymmetric stretch), 1643 (C=O stretch), 1265 (C—N stretch), 1082 (C=S stretch) (supporting information Fig. S1). For the UV/visible spectrum and TGA/DTA trace for (I) see Figs. S2 and S3 in the supporting information.
6. Refinement
Crystal data, data collection and structure . The amine H atoms were located in difference-Fourier maps and were freely refined. Atom O11 of a picrate anion was modelled as disordered over two sites in a 0.85:0.15 ratio. The C-bound H atoms were included in calculated positions with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C).
|
Supporting information
CCDC reference: 2081043
https://doi.org/10.1107/S2056989025003974/hb8138sup1.cif
contains datablocks I, Global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S2056989025003974/hb8138Isup2.hkl
Fig. S1 FTIR Spectrum for (I) FIG. S2 UV/visible spectrum for (I) FIG. S3 TGA/DTA trace for (I). DOI: https://doi.org/10.1107/S2056989025003974/hb8138sup3.pdf
[Cd2(C3H7NO)2(CH5N3S)4](C6H2N3O7)4 | Z = 1 |
Mr = 1647.97 | F(000) = 828 |
Triclinic, P1 | Dx = 1.862 Mg m−3 |
a = 10.5367 (4) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 10.9088 (5) Å | Cell parameters from 4951 reflections |
c = 14.1593 (7) Å | θ = 4.2–71.4° |
α = 92.782 (4)° | µ = 8.14 mm−1 |
β = 109.796 (4)° | T = 173 K |
γ = 104.077 (4)° | Block, yellow |
V = 1469.98 (12) Å3 | 0.50 × 0.35 × 0.25 mm |
Xcalibur, Eos, Gemini diffractometer | 5601 independent reflections |
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source | 5028 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
Detector resolution: 16.0416 pixels mm-1 | θmax = 71.4°, θmin = 3.4° |
ω scans | h = −8→12 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2015) | k = −12→13 |
Tmin = 0.326, Tmax = 1.000 | l = −17→17 |
10301 measured reflections |
Refinement on F2 | Primary atom site location: dual |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: mixed |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0524P)2] where P = (Fo2 + 2Fc2)/3 |
5601 reflections | (Δ/σ)max = 0.001 |
478 parameters | Δρmax = 0.91 e Å−3 |
1 restraint | Δρmin = −0.62 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.49782 (2) | 0.92980 (2) | 0.37745 (2) | 0.02499 (9) | |
S2 | 0.45606 (8) | 0.81886 (7) | 0.52909 (6) | 0.02237 (16) | |
S1 | 0.57145 (10) | 1.00687 (8) | 0.23246 (7) | 0.03156 (19) | |
O1 | 0.2648 (3) | 0.9168 (2) | 0.31788 (19) | 0.0308 (5) | |
O2 | −0.0937 (3) | 0.7022 (2) | 0.6663 (2) | 0.0303 (5) | |
O3 | −0.2412 (3) | 0.4763 (3) | 0.6984 (3) | 0.0508 (8) | |
O4 | −0.0935 (4) | 0.3885 (3) | 0.7959 (3) | 0.0495 (8) | |
O5 | 0.2133 (3) | 0.2920 (3) | 0.6310 (2) | 0.0401 (6) | |
O6 | 0.3335 (3) | 0.4463 (3) | 0.5799 (3) | 0.0427 (7) | |
