research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-thio­semicarbazide-κ3N1,S:S;κ3S:N1,S)bis­­[(di­methyl­formamide-κO)(thio­semicarbazide-κ2N1,S)cadmium(II)] tetra­kis­(2,4,6-tri­nitro­phen­olate): synthesis, crystal structure and Hirshfeld surface analysis

crossmark logo

aDepartment of Physics, Government. Arts College for Women(Autonomous), Pudukkottai-622 001, Tamil Nadu, India, bCrystal Growth and Thin Film Laboratory, Department of Physics and, Nanotechnology, Faculty of Engineering Technology, SRM University, Kattankulathur-603 203, Tamil Nadu, India, cDepartment of Chemistry, Keene State College, 229 Main Street, Keene, New Hampshire, 03435-2001, USA, dNanotechnology and Catalysis Research Centre, Universiti Malaya, Kuala Lumpur-50603, Malaysia, and eInstitute of Physics, University of Neuchâtel, Rue Emile-Argand 11, CH-2000, Neuchâtel, Switzerland
*Correspondence e-mail: santhasrinithi@yahoo.co.in, helen.stoeckli-evans@unine.ch

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 29 April 2025; accepted 5 May 2025; online 13 May 2025)

In the title complex salt, [Cd2(C3H7NO)2(CH5N3S)4](C6H2N3O7)4, (I), the binuclear cation is located about a crystallographic center of symmetry. The asymmetric unit of the complex cation is composed of two bidentate thio­semicarbazide ligands and one mol­ecule of di­methyl­formamide coordinated to a cadmium(II) atom. The S atom of one of the thio­semicarbazide ligands bridges the cadmium atoms about the inversion center. The positive charge of the complex is balanced by picrate anions. In the crystal, the cation is linked to the picrate anions by side-by-side bifurcated N—H⋯(O,O) hydrogen bonds in which the central O atom acts as a double acceptor for two such bonds, enclosing R12(6) and R21(6) ring motifs. In the crystal, further N—H⋯O hydrogen bonds link the various units to form slabs lying parallel to the (001) plane and the slabs are linked by C—H⋯O hydrogen bonds, thereby forming a three-dimensional network.

1. Chemical context

Organic mol­ecules containing π-electron conjugated systems, asymmetrized by the electron donor and acceptor groups, are highly polarizable entities for non-linear optical (NLO) applications (Long, 1995[Long, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21-38.]; Verbiest et al., 1997[Verbiest, T., Houbrechts, S., Kauranen, M., Clays, K. & Persoons, A. J. (1997). J. Mater. Chem. 7, 2175-2189.]; Pal et al., 2004[Pal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743-747.]). Furthermore, in metal–organic complexes the metal-to-ligand bonding is expected to display a large mol­ecular hyper–polarizability due to the transfer of electron density between the metal atom and the conjugated ligand system (McArdle et al., 1974[McArdle, B. J., Sherwood, J. N. & Damask, A. C. (1974). J. Cryst. Growth 22, 193-200.]; Arivanandhan et al., 2005[Arivanandhan, M., Sankaranarayanan, K., Ramamoorthy, K., Sanjeeviraja, C. & Ramasamy, P. (2005). Thin Solid Films 477, 2-6.]). A key factor is that the diversity of the central metal, its oxidation state and the ligands make it possible to optimize the charge-transfer inter­actions. In the case of metal–organic coordination complexes, group 12 (group IIB) metals are extensively chosen, as their complexes usually achieve high transparency in the UV region because of their closed d10 shell (Sun et al., 2003[Sun, H. Q., Yuan, D. R., Wang, X. Q., Lü, Y. Q., Sun, Z. H., Wei, X. C., Duan, X. L., Luan, C. N., Lü, M. K. & Xu, D. (2003). J. Cryst. Growth 256, 183-187.]; Ushasree et al., 1999[Ushasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1999). J. Cryst. Growth 197, 216-220.]), hence dd electronic transitions are not possible.

Picric acid (2,4,6-tri­nitro­phenol) is an electron-acceptor forming charge-transfer mol­ecular complexes with a number of electron donor compounds, such as amines, through electrostatic or hydrogen-bonding inter­actions (Anitha et al., 2005[Anitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1604-o1606.]; Saminathan et al., 2005[Muthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153-o1155.]; Muthamizhchelvan et al., 2005[Muthamizhchelvan, C., Saminathan, K., SethuSankar, K. & Sivakumar, K. (2005). Acta Cryst. E61, o3605-o3607.]; Muthu & Meenakshisundaram, 2012[Muthu, K. & Meenakshisundaram, S. (2012). J. Cryst. Growth 352, 163-166.]). As a result of the formation of the conjugated base on proton loss to form picrate anions, the magnitude of the mol­ecular hyperpolarizability is increased (Anandha Babu et al., 2010[Anandha Babu, G., Sreedhar, S., Venugopal Rao, S. & Ramasamy, P. (2010). J. Cryst. Growth 312, 1957-1962.]). Picric acid forms salts with amino acids, such as L-valine and L-asparagine (Anitha et al., 2004[Anitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530-o1532.]; Braga et al., 2004[Braga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1-32.]). Hydrogen bonds play an important role in the supra­molecular packing and in the generation of non-centrosymmetric structures (Berkovitch-Yellin & Leiserowitz, 1984[Berkovitch-Yellin, Z. & Leiserowitz, L. (1984). Acta Cryst. B40, 159-165.]; Min Jin et al., 2003[Min Jin, Z., Jiang Pan, Y., Lin Hu, M., Shen, L. & Chao Li, M. (2003). Cryst. Res. Technol. 38, 1009-1012.]; Frankenbach & Etter, 1992[Frankenbach, G. M. & Etter, M. C. (1992). Chem. Mater. 4, 272-278.]; Etter & Huang, 1992[Etter, M. C. & Huang, K. S. (1992). Chem. Mater. 4, 824-827.]; Sherwood, 1998[Sherwood, J. N. (1998). Pure Appl. Opt. 7, 229-238.]). Hence, thio­semicarbazide (CH5N3S) is an inter­esting candidate, as it binds well to most transition metals of groups 7–10. The crystal structure of thio­semicarbazidium picrate monohydrate has been reported (Xie, 2007[Xie, Z.-Y. (2007). Acta Cryst. E63, o2957-o2958.]) in which extensive hydrogen bonding lead to the formation of a three-dimensional supra­molecular structure.

