

research communications
Reversible 4,12.06,10.017,21]docosa-1(15),2,4(12),5,10,16,21-heptaene-7,9,18,20-tetrone
in 8,19-dimethyl-2,3,8,19-tetraazapentacyclo[13.7.0.0aInstitut für Anorganische Chemie, Universität Kiel, Germany, and bOtto-Diels-Institut für Organische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de
The 20H14N4O4, was previously reported at 220 K [Businski et al. (2025). Chem. Eur. J. A71, 3–8], where it crystallizes in the monoclinic P21/c with one crystallographically independent molecule in a general position. In this structure, disorder of the methyl H atoms is observed. However, upon cooling a continuous splitting of the reflections occurs, that might indicate a Therefore, data sets were measured between room temperature and 90 K upon cooling and reheating, which shows that a discontinuity in the unit-cell volume occurs between 170 and 180 K. This process is accompanied by the formation of an additional crystal domain. Both domains can be indexed separately, leading to a similar to that observed at room temperature, but with both α and β angles revealing significant deviations from 90°. Twin refinements clearly show that the structure becomes triclinic (space group P1) upon cooling, resulting in two crystallographically independent molecules in the for which some structural changes especially in the conformation and arrangement of the molecules are observed. In the low-temperature structure, disordering of the methyl H atoms is still observed. If the crystal is reheated, the reflections of the second domain disappear and the structure can be successfully refined again in the monoclinic P21/c, indicating reversibility of the transition.
1. Chemical context
Azo-based photoswitchable compounds have attracted significant attention because of their high potential for applications in photopharmacology and smart materials (Burk et al., 2021; Corrado et al., 2023
; Lancia et al., 2019
; Martino et al., 2020
; Mukherjee et al., 2023
; Li et al., 2023
). The rational design and synthetic accessibility of new compounds with tailored structural and photophysical properties remain key research areas of broad interest. While azobenzenes are well-studied, their ethylene-bridged analogues, known as diazocines, exhibit significantly different characteristics. Diazocines consist of an azo-containing eight-membered heterocyclic ring (Duval, 1910
; Paudler & Zeiler, 1969
; Perlllmutter, 1990
) and undergo reversible, light-driven isomerization between the thermodynamically stable Z form and the metastable E form (Moormann et al., 2020
). Compared to azobenzene, diazocines show a of the irradiation wavelengths required for switching, along with significantly higher Z → E conversion rates (Siewertsen et al., 2009
, 2011
). Especially in photopharmacology, diazocines show huge potential as the steric unfavourable Z isomer shows no biological activity and can be reversibly switched to the steric less hindered and biologically active E form (Cabré et al., 2019
; Ewert et al., 2022
, López-Cano et al., 2024
). Despite their advantageous properties, the limited availability of efficient synthetic methods for diazocine derivatives restricts their broader application. Therefore, the development of new synthetic strategies for the straightforward preparation of suitable diazocine-based compounds is essential.
In this context, we have reported on a new modular strategy for the synthesis of such diazocine derivatives, based on the late-stage functionalization of a bis-anhydride and a bis-imide of diazocine using primary et al., 2025). Of twelve newly synthesized bis-N-substituted imide diazocines, six derivatives were additionally investigated by single-crystal at low temperatures. However, upon cooling, crystals of the title compound, C20H14N4O4 (1) show additional reflections that cannot be indexed. Moreover, the diffraction pattern indicates that the crystals develop numerous cracks, presumably due to cooling. To avoid further complications, was carried out at 220 K, as the diffraction pattern at this temperature corresponds to that of a single crystal. According to this compound 1 crystallizes in the monoclinic in the centrosymmetric P21/c with Z = 4 and one crystallographically independent molecule in a general position.
Starting from these results, the P), indicating that a has occurred. Therefore, a series of data sets was collected at various temperatures during both cooling and heating to determine whether the transition is reversible and to observe any associated structural changes.
2. Structural commentary
As mentioned above, the 1 was already reported at 220 K (Businski et al., 2025), but for comparison with the low-temperature data, the structure was remeasured at room temperature and is now described in more detail. At this temperature, compound 1 crystallizes in the monoclinic in the P21/c and Z = 4 with one molecule in a general position (Table 1
and Fig. 1
). As a result of lower ring strain and the molecule crystallizes in the thermodynamically stable Z form with a C—N—N—C torsion angle of −1.7 (2)° (Fig. 1
). The dihedral angle between the best planes calculated for each phthalimide subunit amounts to 78.37 (2)° (Fig. 2
: top). In the of 1, the molecules are arranged in chains that propagate along [110] (Fig. 2
: top). Within these chains, the phthalimide ring planes of neighbouring molecules are parallel, indicating π–π stacking interactions (Fig. 2
). In one case, the five-membered rings of adjacent molecules are stacked onto each other with a distance of 3.920 (1) Å between the centroids of the ring planes. In the second case, the five- and six-membered rings interact with a centroid–centroid distance of 3.449 (1) Å (Fig. 2
: bottom). Finally, the molecules are arranged into stacks that proceed along the crystallographic b-axis direction (Fig. 3
).
|
![]() | Figure 1 View of the asymmetric unit of 1 at 300 K (top) and at 90 K (middle and bottom) with labeling and displacement ellipsoids drawn at the 50% probability level. Note that in the low-temperature structure, two crystallographically independent molecules are present. |
![]() | Figure 2 View of the arrangement of neighbouring molecules into chains (top) and relative orientation of the five- and six-membered rings within these chains (bottom) with labeling of selected atoms. |
![]() | Figure 3 Crystal structure of 1 with view along the crystallographic b-axis direction. The disordering of the methyl H atoms is not shown. |
3. Temperature-dependent measurements and low-temperature structure of 1
Based on previous results, which indicate that crystals of 1 undergo a temperature-dependent measurements were performed between 90 and 300 K upon cooling and reheating.
First of all, the unit-cell volume was measured as a function of temperature, initially showing a linear decrease with decreasing temperature down to 180 K. Between 170 and 180 K, an abrupt change of the unit-cell volume takes place and upon further cooling, linear behavior is observed again (Fig. 4). It is noted that the jump in the unit-cell volume is insignificant within three times of the standard deviation. Surprisingly, the same behavior is observed upon reheating of the crystal, strongly indicating a On one hand, a purely appears unlikely, as the observed behavior seems to be reversible. On the other hand, a second order can be excluded due to an abrupt change of the unit-cell volume.
![]() | Figure 4 Unit-cell volume of 1 at different temperatures determined in the cooling and heating cycle. |
In the following, the diffraction patterns observed during cooling at different temperatures were analyzed (Fig. 5). Down to 170 K, the diffraction pattern looks like that of a single crystal. Starting from around 160 K, some reflections show a very small splitting, which is observed in particular at high Bragg angles. This splitting increases with decreasing temperature, and around 140 K it becomes evident that more than one crystal domain is involved. Practically all of these reflections can be indexed, assuming the presence of two twin components, which is shown as an example for the measurement performed at 90 K (Fig. 5
). Indexing leads to a with all angles different from 90°, for which a triclinic is suggested (see below). Interestingly, upon reheating of this crystal, the second domain disappears and, for example at 260 K, the diffraction pattern corresponds to that of a single crystal once again. It is practically identical to the pattern of the crystal observed at 260 K during the cooling cycle (Fig. 6
). Therefore, this behavior seems to be fully reversible. In this context, it is noted that the number of domains seems to be dependent on the cooling rate and the crystal quality. If a crystal is directly placed into the cooling stream at 100 K, many domains appear and indexing fails.
![]() | Figure 5 Diffraction pattern of 1 along b* at different temperatures. For the measurement at 90 K, the reflections of both individuals are indicated in black and blue and, additionally, the view along a* is shown (bottom right). |
![]() | Figure 6 Diffraction pattern of 1 at 260 K upon cooling (left) and reheating (right) with view along a* (top), b* (middle) and c* (bottom). |
In subsequent work, numerous refinements were carried out in the monoclinic (space group P21/c) and triclinic (space group P) either neglecting the or using twin refinements also with data in HKLF-5 format in SHELXL. In the beginning, the structure was refined in both space groups using the data obtained at 300 K. In the P21/c, the leads to reasonable reliability factors with no hints for a reduction of the symmetry, which is also obvious from the low internal R-value of 1.7%. Nevertheless, these data were also modeled in P
, including a twin based on the assumption that the correct symmetry is 2/m. This leads to slightly improved R-values; however, the BASF parameter refines close to 0.5 and large correlations between the parameters are obtained. Several cycles were needed to reach convergence, clearly proving that the monoclinic symmetry is correct. Moreover, for the structure model in P
, the ADSYMM option in PLATON suggests the higher space-group symmetry.
If the crystal is cooled down, no changes are observed until 200 K. At 180 K, a slight increase of the internal R-value is noticed, which clearly increases upon further cooling. This might also be traced back to the continuous splitting of the reflections, leading to an imprecise measurement of the intensities. However, in the triclinic the internal R-value remains more or less constant (Fig. 7). At 160 K, the R-value increases dramatically, independent of whether the structure is refined in P21/c or P
, which clearly shows that the splitting of the reflections cannot be neglected any further. Therefore, both individuals were indexed separately and twin refinements using data in HKLF-5 format were performed. In this case, the structure refines much better in the triclinic P
(R1 = 0.044 and wR2 = 0.127) than in the monoclinic P21/c (R1 = 0.085 and wR2 = 0.201) indicating that the is finished. Here, PLATON only detects additional Upon further cooling, splitting of the reflections increases and the best resolution is achieved at 90 K. This data set was used for comparison with the high-temperature monoclinic structure.
![]() | Figure 7 Internal R-values obtained for refinements in the monoclinic (black) and triclinic (red) using data sets measured upon cooling. |
The low-temperature form of 1 crystallizes in the triclinic P with Z = 4 with two crystallographically independent molecules in a general position (Table 1
and Fig. 1
). The C—N—N—C torsion angles of 3.1 (3)° and −0.4 (3)° in both molecules are only slightly different. Larger changes are observed in the dihedral angles between the phthalimide subunits, which amount to 79.30 (2) and 74.64 (3)° in the low-temperature form, with the latter significantly different from the high-temperature structure. As expected, the overall arrangement of the molecules is similar to that in the high-temperature form. The distances of 3.404 (1) and 3.411 (1) Å between the centroids of the five- and six-membered rings are similar to that in the high-temperature structure [distance = 3.449 (1) Å]. However, larger changes are observed for the distance between the centroids of the five-membered rings, which amount to 3.771 (1) and 3.978 (1) Å, whereas 3.920 (1) Å is found in the high-temperature form (see above). This indicates that the is accompanied with some molecular movement of the building units.