O7 | 0.1430 (3) | 0.7964 (2) | 0.4898 (2) | 0.0334 (6) | |
O8 | 0.0435 (4) | 0.8716 (3) | 0.5807 (3) | 0.0474 (8) | |
O9 | 0.6470 (5) | 0.6190 (3) | 0.1049 (4) | 0.0795 (15) | |
O10 | 0.4996 (3) | 0.4696 (3) | 0.1922 (3) | 0.0463 (7) | |
O11A | 0.5513 (4) | 0.2969 (3) | 0.2271 (3) | 0.0455 (9) | 0.85 |
O11B | 0.4768 (19) | 0.262 (2) | 0.1674 (14) | 0.0455 (9) | 0.15 |
O12 | 0.7272 (4) | 0.0845 (3) | 0.0154 (3) | 0.0470 (7) | |
O13 | 0.8366 (5) | 0.1917 (3) | −0.0681 (3) | 0.0688 (12) | |
O14 | 0.8799 (5) | 0.6291 (3) | −0.0750 (4) | 0.0791 (15) | |
O15 | 0.7789 (5) | 0.7313 (3) | −0.0066 (4) | 0.0820 (16) | |
N1 | 0.6282 (3) | 0.8649 (3) | 0.1059 (2) | 0.0290 (6) | |
H1AN | 0.658 (4) | 0.937 (4) | 0.087 (3) | 0.026 (10)* | |
H1BN | 0.639 (5) | 0.801 (4) | 0.083 (4) | 0.034 (12)* | |
N2 | 0.5270 (3) | 0.7499 (3) | 0.2023 (2) | 0.0271 (6) | |
H2N | 0.539 (4) | 0.673 (4) | 0.178 (3) | 0.032 (11)* | |
N3 | 0.4735 (4) | 0.7328 (3) | 0.2812 (2) | 0.0315 (6) | |
H3AN | 0.520 (6) | 0.695 (5) | 0.330 (4) | 0.053 (15)* | |
H3BN | 0.375 (6) | 0.693 (5) | 0.253 (5) | 0.067 (17)* | |
N4 | 0.6257 (4) | 0.6970 (3) | 0.6412 (3) | 0.0371 (8) | |
H4AN | 0.567 (5) | 0.671 (4) | 0.663 (3) | 0.028 (11)* | |
H4BN | 0.694 (5) | 0.673 (4) | 0.661 (4) | 0.041 (13)* | |
N5 | 0.7261 (3) | 0.8318 (3) | 0.5551 (2) | 0.0222 (5) | |
H5N | 0.809 (5) | 0.805 (4) | 0.585 (4) | 0.037 (12)* | |
N6 | 0.7277 (3) | 0.9252 (3) | 0.4900 (2) | 0.0266 (6) | |
H6AN | 0.762 (4) | 0.998 (4) | 0.526 (3) | 0.023 (10)* | |
H6BN | 0.787 (6) | 0.912 (5) | 0.456 (4) | 0.057 (15)* | |
N7 | 0.0868 (3) | 0.9859 (3) | 0.2160 (2) | 0.0331 (7) | |
N10 | −0.1256 (4) | 0.4557 (3) | 0.7304 (3) | 0.0328 (7) | |
N11 | 0.2397 (3) | 0.4025 (3) | 0.6116 (2) | 0.0288 (6) | |
N12 | 0.0900 (3) | 0.7869 (3) | 0.5553 (2) | 0.0261 (6) | |
N13 | 0.5526 (3) | 0.3869 (3) | 0.1780 (2) | 0.0335 (7) | |
N14 | 0.7719 (4) | 0.1851 (3) | −0.0113 (2) | 0.0335 (7) | |
N15 | 0.8085 (4) | 0.6347 (3) | −0.0242 (3) | 0.0396 (8) | |
C2 | 0.6139 (3) | 0.7811 (3) | 0.5782 (2) | 0.0230 (6) | |
C1 | 0.5757 (3) | 0.8647 (3) | 0.1789 (2) | 0.0231 (6) | |
C3 | 0.2170 (4) | 0.9789 (3) | 0.2489 (3) | 0.0299 (7) | |
H3 | 0.278573 | 1.023812 | 0.218513 | 0.036* | |
C4 | 0.0378 (6) | 1.0605 (5) | 0.1359 (3) | 0.0553 (13) | |
H4C | −0.002629 | 1.122138 | 0.159607 | 0.083* | |
H4B | −0.033805 | 1.003453 | 0.076192 | 0.083* | |
H4A | 0.116864 | 1.106238 | 0.118002 | 0.083* | |
C5 | −0.0162 (4) | 0.9147 (4) | 0.2543 (3) | 0.0438 (10) | |
H5C | −0.072361 | 0.969362 | 0.265949 | 0.066* | |
H5B | 0.031938 | 0.886843 | 0.318241 | 0.066* | |
H5A | −0.077833 | 0.839869 | 0.204584 | 0.066* | |
C6 | −0.0197 (3) | 0.6351 (3) | 0.6521 (2) | 0.0213 (6) | |
C7 | −0.0230 (3) | 0.5117 (3) | 0.6852 (2) | 0.0231 (6) | |