[Scheme 1]
[Scheme 2]

The title compound (I), a cadmium thio­semicarbazide picrate, was prepared using di­methyl­formamide as solvent. A search of the Cambridge Structural Database (CSD; V5.46, last update February 2025; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) for cadmium–thio­semicarbazide complexes gave 15 hits. Only one compound involves picrate as anion, namely trans-bis­(dimethyl sulfoxide-κO)bis­(thio­semicarbazide-κ2N1,S)cadmium bis­(2,4,6-tri­nitro­phenolate) dihydrate (II) (CSD refcode QAJDOW; Shanthakumari et al., 2011[Shanthakumari, R., Hema, R., Ramamurthy, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m127.]), which was prepared using dimethyl sulfoxide (DMSO) as solvent. In both cases the solvent mol­ecule coordinates to the cadmium(II) atom via its O atom. Herein, the structures and Hirshfeld surfaces of compounds (I) and (II) are compared.

2. Structural commentary

The title complex (I), is composed of a [Cd2(thio­semicarb­azide)4(dimethyl formamide)2]4+ cation, located about an inversion center, and two crystallographically distinct picrate (2,4,6-tri­nitro­phenolate) anions. The cadmium atom coordinates to atom O1 of a DMF mol­ecule, and to the sulfur (S1 and S2) and nitro­gen (N3 and N6) atoms of two bidentate thio­semicarbazide ligands (Fig. 1[link]). Atom S2 bridges the cadmium atoms about the inversion center. Selected bond lengths and bond angles for complexes (I) and (II) are listed in Table 1[link].

Table 1
A comparison of selected equivalent bond lengths (Å) and bond angles (°) in complexes (I)[link] and (II)

Bond/angle (I) (II)a
Cd1—O1 2.275 (2) 2.401 (2)
Cd1—N3 2.398 (3) 2.382 (2)
Cd1—S1 2.540 (1) 2.551 (1)
     
Cd1—N6 2.421 (3)
Cd1—S2 2.627 (1)
Cd1—S1i 2.841 (1)
     
O1—Cd1—N6 160.89 (9) 180
S1—Cd1—S2 167.97 (3) 180
N3—Cd1—S2ii 171.43 (7) 180
Note: (a) Shanthakumari et al. (2011[Shanthakumari, R., Hema, R., Ramamurthy, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m127.]). Symmetry codes: (i) −x + 1, −y + 2, −z + 1; (ii) −x + 2, −y, −z.
[Figure 1]
Figure 1
The mol­ecular structure of the complex cation of compound (I), with displacement ellipsoids drawn at the 50% probability level. [Symmetry code (i): −x + 1, −y + 2, −z + 1.]

In the cation of (I), atom Cd1 is sixfold coordinated, CdS2O2N2, in a distorted octa­hedral geometry. The structural index, τ6, describing the deformation of an octa­hedral coordination sphere has a value of [540° – (160.89 + 167.97° + 171.43°)]/180° = 0.22 for Cd1 (τ6 = 0 for a perfect octa­hedral geometry; 0.75 for a trigonal prismatic geometry, and = 1 for a penta­gonal pyramidal geometry; Stoeckli-Evans et al., 2025[Stoeckli-Evans, H., Shankar, M. G., Kumaravel, R., Subashini, A., Sabari Girisun, T., Ramamurthi, K., Kučeráková, M., Dušek, M. & Crochet, A. (2025). Acta Cryst. E81, 393-400.]). In complex (II), the Cd atom is located on an inversion center and is coordinated to the O atom of two DMSO mol­ecules, and to the N and S atoms of two bidentate thio­semicarbazide ligands. The structural index, τ6, of the sixfold coordination sphere of the cadmium atom (CdS2O2N2) is [540° – (3 × 180°)]/180° = 0.

In (I) the cadmium–nitro­gen bond lengths, Cd1—N3 and Cd1—N6, are similar and close to the value observed for complex (II), viz., 2.398 (3) and 2.421 (3) Å, respectively in (I) compared to 2.382 (2) Å in (II). The equivalent Cd—S bond length Cd1—S1 in (I) is 2.540 (1) Å compared to 2.551 (1) Å in (II). The Cd—S bond lengths involving the bridging S atom (S2) in complex (I) are much longer that the terminal bonds, at 2.627 (1) and 2.841 (1) Å.

The difference in the Cd1—O bond lengths involving the di­methyl­formamide group in (I) and the dimethyl sulfoxide group in (II) is considerable; 2.275 (2) Å in (I) compared to 2.401 (2) Å in (II). However, a search of the CSD for compounds containing a Cd—O(DMF) or a Cd—O(DMSO) bond (with the following restrictions: three-dimensional coordinates determined, R factor ≤ 0.075, no disorder, no errors, not polymeric, no ions,and single crystals only) gave 37 hits for the former and 19 for the latter. The mean value for the Cd—O(DMF) bond length was found to be 2.33 (5) Å (varying from 2.225 to 2.482 Å). The mean value for the Cd—O(DMSO) bond length was found to be 2.33 (4) Å (varying from 2.25 to 2.412 Å). Thus, the Cd—O bond length observed for (I) is near the lower limit while the value observed for (II) is near the upper limit.