4. Database survey
A search of the CSD (version 5.43, last update December 2024, Groom et al., 2016) using CONQUEST (Bruno et al., 2002
) reveals that some crystal structures of related compounds with an azo group as part of the central eight-membered ring are reported. These include, e.g. (Z)-11,12-dihydrodibenzo[c,g][1,2]diazocine (CSD refcode BUYFIL, Siewertsen et al., 2009
; BUYFIL02, Joshi et al., 2012
; BUYFIL03, Kramer et al., 2018
; BUYFIL014, Liu et al., 2023
). Also included are, e.g., N,N′-(11,12-dihydrodibenzo[c,g][1,2]diazocine-3,8-diylbis(4,1-phenylene)-bis(N-phenylaniline) 1,2-dichoroethane solvate (EGAPAG, Zhu et al., 2019
) and 3,8-dibromodibenzo[c,g][1,2]diazocine (GAJMUD, Zhu, 2020
). All of these molecules are in the Z form, but there is also an example, where both the Z and E forms are reported (PEYLEN, Jun et al., 2018
; PEYLEN01, Kramer et al., 2018
; PEYLEN02, Deng et al., 2020
).
5. Synthesis and crystallization
Synthesis
The synthesis of the title compound was performed according to a procedure reported in the literature (Businski et al., 2025).
Crystallization
The crystals were grown by vapor diffusion experiments using a solvent/anti-solvent mixture of chloroform and methanol, as also described in the literature (Businski et al., 2025).
6. Refinement
Crystal data, data collection and structure . The aromatic H atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. The methyl H atoms are disordered and were refined with Uiso(H) = 1.2Ueq(C) in two orientations rotated by each 60° (AFIX 127 card in SHELXL) using a riding model. The ratio between the two orientations was also refined. This disorder is also observed in the low-temperature phase and therefore, the same procedure was used. This leads to some differences of the H-atom disorder between the high- and low- temperature phases, but it should be noted that the values for the site occupation factor will not be very reliable, especially at 300 K.
Supporting information
https://doi.org/10.1107/S2056989025003998/hb8139sup1.cif
contains datablocks 300K, 90K. DOI:Structure factors: contains datablock 300K. DOI: https://doi.org/10.1107/S2056989025003998/hb8139300Ksup2.hkl
Structure factors: contains datablock 90K. DOI: https://doi.org/10.1107/S2056989025003998/hb813990Ksup3.hkl
Supporting information file. DOI: https://doi.org/10.1107/S2056989025003998/hb8139300Ksup4.cml
C20H14N4O4 | F(000) = 776 |
Mr = 374.35 | Dx = 1.429 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 16.4290 (2) Å | Cell parameters from 12821 reflections |
b = 8.05961 (10) Å | θ = 2.8–78.4° |
c = 13.72324 (16) Å | µ = 0.85 mm−1 |
β = 106.7581 (14)° | T = 300 K |
V = 1739.94 (4) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 3738 independent reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 3529 reflections with I > 2σ(I) |
Mirror monochromator | Rint = 0.017 |
Detector resolution: 10.0000 pixels mm-1 | θmax = 80.3°, θmin = 2.8° |
ω scans | h = −20→20 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −10→10 |
Tmin = 0.875, Tmax = 1.000 | l = −16→9 |
20169 measured reflections |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.039 | w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2804P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.109 | (Δ/σ)max < 0.001 |
S = 1.06 | Δρmax = 0.15 e Å−3 |
3738 reflections | Δρmin = −0.16 e Å−3 |
258 parameters | Extinction correction: SHELXL2016/6 (Sheldrick, 2015b)), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0017 (2) |
Primary atom site location: dual |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.76123 (9) | 0.02530 (15) | 0.61812 (9) | 0.0675 (3) | |
N2 | 0.83005 (8) | 0.09831 (15) | 0.62847 (9) | 0.0662 (3) | |
C1 | 0.83034 (8) | 0.25742 (16) | 0.57982 (10) | 0.0556 (3) | |
C2 | 0.87140 (8) | 0.25936 (17) | 0.50414 (10) | 0.0593 (3) | |
H2 | 0.893926 | 0.163217 | 0.484767 | 0.071* | |
C3 | 0.87714 (8) | 0.40923 (17) | 0.45949 (10) | 0.0568 (3) | |
C4 | 0.92117 (8) | 0.4547 (2) | 0.38251 (10) | 0.0643 (3) | |
O1 | 0.96289 (8) | 0.36729 (17) | 0.34456 (9) | 0.0866 (4) | |
N3 | 0.90683 (7) | 0.62318 (17) | 0.36506 (9) | 0.0677 (3) | |
C5 | 0.86000 (9) | 0.69145 (19) | 0.42526 (11) | 0.0629 (3) | |
O2 | 0.83808 (8) | 0.83548 (14) | 0.42375 (9) | 0.0825 (3) | |
C6 | 0.84279 (8) | 0.55260 (16) | 0.48743 (10) | 0.0552 (3) | |
C7 | 0.80432 (8) | 0.55111 (16) | 0.56413 (10) | 0.0554 (3) | |
H7 | 0.781944 | 0.648116 | 0.582664 | 0.067* | |
C8 | 0.79932 (8) | 0.40161 (16) | 0.61389 (10) | 0.0549 (3) | |
C9 | 0.76753 (10) | 0.40375 (19) | 0.70657 (11) | 0.0660 (4) | |
H9A | 0.750474 | 0.516544 | 0.715700 | 0.079* | |
H9B | 0.815176 | 0.377276 | 0.765100 | 0.079* | |
C10 | 0.69453 (12) | 0.2901 (2) | 0.70905 (11) | 0.0746 (4) | |
H10A | 0.717056 | 0.197918 | 0.754194 | 0.090* | |
H10B | 0.655912 | 0.350875 | 0.737728 | 0.090* | |
C11 | 0.64478 (9) | 0.22184 (16) | 0.60706 (10) | 0.0579 (3) | |
C12 | 0.56314 (9) | 0.27668 (15) | 0.55744 (11) | 0.0582 (3) | |
H12 | 0.536512 | 0.355374 | 0.587290 | 0.070* | |
C13 | 0.52247 (8) | 0.21175 (14) | 0.46287 (10) | 0.0525 (3) | |
C14 | 0.43587 (9) | 0.24216 (15) | 0.39487 (12) | 0.0596 (3) | |
O3 | 0.38113 (7) | 0.33220 (13) | 0.40784 (10) | 0.0801 (3) | |
N4 | 0.42771 (7) | 0.14206 (13) | 0.31000 (9) | 0.0608 (3) | |
C15 | 0.50120 (9) | 0.05343 (15) | 0.31613 (10) | 0.0557 (3) | |
O4 | 0.51166 (8) | −0.03756 (14) | 0.25120 (8) | 0.0753 (3) | |
C16 | 0.56139 (8) | 0.09568 (14) | 0.41654 (9) | 0.0502 (3) | |
C17 | 0.64128 (8) | 0.03570 (15) | 0.46471 (10) | 0.0540 (3) | |
H17 | 0.666937 | −0.044650 | 0.434837 | 0.065* | |
C18 | 0.68183 (9) | 0.10091 (15) | 0.56018 (10) | 0.0551 (3) | |
C19 | 0.93771 (11) | 0.7171 (3) | 0.29226 (13) | 0.0833 (5) | |
H19A | 0.951253 | 0.828131 | 0.316967 | 0.125* | 0.74 (3) |
H19B | 0.894512 | 0.720415 | 0.227977 | 0.125* | 0.74 (3) |
H19C | 0.987726 | 0.664703 | 0.283848 | 0.125* | 0.74 (3) |
H19D | 0.937741 | 0.647368 | 0.235561 | 0.125* | 0.26 (3) |
H19E | 0.994482 | 0.755084 | 0.324552 | 0.125* | 0.26 (3) |