C8 | 0.0616 (4) | 0.4384 (3) | 0.6752 (2) | 0.0237 (6) | |
H8 | 0.056381 | 0.359107 | 0.700753 | 0.028* | |
C9 | 0.1550 (3) | 0.4822 (3) | 0.6270 (2) | 0.0237 (6) | |
C10 | 0.1650 (3) | 0.5977 (3) | 0.5895 (2) | 0.0229 (6) | |
H10 | 0.229084 | 0.625979 | 0.556155 | 0.027* | |
C11 | 0.0801 (3) | 0.6710 (3) | 0.6016 (2) | 0.0221 (6) | |
C12 | 0.6766 (4) | 0.5218 (3) | 0.0800 (3) | 0.0334 (8) | |
C13 | 0.6341 (4) | 0.3998 (3) | 0.1128 (2) | 0.0265 (7) | |
C14 | 0.6667 (4) | 0.2920 (3) | 0.0858 (2) | 0.0266 (7) | |
H14 | 0.636851 | 0.214241 | 0.109585 | 0.032* | |
C15 | 0.7442 (4) | 0.2991 (3) | 0.0231 (2) | 0.0267 (7) | |
C16 | 0.7908 (4) | 0.4120 (3) | −0.0109 (3) | 0.0296 (7) | |
H16 | 0.844751 | 0.415206 | −0.052997 | 0.035* | |
C17 | 0.7584 (4) | 0.5193 (3) | 0.0167 (3) | 0.0291 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.02764 (13) | 0.03138 (14) | 0.02463 (12) | 0.01650 (10) | 0.01366 (9) | 0.00976 (9) |
S2 | 0.0217 (4) | 0.0235 (4) | 0.0299 (4) | 0.0115 (3) | 0.0147 (3) | 0.0105 (3) |
S1 | 0.0489 (5) | 0.0241 (4) | 0.0362 (4) | 0.0169 (4) | 0.0277 (4) | 0.0120 (3) |
O1 | 0.0303 (12) | 0.0381 (14) | 0.0305 (12) | 0.0176 (11) | 0.0127 (10) | 0.0105 (10) |
O2 | 0.0305 (12) | 0.0322 (13) | 0.0422 (14) | 0.0192 (10) | 0.0216 (11) | 0.0180 (11) |
O3 | 0.0398 (16) | 0.0476 (18) | 0.085 (2) | 0.0166 (13) | 0.0415 (17) | 0.0299 (16) |
O4 | 0.081 (2) | 0.0456 (17) | 0.0540 (18) | 0.0340 (16) | 0.0493 (18) | 0.0331 (15) |
O5 | 0.0513 (17) | 0.0289 (14) | 0.0545 (17) | 0.0249 (12) | 0.0266 (14) | 0.0136 (12) |
O6 | 0.0418 (16) | 0.0397 (16) | 0.0624 (19) | 0.0181 (13) | 0.0335 (15) | 0.0086 (13) |
O7 | 0.0349 (13) | 0.0360 (14) | 0.0421 (14) | 0.0135 (11) | 0.0252 (12) | 0.0227 (11) |
O8 | 0.071 (2) | 0.0298 (14) | 0.071 (2) | 0.0283 (14) | 0.0490 (18) | 0.0252 (14) |
O9 | 0.144 (4) | 0.0351 (17) | 0.130 (4) | 0.042 (2) | 0.121 (4) | 0.033 (2) |
O10 | 0.0597 (19) | 0.0401 (16) | 0.0604 (19) | 0.0188 (14) | 0.0445 (16) | 0.0091 (14) |
O11A | 0.072 (3) | 0.0412 (19) | 0.047 (2) | 0.0263 (18) | 0.0412 (19) | 0.0214 (16) |
O11B | 0.072 (3) | 0.0412 (19) | 0.047 (2) | 0.0263 (18) | 0.0412 (19) | 0.0214 (16) |
O12 | 0.073 (2) | 0.0297 (15) | 0.0609 (19) | 0.0245 (14) | 0.0424 (17) | 0.0223 (13) |
O13 | 0.131 (4) | 0.0371 (17) | 0.087 (3) | 0.032 (2) | 0.093 (3) | 0.0160 (17) |
O14 | 0.135 (4) | 0.0392 (18) | 0.121 (4) | 0.029 (2) | 0.112 (3) | 0.030 (2) |
O15 | 0.152 (4) | 0.0304 (17) | 0.125 (4) | 0.036 (2) | 0.117 (4) | 0.029 (2) |
N1 | 0.0399 (17) | 0.0256 (16) | 0.0333 (15) | 0.0129 (13) | 0.0244 (13) | 0.0086 (13) |
N2 | 0.0352 (15) | 0.0225 (14) | 0.0309 (14) | 0.0085 (12) | 0.0205 (12) | 0.0057 (11) |
N3 | 0.0389 (17) | 0.0323 (16) | 0.0347 (16) | 0.0104 (14) | 0.0262 (14) | 0.0106 (13) |