In the picrate anions in (I) the nitro groups are inclined by different degrees to the phenolate rings to which they are attached: nitro groups N10/O3/O4, N11/O5/O6 and N12/O7/O8 are inclined to ring C6–C11 by 34.6 (5), 9.9 (4) and 19.3 (4)°, respectively, while nitro groups N13/O10/O11A, N14/O12/O13 and N15/O14/O15 are inclined to the C12–C17 ring by 18.0 (4), 4.8 (5) and 2.8 (6)°, respectively. The picrate anions accept N—H⋯O hydrogen bonds from the cation, as shown in Fig. 2[link] (see also Table 2[link]). These hydrogen bonds, involving the phenolate O atoms (O2 and O9) and the adjacent nitro groups, are bifurcated, viz. two N—H⋯(O,O) links enclosing R12(6) ring motifs, which results in the central phenolate O atom acting as a double acceptor enclosing an R21(6) motif. This situation was also observed in the crystal of complex (II), and in the crystal structure of thio­semicarbazidium picrate monohydrate mentioned above (YIFXUH; Xie, 2007[Xie, Z.-Y. (2007). Acta Cryst. E63, o2957-o2958.]).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1AN⋯O12i 0.86 (4) 2.06 (4) 2.908 (4) 168 (4)
N1—H1BN⋯O9 0.81 (5) 2.04 (5) 2.737 (4) 145 (4)
N1—H1BN⋯O15 0.81 (5) 2.46 (5) 3.130 (4) 141 (4)
N2—H2N⋯O9 0.94 (4) 1.94 (4) 2.721 (4) 139 (4)
N2—H2N⋯O10 0.94 (4) 2.19 (4) 2.992 (4) 142 (4)
N3—H3AN⋯O6ii 0.89 (6) 2.53 (6) 3.379 (5) 161 (5)
N3—H3BN⋯O3iii 0.96 (6) 2.32 (6) 3.018 (4) 130 (5)
N4—H4AN⋯O11Aii 0.78 (5) 2.36 (5) 3.060 (5) 149 (4)
N4—H4BN⋯O2iv 0.80 (5) 2.15 (5) 2.842 (4) 145 (5)
N4—H4BN⋯O3iv 0.80 (5) 2.43 (5) 3.079 (4) 139 (4)
N5—H5N⋯O2iv 0.95 (5) 1.88 (5) 2.753 (4) 151 (4)
N5—H5N⋯O8iv 0.95 (5) 2.42 (4) 3.156 (4) 134 (3)
N6—H6AN⋯O1v 0.85 (4) 2.48 (4) 3.116 (4) 132 (3)
N6—H6AN⋯O7v 0.85 (4) 2.27 (4) 2.966 (4) 139 (4)
N6—H6BN⋯O5ii 0.94 (5) 2.49 (5) 3.160 (4) 129 (4)
C5—H5C⋯O8vi 0.98 2.60 3.351 (5) 134
C16—H16⋯O4vii 0.95 2.46 3.374 (4) 161
Symmetry codes: (i) [x, y+1, z]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x, -y+1, -z+1]; (iv) [x+1, y, z]; (v) [-x+1, -y+2, -z+1]; (vi) [-x, -y+2, -z+1]; (vii) [x+1, y, z-1].
[Figure 2]
Figure 2
A view of the picrate anions hydrogen bonded to the complex cation (dashed lines, Table 2[link]). The edge-sharing polyhedral of the cadmium(II) atoms are shown in yellow. The displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (iv) x + 1,y, z.]

3. Supra­molecular features

In the crystal of (I), there are a large number of N—H⋯O hydrogen bonds present (Table 2[link]). Apart from those noted above linking the complex cation and the picrate anions (Fig. 2[link]) there are further N—H⋯O hydrogen bonds linking these units to form slabs lying parallel to the ab plane, as shown in Fig. 3[link]. Within the slabs, parallel displaced ππ stacking inter­actions occur between inversion-related benzene rings (C6–C11) of a picrate anion: the centroid–centroid distance is 3.712 (2) Å, inter­planar distance = 3.375 (1) Å, slippage = 1.545 Å (shown in Fig. 3[link] as black double arrows). The slabs are linked by C—H⋯O hydrogen bonds (Table 2[link])

[Figure 3]
Figure 3
A view along the b axis of the crystal packing of compound (I). The N—H⋯O hydrogen bonds (Table 1[link]) are shown as dashed lines. For clarity, H atoms not involved in hydrogen bonding have been omitted. The ππ inter­action is shown as a black double arrow and the C—H⋯O hydrogen bonds are shown as brown dashed lines.

4. Hirshfeld surface analysis and two-dimensional fingerprint plots

The Hirshfeld surface (HS) analyses and the associated two-dimensional fingerprint plots were performed with CrystalExplorer17 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) and inter­preted following the protocol of Tan et al. (2019[Tan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308-318.]). The Hirshfeld surfaces for compounds (I) and (II) are illustrated in Fig. 4[link]a and 4c, respectively. A number of large red spots are observed in the HS which indicates that short contacts are highly significant in the crystal packing of both compounds.

[Figure 4]
Figure 4
(a) The Hirshfeld surface of compound (I), mapped over dnorm, (b) the full two-dimensional fingerprint plot for compound (I), (c) the Hirshfeld surface of compound (II), mapped over dnorm and (d) the full two-dimensional fingerprint plot for compound (II).

The full two-dimensional fingerprint plots for compounds (I) and (II) are given in Fig. 4[link]b and 4d, respectively. The principal percentage contributions of inter­atomic contacts to the Hirshfeld surfaces of (I) and (II) are compared in Table 3[link]. Selected two-dimensional fingerprint plots for the two compounds are given in Fig. 5[link]. For both crystal structures the major contributions are from O⋯H/H⋯O inter­actions; viz. 54.5% for (I) and 44.2% for (II). Both have sharp pincer-like spikes at de + di ≃ 1.85 Å. The H⋯H contacts also make significant contributions to the HS; 12.7% for (I) and 24.6% for (II). The S⋯H/H⋯S contributions are much more important for compound (II) at 10.9% than for compound (I) at 2.6%. Again both have sharp pincer-like spikes at de + di ≃ 2.8 Å for (I) and 2.5 Å for (II). These values can be correlated with the various hydrogen bonds and other inter­atomic inter­actions in the crystal (Table 2[link]).

Table 3
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of compounds (I)[link] and (II)a

Contact (I) (II)a
H⋯H 12.7 24.6
C⋯H/H⋯C 4.5 3.8
N⋯H/H⋯N 2.3 1.4
O⋯H/H⋯O 54.5 44.2
S⋯H/H⋯S 2.6 10.9
C⋯C 2.7
N⋯C/C⋯N 2.0 0.7
O⋯C/C⋯O 4.8 5.2
O⋯N/N⋯O 3.2
O⋯O 4.2
S⋯O/O⋯S 1.7
Note: (a) Shanthakumari et al. (2011[Shanthakumari, R., Hema, R., Ramamurthy, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m127.]).
[Figure 5]
Figure 5
The principal two-dimensional fingerprint plots for compounds (I) and (II), delineated into H⋯H, C⋯H/H⋯C, N⋯H/H⋯O, O⋯H/H⋯O and S⋯H/H⋯S contacts.