H19F | 0.901268 | 0.810796 | 0.268680 | 0.125* | 0.26 (3) |
C20 | 0.35482 (11) | 0.1457 (2) | 0.22019 (14) | 0.0822 (5) | |
H20A | 0.363199 | 0.067773 | 0.171044 | 0.123* | 0.60 (2) |
H20B | 0.348438 | 0.255177 | 0.191437 | 0.123* | 0.60 (2) |
H20C | 0.304558 | 0.116489 | 0.238622 | 0.123* | 0.60 (2) |
H20D | 0.314264 | 0.225187 | 0.229692 | 0.123* | 0.40 (2) |
H20E | 0.329025 | 0.037782 | 0.209298 | 0.123* | 0.40 (2) |
H20F | 0.372905 | 0.176470 | 0.162113 | 0.123* | 0.40 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0796 (8) | 0.0536 (6) | 0.0645 (7) | 0.0053 (6) | 0.0130 (6) | 0.0104 (5) |
N2 | 0.0737 (7) | 0.0571 (6) | 0.0604 (6) | 0.0085 (6) | 0.0077 (5) | 0.0060 (5) |
C1 | 0.0542 (6) | 0.0539 (7) | 0.0526 (6) | 0.0041 (5) | 0.0054 (5) | 0.0010 (5) |
C2 | 0.0562 (7) | 0.0596 (7) | 0.0575 (7) | 0.0090 (6) | 0.0092 (5) | −0.0054 (6) |
C3 | 0.0486 (6) | 0.0665 (8) | 0.0519 (6) | 0.0022 (5) | 0.0089 (5) | −0.0039 (6) |
C4 | 0.0516 (7) | 0.0834 (10) | 0.0546 (7) | 0.0025 (6) | 0.0100 (5) | −0.0017 (6) |
O1 | 0.0828 (7) | 0.1095 (9) | 0.0754 (7) | 0.0168 (7) | 0.0351 (6) | −0.0025 (6) |
N3 | 0.0574 (6) | 0.0818 (8) | 0.0623 (7) | −0.0063 (6) | 0.0150 (5) | 0.0083 (6) |
C5 | 0.0549 (7) | 0.0668 (8) | 0.0626 (8) | −0.0044 (6) | 0.0097 (6) | 0.0042 (6) |
O2 | 0.0947 (8) | 0.0632 (7) | 0.0909 (8) | −0.0015 (6) | 0.0286 (6) | 0.0118 (5) |
C6 | 0.0481 (6) | 0.0578 (7) | 0.0557 (7) | −0.0009 (5) | 0.0087 (5) | −0.0002 (5) |
C7 | 0.0535 (6) | 0.0522 (7) | 0.0587 (7) | 0.0013 (5) | 0.0130 (5) | −0.0044 (5) |
C8 | 0.0530 (6) | 0.0566 (7) | 0.0517 (6) | 0.0003 (5) | 0.0094 (5) | −0.0029 (5) |
C9 | 0.0779 (9) | 0.0662 (8) | 0.0536 (7) | −0.0005 (7) | 0.0184 (6) | −0.0073 (6) |
C10 | 0.1017 (12) | 0.0747 (9) | 0.0539 (7) | −0.0155 (8) | 0.0325 (8) | −0.0054 (7) |
C11 | 0.0746 (8) | 0.0510 (7) | 0.0556 (7) | −0.0089 (6) | 0.0308 (6) | −0.0002 (5) |
C12 | 0.0724 (8) | 0.0461 (6) | 0.0684 (8) | −0.0062 (5) | 0.0400 (7) | −0.0063 (5) |
C13 | 0.0609 (7) | 0.0393 (5) | 0.0661 (7) | −0.0025 (5) | 0.0323 (6) | 0.0019 (5) |
C14 | 0.0608 (7) | 0.0418 (6) | 0.0836 (9) | −0.0028 (5) | 0.0325 (7) | 0.0048 (6) |
O3 | 0.0656 (6) | 0.0598 (6) | 0.1233 (10) | 0.0078 (5) | 0.0404 (6) | −0.0016 (6) |
N4 | 0.0606 (6) | 0.0488 (5) | 0.0719 (7) | −0.0019 (5) | 0.0175 (5) | 0.0075 (5) |
C15 | 0.0670 (7) | 0.0454 (6) | 0.0584 (7) | −0.0021 (5) | 0.0240 (6) | 0.0042 (5) |
O4 | 0.0898 (7) | 0.0739 (7) | 0.0622 (6) | 0.0046 (5) | 0.0221 (5) | −0.0124 (5) |
C16 | 0.0616 (7) | 0.0402 (5) | 0.0550 (6) | −0.0014 (5) | 0.0265 (5) | 0.0022 (5) |
C17 | 0.0659 (7) | 0.0433 (6) | 0.0582 (7) | 0.0037 (5) | 0.0263 (6) | 0.0006 (5) |
C18 | 0.0669 (7) | 0.0456 (6) | 0.0548 (6) | −0.0015 (5) | 0.0209 (5) | 0.0066 (5) |
C19 | 0.0714 (9) | 0.1092 (14) | 0.0681 (9) | −0.0140 (9) | 0.0182 (7) | 0.0176 (9) |
C20 | 0.0725 (9) | 0.0713 (9) | 0.0904 (11) | −0.0076 (8) | 0.0038 (8) | 0.0153 (8) |
N1—N2 | 1.2458 (17) | C11—C18 | 1.4000 (18) |
N1—C18 | 1.4516 (18) | C12—H12 | 0.9300 |
N2—C1 | 1.4464 (17) | C12—C13 | 1.3800 (19) |
C1—C2 | 1.3920 (19) | C13—C14 | 1.4797 (19) |
C1—C8 | 1.4023 (18) | C13—C16 | 1.3866 (16) |
C2—H2 | 0.9300 | C14—O3 | 1.2080 (16) |
C2—C3 | 1.370 (2) | C14—N4 | 1.3911 (19) |
C3—C4 | 1.4881 (19) | N4—C15 | 1.3844 (17) |
C3—C6 | 1.3876 (18) | N4—C20 | 1.450 (2) |
C4—O1 | 1.2012 (18) | C15—O4 | 1.2039 (16) |
C4—N3 | 1.387 (2) | C15—C16 | 1.4855 (18) |
N3—C5 | 1.3942 (19) | C16—C17 | 1.3759 (18) |
N3—C19 | 1.4564 (19) | C17—H17 | 0.9300 |
C5—O2 | 1.2138 (18) | C17—C18 | 1.3904 (18) |
C5—C6 | 1.4830 (19) | C19—H19A | 0.9600 |
C6—C7 | 1.3752 (19) | C19—H19B | 0.9600 |
C7—H7 | 0.9300 | C19—H19C | 0.9600 |
C7—C8 | 1.3990 (18) | C19—H19D | 0.9600 |
C8—C9 | 1.5077 (19) | C19—H19E | 0.9600 |
C9—H9A | 0.9700 | C19—H19F | 0.9600 |
C9—H9B | 0.9700 | C20—H20A | 0.9600 |
C9—C10 | 1.517 (2) | C20—H20B | 0.9600 |
C10—H10A | 0.9700 | C20—H20C | 0.9600 |
C10—H10B | 0.9700 | C20—H20D | 0.9600 |
C10—C11 | 1.507 (2) | C20—H20E | 0.9600 |
C11—C12 | 1.390 (2) | C20—H20F | 0.9600 |
N2—N1—C18 | 120.45 (11) | C15—N4—C20 | 123.64 (13) |
N1—N2—C1 | 119.33 (11) | N4—C15—C16 | 105.88 (11) |
C2—C1—N2 | 114.91 (12) | O4—C15—N4 | 125.27 (13) |
C2—C1—C8 | 122.71 (12) | O4—C15—C16 | 128.85 (13) |
C8—C1—N2 | 122.07 (12) | C13—C16—C15 | 107.96 (11) |
C1—C2—H2 | 121.5 | C17—C16—C13 | 121.25 (12) |
C3—C2—C1 | 117.02 (12) | C17—C16—C15 | 130.75 (11) |
C3—C2—H2 | 121.5 | C16—C17—H17 | 121.6 |
C2—C3—C4 | 130.16 (13) | C16—C17—C18 | 116.84 (11) |
C2—C3—C6 | 121.65 (12) | C18—C17—H17 | 121.6 |
C6—C3—C4 | 108.11 (12) | C11—C18—N1 | 118.79 (12) |
O1—C4—C3 | 128.19 (15) | C17—C18—N1 | 117.92 (12) |
O1—C4—N3 | 126.08 (15) | C17—C18—C11 | 122.85 (13) |
N3—C4—C3 | 105.69 (12) | N3—C19—H19A | 109.5 |
C4—N3—C5 | 112.29 (12) | N3—C19—H19B | 109.5 |
C4—N3—C19 | 123.49 (14) | N3—C19—H19C | 109.5 |
C5—N3—C19 | 124.21 (15) | N3—C19—H19D | 109.5 |
N3—C5—C6 | 105.81 (12) | N3—C19—H19E | 109.5 |
O2—C5—N3 | 125.38 (14) | N3—C19—H19F | 109.5 |
O2—C5—C6 | 128.80 (14) | H19A—C19—H19B | 109.5 |
C3—C6—C5 | 108.01 (12) | H19A—C19—H19C | 109.5 |
C7—C6—C3 | 121.17 (12) | H19A—C19—H19D | 141.1 |
C7—C6—C5 | 130.76 (12) | H19A—C19—H19E | 56.3 |
C6—C7—H7 | 120.5 | H19A—C19—H19F | 56.3 |
C6—C7—C8 | 119.06 (12) | H19B—C19—H19C | 109.5 |
C8—C7—H7 | 120.5 | H19B—C19—H19D | 56.3 |
C1—C8—C9 | 122.57 (12) | H19B—C19—H19E | 141.1 |
C7—C8—C1 | 118.22 (12) | H19B—C19—H19F | 56.3 |
C7—C8—C9 | 119.03 (12) | H19C—C19—H19D | 56.3 |
C8—C9—H9A | 107.6 | H19C—C19—H19E | 56.3 |
C8—C9—H9B | 107.6 | H19C—C19—H19F | 141.1 |
C8—C9—C10 | 118.71 (12) | H19D—C19—H19E | 109.5 |
H9A—C9—H9B | 107.1 | H19D—C19—H19F | 109.5 |
C10—C9—H9A | 107.6 | H19E—C19—H19F | 109.5 |
C10—C9—H9B | 107.6 | N4—C20—H20A | 109.5 |
C9—C10—H10A | 108.6 | N4—C20—H20B | 109.5 |
C9—C10—H10B | 108.6 | N4—C20—H20C | 109.5 |
H10A—C10—H10B | 107.5 | N4—C20—H20D | 109.5 |
C11—C10—C9 | 114.84 (11) | N4—C20—H20E | 109.5 |
C11—C10—H10A | 108.6 | N4—C20—H20F | 109.5 |
C11—C10—H10B | 108.6 | H20A—C20—H20B | 109.5 |
C12—C11—C10 | 121.83 (13) | H20A—C20—H20C | 109.5 |
C12—C11—C18 | 118.83 (12) | H20A—C20—H20D | 141.1 |