N4 | 0.0345 (17) | 0.048 (2) | 0.055 (2) | 0.0279 (16) | 0.0330 (16) | 0.0379 (17) |
N5 | 0.0242 (13) | 0.0223 (14) | 0.0288 (13) | 0.0121 (11) | 0.0152 (11) | 0.0109 (11) |
N6 | 0.0279 (14) | 0.0244 (15) | 0.0345 (15) | 0.0108 (12) | 0.0164 (12) | 0.0135 (13) |
N7 | 0.0381 (16) | 0.0392 (17) | 0.0243 (14) | 0.0219 (14) | 0.0063 (12) | 0.0053 (12) |
N10 | 0.0448 (18) | 0.0251 (15) | 0.0411 (17) | 0.0130 (13) | 0.0280 (15) | 0.0112 (13) |
N11 | 0.0319 (15) | 0.0295 (16) | 0.0304 (14) | 0.0159 (12) | 0.0132 (12) | 0.0041 (12) |
N12 | 0.0247 (13) | 0.0223 (14) | 0.0340 (14) | 0.0074 (11) | 0.0122 (12) | 0.0106 (11) |
N13 | 0.0428 (18) | 0.0334 (17) | 0.0384 (16) | 0.0170 (14) | 0.0265 (14) | 0.0142 (13) |
N14 | 0.0502 (19) | 0.0289 (16) | 0.0320 (15) | 0.0174 (14) | 0.0226 (14) | 0.0097 (12) |
N15 | 0.059 (2) | 0.0261 (16) | 0.0455 (18) | 0.0097 (15) | 0.0352 (17) | 0.0063 (14) |
C2 | 0.0263 (16) | 0.0221 (16) | 0.0288 (15) | 0.0137 (13) | 0.0147 (13) | 0.0077 (12) |
C1 | 0.0221 (15) | 0.0248 (16) | 0.0250 (15) | 0.0096 (12) | 0.0093 (12) | 0.0073 (12) |
C3 | 0.0370 (19) | 0.0331 (19) | 0.0243 (15) | 0.0142 (15) | 0.0136 (14) | 0.0044 (13) |
C4 | 0.073 (3) | 0.062 (3) | 0.034 (2) | 0.040 (3) | 0.007 (2) | 0.015 (2) |
C5 | 0.0297 (19) | 0.057 (3) | 0.045 (2) | 0.0168 (18) | 0.0101 (17) | 0.0080 (19) |
C6 | 0.0199 (14) | 0.0252 (16) | 0.0202 (13) | 0.0108 (12) | 0.0053 (11) | 0.0079 (12) |
C7 | 0.0261 (16) | 0.0249 (16) | 0.0214 (14) | 0.0090 (13) | 0.0106 (12) | 0.0079 (12) |
C8 | 0.0312 (16) | 0.0209 (16) | 0.0220 (14) | 0.0105 (13) | 0.0104 (13) | 0.0061 (12) |
C9 | 0.0246 (15) | 0.0248 (16) | 0.0252 (15) | 0.0125 (13) | 0.0090 (13) | 0.0068 (12) |
C10 | 0.0219 (14) | 0.0250 (16) | 0.0233 (14) | 0.0052 (12) | 0.0109 (12) | 0.0047 (12) |
C11 | 0.0207 (14) | 0.0199 (15) | 0.0259 (15) | 0.0072 (12) | 0.0069 (12) | 0.0080 (12) |
C12 | 0.046 (2) | 0.0261 (18) | 0.0379 (19) | 0.0117 (15) | 0.0259 (17) | 0.0063 (14) |
C13 | 0.0328 (17) | 0.0308 (18) | 0.0222 (15) | 0.0130 (14) | 0.0143 (13) | 0.0066 (13) |
C14 | 0.0320 (17) | 0.0287 (17) | 0.0213 (14) | 0.0095 (14) | 0.0109 (13) | 0.0081 (12) |
C15 | 0.0370 (18) | 0.0276 (17) | 0.0214 (14) | 0.0138 (14) | 0.0141 (13) | 0.0064 (12) |
C16 | 0.0396 (19) | 0.0324 (19) | 0.0231 (15) | 0.0118 (15) | 0.0180 (14) | 0.0047 (13) |
C17 | 0.0424 (19) | 0.0217 (16) | 0.0277 (16) | 0.0060 (14) | 0.0201 (15) | 0.0030 (13) |
Cd1—O1 | 2.275 (2) | N5—N6 | 1.407 (4) |
Cd1—N3 | 2.398 (3) | N5—H5N | 0.95 (5) |
Cd1—N6 | 2.421 (3) | N6—H6AN | 0.85 (4) |
Cd1—S1 | 2.5402 (9) | N6—H6BN | 0.94 (5) |
Cd1—S2 | 2.6271 (8) | N7—C3 | 1.314 (5) |
Cd1—S2i | 2.8406 (8) | N7—C5 | 1.451 (5) |
S2—C2 | 1.731 (3) | N7—C4 | 1.453 (5) |