5. Synthesis and characterization

An equimolar ratio (1:1:1) of analytical grade reagents was used. Thio­semicarbazide (0.9 g) and CdCl2 (1.8 g) were dissolved in distilled water, then picric acid (2.3 g) dissolved in acetone was added under stirring. The mixture was refluxed at 373 K for 3 h, yielding a yellow crystalline precipitate. It was dissolved in DMF and a saturated solution at 303 K was prepared. The solvent was then allowed to evaporate slowly at room temperature, yielding large (ca 8 mm × 7 mm × 3 mm) yellow–orange block-like crystals of the title compound (I) [m.p. 412 (1) K], after a growth period of 32 days. Selected FTIR (KBr pellet, cm−1): 3419 (NH2 asymmetric stretch), 1643 (C=O stretch), 1265 (C—N stretch), 1082 (C=S stretch) (supporting information Fig. S1). For the UV/visible spectrum and TGA/DTA trace for (I) see Figs. S2 and S3 in the supporting information.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The amine H atoms were located in difference-Fourier maps and were freely refined. Atom O11 of a picrate anion was modelled as disordered over two sites in a 0.85:0.15 ratio. The C-bound H atoms were included in calculated positions with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl-C).

Table 4
Experimental details

Crystal data
Chemical formula [Cd2(C3H7NO)2(CH5N3S)4](C6H2N3O7)4
Mr 1647.97
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 10.5367 (4), 10.9088 (5), 14.1593 (7)
α, β, γ (°) 92.782 (4), 109.796 (4), 104.077 (4)
V3) 1469.98 (12)
Z 1
Radiation type Cu Kα
μ (mm−1) 8.14
Crystal size (mm) 0.50 × 0.35 × 0.25
 