C18—C11—C10 | 119.34 (14) | H20A—C20—H20E | 56.3 |
C11—C12—H12 | 120.7 | H20A—C20—H20F | 56.3 |
C13—C12—C11 | 118.52 (12) | H20B—C20—H20C | 109.5 |
C13—C12—H12 | 120.7 | H20B—C20—H20D | 56.3 |
C12—C13—C14 | 130.32 (12) | H20B—C20—H20E | 141.1 |
C12—C13—C16 | 121.65 (12) | H20B—C20—H20F | 56.3 |
C16—C13—C14 | 108.01 (11) | H20C—C20—H20D | 56.3 |
O3—C14—C13 | 128.89 (14) | H20C—C20—H20E | 56.3 |
O3—C14—N4 | 125.15 (14) | H20C—C20—H20F | 141.1 |
N4—C14—C13 | 105.96 (11) | H20D—C20—H20E | 109.5 |
C14—N4—C20 | 123.81 (13) | H20D—C20—H20F | 109.5 |
C15—N4—C14 | 112.12 (11) | H20E—C20—H20F | 109.5 |
N1—N2—C1—C2 | −114.90 (15) | C9—C10—C11—C12 | −107.59 (16) |
N1—N2—C1—C8 | 71.39 (17) | C9—C10—C11—C18 | 71.79 (18) |
N2—N1—C18—C11 | −80.49 (17) | C10—C11—C12—C13 | 178.17 (12) |
N2—N1—C18—C17 | 106.88 (15) | C10—C11—C18—N1 | 9.94 (18) |
N2—C1—C2—C3 | −176.74 (11) | C10—C11—C18—C17 | −177.82 (12) |
N2—C1—C8—C7 | 178.19 (12) | C11—C12—C13—C14 | 177.76 (11) |
N2—C1—C8—C9 | 3.17 (19) | C11—C12—C13—C16 | −0.71 (18) |
C1—C2—C3—C4 | 175.54 (12) | C12—C11—C18—N1 | −170.67 (11) |
C1—C2—C3—C6 | −0.71 (19) | C12—C11—C18—C17 | 1.58 (18) |
C1—C8—C9—C10 | −58.56 (19) | C12—C13—C14—O3 | 0.0 (2) |
C2—C1—C8—C7 | 4.97 (19) | C12—C13—C14—N4 | −179.03 (12) |
C2—C1—C8—C9 | −170.05 (12) | C12—C13—C16—C15 | −179.44 (11) |
C2—C3—C4—O1 | −1.6 (2) | C12—C13—C16—C17 | 2.41 (18) |
C2—C3—C4—N3 | −179.52 (13) | C13—C14—N4—C15 | −1.29 (13) |
C2—C3—C6—C5 | 179.92 (11) | C13—C14—N4—C20 | −174.09 (12) |
C2—C3—C6—C7 | 2.54 (19) | C13—C16—C17—C18 | −2.00 (17) |
C3—C4—N3—C5 | 1.69 (15) | C14—C13—C16—C15 | 1.79 (13) |
C3—C4—N3—C19 | −178.53 (13) | C14—C13—C16—C17 | −176.37 (10) |
C3—C6—C7—C8 | −0.57 (18) | C14—N4—C15—O4 | −177.35 (13) |
C4—C3—C6—C5 | 2.94 (14) | C14—N4—C15—C16 | 2.35 (13) |
C4—C3—C6—C7 | −174.45 (11) | O3—C14—N4—C15 | 179.61 (12) |
C4—N3—C5—O2 | −179.05 (14) | O3—C14—N4—C20 | 6.8 (2) |
C4—N3—C5—C6 | 0.05 (15) | N4—C15—C16—C13 | −2.53 (13) |
O1—C4—N3—C5 | −176.34 (14) | N4—C15—C16—C17 | 175.38 (12) |
O1—C4—N3—C19 | 3.4 (2) | C15—C16—C17—C18 | −179.68 (11) |
N3—C5—C6—C3 | −1.92 (14) | O4—C15—C16—C13 | 177.15 (13) |
N3—C5—C6—C7 | 175.13 (13) | O4—C15—C16—C17 | −4.9 (2) |
C5—C6—C7—C8 | −177.28 (13) | C16—C13—C14—O3 | 178.66 (13) |
O2—C5—C6—C3 | 177.14 (15) | C16—C13—C14—N4 | −0.40 (13) |
O2—C5—C6—C7 | −5.8 (2) | C16—C17—C18—N1 | 172.34 (11) |
C6—C3—C4—O1 | 175.09 (14) | C16—C17—C18—C11 | 0.03 (18) |
C6—C3—C4—N3 | −2.88 (14) | C18—N1—N2—C1 | −1.7 (2) |
C6—C7—C8—C1 | −3.02 (18) | C18—C11—C12—C13 | −1.21 (17) |
C6—C7—C8—C9 | 172.18 (12) | C19—N3—C5—O2 | 1.2 (2) |
C7—C8—C9—C10 | 126.47 (15) | C19—N3—C5—C6 | −179.73 (13) |
C8—C1—C2—C3 | −3.08 (19) | C20—N4—C15—O4 | −4.5 (2) |
C8—C9—C10—C11 | −16.6 (2) | C20—N4—C15—C16 | 175.16 (12) |
C20H14N4O4 | Z = 4 |
Mr = 374.35 | F(000) = 776 |
Triclinic, P1 | Dx = 1.467 Mg m−3 |
a = 7.9465 (2) Å | Cu Kα radiation, λ = 1.54184 Å |
b = 13.7201 (3) Å | Cell parameters from 13461 reflections |
c = 16.2592 (6) Å | θ = 2.8–79.6° |
α = 106.993 (2)° | µ = 0.88 mm−1 |
β = 90.914 (3)° | T = 90 K |
γ = 90.1121 (19)° | Block, colourless |
V = 1695.04 (9) Å3 | 0.20 × 0.15 × 0.10 mm |
XtaLAB Synergy, Dualflex, HyPix diffractometer | 7780 measured reflections |
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source | 7780 independent reflections |
Mirror monochromator | 7595 reflections with I > 2σ(I) |
Detector resolution: 10.0000 pixels mm-1 | θmax = 81.0°, θmin = 2.8° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (CrysAlisPro; Rigaku OD, 2023) | k = −16→16 |
Tmin = 0.915, Tmax = 1.000 | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.041 | H-atom parameters constrained |
wR(F2) = 0.117 | w = 1/[σ2(Fo2) + (0.064P)2 + 0.6702P] where P = (Fo2 + 2Fc2)/3 |
S = 1.07 | (Δ/σ)max < 0.001 |
7780 reflections | Δρmax = 0.27 e Å−3 |
514 parameters | Δρmin = −0.20 e Å−3 |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component twin. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.90321 (19) | 0.62743 (12) | 0.84068 (10) | 0.0300 (3) | |
N2 | 0.97717 (19) | 0.61742 (13) | 0.77174 (11) | 0.0309 (3) | |
C1 | 0.8973 (2) | 0.56223 (14) | 0.69017 (11) | 0.0261 (3) | |
C2 | 0.9597 (2) | 0.46667 (14) | 0.64684 (11) | 0.0262 (3) | |
H2 | 1.039969 | 0.433158 | 0.672823 | 0.031* | |
C3 | 0.89879 (19) | 0.42282 (13) | 0.56379 (11) | 0.0237 (3) | |
C4 | 0.9396 (2) | 0.32410 (13) | 0.49971 (11) | 0.0249 (3) | |
O1 | 1.02862 (16) | 0.25596 (10) | 0.50834 (9) | 0.0317 (3) | |
N3 | 0.85302 (18) | 0.32384 (12) | 0.42458 (10) | 0.0260 (3) | |
C5 | 0.75329 (19) | 0.40966 (13) | 0.43556 (11) | 0.0246 (3) | |
O2 | 0.66287 (16) | 0.42633 (11) | 0.38013 (8) | 0.0308 (3) | |
C6 | 0.78443 (19) | 0.47356 (13) | 0.52580 (11) | 0.0236 (3) | |
C7 | 0.7216 (2) | 0.56791 (14) | 0.56909 (11) | 0.0251 (3) | |
H7 | 0.642211 | 0.601045 | 0.542300 | 0.030* | |
C8 | 0.7781 (2) | 0.61345 (13) | 0.65364 (12) | 0.0263 (3) | |
C9 | 0.7141 (2) | 0.71498 (14) | 0.70747 (13) | 0.0312 (4) | |
H9A | 0.660111 | 0.750500 | 0.669137 | 0.037* | |
H9B | 0.810885 | 0.757169 | 0.736927 | 0.037* | |
C10 | 0.5865 (2) | 0.70611 (15) | 0.77551 (12) | 0.0305 (4) | |
H10A | 0.601282 | 0.766655 | 0.826239 | 0.037* | |
H10B | 0.472099 | 0.709803 | 0.751648 | 0.037* | |
C11 | 0.5930 (2) | 0.61246 (14) | 0.80677 (11) | 0.0267 (4) | |
C12 | 0.4413 (2) | 0.56123 (14) | 0.81024 (11) | 0.0269 (3) | |
H12 | 0.340053 | 0.579717 | 0.786947 | 0.032* | |
C13 | 0.4425 (2) | 0.48339 (14) | 0.84824 (11) | 0.0274 (4) | |
C14 | 0.3018 (2) | 0.41984 (15) | 0.86444 (11) | 0.0304 (4) | |
O3 | 0.15479 (17) | 0.41887 (12) | 0.84211 (9) | 0.0372 (3) | |
N4 | 0.3728 (2) | 0.35902 (13) | 0.91086 (10) | 0.0327 (3) | |
C15 | 0.5451 (3) | 0.37703 (15) | 0.92671 (11) | 0.0307 (4) | |
O4 | 0.63512 (19) | 0.33915 (11) | 0.96906 (9) | 0.0379 (3) | |
C16 | 0.5881 (2) | 0.45571 (14) | 0.88382 (11) | 0.0283 (4) | |
C17 | 0.7409 (2) | 0.50202 (14) | 0.87961 (11) | 0.0289 (4) | |
H17 | 0.841233 | 0.482642 | 0.903060 | 0.035* | |
C18 | 0.7401 (2) | 0.57893 (14) | 0.83902 (11) | 0.0276 (4) | |
C19 | 0.8451 (2) | 0.23684 (15) | 0.34772 (12) | 0.0331 (4) | |
H19A | 0.928068 | 0.186076 | 0.352851 | 0.050* | 0.93 (3) |
H19B | 0.869872 | 0.259322 | 0.297236 | 0.050* | 0.93 (3) |
H19C | 0.732144 | 0.206504 | 0.341281 | 0.050* | 0.93 (3) |
H19D | 0.758655 | 0.248525 | 0.308061 | 0.050* | 0.07 (3) |
H19E | 0.816850 | 0.175279 | 0.363676 | 0.050* | 0.07 (3) |
H19F | 0.954579 | 0.228098 | 0.319631 | 0.050* | 0.07 (3) |
C20 | 0.2788 (3) | 0.28521 (16) | 0.94091 (13) | 0.0383 (5) | |
H20A | 0.163081 | 0.308920 | 0.953165 | 0.057* | 0.84 (3) |
H20B | 0.332539 | 0.277794 | 0.993401 | 0.057* | 0.84 (3) |
H20C | 0.277532 | 0.219228 | 0.896377 | 0.057* | 0.84 (3) |
H20D | 0.352353 | 0.228375 | 0.942130 | 0.057* | 0.16 (3) |
H20E | 0.182896 | 0.259500 | 0.901894 | 0.057* | 0.16 (3) |
H20F | 0.237903 | 0.318067 | 0.998918 | 0.057* | 0.16 (3) |
N21 | 0.5872 (2) | 1.13833 (13) | 0.82254 (11) | 0.0329 (3) | |
N22 | 0.5151 (2) | 1.12574 (13) | 0.75096 (11) | 0.0343 (4) | |
C21 | 0.5926 (2) | 1.06246 (14) | 0.67341 (12) | 0.0278 (4) | |
C22 | 0.5259 (2) | 0.96536 (14) | 0.63597 (12) | 0.0266 (3) | |
H22 | 0.440615 | 0.937784 | 0.663066 | 0.032* | |
C23 | 0.5897 (2) | 0.91128 (13) | 0.55773 (12) | 0.0250 (3) | |
C24 | 0.5478 (2) | 0.80709 (14) | 0.50087 (12) | 0.0269 (4) | |
O21 | 0.45339 (16) | 0.74395 (10) | 0.51439 (9) | 0.0334 (3) | |
N23 | 0.64090 (18) | 0.79380 (12) | 0.42735 (10) | 0.0289 (3) | |
C25 | 0.7447 (2) | 0.87790 (15) | 0.43250 (12) | 0.0290 (4) | |
O22 | 0.83897 (16) | 0.88526 (12) | 0.37710 (9) | 0.0366 (3) | |
C26 | 0.7106 (2) | 0.95301 (14) | 0.51710 (12) | 0.0258 (3) | |
C27 | 0.7773 (2) | 1.04919 (15) | 0.55469 (12) | 0.0286 (4) | |
H27 | 0.861235 | 1.076412 | 0.526518 | 0.034* | |
C28 | 0.7189 (2) | 1.10525 (14) | 0.63476 (13) | 0.0294 (4) | |
C29 | 0.7888 (3) | 1.20923 (15) | 0.68072 (15) | 0.0372 (4) | |
H29A | 0.694153 | 1.257677 | 0.695896 | 0.045* | |
H29B | 0.861377 | 1.231700 | 0.640681 | 0.045* | |
C30 | 0.8919 (2) | 1.21495 (14) | 0.76328 (13) | 0.0329 (4) | |
H30A | 1.009959 | 1.231213 | 0.753442 | 0.040* | |
H30B | 0.849053 | 1.272850 | 0.809963 | 0.040* | |
C31 | 0.8929 (2) | 1.12217 (14) | 0.79500 (11) | 0.0279 (4) | |
C32 | 1.0444 (2) | 1.07131 (14) | 0.80001 (11) | 0.0277 (4) | |
H32 | 1.144643 | 1.089582 | 0.776876 | 0.033* | |
C33 | 1.0454 (2) | 0.99457 (14) | 0.83895 (11) | 0.0271 (4) | |
C34 | 1.1855 (2) | 0.93178 (15) | 0.85713 (11) | 0.0295 (4) | |
O23 | 1.33179 (16) | 0.92995 (12) | 0.83575 (9) | 0.0360 (3) | |
N24 | 1.1167 (2) | 0.87185 (13) | 0.90418 (10) | 0.0307 (3) | |
C35 | 0.9451 (2) | 0.89021 (14) | 0.91788 (11) | 0.0301 (4) | |
O24 | 0.85636 (19) | 0.85188 (12) | 0.95972 (9) | 0.0388 (3) | |
C36 | 0.8996 (2) | 0.96745 (14) | 0.87349 (11) | 0.0276 (4) | |
C37 | 0.7477 (2) | 1.01241 (14) | 0.86708 (12) | 0.0291 (4) | |
H37 | 0.647957 | 0.992735 | 0.889717 | 0.035* | |
C38 | 0.7466 (2) | 1.08832 (14) | 0.82577 (12) | 0.0280 (4) | |
C39 | 0.6458 (3) | 0.69911 (17) | 0.35796 (14) | 0.0400 (5) | |
H39A | 0.561599 | 0.651555 | 0.367721 | 0.060* | 0.48 (3) |
H39B | 0.757924 | 0.669068 | 0.356180 | 0.060* | 0.48 (3) |
H39C | 0.621057 | 0.712784 | 0.303147 | 0.060* | 0.48 (3) |
H39D | 0.732122 | 0.704049 | 0.316978 | 0.060* | 0.52 (3) |
H39E | 0.535796 | 0.686536 | 0.328519 | 0.060* | 0.52 (3) |
H39F | 0.672663 | 0.642820 | 0.381551 | 0.060* | 0.52 (3) |
C40 | 1.2119 (3) | 0.79927 (16) | 0.93629 (13) | 0.0348 (4) | |
H40A | 1.324331 | 0.827142 | 0.955215 | 0.052* | 0.83 (3) |
H40B | 1.222115 | 0.734965 | 0.890324 | 0.052* | 0.83 (3) |
H40C | 1.153120 | 0.786971 | 0.984891 | 0.052* | 0.83 (3) |
H40D | 1.142047 | 0.738910 | 0.931739 | 0.052* | 0.17 (3) |
H40E | 1.244262 | 0.831087 | 0.996629 | 0.052* | 0.17 (3) |
H40F | 1.313258 | 0.779081 | 0.902062 | 0.052* | 0.17 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0278 (7) | 0.0271 (8) | 0.0333 (8) | −0.0018 (6) | −0.0007 (6) | 0.0063 (6) |
N2 | 0.0254 (7) | 0.0303 (8) | 0.0360 (8) | −0.0036 (6) | −0.0014 (6) | 0.0082 (6) |
C1 | 0.0230 (8) | 0.0265 (9) | 0.0304 (9) | −0.0058 (6) | 0.0013 (6) | 0.0108 (7) |
C2 | 0.0207 (7) | 0.0284 (9) | 0.0334 (9) | −0.0018 (6) | −0.0004 (6) | 0.0152 (7) |
C3 | 0.0183 (7) | 0.0246 (8) | 0.0315 (8) | −0.0008 (6) | 0.0031 (6) | 0.0134 (7) |
C4 | 0.0198 (7) | 0.0236 (8) | 0.0346 (9) | −0.0030 (6) | 0.0015 (6) | 0.0135 (7) |
O1 | 0.0283 (6) | 0.0260 (7) | 0.0436 (7) | 0.0049 (5) | 0.0007 (5) | 0.0146 (6) |
N3 | 0.0227 (7) | 0.0256 (7) | 0.0308 (7) | −0.0018 (5) | 0.0016 (5) | 0.0101 (6) |
C5 | 0.0181 (7) | 0.0274 (9) | 0.0320 (9) | −0.0006 (6) | 0.0034 (6) | 0.0142 (7) |
O2 | 0.0253 (6) | 0.0389 (7) | 0.0318 (7) | 0.0008 (5) | −0.0004 (5) | 0.0159 (5) |
C6 | 0.0165 (7) | 0.0274 (9) | 0.0312 (8) | −0.0024 (6) | 0.0023 (6) | 0.0151 (7) |
C7 | 0.0195 (7) | 0.0262 (8) | 0.0344 (9) | 0.0009 (6) | 0.0041 (6) | 0.0163 (7) |
C8 | 0.0229 (8) | 0.0238 (8) | 0.0352 (9) | −0.0019 (6) | 0.0049 (6) | 0.0128 (7) |
C9 | 0.0305 (9) | 0.0247 (9) | 0.0394 (10) | 0.0004 (7) | 0.0047 (7) | 0.0106 (7) |
C10 | 0.0279 (8) | 0.0286 (9) | 0.0344 (9) | −0.0001 (7) | 0.0009 (7) | 0.0084 (7) |
C11 | 0.0268 (8) | 0.0256 (9) | 0.0255 (8) | −0.0007 (6) | 0.0020 (6) | 0.0037 (6) |
C12 | 0.0239 (8) | 0.0293 (9) | 0.0254 (8) | −0.0001 (6) | 0.0009 (6) | 0.0049 (7) |
C13 | 0.0288 (8) | 0.0275 (9) | 0.0235 (8) | −0.0030 (7) | 0.0016 (6) | 0.0035 (6) |
C14 | 0.0341 (9) | 0.0296 (9) | 0.0243 (8) | −0.0056 (7) | 0.0041 (7) | 0.0026 (7) |
O3 | 0.0305 (7) | 0.0400 (8) | 0.0391 (7) | −0.0077 (6) | 0.0040 (6) | 0.0084 (6) |
N4 | 0.0371 (8) | 0.0327 (9) | 0.0271 (7) | −0.0076 (7) | 0.0040 (6) | 0.0067 (6) |
C15 | 0.0395 (10) | 0.0280 (9) | 0.0227 (8) | −0.0016 (7) | 0.0009 (7) | 0.0046 (7) |
O4 | 0.0467 (8) | 0.0341 (8) | 0.0350 (7) | −0.0019 (6) | −0.0030 (6) | 0.0134 (6) |
C16 | 0.0347 (9) | 0.0252 (9) | 0.0226 (8) | 0.0000 (7) | 0.0012 (7) | 0.0034 (6) |
C17 | 0.0297 (9) | 0.0273 (9) | 0.0271 (8) | 0.0004 (7) | −0.0017 (7) | 0.0042 (7) |
C18 | 0.0279 (8) | 0.0254 (8) | 0.0265 (8) | −0.0029 (7) | 0.0008 (6) | 0.0029 (7) |
C19 | 0.0310 (9) | 0.0320 (10) | 0.0344 (9) | −0.0025 (7) | 0.0034 (7) | 0.0063 (8) |
C20 | 0.0478 (11) | 0.0345 (10) | 0.0322 (9) | −0.0102 (9) | 0.0078 (8) | 0.0088 (8) |
N21 | 0.0277 (7) | 0.0259 (8) | 0.0418 (9) | −0.0003 (6) | 0.0033 (6) | 0.0048 (7) |
N22 | 0.0292 (8) | 0.0269 (8) | 0.0440 (9) | 0.0019 (6) | 0.0013 (7) | 0.0059 (7) |
C21 | 0.0222 (8) | 0.0251 (9) | 0.0376 (9) | 0.0032 (6) | −0.0012 (7) | 0.0117 (7) |
C22 | 0.0197 (7) | 0.0266 (9) | 0.0367 (9) | 0.0001 (6) | 0.0012 (6) | 0.0144 (7) |
C23 | 0.0201 (7) | 0.0238 (8) | 0.0354 (9) | 0.0009 (6) | −0.0019 (6) | 0.0153 (7) |
C24 | 0.0212 (8) | 0.0250 (9) | 0.0371 (9) | 0.0022 (6) | −0.0010 (6) | 0.0134 (7) |
O21 | 0.0293 (6) | 0.0255 (7) | 0.0467 (8) | −0.0037 (5) | 0.0026 (5) | 0.0127 (6) |
N23 | 0.0211 (7) | 0.0313 (8) | 0.0345 (8) | 0.0034 (6) | −0.0004 (6) | 0.0102 (6) |
C25 | 0.0216 (8) | 0.0364 (10) | 0.0334 (9) | 0.0024 (7) | −0.0025 (7) | 0.0173 (8) |
O22 | 0.0248 (6) | 0.0554 (9) | 0.0354 (7) | 0.0010 (6) | 0.0026 (5) | 0.0224 (6) |
C26 | 0.0189 (7) | 0.0307 (9) | 0.0329 (9) | 0.0004 (6) | −0.0020 (6) | 0.0175 (7) |
C27 | 0.0213 (8) | 0.0324 (9) | 0.0395 (10) | −0.0029 (7) | −0.0034 (7) | 0.0223 (8) |
C28 | 0.0256 (8) | 0.0250 (9) | 0.0418 (10) | −0.0019 (7) | −0.0068 (7) | 0.0166 (8) |
C29 | 0.0321 (9) | 0.0254 (10) | 0.0573 (12) | −0.0046 (7) | −0.0081 (8) | 0.0175 (9) |
C30 | 0.0330 (9) | 0.0242 (9) | 0.0417 (10) | −0.0046 (7) | 0.0022 (8) | 0.0097 (8) |
C31 | 0.0300 (9) | 0.0232 (9) | 0.0282 (8) | −0.0034 (7) | −0.0006 (7) | 0.0040 (7) |
C32 | 0.0260 (8) | 0.0282 (9) | 0.0276 (8) | −0.0039 (7) | −0.0005 (6) | 0.0060 (7) |
C33 | 0.0286 (8) | 0.0253 (9) | 0.0242 (8) | −0.0031 (7) | −0.0012 (6) | 0.0025 (6) |
C34 | 0.0315 (9) | 0.0285 (9) | 0.0257 (8) | −0.0026 (7) | −0.0026 (7) | 0.0037 (7) |
O23 | 0.0276 (7) | 0.0401 (8) | 0.0412 (7) | 0.0003 (5) | −0.0007 (5) | 0.0134 (6) |
N24 | 0.0334 (8) | 0.0293 (8) | 0.0285 (7) | 0.0003 (6) | −0.0018 (6) | 0.0072 (6) |
C35 | 0.0360 (9) | 0.0259 (9) | 0.0259 (8) | −0.0035 (7) | 0.0006 (7) | 0.0037 (7) |
O24 | 0.0448 (8) | 0.0360 (8) | 0.0390 (7) | −0.0032 (6) | 0.0080 (6) | 0.0158 (6) |
C36 | 0.0322 (9) | 0.0243 (9) | 0.0238 (8) | −0.0047 (7) | 0.0011 (6) | 0.0031 (6) |
C37 | 0.0280 (8) | 0.0273 (9) | 0.0288 (8) | −0.0041 (7) | 0.0044 (7) | 0.0032 (7) |
C38 | 0.0270 (8) | 0.0240 (9) | 0.0287 (8) | −0.0017 (7) | 0.0014 (6) | 0.0007 (7) |
C39 | 0.0320 (10) | 0.0412 (12) | 0.0408 (11) | 0.0072 (8) | −0.0033 (8) | 0.0027 (9) |
C40 | 0.0406 (10) | 0.0309 (10) | 0.0337 (9) | 0.0025 (8) | −0.0052 (8) | 0.0111 (8) |
N1—N2 | 1.246 (2) | N21—N22 | 1.255 (3) |
N1—C18 | 1.452 (2) | N21—C38 | 1.449 (2) |
N2—C1 | 1.456 (2) | N22—C21 | 1.452 (2) |
C1—C2 | 1.391 (3) | C21—C22 | 1.392 (3) |
C1—C8 | 1.405 (3) | C21—C28 | 1.407 (2) |
C2—C3 | 1.387 (2) | C22—C23 | 1.377 (3) |
C2—H2 | 0.9500 | C22—H22 | 0.9500 |
C3—C6 | 1.389 (2) | C23—C26 | 1.388 (2) |
C3—C4 | 1.488 (2) | C23—C24 | 1.492 (2) |
C4—O1 | 1.212 (2) | C24—O21 | 1.215 (2) |
C4—N3 | 1.392 (2) | C24—N23 | 1.382 (2) |
N3—C5 | 1.390 (2) | N23—C25 | 1.399 (2) |
N3—C19 | 1.455 (2) | N23—C39 | 1.451 (3) |
C5—O2 | 1.217 (2) | C25—O22 | 1.207 (2) |
C5—C6 | 1.489 (2) | C25—C26 | 1.487 (3) |
C6—C7 | 1.379 (3) | C26—C27 | 1.383 (3) |
C7—C8 | 1.400 (3) | C27—C28 | 1.392 (3) |
C7—H7 | 0.9500 | C27—H27 | 0.9500 |
C8—C9 | 1.506 (3) | C28—C29 | 1.504 (3) |
C9—C10 | 1.543 (2) | C29—C30 | 1.544 (3) |
C9—H9A | 0.9900 | C29—H29A | 0.9900 |
C9—H9B | 0.9900 | C29—H29B | 0.9900 |
C10—C11 | 1.514 (3) | C30—C31 | 1.507 (3) |
C10—H10A | 0.9900 | C30—H30A | 0.9900 |
C10—H10B | 0.9900 | C30—H30B | 0.9900 |
C11—C12 | 1.404 (2) | C31—C38 | 1.403 (2) |
C11—C18 | 1.406 (3) | C31—C32 | 1.406 (3) |
C12—C13 | 1.381 (3) | C32—C33 | 1.378 (3) |
C12—H12 | 0.9500 | C32—H32 | 0.9500 |
C13—C16 | 1.387 (3) | C33—C36 | 1.392 (2) |
C13—C14 | 1.490 (2) | C33—C34 | 1.487 (3) |
C14—O3 | 1.216 (2) | C34—O23 | 1.217 (2) |
C14—N4 | 1.393 (3) | C34—N24 | 1.393 (2) |
N4—C15 | 1.397 (3) | N24—C35 | 1.397 (3) |
N4—C20 | 1.456 (2) | N24—C40 | 1.460 (3) |
C15—O4 | 1.205 (2) | C35—O24 | 1.208 (2) |
C15—C16 | 1.488 (3) | C35—C36 | 1.488 (3) |
C16—C17 | 1.381 (3) | C36—C37 | 1.373 (3) |
C17—C18 | 1.399 (3) | C37—C38 | 1.395 (3) |
C17—H17 | 0.9500 | C37—H37 | 0.9500 |
C19—H19A | 0.9800 | C39—H39A | 0.9800 |
C19—H19B | 0.9800 | C39—H39B | 0.9800 |
C19—H19C | 0.9800 | C39—H39C | 0.9800 |
C19—H19D | 0.9800 | C39—H39D | 0.9800 |
C19—H19E | 0.9800 | C39—H39E | 0.9800 |
C19—H19F | 0.9800 | C39—H39F | 0.9800 |
C20—H20A | 0.9800 | C40—H40A | 0.9800 |
C20—H20B | 0.9800 | C40—H40B | 0.9800 |
C20—H20C | 0.9800 | C40—H40C | 0.9800 |
C20—H20D | 0.9800 | C40—H40D | 0.9800 |
C20—H20E | 0.9800 | C40—H40E | 0.9800 |
C20—H20F | 0.9800 | C40—H40F | 0.9800 |
N2—N1—C18 | 119.17 (15) | N22—N21—C38 | 118.80 (16) |
N1—N2—C1 | 120.42 (14) | N21—N22—C21 | 119.77 (16) |
C2—C1—C8 | 123.02 (16) | C22—C21—C28 | 122.88 (17) |
C2—C1—N2 | 118.01 (16) | C22—C21—N22 | 117.98 (16) |
C8—C1—N2 | 118.36 (16) | C28—C21—N22 | 118.80 (17) |
C3—C2—C1 | 116.58 (16) | C23—C22—C21 | 116.70 (16) |
C3—C2—H2 | 121.7 | C23—C22—H22 | 121.6 |
C1—C2—H2 | 121.7 | C21—C22—H22 | 121.6 |
C2—C3—C6 | 121.18 (17) | C22—C23—C26 | 121.48 (17) |
C2—C3—C4 | 130.69 (16) | C22—C23—C24 | 130.62 (15) |
C6—C3—C4 | 108.10 (15) | C26—C23—C24 | 107.88 (16) |
O1—C4—N3 | 125.28 (17) | O21—C24—N23 | 125.14 (17) |
O1—C4—C3 | 128.95 (17) | O21—C24—C23 | 128.60 (17) |
N3—C4—C3 | 105.77 (14) | N23—C24—C23 | 106.25 (14) |
C5—N3—C4 | 112.23 (15) | C24—N23—C25 | 111.89 (15) |
C5—N3—C19 | 123.10 (16) | C24—N23—C39 | 123.79 (16) |
C4—N3—C19 | 123.93 (16) | C25—N23—C39 | 123.91 (16) |
O2—C5—N3 | 124.94 (17) | O22—C25—N23 | 125.03 (19) |
O2—C5—C6 | 129.18 (17) | O22—C25—C26 | 128.97 (18) |
N3—C5—C6 | 105.87 (14) | N23—C25—C26 | 105.99 (15) |
C7—C6—C3 | 122.15 (16) | C27—C26—C23 | 121.64 (17) |
C7—C6—C5 | 129.92 (16) | C27—C26—C25 | 130.42 (16) |
C3—C6—C5 | 107.92 (15) | C23—C26—C25 | 107.94 (16) |
C6—C7—C8 | 118.10 (16) | C26—C27—C28 | 118.51 (16) |
C6—C7—H7 | 120.9 | C26—C27—H27 | 120.7 |
C8—C7—H7 | 120.9 | C28—C27—H27 | 120.7 |
C7—C8—C1 | 118.93 (17) | C27—C28—C21 | 118.73 (17) |
C7—C8—C9 | 122.41 (17) | C27—C28—C29 | 121.54 (17) |
C1—C8—C9 | 118.65 (17) | C21—C28—C29 | 119.73 (18) |
C8—C9—C10 | 113.34 (15) | C28—C29—C30 | 114.67 (16) |
C8—C9—H9A | 108.9 | C28—C29—H29A | 108.6 |
C10—C9—H9A | 108.9 | C30—C29—H29A | 108.6 |
C8—C9—H9B | 108.9 | C28—C29—H29B | 108.6 |
C10—C9—H9B | 108.9 | C30—C29—H29B | 108.6 |
H9A—C9—H9B | 107.7 | H29A—C29—H29B | 107.6 |
C11—C10—C9 | 118.20 (16) | C31—C30—C29 | 117.71 (15) |
C11—C10—H10A | 107.8 | C31—C30—H30A | 107.9 |
C9—C10—H10A | 107.8 | C29—C30—H30A | 107.9 |
C11—C10—H10B | 107.8 | C31—C30—H30B | 107.9 |
C9—C10—H10B | 107.8 | C29—C30—H30B | 107.9 |
H10A—C10—H10B | 107.1 | H30A—C30—H30B | 107.2 |
C12—C11—C18 | 118.15 (16) | C38—C31—C32 | 118.13 (17) |
C12—C11—C10 | 118.09 (16) | C38—C31—C30 | 121.45 (17) |
C18—C11—C10 | 123.54 (15) | C32—C31—C30 | 120.27 (16) |
C13—C12—C11 | 118.56 (17) | C33—C32—C31 | 119.03 (16) |
C13—C12—H12 | 120.7 | C33—C32—H32 | 120.5 |
C11—C12—H12 | 120.7 | C31—C32—H32 | 120.5 |
C12—C13—C16 | 121.96 (16) | C32—C33—C36 | 121.03 (18) |
C12—C13—C14 | 130.29 (17) | C32—C33—C34 | 131.01 (16) |
C16—C13—C14 | 107.66 (16) | C36—C33—C34 | 107.88 (16) |
O3—C14—N4 | 125.86 (18) | O23—C34—N24 | 125.09 (19) |
O3—C14—C13 | 128.46 (19) | O23—C34—C33 | 128.66 (19) |
N4—C14—C13 | 105.69 (16) | N24—C34—C33 | 106.25 (15) |
C14—N4—C15 | 112.75 (16) | C34—N24—C35 | 111.81 (16) |
C14—N4—C20 | 124.15 (17) | C34—N24—C40 | 124.40 (16) |
C15—N4—C20 | 123.09 (18) | C35—N24—C40 | 123.79 (17) |
O4—C15—N4 | 126.50 (18) | O24—C35—N24 | 125.53 (19) |
O4—C15—C16 | 128.53 (18) | O24—C35—C36 | 128.47 (18) |
N4—C15—C16 | 104.91 (17) | N24—C35—C36 | 105.97 (15) |
C17—C16—C13 | 121.37 (17) | C37—C36—C33 | 121.82 (17) |
C17—C16—C15 | 129.62 (18) | C37—C36—C35 | 130.10 (16) |
C13—C16—C15 | 108.95 (16) | C33—C36—C35 | 108.03 (16) |
C16—C17—C18 | 116.52 (17) | C36—C37—C38 | 116.85 (16) |
C16—C17—H17 | 121.7 | C36—C37—H37 | 121.6 |
C18—C17—H17 | 121.7 | C38—C37—H37 | 121.6 |
C17—C18—C11 | 123.28 (16) | C37—C38—C31 | 122.92 (17) |
C17—C18—N1 | 113.43 (16) | C37—C38—N21 | 116.45 (16) |
C11—C18—N1 | 123.04 (16) | C31—C38—N21 | 120.41 (17) |
N3—C19—H19A | 109.5 | N23—C39—H39A | 109.5 |
N3—C19—H19B | 109.5 | N23—C39—H39B | 109.5 |
H19A—C19—H19B | 109.5 | H39A—C39—H39B | 109.5 |
N3—C19—H19C | 109.5 | N23—C39—H39C | 109.5 |
H19A—C19—H19C | 109.5 | H39A—C39—H39C | 109.5 |
H19B—C19—H19C | 109.5 | H39B—C39—H39C | 109.5 |
N3—C19—H19D | 109.5 | N23—C39—H39D | 109.5 |
H19A—C19—H19D | 141.1 | H39A—C39—H39D | 141.1 |
H19B—C19—H19D | 56.3 | H39B—C39—H39D | 56.3 |
H19C—C19—H19D | 56.3 | H39C—C39—H39D | 56.3 |
N3—C19—H19E | 109.5 | N23—C39—H39E | 109.5 |
H19A—C19—H19E | 56.3 | H39A—C39—H39E | 56.3 |
H19B—C19—H19E | 141.1 | H39B—C39—H39E | 141.1 |
H19C—C19—H19E | 56.3 | H39C—C39—H39E | 56.3 |
H19D—C19—H19E | 109.5 | H39D—C39—H39E | 109.5 |
N3—C19—H19F | 109.5 | N23—C39—H39F | 109.5 |
H19A—C19—H19F | 56.3 | H39A—C39—H39F | 56.3 |
H19B—C19—H19F | 56.3 | H39B—C39—H39F | 56.3 |
H19C—C19—H19F | 141.1 | H39C—C39—H39F | 141.1 |
H19D—C19—H19F | 109.5 | H39D—C39—H39F | 109.5 |
H19E—C19—H19F | 109.5 | H39E—C39—H39F | 109.5 |
N4—C20—H20A | 109.5 | N24—C40—H40A | 109.5 |
N4—C20—H20B | 109.5 | N24—C40—H40B | 109.5 |
H20A—C20—H20B | 109.5 | H40A—C40—H40B | 109.5 |
N4—C20—H20C | 109.5 | N24—C40—H40C | 109.5 |
H20A—C20—H20C | 109.5 | H40A—C40—H40C | 109.5 |
H20B—C20—H20C | 109.5 | H40B—C40—H40C | 109.5 |
N4—C20—H20D | 109.5 | N24—C40—H40D | 109.5 |
H20A—C20—H20D | 141.1 | H40A—C40—H40D | 141.1 |
H20B—C20—H20D | 56.3 | H40B—C40—H40D | 56.3 |
H20C—C20—H20D | 56.3 | H40C—C40—H40D | 56.3 |
N4—C20—H20E | 109.5 | N24—C40—H40E | 109.5 |
H20A—C20—H20E | 56.3 | H40A—C40—H40E | 56.3 |
H20B—C20—H20E | 141.1 | H40B—C40—H40E | 141.1 |
H20C—C20—H20E | 56.3 | H40C—C40—H40E | 56.3 |
H20D—C20—H20E | 109.5 | H40D—C40—H40E | 109.5 |
N4—C20—H20F | 109.5 | N24—C40—H40F | 109.5 |
H20A—C20—H20F | 56.3 | H40A—C40—H40F | 56.3 |
H20B—C20—H20F | 56.3 | H40B—C40—H40F | 56.3 |
H20C—C20—H20F | 141.1 | H40C—C40—H40F | 141.1 |
H20D—C20—H20F | 109.5 | H40D—C40—H40F | 109.5 |
H20E—C20—H20F | 109.5 | H40E—C40—H40F | 109.5 |
C18—N1—N2—C1 | 3.1 (3) | C38—N21—N22—C21 | −0.4 (3) |
N1—N2—C1—C2 | −108.0 (2) | N21—N22—C21—C22 | 104.5 (2) |
N1—N2—C1—C8 | 80.7 (2) | N21—N22—C21—C28 | −82.0 (2) |
C8—C1—C2—C3 | 0.3 (2) | C28—C21—C22—C23 | 0.0 (3) |
N2—C1—C2—C3 | −170.52 (14) | N22—C21—C22—C23 | 173.23 (16) |
C1—C2—C3—C6 | 1.5 (2) | C21—C22—C23—C26 | −2.0 (3) |
C1—C2—C3—C4 | 178.86 (15) | C21—C22—C23—C24 | 179.93 (17) |
C2—C3—C4—O1 | 5.6 (3) | C22—C23—C24—O21 | −5.1 (3) |
C6—C3—C4—O1 | −176.78 (16) | C26—C23—C24—O21 | 176.64 (18) |
C2—C3—C4—N3 | −174.53 (16) | C22—C23—C24—N23 | 175.73 (17) |
C6—C3—C4—N3 | 3.10 (17) | C26—C23—C24—N23 | −2.54 (19) |
O1—C4—N3—C5 | 176.38 (15) | O21—C24—N23—C25 | −176.75 (17) |
C3—C4—N3—C5 | −3.50 (17) | C23—C24—N23—C25 | 2.46 (19) |
O1—C4—N3—C19 | 6.0 (3) | O21—C24—N23—C39 | −3.9 (3) |
C3—C4—N3—C19 | −173.93 (14) | C23—C24—N23—C39 | 175.32 (16) |
C4—N3—C5—O2 | −178.44 (15) | C24—N23—C25—O22 | 179.65 (17) |
C19—N3—C5—O2 | −7.9 (2) | C39—N23—C25—O22 | 6.8 (3) |
C4—N3—C5—C6 | 2.54 (17) | C24—N23—C25—C26 | −1.46 (19) |
C19—N3—C5—C6 | 173.06 (14) | C39—N23—C25—C26 | −174.31 (17) |
C2—C3—C6—C7 | −2.2 (2) | C22—C23—C26—C27 | 2.5 (3) |
C4—C3—C6—C7 | 179.94 (14) | C24—C23—C26—C27 | −179.01 (15) |
C2—C3—C6—C5 | 176.28 (14) | C22—C23—C26—C25 | −176.78 (16) |
C4—C3—C6—C5 | −1.62 (17) | C24—C23—C26—C25 | 1.68 (19) |
O2—C5—C6—C7 | −1.1 (3) | O22—C25—C26—C27 | −0.6 (3) |
N3—C5—C6—C7 | 177.83 (15) | N23—C25—C26—C27 | −179.46 (17) |
O2—C5—C6—C3 | −179.41 (16) | O22—C25—C26—C23 | 178.60 (18) |
N3—C5—C6—C3 | −0.45 (17) | N23—C25—C26—C23 | −0.23 (19) |
C3—C6—C7—C8 | 0.9 (2) | C23—C26—C27—C28 | −0.9 (3) |
C5—C6—C7—C8 | −177.17 (15) | C25—C26—C27—C28 | 178.22 (17) |
C6—C7—C8—C1 | 0.9 (2) | C26—C27—C28—C21 | −1.0 (3) |
C6—C7—C8—C9 | −178.32 (15) | C26—C27—C28—C29 | 178.33 (16) |
C2—C1—C8—C7 | −1.5 (2) | C22—C21—C28—C27 | 1.5 (3) |
N2—C1—C8—C7 | 169.28 (15) | N22—C21—C28—C27 | −171.66 (16) |
C2—C1—C8—C9 | 177.72 (15) | C22—C21—C28—C29 | −177.86 (17) |
N2—C1—C8—C9 | −11.5 (2) | N22—C21—C28—C29 | 9.0 (3) |
C7—C8—C9—C10 | 103.58 (19) | C27—C28—C29—C30 | −111.8 (2) |
C1—C8—C9—C10 | −75.6 (2) | C21—C28—C29—C30 | 67.5 (2) |
C8—C9—C10—C11 | 24.9 (2) | C28—C29—C30—C31 | −7.7 (3) |
C9—C10—C11—C12 | −132.48 (17) | C29—C30—C31—C38 | −66.5 (2) |
C9—C10—C11—C18 | 52.9 (2) | C29—C30—C31—C32 | 118.0 (2) |
C18—C11—C12—C13 | 2.6 (2) | C38—C31—C32—C33 | −3.6 (3) |
C10—C11—C12—C13 | −172.29 (16) | C30—C31—C32—C33 | 172.12 (16) |
C11—C12—C13—C16 | 0.9 (3) | C31—C32—C33—C36 | −0.3 (3) |
C11—C12—C13—C14 | 176.91 (17) | C31—C32—C33—C34 | −176.74 (17) |
C12—C13—C14—O3 | 5.3 (3) | C32—C33—C34—O23 | −5.6 (3) |
C16—C13—C14—O3 | −178.23 (19) | C36—C33—C34—O23 | 177.63 (19) |
C12—C13—C14—N4 | −175.21 (18) | C32—C33—C34—N24 | 175.08 (18) |
C16—C13—C14—N4 | 1.23 (19) | C36—C33—C34—N24 | −1.68 (19) |
O3—C14—N4—C15 | 179.75 (18) | O23—C34—N24—C35 | −179.27 (18) |
C13—C14—N4—C15 | 0.3 (2) | C33—C34—N24—C35 | 0.1 (2) |
O3—C14—N4—C20 | −0.9 (3) | O23—C34—N24—C40 | 1.3 (3) |
C13—C14—N4—C20 | 179.58 (16) | C33—C34—N24—C40 | −179.33 (16) |
C14—N4—C15—O4 | 175.77 (18) | C34—N24—C35—O24 | −176.70 (18) |
C20—N4—C15—O4 | −3.5 (3) | C40—N24—C35—O24 | 2.7 (3) |
C14—N4—C15—C16 | −1.5 (2) | C34—N24—C35—C36 | 1.4 (2) |
C20—N4—C15—C16 | 179.14 (16) | C40—N24—C35—C36 | −179.15 (16) |
C12—C13—C16—C17 | −2.8 (3) | C32—C33—C36—C37 | 2.9 (3) |
C14—C13—C16—C17 | −179.63 (16) | C34—C33—C36—C37 | −179.96 (16) |
C12—C13—C16—C15 | 174.62 (16) | C32—C33—C36—C35 | −174.60 (15) |
C14—C13—C16—C15 | −2.2 (2) | C34—C33—C36—C35 | 2.54 (19) |
O4—C15—C16—C17 | 2.2 (3) | O24—C35—C36—C37 | −1.6 (3) |
N4—C15—C16—C17 | 179.48 (18) | N24—C35—C36—C37 | −179.70 (18) |
O4—C15—C16—C13 | −174.94 (19) | O24—C35—C36—C33 | 175.58 (19) |
N4—C15—C16—C13 | 2.31 (19) | N24—C35—C36—C33 | −2.48 (19) |
C13—C16—C17—C18 | 1.0 (3) | C33—C36—C37—C38 | −1.3 (3) |
C15—C16—C17—C18 | −175.87 (17) | C35—C36—C37—C38 | 175.60 (17) |
C16—C17—C18—C11 | 2.7 (3) | C36—C37—C38—C31 | −2.9 (3) |
C16—C17—C18—N1 | 177.19 (15) | C36—C37—C38—N21 | −177.46 (15) |
C12—C11—C18—C17 | −4.6 (3) | C32—C31—C38—C37 | 5.3 (3) |
C10—C11—C18—C17 | 170.06 (17) | C30—C31—C38—C37 | −170.33 (17) |
C12—C11—C18—N1 | −178.51 (16) | C32—C31—C38—N21 | 179.70 (16) |
C10—C11—C18—N1 | −3.9 (3) | C30—C31—C38—N21 | 4.1 (3) |
N2—N1—C18—C17 | 114.4 (2) | N22—N21—C38—C37 | −113.5 (2) |
N2—N1—C18—C11 | −71.1 (2) | N22—N21—C38—C31 | 71.8 (2) |
Acknowledgements
This work was supported by the State of Schleswig-Holstein.
Funding information
Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. HE 1530/24-1).
References
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burk, M. H., Langbehn, D., Hernández Rodríguez, G., Reichstein, W., Drewes, J., Schröder, S., Rehders, S., Strunskus, T., Herges, R. & Faupel, F. (2021). ACS Appl. Polym. Mater. 3, 1445–1456. CrossRef CAS Google Scholar
Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3–8. Google Scholar
Cabré, G., Garrido-Charles, A., González-Lafont, À., Moormann, W., Langbehn, D., Egea, D., Lluch, J. M., Herges, R., Alibés, R., Busqué, F., Gorostiza, P. & Hernando, J. (2019). Org. Lett. 21, 3780–3784. Web of Science PubMed Google Scholar
Corrado, F., Bruno, U., Prato, M., Carella, A., Criscuolo, V., Massaro, A., Pavone, M., Muñoz-García, A. B., Forti, S., Coletti, C., Bettucci, O. & Santoro, F. (2023). Nat. Commun. 14, 6760–6760. CrossRef CAS PubMed Google Scholar
Deng, J., Wu, X., Guo, G., Zhao, X. & Yu, Z. (2020). Org. Biomol. Chem. 18, 5602–5607. CrossRef CAS PubMed Google Scholar
Duval, H. (1910). Bull. Soc. Chim. Fr. 7, 727–732. CAS Google Scholar
Ewert, J., Heintze, L., Jordà-Redondo, M., von Glasenapp, J. S., Nonell, S., Bucher, G., Peifer, C. & Herges, R. (2022). J. Am. Chem. Soc. 144, 15059–15071. CrossRef CAS PubMed Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. Web of Science CrossRef IUCr Journals Google Scholar
Joshi, D. K., Mitchell, M. J., Bruce, D., Lough, A. J. & Yan, H. (2012). Tetrahedron 68, 8670–8676. CrossRef CAS Google Scholar
Jun, M., Joshi, D. K., Yalagala, R. S., Vanloon, J., Simionescu, R., Lough, A. J., Gordon, H. L. & Yan, H. (2018). Chem. Sel. 3, 2697–2701. CAS Google Scholar
Krämer, R., Nöthling, N., Lehmann, C. W., Mohr, F. & Tausch, M. W. (2018). ChemPhotoChem 2, 6–11. Google Scholar
Lancia, F., Ryabchun, A. & Katsonis, N. (2019). Nat. Rev. Chem. 3, 536–551. CrossRef CAS Google Scholar
Li, S., Bamberg, K., Lu, Y., Sönnichsen, F. D. & Staubitz, A. (2023). Polymers 15, 1306. CrossRef PubMed Google Scholar
Liu, Y., Li, F., Li, D., Dong, W. & Jin, B. (2023). J. Electroanal. Chem. 944, 117644. CrossRef Google Scholar
López-Cano, M., Scortichini, M., Tosh, D. K., Salmaso, V., Ko, T., Salort, G., Filgaira, I., Soler, C., Trauner, D., Hernando, J., Jacobson, K. A. & Ciruela, F. (2024). J. Am. Chem. Soc. 147, 874–879. PubMed Google Scholar
Martino, S., Mauro, F. & Netti, P. A. (2020). Riv. Nuovo Cim. 43, 599–629. Google Scholar
Moormann, W., Tellkamp, T., Stadler, E., Röhricht, F., Näther, C., Puttreddy, R., Rissanen, K., Gescheidt, G. & Herges, R. (2020). Angew. Chem. Int. Ed. 2020 59, 15081–15086. CrossRef CAS Google Scholar
Mukherjee, A., Seyfried, M. D. & Ravoo, B. J. (2023). Angew. Chem. Int. Ed. 62, e202304437. CrossRef Google Scholar
Paudler, W. W. & Zeiler, A. G. (1969). J. Org. Chem. 34, 3237–3239. CrossRef CAS Google Scholar
Perlllmutter, H. D. (1990). Adv. Heterocycl. Chem. 50, 1–83. CrossRef Google Scholar
Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8. Web of Science CrossRef IUCr Journals Google Scholar
Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F. & Temps, F. (2009). J. Am. Chem. Soc. 131, 15594–15595. Web of Science CSD CrossRef PubMed CAS Google Scholar
Siewertsen, R., Schönborn, J. B., Hartke, B., Renth, F. & Temps, F. (2011). Phys. Chem. Chem. Phys. 13, 1054–1063. CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhu, Q. (2020). CSD Communication (CCDC 1902659). CCDC, Cambridge, England. Google Scholar
Zhu, Q., Wang, S. & Chen, P. (2019). Org. Lett. 21, 4025–4029. CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.