S1—C1 | 1.711 (3) | N10—C7 | 1.462 (4) |
O1—C3 | 1.250 (4) | N11—C9 | 1.446 (4) |
O2—C6 | 1.247 (4) | N12—C11 | 1.449 (4) |
O3—N10 | 1.228 (5) | N13—C13 | 1.449 (4) |
O4—N10 | 1.219 (4) | N14—C15 | 1.444 (4) |
O5—N11 | 1.236 (4) | N15—C17 | 1.467 (5) |
O6—N11 | 1.223 (4) | C3—H3 | 0.9500 |
O7—N12 | 1.230 (4) | C4—H4C | 0.9800 |
O8—N12 | 1.237 (4) | C4—H4B | 0.9800 |
O9—C12 | 1.242 (5) | C4—H4A | 0.9800 |
O10—N13 | 1.213 (4) | C5—H5C | 0.9800 |
O11A—N13 | 1.230 (5) | C5—H5B | 0.9800 |
O11B—N13 | 1.37 (2) | C5—H5A | 0.9800 |
O12—N14 | 1.216 (4) | C6—C7 | 1.442 (4) |
O13—N14 | 1.212 (4) | C6—C11 | 1.452 (5) |
O14—N15 | 1.212 (5) | C7—C8 | 1.370 (5) |
O15—N15 | 1.207 (5) | C8—C9 | 1.386 (5) |
N1—C1 | 1.326 (4) | C8—H8 | 0.9500 |
N1—H1AN | 0.86 (4) | C9—C10 | 1.385 (5) |
N1—H1BN | 0.81 (5) | C10—C11 | 1.382 (4) |
N2—C1 | 1.336 (4) | C10—H10 | 0.9500 |
N2—N3 | 1.414 (4) | C12—C17 | 1.444 (5) |
N2—H2N | 0.94 (4) | C12—C13 | 1.448 (5) |
N3—H3AN | 0.89 (6) | C13—C14 | 1.374 (5) |
N3—H3BN | 0.96 (6) | C14—C15 | 1.389 (5) |
N4—C2 | 1.310 (4) | C14—H14 | 0.9500 |
N4—H4AN | 0.78 (5) | C15—C16 | 1.383 (5) |
N4—H4BN | 0.80 (5) | C16—C17 | 1.370 (5) |
N5—C2 | 1.331 (4) | C16—H16 | 0.9500 |
O1—Cd1—N3 | 95.40 (11) | O13—N14—C15 | 119.0 (3) |
O1—Cd1—N6 | 160.89 (9) | O12—N14—C15 | 119.3 (3) |
N3—Cd1—N6 | 90.03 (12) | O15—N15—O14 | 122.1 (3) |
O1—Cd1—S1 | 102.28 (7) | O15—N15—C17 | 120.0 (3) |
N3—Cd1—S1 | 77.96 (7) | O14—N15—C17 | 117.9 (3) |
N6—Cd1—S1 | 96.77 (7) | N4—C2—N5 | 116.9 (3) |
O1—Cd1—S2 | 86.86 (6) | N4—C2—S2 | 119.1 (3) |
N3—Cd1—S2 | 93.55 (7) | N5—C2—S2 | 124.0 (2) |
N6—Cd1—S2 | 74.50 (7) | N1—C1—N2 | 115.6 (3) |
S1—Cd1—S2 | 167.97 (3) | N1—C1—S1 | 118.8 (3) |
O1—Cd1—S2i | 87.19 (7) | N2—C1—S1 | 125.6 (3) |
N3—Cd1—S2i | 171.43 (7) | O1—C3—N7 | 124.1 (3) |
N6—Cd1—S2i | 90.14 (8) | O1—C3—H3 | 118.0 |
S1—Cd1—S2i | 93.51 (3) | N7—C3—H3 | 118.0 |
S2—Cd1—S2i | 94.75 (2) | N7—C4—H4C | 109.5 |
C2—S2—Cd1 | 98.61 (11) | N7—C4—H4B | 109.5 |
C2—S2—Cd1i | 106.39 (11) | H4C—C4—H4B | 109.5 |
Cd1—S2—Cd1i | 85.25 (2) | N7—C4—H4A | 109.5 |
C1—S1—Cd1 | 98.99 (11) | H4C—C4—H4A | 109.5 |
C3—O1—Cd1 | 119.9 (2) | H4B—C4—H4A | 109.5 |
C1—N1—H1AN | 118 (3) | N7—C5—H5C | 109.5 |
C1—N1—H1BN | 121 (3) | N7—C5—H5B | 109.5 |
H1AN—N1—H1BN | 120 (4) | H5C—C5—H5B | 109.5 |
C1—N2—N3 | 123.0 (3) | N7—C5—H5A | 109.5 |
C1—N2—H2N | 125 (3) | H5C—C5—H5A | 109.5 |
N3—N2—H2N | 111 (3) | H5B—C5—H5A | 109.5 |
N2—N3—Cd1 | 113.3 (2) | O2—C6—C7 | 123.4 (3) |
N2—N3—H3AN | 114 (3) | O2—C6—C11 | 124.6 (3) |
Cd1—N3—H3AN | 101 (3) | C7—C6—C11 | 111.9 (3) |
N2—N3—H3BN | 110 (4) | C8—C7—C6 | 124.9 (3) |
Cd1—N3—H3BN | 105 (3) | C8—C7—N10 | 115.6 (3) |
H3AN—N3—H3BN | 113 (5) | C6—C7—N10 | 119.4 (3) |
C2—N4—H4AN | 121 (3) | C7—C8—C9 | 118.6 (3) |
C2—N4—H4BN | 122 (4) | C7—C8—H8 | 120.7 |
H4AN—N4—H4BN | 117 (5) | C9—C8—H8 | 120.7 |
C2—N5—N6 | 122.3 (3) | C10—C9—C8 | 121.7 (3) |
C2—N5—H5N | 119 (3) | C10—C9—N11 | 119.2 (3) |
N6—N5—H5N | 119 (3) | C8—C9—N11 | 119.0 (3) |
N5—N6—Cd1 | 114.5 (2) | C11—C10—C9 | 118.8 (3) |
N5—N6—H6AN | 108 (3) | C11—C10—H10 | 120.6 |
Cd1—N6—H6AN | 104 (3) | C9—C10—H10 | 120.6 |
N5—N6—H6BN | 106 (3) | C10—C11—N12 | 115.8 (3) |
Cd1—N6—H6BN | 114 (3) | C10—C11—C6 | 124.0 (3) |
H6AN—N6—H6BN | 110 (4) | N12—C11—C6 | 120.2 (3) |
C3—N7—C5 | 121.6 (3) | O9—C12—C17 | 123.5 (3) |
C3—N7—C4 | 121.4 (4) | O9—C12—C13 | 123.5 (3) |
C5—N7—C4 | 117.0 (4) | C17—C12—C13 | 113.0 (3) |
O4—N10—O3 | 123.5 (3) | C14—C13—C12 | 123.8 (3) |
O4—N10—C7 | 118.5 (3) | C14—C13—N13 | 116.4 (3) |
O3—N10—C7 | 118.0 (3) | C12—C13—N13 | 119.9 (3) |
O6—N11—O5 | 122.8 (3) | C13—C14—C15 | 118.7 (3) |
O6—N11—C9 | 119.2 (3) | C13—C14—H14 | 120.7 |
O5—N11—C9 | 117.9 (3) | C15—C14—H14 | 120.7 |
O7—N12—O8 | 121.9 (3) | C16—C15—C14 | 121.5 (3) |
O7—N12—C11 | 118.1 (3) | C16—C15—N14 | 118.9 (3) |
O8—N12—C11 | 119.9 (3) | C14—C15—N14 | 119.5 (3) |
O10—N13—O11A | 120.5 (3) | C17—C16—C15 | 119.5 (3) |
O10—N13—O11B | 117.9 (8) | C17—C16—H16 | 120.3 |
O10—N13—C13 | 120.9 (3) | C15—C16—H16 | 120.3 |
O11A—N13—C13 | 118.2 (3) | C16—C17—C12 | 123.5 (3) |
O11B—N13—C13 | 110.4 (9) | C16—C17—N15 | 116.4 (3) |
O13—N14—O12 | 121.7 (3) | C12—C17—N15 | 120.1 (3) |
C1—N2—N3—Cd1 | −5.1 (4) | O7—N12—C11—C6 | −159.4 (3) |
C2—N5—N6—Cd1 | −21.7 (4) | O8—N12—C11—C6 | 19.2 (5) |
N6—N5—C2—N4 | −178.6 (3) | O2—C6—C11—C10 | 177.6 (3) |
N6—N5—C2—S2 | 2.1 (5) | C7—C6—C11—C10 | −2.0 (5) |
Cd1—S2—C2—N4 | −163.7 (3) | O2—C6—C11—N12 | −5.7 (5) |
Cd1i—S2—C2—N4 | 108.7 (3) | C7—C6—C11—N12 | 174.8 (3) |
Cd1—S2—C2—N5 | 15.6 (3) | O9—C12—C13—C14 | −179.8 (5) |
Cd1i—S2—C2—N5 | −72.0 (3) | C17—C12—C13—C14 | −0.6 (5) |
N3—N2—C1—N1 | 177.0 (3) | O9—C12—C13—N13 | 0.0 (7) |
N3—N2—C1—S1 | −4.6 (5) | C17—C12—C13—N13 | 179.2 (3) |
Cd1—S1—C1—N1 | −171.4 (3) | O10—N13—C13—C14 | −167.9 (4) |
Cd1—S1—C1—N2 | 10.4 (3) | O11A—N13—C13—C14 | 19.9 (5) |
Cd1—O1—C3—N7 | −173.9 (3) | O11B—N13—C13—C14 | −24.5 (8) |
C5—N7—C3—O1 | −3.4 (6) | O10—N13—C13—C12 | 12.3 (6) |
C4—N7—C3—O1 | 179.6 (4) | O11A—N13—C13—C12 | −159.9 (4) |
O2—C6—C7—C8 | −176.7 (3) | O11B—N13—C13—C12 | 155.7 (8) |
C11—C6—C7—C8 | 2.9 (5) | C12—C13—C14—C15 | −0.4 (5) |
O2—C6—C7—N10 | 5.3 (5) | N13—C13—C14—C15 | 179.8 (3) |
C11—C6—C7—N10 | −175.1 (3) | C13—C14—C15—C16 | 1.2 (5) |
O4—N10—C7—C8 | 34.2 (5) | C13—C14—C15—N14 | −176.1 (3) |
O3—N10—C7—C8 | −144.0 (3) | O13—N14—C15—C16 | 0.8 (6) |
O4—N10—C7—C6 | −147.5 (3) | O12—N14—C15—C16 | −177.5 (4) |
O3—N10—C7—C6 | 34.2 (5) | O13—N14—C15—C14 | 178.2 (4) |
C6—C7—C8—C9 | −2.2 (5) | O12—N14—C15—C14 | −0.2 (5) |
N10—C7—C8—C9 | 175.9 (3) | C14—C15—C16—C17 | −0.9 (5) |
C7—C8—C9—C10 | 0.3 (5) | N14—C15—C16—C17 | 176.4 (3) |
C7—C8—C9—N11 | −176.9 (3) | C15—C16—C17—C12 | −0.2 (6) |
O6—N11—C9—C10 | 11.0 (5) | C15—C16—C17—N15 | −178.6 (3) |
O5—N11—C9—C10 | −168.7 (3) | O9—C12—C17—C16 | −179.9 (5) |
O6—N11—C9—C8 | −171.6 (3) | C13—C12—C17—C16 | 0.9 (6) |
O5—N11—C9—C8 | 8.6 (5) | O9—C12—C17—N15 | −1.6 (7) |
C8—C9—C10—C11 | 0.5 (5) | C13—C12—C17—N15 | 179.2 (3) |
N11—C9—C10—C11 | 177.8 (3) | O15—N15—C17—C16 | 176.9 (5) |
C9—C10—C11—N12 | −176.5 (3) | O14—N15—C17—C16 | −3.4 (6) |
C9—C10—C11—C6 | 0.4 (5) | O15—N15—C17—C12 | −1.5 (6) |
O7—N12—C11—C10 | 17.6 (4) | O14—N15—C17—C12 | 178.2 (5) |
O8—N12—C11—C10 | −163.8 (3) |
Symmetry code: (i) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1AN···O12ii | 0.86 (4) | 2.06 (4) | 2.908 (4) | 168 (4) |
N1—H1BN···O9 | 0.81 (5) | 2.04 (5) | 2.737 (4) | 145 (4) |
N1—H1BN···O15 | 0.81 (5) | 2.46 (5) | 3.130 (4) | 141 (4) |
N2—H2N···O9 | 0.94 (4) | 1.94 (4) | 2.721 (4) | 139 (4) |
N2—H2N···O10 | 0.94 (4) | 2.19 (4) | 2.992 (4) | 142 (4) |
N3—H3AN···O6iii | 0.89 (6) | 2.53 (6) | 3.379 (5) | 161 (5) |
N3—H3BN···O3iv | 0.96 (6) | 2.32 (6) | 3.018 (4) | 130 (5) |
N4—H4AN···O11Aiii | 0.78 (5) | 2.36 (5) | 3.060 (5) | 149 (4) |
N4—H4BN···O2v | 0.80 (5) | 2.15 (5) | 2.842 (4) | 145 (5) |
N4—H4BN···O3v | 0.80 (5) | 2.43 (5) | 3.079 (4) | 139 (4) |
N5—H5N···O2v | 0.95 (5) | 1.88 (5) | 2.753 (4) | 151 (4) |
N5—H5N···O8v | 0.95 (5) | 2.42 (4) | 3.156 (4) | 134 (3) |
N6—H6AN···O1i | 0.85 (4) | 2.48 (4) | 3.116 (4) | 132 (3) |
N6—H6AN···O7i | 0.85 (4) | 2.27 (4) | 2.966 (4) | 139 (4) |
N6—H6BN···O5iii | 0.94 (5) | 2.49 (5) | 3.160 (4) | 129 (4) |
C5—H5C···O8vi | 0.98 | 2.60 | 3.351 (5) | 134 |
C16—H16···O4vii | 0.95 | 2.46 | 3.374 (4) | 161 |
Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y+1, z; (iii) −x+1, −y+1, −z+1; (iv) −x, −y+1, −z+1; (v) x+1, y, z; (vi) −x, −y+2, −z+1; (vii) x+1, y, z−1. |
Bond/angle | (I) | (II)a |
Cd1—O1 | 2.275 (2) | 2.401 (2) |
Cd1—N3 | 2.398 (3) | 2.382 (2) |
Cd1—S1 | 2.540 (1) | 2.551 (1) |
Cd1—N6 | 2.421 (3) | – |
Cd1—S2 | 2.627 (1) | – |
Cd1—S1i | 2.841 (1) | – |
O1—Cd1—N6 | 160.89 (9) | 180 |
S1—Cd1—S2 | 167.97 (3) | 180 |
N3—Cd1—S2ii | 171.43 (7) | 180 |
Note: (a) Shanthakumari et al. (2011). Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y, -z. |
Contact | (I) | (II)a |
H···H | 12.7 | 24.6 |
C···H/H···C | 4.5 | 3.8 |
N···H/H···N | 2.3 | 1.4 |
O···H/H···O | 54.5 | 44.2 |
S···H/H···S | 2.6 | 10.9 |
C···C | 2.7 | – |
N···C/C···N | 2.0 | 0.7 |
O···C/C···O | 4.8 | 5.2 |
O···N/N···O | – | 3.2 |
O···O | – | 4.2 |
S···O/O···S | – | 1.7 |
Note: (a) Shanthakumari et al. (2011). |
Footnotes
‡Deceased.
Acknowledgements
AS, RK, MK and SS thank the late Professor Jerry P. Jasinski (Department of Chemistry, Keene State College, USA) for his help, advice and fruitful collaboration. HSE is grateful to the University of Neuchâtel for their support over the years.
References
Anandha Babu, G., Sreedhar, S., Venugopal Rao, S. & Ramasamy, P. (2010). J. Cryst. Growth 312, 1957–1962. CrossRef Google Scholar
Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1604–o1606. Web of Science CSD CrossRef IUCr Journals Google Scholar
Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arivanandhan, M., Sankaranarayanan, K., Ramamoorthy, K., Sanjeeviraja, C. & Ramasamy, P. (2005). Thin Solid Films 477, 2–6. CrossRef CAS Google Scholar
Berkovitch-Yellin, Z. & Leiserowitz, L. (1984). Acta Cryst. B40, 159–165. CrossRef CAS Web of Science IUCr Journals Google Scholar
Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1–32. Web of Science CrossRef CAS Google Scholar
Etter, M. C. & Huang, K. S. (1992). Chem. Mater. 4, 824–827. CrossRef CAS Web of Science Google Scholar
Frankenbach, G. M. & Etter, M. C. (1992). Chem. Mater. 4, 272–278. CrossRef CAS Web of Science Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235. Web of Science CrossRef CAS IUCr Journals Google Scholar
McArdle, B. J., Sherwood, J. N. & Damask, A. C. (1974). J. Cryst. Growth 22, 193–200. CrossRef CAS Google Scholar
Min Jin, Z., Jiang Pan, Y., Lin Hu, M., Shen, L. & Chao Li, M. (2003). Cryst. Res. Technol. 38, 1009–1012. CrossRef Google Scholar
Muthamizhchelvan, C., Saminathan, K., SethuSankar, K. & Sivakumar, K. (2005). Acta Cryst. E61, o3605–o3607. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153–o1155. Web of Science CSD CrossRef IUCr Journals Google Scholar
Muthu, K. & Meenakshisundaram, S. (2012). J. Cryst. Growth 352, 163–166. CrossRef CAS Google Scholar
Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Shanthakumari, R., Hema, R., Ramamurthy, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m127. CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sherwood, J. N. (1998). Pure Appl. Opt. 7, 229–238. CrossRef CAS Google Scholar
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2020). Acta Cryst. E76, 1–11. Web of Science CrossRef IUCr Journals Google Scholar
Stoeckli-Evans, H., Shankar, M. G., Kumaravel, R., Subashini, A., Sabari Girisun, T., Ramamurthi, K., Kučeráková, M., Dušek, M. & Crochet, A. (2025). Acta Cryst. E81, 393–400. CSD CrossRef IUCr Journals Google Scholar
Sun, H. Q., Yuan, D. R., Wang, X. Q., Lü, Y. Q., Sun, Z. H., Wei, X. C., Duan, X. L., Luan, C. N., Lü, M. K. & Xu, D. (2003). J. Cryst. Growth 256, 183–187. CrossRef CAS Google Scholar
Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318. Web of Science CrossRef IUCr Journals Google Scholar
Pal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743–747. CrossRef CAS Google Scholar
Ushasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1999). J. Cryst. Growth 197, 216–220. CrossRef CAS Google Scholar
Verbiest, T., Houbrechts, S., Kauranen, M., Clays, K. & Persoons, A. J. (1997). J. Mater. Chem. 7, 2175–2189. CrossRef CAS Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, Z.-Y. (2007). Acta Cryst. E63, o2957–o2958. CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.