Data collection
Diffractometer Xcalibur, Eos, Gemini
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.326, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10301, 5601, 5028
Rint 0.040
(sin θ/λ)max−1) 0.615
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.095, 1.02
No. of reflections 5601
No. of parameters 478
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.91, −0.62
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2019/3 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2019/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Bis(µ-thiosemicarbazide-κ3N1,S:S;κ3S:N1,S)bis[(dimethylformamide-κO)(thiosemicarbazide-κ2N1,S)cadmium(II)] tetrakis(2,4,6-trinitrophenolate) top
Crystal data top
[Cd2(C3H7NO)2(CH5N3S)4](C6H2N3O7)4Z = 1
Mr = 1647.97F(000) = 828
Triclinic, P1Dx = 1.862 Mg m3
a = 10.5367 (4) ÅCu Kα radiation, λ = 1.54184 Å
b = 10.9088 (5) ÅCell parameters from 4951 reflections
c = 14.1593 (7) Åθ = 4.2–71.4°
α = 92.782 (4)°µ = 8.14 mm1
β = 109.796 (4)°T = 173 K
γ = 104.077 (4)°Block, yellow
V = 1469.98 (12) Å30.50 × 0.35 × 0.25 mm
Data collection top
Xcalibur, Eos, Gemini
diffractometer
5601 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source5028 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 16.0416 pixels mm-1θmax = 71.4°, θmin = 3.4°
ω scansh = 812
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2015)
k = 1213
Tmin = 0.326, Tmax = 1.000l = 1717
10301 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: mixed
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0524P)2]
where P = (Fo2 + 2Fc2)/3
5601 reflections(Δ/σ)max = 0.001
478 parametersΔρmax = 0.91 e Å3
1 restraintΔρmin = 0.62 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.49782 (2)0.92980 (2)0.37745 (2)0.02499 (9)
S20.45606 (8)0.81886 (7)0.52909 (6)0.02237 (16)
S10.57145 (10)1.00687 (8)0.23246 (7)0.03156 (19)
O10.2648 (3)0.9168 (2)0.31788 (19)0.0308 (5)
O20.0937 (3)0.7022 (2)0.6663 (2)0.0303 (5)
O30.2412 (3)0.4763 (3)0.6984 (3)0.0508 (8)
O40.0935 (4)0.3885 (3)0.7959 (3)0.0495 (8)
O50.2133 (3)0.2920 (3)0.6310 (2)0.0401 (6)
O60.3335 (3)0.4463 (3)0.5799 (3)0.0427 (7)
O70.1430 (3)0.7964 (2)0.4898 (2)0.0334 (6)
O80.0435 (4)0.8716 (3)0.5807 (3)0.0474 (8)
O90.6470 (5)0.6190 (3)0.1049 (4)0.0795 (15)
O100.4996 (3)0.4696 (3)0.1922 (3)0.0463 (7)
O11A0.5513 (4)0.2969 (3)0.2271 (3)0.0455 (9)0.85
O11B0.4768 (19)0.262 (2)0.1674 (14)0.0455 (9)0.15
O120.7272 (4)0.0845 (3)0.0154 (3)0.0470 (7)
O130.8366 (5)0.1917 (3)0.0681 (3)0.0688 (12)
O140.8799 (5)0.6291 (3)0.0750 (4)0.0791 (15)
O150.7789 (5)0.7313 (3)0.0066 (4)0.0820 (16)
N10.6282 (3)0.8649 (3)0.1059 (2)0.0290 (6)
H1AN0.658 (4)0.937 (4)0.087 (3)0.026 (10)*
H1BN0.639 (5)0.801 (4)0.083 (4)0.034 (12)*
N20.5270 (3)0.7499 (3)0.2023 (2)0.0271 (6)
H2N0.539 (4)0.673 (4)0.178 (3)0.032 (11)*
N30.4735 (4)0.7328 (3)0.2812 (2)0.0315 (6)
H3AN0.520 (6)0.695 (5)0.330 (4)0.053 (15)*
H3BN0.375 (6)0.693 (5)0.253 (5)0.067 (17)*
N40.6257 (4)0.6970 (3)0.6412 (3)0.0371 (8)
H4AN0.567 (5)0.671 (4)0.663 (3)0.028 (11)*
H4BN0.694 (5)0.673 (4)0.661 (4)0.041 (13)*
N50.7261 (3)0.8318 (3)0.5551 (2)0.0222 (5)
H5N0.809 (5)0.805 (4)0.585 (4)0.037 (12)*
N60.7277 (3)0.9252 (3)0.4900 (2)0.0266 (6)
H6AN0.762 (4)0.998 (4)0.526 (3)0.023 (10)*
H6BN0.787 (6)0.912 (5)0.456 (4)0.057 (15)*
N70.0868 (3)0.9859 (3)0.2160 (2)0.0331 (7)
N100.1256 (4)0.4557 (3)0.7304 (3)0.0328 (7)
N110.2397 (3)0.4025 (3)0.6116 (2)0.0288 (6)
N120.0900 (3)0.7869 (3)0.5553 (2)0.0261 (6)
N130.5526 (3)0.3869 (3)0.1780 (2)0.0335 (7)
N140.7719 (4)0.1851 (3)0.0113 (2)0.0335 (7)
N150.8085 (4)0.6347 (3)0.0242 (3)0.0396 (8)
C20.6139 (3)0.7811 (3)0.5782 (2)0.0230 (6)
C10.5757 (3)0.8647 (3)0.1789 (2)0.0231 (6)
C30.2170 (4)0.9789 (3)0.2489 (3)0.0299 (7)
H30.2785731.0238120.2185130.036*
C40.0378 (6)1.0605 (5)0.1359 (3)0.0553 (13)
H4C0.0026291.1221380.1596070.083*
H4B0.0338051.0034530.0761920.083*
H4A0.1168641.1062380.1180020.083*
C50.0162 (4)0.9147 (4)0.2543 (3)0.0438 (10)
H5C0.0723610.9693620.2659490.066*
H5B0.0319380.8868430.3182410.066*
H5A0.0778330.8398690.2045840.066*
C60.0197 (3)0.6351 (3)0.6521 (2)0.0213 (6)
C70.0230 (3)0.5117 (3)0.6852 (2)0.0231 (6)
C80.0616 (4)0.4384 (3)0.6752 (2)0.0237 (6)
H80.0563810.3591070.7007530.028*
C90.1550 (3)0.4822 (3)0.6270 (2)0.0237 (6)
C100.1650 (3)0.5977 (3)0.5895 (2)0.0229 (6)
H100.2290840.6259790.5561550.027*
C110.0801 (3)0.6710 (3)0.6016 (2)0.0221 (6)
C120.6766 (4)0.5218 (3)0.0800 (3)0.0334 (8)
C130.6341 (4)0.3998 (3)0.1128 (2)0.0265 (7)
C140.6667 (4)0.2920 (3)0.0858 (2)0.0266 (7)
H140.6368510.2142410.1095850.032*
C150.7442 (4)0.2991 (3)0.0231 (2)0.0267 (7)
C160.7908 (4)0.4120 (3)0.0109 (3)0.0296 (7)
H160.8447510.4152060.0529970.035*
C170.7584 (4)0.5193 (3)0.0167 (3)0.0291 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.02764 (13)0.03138 (14)0.02463 (12)0.01650 (10)0.01366 (9)0.00976 (9)
S20.0217 (4)0.0235 (4)0.0299 (4)0.0115 (3)0.0147 (3)0.0105 (3)
S10.0489 (5)0.0241 (4)0.0362 (4)0.0169 (4)0.0277 (4)0.0120 (3)
O10.0303 (12)0.0381 (14)0.0305 (12)0.0176 (11)0.0127 (10)0.0105 (10)
O20.0305 (12)0.0322 (13)0.0422 (14)0.0192 (10)0.0216 (11)0.0180 (11)
O30.0398 (16)0.0476 (18)0.085 (2)0.0166 (13)0.0415 (17)0.0299 (16)
O40.081 (2)0.0456 (17)0.0540 (18)0.0340 (16)0.0493 (18)0.0331 (15)
O50.0513 (17)0.0289 (14)0.0545 (17)0.0249 (12)0.0266 (14)0.0136 (12)
O60.0418 (16)0.0397 (16)0.0624 (19)0.0181 (13)0.0335 (15)0.0086 (13)
O70.0349 (13)0.0360 (14)0.0421 (14)0.0135 (11)0.0252 (12)0.0227 (11)
O80.071 (2)0.0298 (14)0.071 (2)0.0283 (14)0.0490 (18)0.0252 (14)
O90.144 (4)0.0351 (17)0.130 (4)0.042 (2)0.121 (4)0.033 (2)
O100.0597 (19)0.0401 (16)0.0604 (19)0.0188 (14)0.0445 (16)0.0091 (14)
O11A0.072 (3)0.0412 (19)0.047 (2)0.0263 (18)0.0412 (19)0.0214 (16)
O11B0.072 (3)0.0412 (19)0.047 (2)0.0263 (18)0.0412 (19)0.0214 (16)
O120.073 (2)0.0297 (15)0.0609 (19)0.0245 (14)0.0424 (17)0.0223 (13)
O130.131 (4)0.0371 (17)0.087 (3)0.032 (2)0.093 (3)0.0160 (17)
O140.135 (4)0.0392 (18)0.121 (4)0.029 (2)0.112 (3)0.030 (2)
O150.152 (4)0.0304 (17)0.125 (4)0.036 (2)0.117 (4)0.029 (2)
N10.0399 (17)0.0256 (16)0.0333 (15)0.0129 (13)0.0244 (13)0.0086 (13)
N20.0352 (15)0.0225 (14)0.0309 (14)0.0085 (12)0.0205 (12)0.0057 (11)
N30.0389 (17)0.0323 (16)0.0347 (16)0.0104 (14)0.0262 (14)0.0106 (13)
N40.0345 (17)0.048 (2)0.055 (2)0.0279 (16)0.0330 (16)0.0379 (17)
N50.0242 (13)0.0223 (14)0.0288 (13)0.0121 (11)0.0152 (11)0.0109 (11)
N60.0279 (14)0.0244 (15)0.0345 (15)0.0108 (12)0.0164 (12)0.0135 (13)
N70.0381 (16)0.0392 (17)0.0243 (14)0.0219 (14)0.0063 (12)0.0053 (12)
N100.0448 (18)0.0251 (15)0.0411 (17)0.0130 (13)0.0280 (15)0.0112 (13)
N110.0319 (15)0.0295 (16)0.0304 (14)0.0159 (12)0.0132 (12)0.0041 (12)
N120.0247 (13)0.0223 (14)0.0340 (14)0.0074 (11)0.0122 (12)0.0106 (11)
N130.0428 (18)0.0334 (17)0.0384 (16)0.0170 (14)0.0265 (14)0.0142 (13)
N140.0502 (19)0.0289 (16)0.0320 (15)0.0174 (14)0.0226 (14)0.0097 (12)
N150.059 (2)0.0261 (16)0.0455 (18)0.0097 (15)0.0352 (17)0.0063 (14)
C20.0263 (16)0.0221 (16)0.0288 (15)0.0137 (13)0.0147 (13)0.0077 (12)
C10.0221 (15)0.0248 (16)0.0250 (15)0.0096 (12)0.0093 (12)0.0073 (12)
C30.0370 (19)0.0331 (19)0.0243 (15)0.0142 (15)0.0136 (14)0.0044 (13)
C40.073 (3)0.062 (3)0.034 (2)0.040 (3)0.007 (2)0.015 (2)
C50.0297 (19)0.057 (3)0.045 (2)0.0168 (18)0.0101 (17)0.0080 (19)
C60.0199 (14)0.0252 (16)0.0202 (13)0.0108 (12)0.0053 (11)0.0079 (12)
C70.0261 (16)0.0249 (16)0.0214 (14)0.0090 (13)0.0106 (12)0.0079 (12)
C80.0312 (16)0.0209 (16)0.0220 (14)0.0105 (13)0.0104 (13)0.0061 (12)
C90.0246 (15)0.0248 (16)0.0252 (15)0.0125 (13)0.0090 (13)0.0068 (12)
C100.0219 (14)0.0250 (16)0.0233 (14)0.0052 (12)0.0109 (12)0.0047 (12)
C110.0207 (14)0.0199 (15)0.0259 (15)0.0072 (12)0.0069 (12)0.0080 (12)
C120.046 (2)0.0261 (18)0.0379 (19)0.0117 (15)0.0259 (17)0.0063 (14)
C130.0328 (17)0.0308 (18)0.0222 (15)0.0130 (14)0.0143 (13)0.0066 (13)
C140.0320 (17)0.0287 (17)0.0213 (14)0.0095 (14)0.0109 (13)0.0081 (12)
C150.0370 (18)0.0276 (17)0.0214 (14)0.0138 (14)0.0141 (13)0.0064 (12)
C160.0396 (19)0.0324 (19)0.0231 (15)0.0118 (15)0.0180 (14)0.0047 (13)
C170.0424 (19)0.0217 (16)0.0277 (16)0.0060 (14)0.0201 (15)0.0030 (13)
Geometric parameters (Å, º) top
Cd1—O12.275 (2)N5—N61.407 (4)
Cd1—N32.398 (3)N5—H5N0.95 (5)
Cd1—N62.421 (3)N6—H6AN0.85 (4)
Cd1—S12.5402 (9)N6—H6BN0.94 (5)
Cd1—S22.6271 (8)N7—C31.314 (5)
Cd1—S2i2.8406 (8)N7—C51.451 (5)
S2—C21.731 (3)N7—C41.453 (5)
S1—C11.711 (3)N10—C71.462 (4)
O1—C31.250 (4)N11—C91.446 (4)
O2—C61.247 (4)N12—C111.449 (4)
O3—N101.228 (5)N13—C131.449 (4)
O4—N101.219 (4)N14—C151.444 (4)
O5—N111.236 (4)N15—C171.467 (5)
O6—N111.223 (4)C3—H30.9500
O7—N121.230 (4)C4—H4C0.9800
O8—N121.237 (4)C4—H4B0.9800
O9—C121.242 (5)C4—H4A0.9800
O10—N131.213 (4)C5—H5C0.9800
O11A—N131.230 (5)C5—H5B0.9800
O11B—N131.37 (2)C5—H5A0.9800
O12—N141.216 (4)C6—C71.442 (4)
O13—N141.212 (4)C6—C111.452 (5)
O14—N151.212 (5)C7—C81.370 (5)
O15—N151.207 (5)C8—C91.386 (5)
N1—C11.326 (4)C8—H80.9500
N1—H1AN0.86 (4)C9—C101.385 (5)
N1—H1BN0.81 (5)C10—C111.382 (4)
N2—C11.336 (4)C10—H100.9500
N2—N31.414 (4)C12—C171.444 (5)
N2—H2N0.94 (4)C12—C131.448 (5)
N3—H3AN0.89 (6)C13—C141.374 (5)
N3—H3BN0.96 (6)C14—C151.389 (5)
N4—C21.310 (4)C14—H140.9500
N4—H4AN0.78 (5)C15—C161.383 (5)
N4—H4BN0.80 (5)C16—C171.370 (5)
N5—C21.331 (4)C16—H160.9500
O1—Cd1—N395.40 (11)O13—N14—C15119.0 (3)
O1—Cd1—N6160.89 (9)O12—N14—C15119.3 (3)
N3—Cd1—N690.03 (12)O15—N15—O14122.1 (3)
O1—Cd1—S1102.28 (7)O15—N15—C17120.0 (3)
N3—Cd1—S177.96 (7)O14—N15—C17117.9 (3)
N6—Cd1—S196.77 (7)N4—C2—N5116.9 (3)
O1—Cd1—S286.86 (6)N4—C2—S2119.1 (3)
N3—Cd1—S293.55 (7)N5—C2—S2124.0 (2)
N6—Cd1—S274.50 (7)N1—C1—N2115.6 (3)
S1—Cd1—S2167.97 (3)N1—C1—S1118.8 (3)
O1—Cd1—S2i87.19 (7)N2—C1—S1125.6 (3)
N3—Cd1—S2i171.43 (7)O1—C3—N7124.1 (3)
N6—Cd1—S2i90.14 (8)O1—C3—H3118.0
S1—Cd1—S2i93.51 (3)N7—C3—H3118.0
S2—Cd1—S2i94.75 (2)N7—C4—H4C109.5
C2—S2—Cd198.61 (11)N7—C4—H4B109.5
C2—S2—Cd1i106.39 (11)H4C—C4—H4B109.5
Cd1—S2—Cd1i85.25 (2)N7—C4—H4A109.5
C1—S1—Cd198.99 (11)H4C—C4—H4A109.5
C3—O1—Cd1119.9 (2)H4B—C4—H4A109.5
C1—N1—H1AN118 (3)N7—C5—H5C109.5
C1—N1—H1BN121 (3)N7—C5—H5B109.5
H1AN—N1—H1BN120 (4)H5C—C5—H5B109.5
C1—N2—N3123.0 (3)N7—C5—H5A109.5
C1—N2—H2N125 (3)H5C—C5—H5A109.5
N3—N2—H2N111 (3)H5B—C5—H5A109.5
N2—N3—Cd1113.3 (2)O2—C6—C7123.4 (3)
N2—N3—H3AN114 (3)O2—C6—C11124.6 (3)
Cd1—N3—H3AN101 (3)C7—C6—C11111.9 (3)
N2—N3—H3BN110 (4)C8—C7—C6124.9 (3)
Cd1—N3—H3BN105 (3)C8—C7—N10115.6 (3)
H3AN—N3—H3BN113 (5)C6—C7—N10119.4 (3)
C2—N4—H4AN121 (3)C7—C8—C9118.6 (3)
C2—N4—H4BN122 (4)C7—C8—H8120.7
H4AN—N4—H4BN117 (5)C9—C8—H8120.7
C2—N5—N6122.3 (3)C10—C9—C8121.7 (3)
C2—N5—H5N119 (3)C10—C9—N11119.2 (3)
N6—N5—H5N119 (3)C8—C9—N11119.0 (3)
N5—N6—Cd1114.5 (2)C11—C10—C9118.8 (3)
N5—N6—H6AN108 (3)C11—C10—H10120.6
Cd1—N6—H6AN104 (3)C9—C10—H10120.6
N5—N6—H6BN106 (3)C10—C11—N12115.8 (3)
Cd1—N6—H6BN114 (3)C10—C11—C6124.0 (3)
H6AN—N6—H6BN110 (4)N12—C11—C6120.2 (3)
C3—N7—C5121.6 (3)O9—C12—C17123.5 (3)
C3—N7—C4121.4 (4)O9—C12—C13123.5 (3)
C5—N7—C4117.0 (4)C17—C12—C13113.0 (3)
O4—N10—O3123.5 (3)C14—C13—C12123.8 (3)
O4—N10—C7118.5 (3)C14—C13—N13116.4 (3)
O3—N10—C7118.0 (3)C12—C13—N13119.9 (3)
O6—N11—O5122.8 (3)C13—C14—C15118.7 (3)
O6—N11—C9119.2 (3)C13—C14—H14120.7
O5—N11—C9117.9 (3)C15—C14—H14120.7
O7—N12—O8121.9 (3)C16—C15—C14121.5 (3)
O7—N12—C11118.1 (3)C16—C15—N14118.9 (3)
O8—N12—C11119.9 (3)C14—C15—N14119.5 (3)
O10—N13—O11A120.5 (3)C17—C16—C15119.5 (3)
O10—N13—O11B117.9 (8)C17—C16—H16120.3
O10—N13—C13120.9 (3)C15—C16—H16120.3
O11A—N13—C13118.2 (3)C16—C17—C12123.5 (3)
O11B—N13—C13110.4 (9)C16—C17—N15116.4 (3)
O13—N14—O12121.7 (3)C12—C17—N15120.1 (3)
C1—N2—N3—Cd15.1 (4)O7—N12—C11—C6159.4 (3)
C2—N5—N6—Cd121.7 (4)O8—N12—C11—C619.2 (5)
N6—N5—C2—N4178.6 (3)O2—C6—C11—C10177.6 (3)
N6—N5—C2—S22.1 (5)C7—C6—C11—C102.0 (5)
Cd1—S2—C2—N4163.7 (3)O2—C6—C11—N125.7 (5)
Cd1i—S2—C2—N4108.7 (3)C7—C6—C11—N12174.8 (3)
Cd1—S2—C2—N515.6 (3)O9—C12—C13—C14179.8 (5)
Cd1i—S2—C2—N572.0 (3)C17—C12—C13—C140.6 (5)
N3—N2—C1—N1177.0 (3)O9—C12—C13—N130.0 (7)
N3—N2—C1—S14.6 (5)C17—C12—C13—N13179.2 (3)
Cd1—S1—C1—N1171.4 (3)O10—N13—C13—C14167.9 (4)
Cd1—S1—C1—N210.4 (3)O11A—N13—C13—C1419.9 (5)
Cd1—O1—C3—N7173.9 (3)O11B—N13—C13—C1424.5 (8)
C5—N7—C3—O13.4 (6)O10—N13—C13—C1212.3 (6)
C4—N7—C3—O1179.6 (4)O11A—N13—C13—C12159.9 (4)
O2—C6—C7—C8176.7 (3)O11B—N13—C13—C12155.7 (8)
C11—C6—C7—C82.9 (5)C12—C13—C14—C150.4 (5)
O2—C6—C7—N105.3 (5)N13—C13—C14—C15179.8 (3)
C11—C6—C7—N10175.1 (3)C13—C14—C15—C161.2 (5)
O4—N10—C7—C834.2 (5)C13—C14—C15—N14176.1 (3)
O3—N10—C7—C8144.0 (3)O13—N14—C15—C160.8 (6)
O4—N10—C7—C6147.5 (3)O12—N14—C15—C16177.5 (4)
O3—N10—C7—C634.2 (5)O13—N14—C15—C14178.2 (4)
C6—C7—C8—C92.2 (5)O12—N14—C15—C140.2 (5)
N10—C7—C8—C9175.9 (3)C14—C15—C16—C170.9 (5)
C7—C8—C9—C100.3 (5)N14—C15—C16—C17176.4 (3)
C7—C8—C9—N11176.9 (3)C15—C16—C17—C120.2 (6)
O6—N11—C9—C1011.0 (5)C15—C16—C17—N15178.6 (3)
O5—N11—C9—C10168.7 (3)O9—C12—C17—C16179.9 (5)
O6—N11—C9—C8171.6 (3)C13—C12—C17—C160.9 (6)
O5—N11—C9—C88.6 (5)O9—C12—C17—N151.6 (7)
C8—C9—C10—C110.5 (5)C13—C12—C17—N15179.2 (3)
N11—C9—C10—C11177.8 (3)O15—N15—C17—C16176.9 (5)
C9—C10—C11—N12176.5 (3)O14—N15—C17—C163.4 (6)
C9—C10—C11—C60.4 (5)O15—N15—C17—C121.5 (6)
O7—N12—C11—C1017.6 (4)O14—N15—C17—C12178.2 (5)
O8—N12—C11—C10163.8 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1AN···O12ii0.86 (4)2.06 (4)2.908 (4)168 (4)
N1—H1BN···O90.81 (5)2.04 (5)2.737 (4)145 (4)
N1—H1BN···O150.81 (5)2.46 (5)3.130 (4)141 (4)
N2—H2N···O90.94 (4)1.94 (4)2.721 (4)139 (4)
N2—H2N···O100.94 (4)2.19 (4)2.992 (4)142 (4)
N3—H3AN···O6iii0.89 (6)2.53 (6)3.379 (5)161 (5)
N3—H3BN···O3iv0.96 (6)2.32 (6)3.018 (4)130 (5)
N4—H4AN···O11Aiii0.78 (5)2.36 (5)3.060 (5)149 (4)
N4—H4BN···O2v0.80 (5)2.15 (5)2.842 (4)145 (5)
N4—H4BN···O3v0.80 (5)2.43 (5)3.079 (4)139 (4)
N5—H5N···O2v0.95 (5)1.88 (5)2.753 (4)151 (4)
N5—H5N···O8v0.95 (5)2.42 (4)3.156 (4)134 (3)
N6—H6AN···O1i0.85 (4)2.48 (4)3.116 (4)132 (3)
N6—H6AN···O7i0.85 (4)2.27 (4)2.966 (4)139 (4)
N6—H6BN···O5iii0.94 (5)2.49 (5)3.160 (4)129 (4)
C5—H5C···O8vi0.982.603.351 (5)134
C16—H16···O4vii0.952.463.374 (4)161
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1; (v) x+1, y, z; (vi) x, y+2, z+1; (vii) x+1, y, z1.
A comparison of selected equivalent bond lengths (Å) and bond angles (°) in complexes (I) and (II) top
Bond/angle(I)(II)a
Cd1—O12.275 (2)2.401 (2)
Cd1—N32.398 (3)2.382 (2)
Cd1—S12.540 (1)2.551 (1)
Cd1—N62.421 (3)
Cd1—S22.627 (1)
Cd1—S1i2.841 (1)
O1—Cd1—N6160.89 (9)180
S1—Cd1—S2167.97 (3)180
N3—Cd1—S2ii171.43 (7)180
Note: (a) Shanthakumari et al. (2011). Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y, -z.
Principal percentage contributions of inter-atomic contacts to the Hirshfeld surfaces of compounds (I) and (II)a top
Contact(I)(II)a
H···H12.724.6
C···H/H···C4.53.8
N···H/H···N2.31.4
O···H/H···O54.544.2
S···H/H···S2.610.9
C···C2.7
N···C/C···N2.00.7
O···C/C···O4.85.2
O···N/N···O3.2
O···O4.2
S···O/O···S1.7
Note: (a) Shanthakumari et al. (2011).
 

Footnotes

Deceased.

Acknowledgements

AS, RK, MK and SS thank the late Professor Jerry P. Jasinski (Department of Chemistry, Keene State College, USA) for his help, advice and fruitful collaboration. HSE is grateful to the University of Neuchâtel for their support over the years.

References

First citationAnandha Babu, G., Sreedhar, S., Venugopal Rao, S. & Ramasamy, P. (2010). J. Cryst. Growth 312, 1957–1962.  CrossRef Google Scholar
First citationAnitha, K., Athimoolam, S. & Rajaram, R. K. (2005). Acta Cryst. E61, o1604–o1606.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAnitha, K., Sridhar, B. & Rajaram, R. K. (2004). Acta Cryst. E60, o1530–o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArivanandhan, M., Sankaranarayanan, K., Ramamoorthy, K., Sanjeeviraja, C. & Ramasamy, P. (2005). Thin Solid Films 477, 2–6.  CrossRef CAS Google Scholar
First citationBerkovitch-Yellin, Z. & Leiserowitz, L. (1984). Acta Cryst. B40, 159–165.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBraga, D., Maini, L., Polito, M. & Grepioni, F. (2004). Struct. Bond. 111, 1–32.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C. & Huang, K. S. (1992). Chem. Mater. 4, 824–827.  CrossRef CAS Web of Science Google Scholar
First citationFrankenbach, G. M. & Etter, M. C. (1992). Chem. Mater. 4, 272–278.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationLong, N. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 21–38.  CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcArdle, B. J., Sherwood, J. N. & Damask, A. C. (1974). J. Cryst. Growth 22, 193–200.  CrossRef CAS Google Scholar
First citationMin Jin, Z., Jiang Pan, Y., Lin Hu, M., Shen, L. & Chao Li, M. (2003). Cryst. Res. Technol. 38, 1009–1012.  CrossRef Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., SethuSankar, K. & Sivakumar, K. (2005). Acta Cryst. E61, o3605–o3607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMuthamizhchelvan, C., Saminathan, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005). Acta Cryst. E61, o1153–o1155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMuthu, K. & Meenakshisundaram, S. (2012). J. Cryst. Growth 352, 163–166.  CrossRef CAS Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationShanthakumari, R., Hema, R., Ramamurthy, K. & Stoeckli-Evans, H. (2011). Acta Cryst. E67, m127.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSherwood, J. N. (1998). Pure Appl. Opt. 7, 229–238.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStoeckli-Evans, H., Shankar, M. G., Kumaravel, R., Subashini, A., Sabari Girisun, T., Ramamurthi, K., Kučeráková, M., Dušek, M. & Crochet, A. (2025). Acta Cryst. E81, 393–400.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, H. Q., Yuan, D. R., Wang, X. Q., Lü, Y. Q., Sun, Z. H., Wei, X. C., Duan, X. L., Luan, C. N., Lü, M. K. & Xu, D. (2003). J. Cryst. Growth 256, 183–187.  CrossRef CAS Google Scholar
First citationTan, S. L., Jotani, M. M. & Tiekink, E. R. T. (2019). Acta Cryst. E75, 308–318.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPal, T., Kar, T., Bocelli, G. & Rigi, L. (2004). Cryst. Growth Des. 4, 743–747.  CrossRef CAS Google Scholar
First citationUshasree, P. M., Jayavel, R., Subramanian, C. & Ramasamy, P. (1999). J. Cryst. Growth 197, 216–220.  CrossRef CAS Google Scholar
First citationVerbiest, T., Houbrechts, S., Kauranen, M., Clays, K. & Persoons, A. J. (1997). J. Mater. Chem. 7, 2175–2189.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, Z.-Y. (2007). Acta Cryst. E63, o2957–o2958.  CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds