research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Reversible phase transition in 8,19-di­methyl-2,3,8,19-tetra­aza­penta­cyclo[13.7.0.04,12.06,10.017,21]docosa-1(15),2,4(12),5,10,16,21-hepta­ene-7,9,18,20-tetrone

crossmark logo

aInstitut für Anorganische Chemie, Universität Kiel, Germany, and bOtto-Diels-Institut für Organische Chemie, Universität Kiel, Germany
*Correspondence e-mail: cnaether@ac.uni-kiel.de

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 30 April 2025; accepted 5 May 2025; online 9 May 2025)

The crystal structure of the title compound, C20H14N4O4, was previously reported at 220 K [Businski et al. (2025[Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3-8.]). Chem. Eur. J. A71, 3–8], where it crystallizes in the monoclinic space group P21/c with one crystallographically independent mol­ecule in a general position. In this structure, disorder of the methyl H atoms is observed. However, upon cooling a continuous splitting of the reflections occurs, that might indicate a phase transition. Therefore, data sets were measured between room temperature and 90 K upon cooling and reheating, which shows that a discontinuity in the unit-cell volume occurs between 170 and 180 K. This process is accompanied by the formation of an additional crystal domain. Both domains can be indexed separately, leading to a unit cell similar to that observed at room temperature, but with both α and β angles revealing significant deviations from 90°. Twin refinements clearly show that the structure becomes triclinic (space group P1) upon cooling, resulting in two crystallographically independent mol­ecules in the unit cell, for which some structural changes especially in the conformation and arrangement of the mol­ecules are observed. In the low-temperature structure, disordering of the methyl H atoms is still observed. If the crystal is reheated, the reflections of the second domain disappear and the structure can be successfully refined again in the monoclinic space group P21/c, indicating reversibility of the transition.

1. Chemical context

Azo-based photoswitchable compounds have attracted significant attention because of their high potential for applications in photopharmacology and smart materials (Burk et al., 2021[Burk, M. H., Langbehn, D., Hernández Rodríguez, G., Reichstein, W., Drewes, J., Schröder, S., Rehders, S., Strunskus, T., Herges, R. & Faupel, F. (2021). ACS Appl. Polym. Mater. 3, 1445-1456.]; Corrado et al., 2023[Corrado, F., Bruno, U., Prato, M., Carella, A., Criscuolo, V., Massaro, A., Pavone, M., Muñoz-García, A. B., Forti, S., Coletti, C., Bettucci, O. & Santoro, F. (2023). Nat. Commun. 14, 6760-6760.]; Lancia et al., 2019[Lancia, F., Ryabchun, A. & Katsonis, N. (2019). Nat. Rev. Chem. 3, 536-551.]; Martino et al., 2020[Martino, S., Mauro, F. & Netti, P. A. (2020). Riv. Nuovo Cim. 43, 599-629.]; Mukherjee et al., 2023[Mukherjee, A., Seyfried, M. D. & Ravoo, B. J. (2023). Angew. Chem. Int. Ed. 62, e202304437.]; Li et al., 2023[Li, S., Bamberg, K., Lu, Y., Sönnichsen, F. D. & Staubitz, A. (2023). Polymers 15, 1306.]). The rational design and synthetic accessibility of new compounds with tailored structural and photophysical properties remain key research areas of broad inter­est. While azo­benzenes are well-studied, their ethyl­ene-bridged analogues, known as diazo­cines, exhibit significantly different characteristics. Diazo­cines consist of an azo-containing eight-membered heterocyclic ring (Duval, 1910[Duval, H. (1910). Bull. Soc. Chim. Fr. 7, 727-732.]; Paudler & Zeiler, 1969[Paudler, W. W. & Zeiler, A. G. (1969). J. Org. Chem. 34, 3237-3239.]; Perlllmutter, 1990[Perlllmutter, H. D. (1990). Adv. Heterocycl. Chem. 50, 1-83.]) and undergo reversible, light-driven isomerization between the thermodynamically stable Z form and the metastable E form (Moormann et al., 2020[Moormann, W., Tellkamp, T., Stadler, E., Röhricht, F., Näther, C., Puttreddy, R., Rissanen, K., Gescheidt, G. & Herges, R. (2020). Angew. Chem. Int. Ed. 2020 59, 15081-15086.]). Compared to azo­benzene, diazo­cines show a bathochromic shift of the irradiation wavelengths required for switching, along with significantly higher ZE conversion rates (Siewertsen et al., 2009[Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F. & Temps, F. (2009). J. Am. Chem. Soc. 131, 15594-15595.], 2011[Siewertsen, R., Schönborn, J. B., Hartke, B., Renth, F. & Temps, F. (2011). Phys. Chem. Chem. Phys. 13, 1054-1063.]). Especially in photopharmacology, diazo­cines show huge potential as the steric unfavourable Z isomer shows no biological activity and can be reversibly switched to the steric less hindered and biologically active E form (Cabré et al., 2019[Cabré, G., Garrido-Charles, A., González-Lafont, À., Moormann, W., Langbehn, D., Egea, D., Lluch, J. M., Herges, R., Alibés, R., Busqué, F., Gorostiza, P. & Hernando, J. (2019). Org. Lett. 21, 3780-3784.]; Ewert et al., 2022[Ewert, J., Heintze, L., Jordà-Redondo, M., von Glasenapp, J. S., Nonell, S., Bucher, G., Peifer, C. & Herges, R. (2022). J. Am. Chem. Soc. 144, 15059-15071.], López-Cano et al., 2024[López-Cano, M., Scortichini, M., Tosh, D. K., Salmaso, V., Ko, T., Salort, G., Filgaira, I., Soler, C., Trauner, D., Hernando, J., Jacobson, K. A. & Ciruela, F. (2024). J. Am. Chem. Soc. 147, 874-879.]). Despite their advantageous properties, the limited availability of efficient synthetic methods for diazo­cine derivatives restricts their broader application. Therefore, the development of new synthetic strategies for the straightforward preparation of suitable diazo­cine-based compounds is essential.

In this context, we have reported on a new modular strategy for the synthesis of such diazo­cine derivatives, based on the late-stage functionalization of a bis-anhydride and a bis-imide of diazo­cine using primary amines or alkyl halides (Businski et al., 2025[Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3-8.]). Of twelve newly synthesized bis-N-substituted imide diazo­cines, six derivatives were additionally investigated by single-crystal structure determination at low temperatures. However, upon cooling, crystals of the title compound, C20H14N4O4 (1) show additional reflections that cannot be indexed. Moreover, the diffraction pattern indicates that the crystals develop numerous cracks, presumably due to cooling. To avoid further complications, structure determination was carried out at 220 K, as the diffraction pattern at this temperature corresponds to that of a single crystal. According to this structure determination, compound 1 crystallizes in the monoclinic crystal system, in the centrosymmetric space group P21/c with Z = 4 and one crystallographically independent mol­ecule in a general position.

[Scheme 1]

Starting from these results, the crystal structure was investigated in more detail in subsequent work. Therefore, a crystal was slowly cooled, leading to a diffraction pattern that could be successfully indexed by assuming the presence of two twin components. Detailed analysis of these data revealed that the crystal system changes to triclinic (space group P[\overline{1}]), indicating that a phase transition has occurred. Therefore, a series of data sets was collected at various temperatures during both cooling and heating to determine whether the transition is reversible and to observe any associated structural changes.

2. Structural commentary

As mentioned above, the crystal structure of 1 was already reported at 220 K (Businski et al., 2025[Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3-8.]), but for comparison with the low-temperature data, the structure was remeasured at room temperature and is now described in more detail. At this temperature, compound 1 crystallizes in the monoclinic crystal system in the space group P21/c and Z = 4 with one mol­ecule in a general position (Table 1[link] and Fig. 1[link]). As a result of lower ring strain and steric hindrance, the mol­ecule crystallizes in the thermodynamically stable Z form with a C—N—N—C torsion angle of −1.7 (2)° (Fig. 1[link]). The dihedral angle between the best planes calculated for each phthalimide subunit amounts to 78.37 (2)° (Fig. 2[link]: top). In the crystal structure of 1, the mol­ecules are arranged in chains that propagate along [110] (Fig. 2[link]: top). Within these chains, the phthalimide ring planes of neighbouring mol­ecules are parallel, indicating ππ stacking inter­actions (Fig. 2[link]). In one case, the five-membered rings of adjacent mol­ecules are stacked onto each other with a distance of 3.920 (1) Å between the centroids of the ring planes. In the second case, the five- and six-membered rings inter­act with a centroid–centroid distance of 3.449 (1) Å (Fig. 2[link]: bottom). Finally, the mol­ecules are arranged into stacks that proceed along the crystallographic b-axis direction (Fig. 3[link]).

Table 1
Experimental details

  300 K 90 K
Crystal data
Chemical formula C20H14N4O4 C20H14N4O4
Mr 374.35 374.35
Crystal system, space group Monoclinic, P21/c Triclinic, P[\overline{1}]
Temperature (K) 300 90
a, b, c (Å) 16.4290 (2), 8.05961 (10), 13.72324 (16) 7.9465 (2), 13.7201 (3), 16.2592 (6)
α, β, γ (°) 90, 106.7581 (14), 90 106.993 (2), 90.914 (3), 90.1121 (19)
V3) 1739.94 (4) 1695.04 (9)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 0.85 0.88
Crystal size (mm) 0.20 × 0.15 × 0.10 0.20 × 0.15 × 0.10
 
Data collection
Diffractometer XtaLAB Synergy, Dualflex, HyPix XtaLAB Synergy, Dualflex, HyPix
Absorption correction Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]) Multi-scan (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.])
Tmin, Tmax 0.875, 1.000 0.915, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 20169, 3738, 3529 7780, 7780, 7595
Rint 0.017
(sin θ/λ)max−1) 0.639 0.641
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.06 0.041, 0.117, 1.07
No. of reflections 3738 7780
No. of parameters 258 514
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.16 0.27, −0.20
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/6 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and XP in SHELXTL-PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 1]
Figure 1
View of the asymmetric unit of 1 at 300 K (top) and at 90 K (middle and bottom) with labeling and displacement ellipsoids drawn at the 50% probability level. Note that in the low-temperature structure, two crystallographically independent mol­ecules are present.
[Figure 2]
Figure 2
View of the arrangement of neighbouring mol­ecules into chains (top) and relative orientation of the five- and six-membered rings within these chains (bottom) with labeling of selected atoms.
[Figure 3]
Figure 3
Crystal structure of 1 with view along the crystallographic b-axis direction. The disordering of the methyl H atoms is not shown.

3. Temperature-dependent measurements and low-temperature structure of 1

Based on previous results, which indicate that crystals of 1 undergo a phase transition, temperature-dependent measurements were performed between 90 and 300 K upon cooling and reheating.

First of all, the unit-cell volume was measured as a function of temperature, initially showing a linear decrease with decreasing temperature down to 180 K. Between 170 and 180 K, an abrupt change of the unit-cell volume takes place and upon further cooling, linear behavior is observed again (Fig. 4[link]). It is noted that the jump in the unit-cell volume is insignificant within three times of the standard deviation. Surprisingly, the same behavior is observed upon reheating of the crystal, strongly indicating a phase transition. On one hand, a purely first-order phase transition appears unlikely, as the observed behavior seems to be reversible. On the other hand, a second order phase transition can be excluded due to an abrupt change of the unit-cell volume.

[Figure 4]
Figure 4
Unit-cell volume of 1 at different temperatures determined in the cooling and heating cycle.

In the following, the diffraction patterns observed during cooling at different temperatures were analyzed (Fig. 5[link]). Down to 170 K, the diffraction pattern looks like that of a single crystal. Starting from around 160 K, some reflections show a very small splitting, which is observed in particular at high Bragg angles. This splitting increases with decreasing temperature, and around 140 K it becomes evident that more than one crystal domain is involved. Practically all of these reflections can be indexed, assuming the presence of two twin components, which is shown as an example for the measurement performed at 90 K (Fig. 5[link]). Indexing leads to a unit cell with all angles different from 90°, for which a triclinic crystal system is suggested (see below). Inter­estingly, upon reheating of this crystal, the second domain disappears and, for example at 260 K, the diffraction pattern corresponds to that of a single crystal once again. It is practically identical to the pattern of the crystal observed at 260 K during the cooling cycle (Fig. 6[link]). Therefore, this behavior seems to be fully reversible. In this context, it is noted that the number of domains seems to be dependent on the cooling rate and the crystal quality. If a crystal is directly placed into the cooling stream at 100 K, many domains appear and indexing fails.

[Figure 5]
Figure 5
Diffraction pattern of 1 along b* at different temperatures. For the measurement at 90 K, the reflections of both individuals are indicated in black and blue and, additionally, the view along a* is shown (bottom right).
[Figure 6]
Figure 6
Diffraction pattern of 1 at 260 K upon cooling (left) and reheating (right) with view along a* (top), b* (middle) and c* (bottom).

In subsequent work, numerous refinements were carried out in the monoclinic (space group P21/c) and triclinic (space group P[\overline{1}]) crystal system, either neglecting the twinning or using twin refinements also with data in HKLF-5 format in SHELXL. In the beginning, the structure was refined in both space groups using the data obtained at 300 K. In the space group P21/c, the refinement leads to reasonable reliability factors with no hints for a reduction of the symmetry, which is also obvious from the low inter­nal R-value of 1.7%. Nevertheless, these data were also modeled in space group P[\overline{1}], including a twin refinement based on the assumption that the correct symmetry is 2/m. This leads to slightly improved R-values; however, the BASF parameter refines close to 0.5 and large correlations between the parameters are obtained. Several cycles were needed to reach convergence, clearly proving that the monoclinic symmetry is correct. Moreover, for the structure model in space group P[\overline{1}], the ADSYMM option in PLATON suggests the higher space-group symmetry.

If the crystal is cooled down, no changes are observed until 200 K. At 180 K, a slight increase of the inter­nal R-value is noticed, which clearly increases upon further cooling. This might also be traced back to the continuous splitting of the reflections, leading to an imprecise measurement of the intensities. However, in the triclinic crystal system, the inter­nal R-value remains more or less constant (Fig. 7[link]). At 160 K, the R-value increases dramatically, independent of whether the structure is refined in P21/c or P[\overline{1}], which clearly shows that the splitting of the reflections cannot be neglected any further. Therefore, both individuals were indexed separately and twin refinements using data in HKLF-5 format were performed. In this case, the structure refines much better in the triclinic space group P[\overline{1}] (R1 = 0.044 and wR2 = 0.127) than in the monoclinic space group P21/c (R1 = 0.085 and wR2 = 0.201) indicating that the phase transition is finished. Here, PLATON only detects additional pseudo symmetry. Upon further cooling, splitting of the reflections increases and the best resolution is achieved at 90 K. This data set was used for comparison with the high-temperature monoclinic structure.

[Figure 7]
Figure 7
Inter­nal R-values obtained for refinements in the monoclinic (black) and triclinic crystal system (red) using data sets measured upon cooling.

The low-temperature form of 1 crystallizes in the triclinic space group P[\overline{1}] with Z = 4 with two crystallographically independent mol­ecules in a general position (Table 1[link] and Fig. 1[link]). The C—N—N—C torsion angles of 3.1 (3)° and −0.4 (3)° in both mol­ecules are only slightly different. Larger changes are observed in the dihedral angles between the phthalimide subunits, which amount to 79.30 (2) and 74.64 (3)° in the low-temperature form, with the latter significantly different from the high-temperature structure. As expected, the overall arrangement of the mol­ecules is similar to that in the high-temperature form. The distances of 3.404 (1) and 3.411 (1) Å between the centroids of the five- and six-membered rings are similar to that in the high-temperature structure [distance = 3.449 (1) Å]. However, larger changes are observed for the distance between the centroids of the five-membered rings, which amount to 3.771 (1) and 3.978 (1) Å, whereas 3.920 (1) Å is found in the high-temperature form (see above). This indicates that the phase transition is accompanied with some mol­ecular movement of the building units.

4. Database survey

A search of the CSD (version 5.43, last update December 2024, Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using CONQUEST (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]) reveals that some crystal structures of related compounds with an azo group as part of the central eight-membered ring are reported. These include, e.g. (Z)-11,12-di­hydro­dibenzo[c,g][1,2]diazo­cine (CSD refcode BUYFIL, Siewertsen et al., 2009[Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F. & Temps, F. (2009). J. Am. Chem. Soc. 131, 15594-15595.]; BUYFIL02, Joshi et al., 2012[Joshi, D. K., Mitchell, M. J., Bruce, D., Lough, A. J. & Yan, H. (2012). Tetrahedron 68, 8670-8676.]; BUYFIL03, Kramer et al., 2018[Krämer, R., Nöthling, N., Lehmann, C. W., Mohr, F. & Tausch, M. W. (2018). ChemPhotoChem 2, 6-11.]; BUYFIL014, Liu et al., 2023[Liu, Y., Li, F., Li, D., Dong, W. & Jin, B. (2023). J. Electroanal. Chem. 944, 117644.]). Also included are, e.g., N,N′-(11,12-di­hydro­dibenzo[c,g][1,2]diazo­cine-3,8-diylbis(4,1-phenyl­ene)-bis­(N-phenyl­aniline) 1,2-dichoro­ethane solvate (EGAPAG, Zhu et al., 2019[Zhu, Q., Wang, S. & Chen, P. (2019). Org. Lett. 21, 4025-4029.]) and 3,8-di­bromo­dibenzo[c,g][1,2]diazo­cine (GAJMUD, Zhu, 2020[Zhu, Q. (2020). CSD Communication (CCDC 1902659). CCDC, Cambridge, England.]). All of these mol­ecules are in the Z form, but there is also an example, where both the Z and E forms are reported (PEYLEN, Jun et al., 2018[Jun, M., Joshi, D. K., Yalagala, R. S., Vanloon, J., Simionescu, R., Lough, A. J., Gordon, H. L. & Yan, H. (2018). Chem. Sel. 3, 2697-2701.]; PEYLEN01, Kramer et al., 2018[Krämer, R., Nöthling, N., Lehmann, C. W., Mohr, F. & Tausch, M. W. (2018). ChemPhotoChem 2, 6-11.]; PEYLEN02, Deng et al., 2020[Deng, J., Wu, X., Guo, G., Zhao, X. & Yu, Z. (2020). Org. Biomol. Chem. 18, 5602-5607.]).

5. Synthesis and crystallization

Synthesis

The synthesis of the title compound was performed according to a procedure reported in the literature (Businski et al., 2025[Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3-8.]).

Crystallization

The crystals were grown by vapor diffusion experiments using a solvent/anti-solvent mixture of chloro­form and methanol, as also described in the literature (Businski et al., 2025[Businski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3-8.]).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1[link]. The aromatic H atoms were positioned with idealized geometry and were refined with Uiso(H) = 1.2Ueq(C) using a riding model. The methyl H atoms are disordered and were refined with Uiso(H) = 1.2Ueq(C) in two orientations rotated by each 60° (AFIX 127 card in SHELXL) using a riding model. The ratio between the two orientations was also refined. This disorder is also observed in the low-temperature phase and therefore, the same refinement procedure was used. This leads to some differences of the H-atom disorder between the high- and low- temperature phases, but it should be noted that the values for the site occupation factor will not be very reliable, especially at 300 K.

Supporting information


Computing details top

8,19-Dimethyl-2,3,8,19-tetraazapentacyclo[13.7.0.04,12.06,10.017,21]docosa-1(15),2,4(12),5,10,16,21-heptaene-7,9,18,20-tetrone (300K) top
Crystal data top
C20H14N4O4F(000) = 776
Mr = 374.35Dx = 1.429 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 16.4290 (2) ÅCell parameters from 12821 reflections
b = 8.05961 (10) Åθ = 2.8–78.4°
c = 13.72324 (16) ŵ = 0.85 mm1
β = 106.7581 (14)°T = 300 K
V = 1739.94 (4) Å3Block, colourless
Z = 40.20 × 0.15 × 0.10 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
3738 independent reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source3529 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.017
Detector resolution: 10.0000 pixels mm-1θmax = 80.3°, θmin = 2.8°
ω scansh = 2020
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1010
Tmin = 0.875, Tmax = 1.000l = 169
20169 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.2804P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.15 e Å3
3738 reflectionsΔρmin = 0.16 e Å3
258 parametersExtinction correction: SHELXL2016/6 (Sheldrick, 2015b)), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0017 (2)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.76123 (9)0.02530 (15)0.61812 (9)0.0675 (3)
N20.83005 (8)0.09831 (15)0.62847 (9)0.0662 (3)
C10.83034 (8)0.25742 (16)0.57982 (10)0.0556 (3)
C20.87140 (8)0.25936 (17)0.50414 (10)0.0593 (3)
H20.8939260.1632170.4847670.071*
C30.87714 (8)0.40923 (17)0.45949 (10)0.0568 (3)
C40.92117 (8)0.4547 (2)0.38251 (10)0.0643 (3)
O10.96289 (8)0.36729 (17)0.34456 (9)0.0866 (4)
N30.90683 (7)0.62318 (17)0.36506 (9)0.0677 (3)
C50.86000 (9)0.69145 (19)0.42526 (11)0.0629 (3)
O20.83808 (8)0.83548 (14)0.42375 (9)0.0825 (3)
C60.84279 (8)0.55260 (16)0.48743 (10)0.0552 (3)
C70.80432 (8)0.55111 (16)0.56413 (10)0.0554 (3)
H70.7819440.6481160.5826640.067*
C80.79932 (8)0.40161 (16)0.61389 (10)0.0549 (3)
C90.76753 (10)0.40375 (19)0.70657 (11)0.0660 (4)
H9A0.7504740.5165440.7157000.079*
H9B0.8151760.3772760.7651000.079*
C100.69453 (12)0.2901 (2)0.70905 (11)0.0746 (4)
H10A0.7170560.1979180.7541940.090*
H10B0.6559120.3508750.7377280.090*
C110.64478 (9)0.22184 (16)0.60706 (10)0.0579 (3)
C120.56314 (9)0.27668 (15)0.55744 (11)0.0582 (3)
H120.5365120.3553740.5872900.070*
C130.52247 (8)0.21175 (14)0.46287 (10)0.0525 (3)
C140.43587 (9)0.24216 (15)0.39487 (12)0.0596 (3)
O30.38113 (7)0.33220 (13)0.40784 (10)0.0801 (3)
N40.42771 (7)0.14206 (13)0.31000 (9)0.0608 (3)
C150.50120 (9)0.05343 (15)0.31613 (10)0.0557 (3)
O40.51166 (8)0.03756 (14)0.25120 (8)0.0753 (3)
C160.56139 (8)0.09568 (14)0.41654 (9)0.0502 (3)
C170.64128 (8)0.03570 (15)0.46471 (10)0.0540 (3)
H170.6669370.0446500.4348370.065*
C180.68183 (9)0.10091 (15)0.56018 (10)0.0551 (3)
C190.93771 (11)0.7171 (3)0.29226 (13)0.0833 (5)
H19A0.9512530.8281310.3169670.125*0.74 (3)
H19B0.8945120.7204150.2279770.125*0.74 (3)
H19C0.9877260.6647030.2838480.125*0.74 (3)
H19D0.9377410.6473680.2355610.125*0.26 (3)
H19E0.9944820.7550840.3245520.125*0.26 (3)
H19F0.9012680.8107960.2686800.125*0.26 (3)
C200.35482 (11)0.1457 (2)0.22019 (14)0.0822 (5)
H20A0.3631990.0677730.1710440.123*0.60 (2)
H20B0.3484380.2551770.1914370.123*0.60 (2)
H20C0.3045580.1164890.2386220.123*0.60 (2)
H20D0.3142640.2251870.2296920.123*0.40 (2)
H20E0.3290250.0377820.2092980.123*0.40 (2)
H20F0.3729050.1764700.1621130.123*0.40 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0796 (8)0.0536 (6)0.0645 (7)0.0053 (6)0.0130 (6)0.0104 (5)
N20.0737 (7)0.0571 (6)0.0604 (6)0.0085 (6)0.0077 (5)0.0060 (5)
C10.0542 (6)0.0539 (7)0.0526 (6)0.0041 (5)0.0054 (5)0.0010 (5)
C20.0562 (7)0.0596 (7)0.0575 (7)0.0090 (6)0.0092 (5)0.0054 (6)
C30.0486 (6)0.0665 (8)0.0519 (6)0.0022 (5)0.0089 (5)0.0039 (6)
C40.0516 (7)0.0834 (10)0.0546 (7)0.0025 (6)0.0100 (5)0.0017 (6)
O10.0828 (7)0.1095 (9)0.0754 (7)0.0168 (7)0.0351 (6)0.0025 (6)
N30.0574 (6)0.0818 (8)0.0623 (7)0.0063 (6)0.0150 (5)0.0083 (6)
C50.0549 (7)0.0668 (8)0.0626 (8)0.0044 (6)0.0097 (6)0.0042 (6)
O20.0947 (8)0.0632 (7)0.0909 (8)0.0015 (6)0.0286 (6)0.0118 (5)
C60.0481 (6)0.0578 (7)0.0557 (7)0.0009 (5)0.0087 (5)0.0002 (5)
C70.0535 (6)0.0522 (7)0.0587 (7)0.0013 (5)0.0130 (5)0.0044 (5)
C80.0530 (6)0.0566 (7)0.0517 (6)0.0003 (5)0.0094 (5)0.0029 (5)
C90.0779 (9)0.0662 (8)0.0536 (7)0.0005 (7)0.0184 (6)0.0073 (6)
C100.1017 (12)0.0747 (9)0.0539 (7)0.0155 (8)0.0325 (8)0.0054 (7)
C110.0746 (8)0.0510 (7)0.0556 (7)0.0089 (6)0.0308 (6)0.0002 (5)
C120.0724 (8)0.0461 (6)0.0684 (8)0.0062 (5)0.0400 (7)0.0063 (5)
C130.0609 (7)0.0393 (5)0.0661 (7)0.0025 (5)0.0323 (6)0.0019 (5)
C140.0608 (7)0.0418 (6)0.0836 (9)0.0028 (5)0.0325 (7)0.0048 (6)
O30.0656 (6)0.0598 (6)0.1233 (10)0.0078 (5)0.0404 (6)0.0016 (6)
N40.0606 (6)0.0488 (5)0.0719 (7)0.0019 (5)0.0175 (5)0.0075 (5)
C150.0670 (7)0.0454 (6)0.0584 (7)0.0021 (5)0.0240 (6)0.0042 (5)
O40.0898 (7)0.0739 (7)0.0622 (6)0.0046 (5)0.0221 (5)0.0124 (5)
C160.0616 (7)0.0402 (5)0.0550 (6)0.0014 (5)0.0265 (5)0.0022 (5)
C170.0659 (7)0.0433 (6)0.0582 (7)0.0037 (5)0.0263 (6)0.0006 (5)
C180.0669 (7)0.0456 (6)0.0548 (6)0.0015 (5)0.0209 (5)0.0066 (5)
C190.0714 (9)0.1092 (14)0.0681 (9)0.0140 (9)0.0182 (7)0.0176 (9)
C200.0725 (9)0.0713 (9)0.0904 (11)0.0076 (8)0.0038 (8)0.0153 (8)
Geometric parameters (Å, º) top
N1—N21.2458 (17)C11—C181.4000 (18)
N1—C181.4516 (18)C12—H120.9300
N2—C11.4464 (17)C12—C131.3800 (19)
C1—C21.3920 (19)C13—C141.4797 (19)
C1—C81.4023 (18)C13—C161.3866 (16)
C2—H20.9300C14—O31.2080 (16)
C2—C31.370 (2)C14—N41.3911 (19)
C3—C41.4881 (19)N4—C151.3844 (17)
C3—C61.3876 (18)N4—C201.450 (2)
C4—O11.2012 (18)C15—O41.2039 (16)
C4—N31.387 (2)C15—C161.4855 (18)
N3—C51.3942 (19)C16—C171.3759 (18)
N3—C191.4564 (19)C17—H170.9300
C5—O21.2138 (18)C17—C181.3904 (18)
C5—C61.4830 (19)C19—H19A0.9600
C6—C71.3752 (19)C19—H19B0.9600
C7—H70.9300C19—H19C0.9600
C7—C81.3990 (18)C19—H19D0.9600
C8—C91.5077 (19)C19—H19E0.9600
C9—H9A0.9700C19—H19F0.9600
C9—H9B0.9700C20—H20A0.9600
C9—C101.517 (2)C20—H20B0.9600
C10—H10A0.9700C20—H20C0.9600
C10—H10B0.9700C20—H20D0.9600
C10—C111.507 (2)C20—H20E0.9600
C11—C121.390 (2)C20—H20F0.9600
N2—N1—C18120.45 (11)C15—N4—C20123.64 (13)
N1—N2—C1119.33 (11)N4—C15—C16105.88 (11)
C2—C1—N2114.91 (12)O4—C15—N4125.27 (13)
C2—C1—C8122.71 (12)O4—C15—C16128.85 (13)
C8—C1—N2122.07 (12)C13—C16—C15107.96 (11)
C1—C2—H2121.5C17—C16—C13121.25 (12)
C3—C2—C1117.02 (12)C17—C16—C15130.75 (11)
C3—C2—H2121.5C16—C17—H17121.6
C2—C3—C4130.16 (13)C16—C17—C18116.84 (11)
C2—C3—C6121.65 (12)C18—C17—H17121.6
C6—C3—C4108.11 (12)C11—C18—N1118.79 (12)
O1—C4—C3128.19 (15)C17—C18—N1117.92 (12)
O1—C4—N3126.08 (15)C17—C18—C11122.85 (13)
N3—C4—C3105.69 (12)N3—C19—H19A109.5
C4—N3—C5112.29 (12)N3—C19—H19B109.5
C4—N3—C19123.49 (14)N3—C19—H19C109.5
C5—N3—C19124.21 (15)N3—C19—H19D109.5
N3—C5—C6105.81 (12)N3—C19—H19E109.5
O2—C5—N3125.38 (14)N3—C19—H19F109.5
O2—C5—C6128.80 (14)H19A—C19—H19B109.5
C3—C6—C5108.01 (12)H19A—C19—H19C109.5
C7—C6—C3121.17 (12)H19A—C19—H19D141.1
C7—C6—C5130.76 (12)H19A—C19—H19E56.3
C6—C7—H7120.5H19A—C19—H19F56.3
C6—C7—C8119.06 (12)H19B—C19—H19C109.5
C8—C7—H7120.5H19B—C19—H19D56.3
C1—C8—C9122.57 (12)H19B—C19—H19E141.1
C7—C8—C1118.22 (12)H19B—C19—H19F56.3
C7—C8—C9119.03 (12)H19C—C19—H19D56.3
C8—C9—H9A107.6H19C—C19—H19E56.3
C8—C9—H9B107.6H19C—C19—H19F141.1
C8—C9—C10118.71 (12)H19D—C19—H19E109.5
H9A—C9—H9B107.1H19D—C19—H19F109.5
C10—C9—H9A107.6H19E—C19—H19F109.5
C10—C9—H9B107.6N4—C20—H20A109.5
C9—C10—H10A108.6N4—C20—H20B109.5
C9—C10—H10B108.6N4—C20—H20C109.5
H10A—C10—H10B107.5N4—C20—H20D109.5
C11—C10—C9114.84 (11)N4—C20—H20E109.5
C11—C10—H10A108.6N4—C20—H20F109.5
C11—C10—H10B108.6H20A—C20—H20B109.5
C12—C11—C10121.83 (13)H20A—C20—H20C109.5
C12—C11—C18118.83 (12)H20A—C20—H20D141.1
C18—C11—C10119.34 (14)H20A—C20—H20E56.3
C11—C12—H12120.7H20A—C20—H20F56.3
C13—C12—C11118.52 (12)H20B—C20—H20C109.5
C13—C12—H12120.7H20B—C20—H20D56.3
C12—C13—C14130.32 (12)H20B—C20—H20E141.1
C12—C13—C16121.65 (12)H20B—C20—H20F56.3
C16—C13—C14108.01 (11)H20C—C20—H20D56.3
O3—C14—C13128.89 (14)H20C—C20—H20E56.3
O3—C14—N4125.15 (14)H20C—C20—H20F141.1
N4—C14—C13105.96 (11)H20D—C20—H20E109.5
C14—N4—C20123.81 (13)H20D—C20—H20F109.5
C15—N4—C14112.12 (11)H20E—C20—H20F109.5
N1—N2—C1—C2114.90 (15)C9—C10—C11—C12107.59 (16)
N1—N2—C1—C871.39 (17)C9—C10—C11—C1871.79 (18)
N2—N1—C18—C1180.49 (17)C10—C11—C12—C13178.17 (12)
N2—N1—C18—C17106.88 (15)C10—C11—C18—N19.94 (18)
N2—C1—C2—C3176.74 (11)C10—C11—C18—C17177.82 (12)
N2—C1—C8—C7178.19 (12)C11—C12—C13—C14177.76 (11)
N2—C1—C8—C93.17 (19)C11—C12—C13—C160.71 (18)
C1—C2—C3—C4175.54 (12)C12—C11—C18—N1170.67 (11)
C1—C2—C3—C60.71 (19)C12—C11—C18—C171.58 (18)
C1—C8—C9—C1058.56 (19)C12—C13—C14—O30.0 (2)
C2—C1—C8—C74.97 (19)C12—C13—C14—N4179.03 (12)
C2—C1—C8—C9170.05 (12)C12—C13—C16—C15179.44 (11)
C2—C3—C4—O11.6 (2)C12—C13—C16—C172.41 (18)
C2—C3—C4—N3179.52 (13)C13—C14—N4—C151.29 (13)
C2—C3—C6—C5179.92 (11)C13—C14—N4—C20174.09 (12)
C2—C3—C6—C72.54 (19)C13—C16—C17—C182.00 (17)
C3—C4—N3—C51.69 (15)C14—C13—C16—C151.79 (13)
C3—C4—N3—C19178.53 (13)C14—C13—C16—C17176.37 (10)
C3—C6—C7—C80.57 (18)C14—N4—C15—O4177.35 (13)
C4—C3—C6—C52.94 (14)C14—N4—C15—C162.35 (13)
C4—C3—C6—C7174.45 (11)O3—C14—N4—C15179.61 (12)
C4—N3—C5—O2179.05 (14)O3—C14—N4—C206.8 (2)
C4—N3—C5—C60.05 (15)N4—C15—C16—C132.53 (13)
O1—C4—N3—C5176.34 (14)N4—C15—C16—C17175.38 (12)
O1—C4—N3—C193.4 (2)C15—C16—C17—C18179.68 (11)
N3—C5—C6—C31.92 (14)O4—C15—C16—C13177.15 (13)
N3—C5—C6—C7175.13 (13)O4—C15—C16—C174.9 (2)
C5—C6—C7—C8177.28 (13)C16—C13—C14—O3178.66 (13)
O2—C5—C6—C3177.14 (15)C16—C13—C14—N40.40 (13)
O2—C5—C6—C75.8 (2)C16—C17—C18—N1172.34 (11)
C6—C3—C4—O1175.09 (14)C16—C17—C18—C110.03 (18)
C6—C3—C4—N32.88 (14)C18—N1—N2—C11.7 (2)
C6—C7—C8—C13.02 (18)C18—C11—C12—C131.21 (17)
C6—C7—C8—C9172.18 (12)C19—N3—C5—O21.2 (2)
C7—C8—C9—C10126.47 (15)C19—N3—C5—C6179.73 (13)
C8—C1—C2—C33.08 (19)C20—N4—C15—O44.5 (2)
C8—C9—C10—C1116.6 (2)C20—N4—C15—C16175.16 (12)
(90K) top
Crystal data top
C20H14N4O4Z = 4
Mr = 374.35F(000) = 776
Triclinic, P1Dx = 1.467 Mg m3
a = 7.9465 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 13.7201 (3) ÅCell parameters from 13461 reflections
c = 16.2592 (6) Åθ = 2.8–79.6°
α = 106.993 (2)°µ = 0.88 mm1
β = 90.914 (3)°T = 90 K
γ = 90.1121 (19)°Block, colourless
V = 1695.04 (9) Å30.20 × 0.15 × 0.10 mm
Data collection top
XtaLAB Synergy, Dualflex, HyPix
diffractometer
7780 measured reflections
Radiation source: micro-focus sealed X-ray tube, PhotonJet (Cu) X-ray Source7780 independent reflections
Mirror monochromator7595 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1θmax = 81.0°, θmin = 2.8°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlisPro; Rigaku OD, 2023)
k = 1616
Tmin = 0.915, Tmax = 1.000l = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.064P)2 + 0.6702P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
7780 reflectionsΔρmax = 0.27 e Å3
514 parametersΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.90321 (19)0.62743 (12)0.84068 (10)0.0300 (3)
N20.97717 (19)0.61742 (13)0.77174 (11)0.0309 (3)
C10.8973 (2)0.56223 (14)0.69017 (11)0.0261 (3)
C20.9597 (2)0.46667 (14)0.64684 (11)0.0262 (3)
H21.0399690.4331580.6728230.031*
C30.89879 (19)0.42282 (13)0.56379 (11)0.0237 (3)
C40.9396 (2)0.32410 (13)0.49971 (11)0.0249 (3)
O11.02862 (16)0.25596 (10)0.50834 (9)0.0317 (3)
N30.85302 (18)0.32384 (12)0.42458 (10)0.0260 (3)
C50.75329 (19)0.40966 (13)0.43556 (11)0.0246 (3)
O20.66287 (16)0.42633 (11)0.38013 (8)0.0308 (3)
C60.78443 (19)0.47356 (13)0.52580 (11)0.0236 (3)
C70.7216 (2)0.56791 (14)0.56909 (11)0.0251 (3)
H70.6422110.6010450.5423000.030*
C80.7781 (2)0.61345 (13)0.65364 (12)0.0263 (3)
C90.7141 (2)0.71498 (14)0.70747 (13)0.0312 (4)
H9A0.6601110.7505000.6691370.037*
H9B0.8108850.7571690.7369270.037*
C100.5865 (2)0.70611 (15)0.77551 (12)0.0305 (4)
H10A0.6012820.7666550.8262390.037*
H10B0.4720990.7098030.7516480.037*
C110.5930 (2)0.61246 (14)0.80677 (11)0.0267 (4)
C120.4413 (2)0.56123 (14)0.81024 (11)0.0269 (3)
H120.3400530.5797170.7869470.032*
C130.4425 (2)0.48339 (14)0.84824 (11)0.0274 (4)
C140.3018 (2)0.41984 (15)0.86444 (11)0.0304 (4)
O30.15479 (17)0.41887 (12)0.84211 (9)0.0372 (3)
N40.3728 (2)0.35902 (13)0.91086 (10)0.0327 (3)
C150.5451 (3)0.37703 (15)0.92671 (11)0.0307 (4)
O40.63512 (19)0.33915 (11)0.96906 (9)0.0379 (3)
C160.5881 (2)0.45571 (14)0.88382 (11)0.0283 (4)
C170.7409 (2)0.50202 (14)0.87961 (11)0.0289 (4)
H170.8412330.4826420.9030600.035*
C180.7401 (2)0.57893 (14)0.83902 (11)0.0276 (4)
C190.8451 (2)0.23684 (15)0.34772 (12)0.0331 (4)
H19A0.9280680.1860760.3528510.050*0.93 (3)
H19B0.8698720.2593220.2972360.050*0.93 (3)
H19C0.7321440.2065040.3412810.050*0.93 (3)
H19D0.7586550.2485250.3080610.050*0.07 (3)
H19E0.8168500.1752790.3636760.050*0.07 (3)
H19F0.9545790.2280980.3196310.050*0.07 (3)
C200.2788 (3)0.28521 (16)0.94091 (13)0.0383 (5)
H20A0.1630810.3089200.9531650.057*0.84 (3)
H20B0.3325390.2777940.9934010.057*0.84 (3)
H20C0.2775320.2192280.8963770.057*0.84 (3)
H20D0.3523530.2283750.9421300.057*0.16 (3)
H20E0.1828960.2595000.9018940.057*0.16 (3)
H20F0.2379030.3180670.9989180.057*0.16 (3)
N210.5872 (2)1.13833 (13)0.82254 (11)0.0329 (3)
N220.5151 (2)1.12574 (13)0.75096 (11)0.0343 (4)
C210.5926 (2)1.06246 (14)0.67341 (12)0.0278 (4)
C220.5259 (2)0.96536 (14)0.63597 (12)0.0266 (3)
H220.4406150.9377840.6630660.032*
C230.5897 (2)0.91128 (13)0.55773 (12)0.0250 (3)
C240.5478 (2)0.80709 (14)0.50087 (12)0.0269 (4)
O210.45339 (16)0.74395 (10)0.51439 (9)0.0334 (3)
N230.64090 (18)0.79380 (12)0.42735 (10)0.0289 (3)
C250.7447 (2)0.87790 (15)0.43250 (12)0.0290 (4)
O220.83897 (16)0.88526 (12)0.37710 (9)0.0366 (3)
C260.7106 (2)0.95301 (14)0.51710 (12)0.0258 (3)
C270.7773 (2)1.04919 (15)0.55469 (12)0.0286 (4)
H270.8612351.0764120.5265180.034*
C280.7189 (2)1.10525 (14)0.63476 (13)0.0294 (4)
C290.7888 (3)1.20923 (15)0.68072 (15)0.0372 (4)
H29A0.6941531.2576770.6958960.045*
H29B0.8613771.2317000.6406810.045*
C300.8919 (2)1.21495 (14)0.76328 (13)0.0329 (4)
H30A1.0099591.2312130.7534420.040*
H30B0.8490531.2728500.8099630.040*
C310.8929 (2)1.12217 (14)0.79500 (11)0.0279 (4)
C321.0444 (2)1.07131 (14)0.80001 (11)0.0277 (4)
H321.1446431.0895820.7768760.033*
C331.0454 (2)0.99457 (14)0.83895 (11)0.0271 (4)
C341.1855 (2)0.93178 (15)0.85713 (11)0.0295 (4)
O231.33179 (16)0.92995 (12)0.83575 (9)0.0360 (3)
N241.1167 (2)0.87185 (13)0.90418 (10)0.0307 (3)
C350.9451 (2)0.89021 (14)0.91788 (11)0.0301 (4)
O240.85636 (19)0.85188 (12)0.95972 (9)0.0388 (3)
C360.8996 (2)0.96745 (14)0.87349 (11)0.0276 (4)
C370.7477 (2)1.01241 (14)0.86708 (12)0.0291 (4)
H370.6479570.9927350.8897170.035*
C380.7466 (2)1.08832 (14)0.82577 (12)0.0280 (4)
C390.6458 (3)0.69911 (17)0.35796 (14)0.0400 (5)
H39A0.5615990.6515550.3677210.060*0.48 (3)
H39B0.7579240.6690680.3561800.060*0.48 (3)
H39C0.6210570.7127840.3031470.060*0.48 (3)
H39D0.7321220.7040490.3169780.060*0.52 (3)
H39E0.5357960.6865360.3285190.060*0.52 (3)
H39F0.6726630.6428200.3815510.060*0.52 (3)
C401.2119 (3)0.79927 (16)0.93629 (13)0.0348 (4)
H40A1.3243310.8271420.9552150.052*0.83 (3)
H40B1.2221150.7349650.8903240.052*0.83 (3)
H40C1.1531200.7869710.9848910.052*0.83 (3)
H40D1.1420470.7389100.9317390.052*0.17 (3)
H40E1.2442620.8310870.9966290.052*0.17 (3)
H40F1.3132580.7790810.9020620.052*0.17 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0278 (7)0.0271 (8)0.0333 (8)0.0018 (6)0.0007 (6)0.0063 (6)
N20.0254 (7)0.0303 (8)0.0360 (8)0.0036 (6)0.0014 (6)0.0082 (6)
C10.0230 (8)0.0265 (9)0.0304 (9)0.0058 (6)0.0013 (6)0.0108 (7)
C20.0207 (7)0.0284 (9)0.0334 (9)0.0018 (6)0.0004 (6)0.0152 (7)
C30.0183 (7)0.0246 (8)0.0315 (8)0.0008 (6)0.0031 (6)0.0134 (7)
C40.0198 (7)0.0236 (8)0.0346 (9)0.0030 (6)0.0015 (6)0.0135 (7)
O10.0283 (6)0.0260 (7)0.0436 (7)0.0049 (5)0.0007 (5)0.0146 (6)
N30.0227 (7)0.0256 (7)0.0308 (7)0.0018 (5)0.0016 (5)0.0101 (6)
C50.0181 (7)0.0274 (9)0.0320 (9)0.0006 (6)0.0034 (6)0.0142 (7)
O20.0253 (6)0.0389 (7)0.0318 (7)0.0008 (5)0.0004 (5)0.0159 (5)
C60.0165 (7)0.0274 (9)0.0312 (8)0.0024 (6)0.0023 (6)0.0151 (7)
C70.0195 (7)0.0262 (8)0.0344 (9)0.0009 (6)0.0041 (6)0.0163 (7)
C80.0229 (8)0.0238 (8)0.0352 (9)0.0019 (6)0.0049 (6)0.0128 (7)
C90.0305 (9)0.0247 (9)0.0394 (10)0.0004 (7)0.0047 (7)0.0106 (7)
C100.0279 (8)0.0286 (9)0.0344 (9)0.0001 (7)0.0009 (7)0.0084 (7)
C110.0268 (8)0.0256 (9)0.0255 (8)0.0007 (6)0.0020 (6)0.0037 (6)
C120.0239 (8)0.0293 (9)0.0254 (8)0.0001 (6)0.0009 (6)0.0049 (7)
C130.0288 (8)0.0275 (9)0.0235 (8)0.0030 (7)0.0016 (6)0.0035 (6)
C140.0341 (9)0.0296 (9)0.0243 (8)0.0056 (7)0.0041 (7)0.0026 (7)
O30.0305 (7)0.0400 (8)0.0391 (7)0.0077 (6)0.0040 (6)0.0084 (6)
N40.0371 (8)0.0327 (9)0.0271 (7)0.0076 (7)0.0040 (6)0.0067 (6)
C150.0395 (10)0.0280 (9)0.0227 (8)0.0016 (7)0.0009 (7)0.0046 (7)
O40.0467 (8)0.0341 (8)0.0350 (7)0.0019 (6)0.0030 (6)0.0134 (6)
C160.0347 (9)0.0252 (9)0.0226 (8)0.0000 (7)0.0012 (7)0.0034 (6)
C170.0297 (9)0.0273 (9)0.0271 (8)0.0004 (7)0.0017 (7)0.0042 (7)
C180.0279 (8)0.0254 (8)0.0265 (8)0.0029 (7)0.0008 (6)0.0029 (7)
C190.0310 (9)0.0320 (10)0.0344 (9)0.0025 (7)0.0034 (7)0.0063 (8)
C200.0478 (11)0.0345 (10)0.0322 (9)0.0102 (9)0.0078 (8)0.0088 (8)
N210.0277 (7)0.0259 (8)0.0418 (9)0.0003 (6)0.0033 (6)0.0048 (7)
N220.0292 (8)0.0269 (8)0.0440 (9)0.0019 (6)0.0013 (7)0.0059 (7)
C210.0222 (8)0.0251 (9)0.0376 (9)0.0032 (6)0.0012 (7)0.0117 (7)
C220.0197 (7)0.0266 (9)0.0367 (9)0.0001 (6)0.0012 (6)0.0144 (7)
C230.0201 (7)0.0238 (8)0.0354 (9)0.0009 (6)0.0019 (6)0.0153 (7)
C240.0212 (8)0.0250 (9)0.0371 (9)0.0022 (6)0.0010 (6)0.0134 (7)
O210.0293 (6)0.0255 (7)0.0467 (8)0.0037 (5)0.0026 (5)0.0127 (6)
N230.0211 (7)0.0313 (8)0.0345 (8)0.0034 (6)0.0004 (6)0.0102 (6)
C250.0216 (8)0.0364 (10)0.0334 (9)0.0024 (7)0.0025 (7)0.0173 (8)
O220.0248 (6)0.0554 (9)0.0354 (7)0.0010 (6)0.0026 (5)0.0224 (6)
C260.0189 (7)0.0307 (9)0.0329 (9)0.0004 (6)0.0020 (6)0.0175 (7)
C270.0213 (8)0.0324 (9)0.0395 (10)0.0029 (7)0.0034 (7)0.0223 (8)
C280.0256 (8)0.0250 (9)0.0418 (10)0.0019 (7)0.0068 (7)0.0166 (8)
C290.0321 (9)0.0254 (10)0.0573 (12)0.0046 (7)0.0081 (8)0.0175 (9)
C300.0330 (9)0.0242 (9)0.0417 (10)0.0046 (7)0.0022 (8)0.0097 (8)
C310.0300 (9)0.0232 (9)0.0282 (8)0.0034 (7)0.0006 (7)0.0040 (7)
C320.0260 (8)0.0282 (9)0.0276 (8)0.0039 (7)0.0005 (6)0.0060 (7)
C330.0286 (8)0.0253 (9)0.0242 (8)0.0031 (7)0.0012 (6)0.0025 (6)
C340.0315 (9)0.0285 (9)0.0257 (8)0.0026 (7)0.0026 (7)0.0037 (7)
O230.0276 (7)0.0401 (8)0.0412 (7)0.0003 (5)0.0007 (5)0.0134 (6)
N240.0334 (8)0.0293 (8)0.0285 (7)0.0003 (6)0.0018 (6)0.0072 (6)
C350.0360 (9)0.0259 (9)0.0259 (8)0.0035 (7)0.0006 (7)0.0037 (7)
O240.0448 (8)0.0360 (8)0.0390 (7)0.0032 (6)0.0080 (6)0.0158 (6)
C360.0322 (9)0.0243 (9)0.0238 (8)0.0047 (7)0.0011 (6)0.0031 (6)
C370.0280 (8)0.0273 (9)0.0288 (8)0.0041 (7)0.0044 (7)0.0032 (7)
C380.0270 (8)0.0240 (9)0.0287 (8)0.0017 (7)0.0014 (6)0.0007 (7)
C390.0320 (10)0.0412 (12)0.0408 (11)0.0072 (8)0.0033 (8)0.0027 (9)
C400.0406 (10)0.0309 (10)0.0337 (9)0.0025 (8)0.0052 (8)0.0111 (8)
Geometric parameters (Å, º) top
N1—N21.246 (2)N21—N221.255 (3)
N1—C181.452 (2)N21—C381.449 (2)
N2—C11.456 (2)N22—C211.452 (2)
C1—C21.391 (3)C21—C221.392 (3)
C1—C81.405 (3)C21—C281.407 (2)
C2—C31.387 (2)C22—C231.377 (3)
C2—H20.9500C22—H220.9500
C3—C61.389 (2)C23—C261.388 (2)
C3—C41.488 (2)C23—C241.492 (2)
C4—O11.212 (2)C24—O211.215 (2)
C4—N31.392 (2)C24—N231.382 (2)
N3—C51.390 (2)N23—C251.399 (2)
N3—C191.455 (2)N23—C391.451 (3)
C5—O21.217 (2)C25—O221.207 (2)
C5—C61.489 (2)C25—C261.487 (3)
C6—C71.379 (3)C26—C271.383 (3)
C7—C81.400 (3)C27—C281.392 (3)
C7—H70.9500C27—H270.9500
C8—C91.506 (3)C28—C291.504 (3)
C9—C101.543 (2)C29—C301.544 (3)
C9—H9A0.9900C29—H29A0.9900
C9—H9B0.9900C29—H29B0.9900
C10—C111.514 (3)C30—C311.507 (3)
C10—H10A0.9900C30—H30A0.9900
C10—H10B0.9900C30—H30B0.9900
C11—C121.404 (2)C31—C381.403 (2)
C11—C181.406 (3)C31—C321.406 (3)
C12—C131.381 (3)C32—C331.378 (3)
C12—H120.9500C32—H320.9500
C13—C161.387 (3)C33—C361.392 (2)
C13—C141.490 (2)C33—C341.487 (3)
C14—O31.216 (2)C34—O231.217 (2)
C14—N41.393 (3)C34—N241.393 (2)
N4—C151.397 (3)N24—C351.397 (3)
N4—C201.456 (2)N24—C401.460 (3)
C15—O41.205 (2)C35—O241.208 (2)
C15—C161.488 (3)C35—C361.488 (3)
C16—C171.381 (3)C36—C371.373 (3)
C17—C181.399 (3)C37—C381.395 (3)
C17—H170.9500C37—H370.9500
C19—H19A0.9800C39—H39A0.9800
C19—H19B0.9800C39—H39B0.9800
C19—H19C0.9800C39—H39C0.9800
C19—H19D0.9800C39—H39D0.9800
C19—H19E0.9800C39—H39E0.9800
C19—H19F0.9800C39—H39F0.9800
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C20—H20D0.9800C40—H40D0.9800
C20—H20E0.9800C40—H40E0.9800
C20—H20F0.9800C40—H40F0.9800
N2—N1—C18119.17 (15)N22—N21—C38118.80 (16)
N1—N2—C1120.42 (14)N21—N22—C21119.77 (16)
C2—C1—C8123.02 (16)C22—C21—C28122.88 (17)
C2—C1—N2118.01 (16)C22—C21—N22117.98 (16)
C8—C1—N2118.36 (16)C28—C21—N22118.80 (17)
C3—C2—C1116.58 (16)C23—C22—C21116.70 (16)
C3—C2—H2121.7C23—C22—H22121.6
C1—C2—H2121.7C21—C22—H22121.6
C2—C3—C6121.18 (17)C22—C23—C26121.48 (17)
C2—C3—C4130.69 (16)C22—C23—C24130.62 (15)
C6—C3—C4108.10 (15)C26—C23—C24107.88 (16)
O1—C4—N3125.28 (17)O21—C24—N23125.14 (17)
O1—C4—C3128.95 (17)O21—C24—C23128.60 (17)
N3—C4—C3105.77 (14)N23—C24—C23106.25 (14)
C5—N3—C4112.23 (15)C24—N23—C25111.89 (15)
C5—N3—C19123.10 (16)C24—N23—C39123.79 (16)
C4—N3—C19123.93 (16)C25—N23—C39123.91 (16)
O2—C5—N3124.94 (17)O22—C25—N23125.03 (19)
O2—C5—C6129.18 (17)O22—C25—C26128.97 (18)
N3—C5—C6105.87 (14)N23—C25—C26105.99 (15)
C7—C6—C3122.15 (16)C27—C26—C23121.64 (17)
C7—C6—C5129.92 (16)C27—C26—C25130.42 (16)
C3—C6—C5107.92 (15)C23—C26—C25107.94 (16)
C6—C7—C8118.10 (16)C26—C27—C28118.51 (16)
C6—C7—H7120.9C26—C27—H27120.7
C8—C7—H7120.9C28—C27—H27120.7
C7—C8—C1118.93 (17)C27—C28—C21118.73 (17)
C7—C8—C9122.41 (17)C27—C28—C29121.54 (17)
C1—C8—C9118.65 (17)C21—C28—C29119.73 (18)
C8—C9—C10113.34 (15)C28—C29—C30114.67 (16)
C8—C9—H9A108.9C28—C29—H29A108.6
C10—C9—H9A108.9C30—C29—H29A108.6
C8—C9—H9B108.9C28—C29—H29B108.6
C10—C9—H9B108.9C30—C29—H29B108.6
H9A—C9—H9B107.7H29A—C29—H29B107.6
C11—C10—C9118.20 (16)C31—C30—C29117.71 (15)
C11—C10—H10A107.8C31—C30—H30A107.9
C9—C10—H10A107.8C29—C30—H30A107.9
C11—C10—H10B107.8C31—C30—H30B107.9
C9—C10—H10B107.8C29—C30—H30B107.9
H10A—C10—H10B107.1H30A—C30—H30B107.2
C12—C11—C18118.15 (16)C38—C31—C32118.13 (17)
C12—C11—C10118.09 (16)C38—C31—C30121.45 (17)
C18—C11—C10123.54 (15)C32—C31—C30120.27 (16)
C13—C12—C11118.56 (17)C33—C32—C31119.03 (16)
C13—C12—H12120.7C33—C32—H32120.5
C11—C12—H12120.7C31—C32—H32120.5
C12—C13—C16121.96 (16)C32—C33—C36121.03 (18)
C12—C13—C14130.29 (17)C32—C33—C34131.01 (16)
C16—C13—C14107.66 (16)C36—C33—C34107.88 (16)
O3—C14—N4125.86 (18)O23—C34—N24125.09 (19)
O3—C14—C13128.46 (19)O23—C34—C33128.66 (19)
N4—C14—C13105.69 (16)N24—C34—C33106.25 (15)
C14—N4—C15112.75 (16)C34—N24—C35111.81 (16)
C14—N4—C20124.15 (17)C34—N24—C40124.40 (16)
C15—N4—C20123.09 (18)C35—N24—C40123.79 (17)
O4—C15—N4126.50 (18)O24—C35—N24125.53 (19)
O4—C15—C16128.53 (18)O24—C35—C36128.47 (18)
N4—C15—C16104.91 (17)N24—C35—C36105.97 (15)
C17—C16—C13121.37 (17)C37—C36—C33121.82 (17)
C17—C16—C15129.62 (18)C37—C36—C35130.10 (16)
C13—C16—C15108.95 (16)C33—C36—C35108.03 (16)
C16—C17—C18116.52 (17)C36—C37—C38116.85 (16)
C16—C17—H17121.7C36—C37—H37121.6
C18—C17—H17121.7C38—C37—H37121.6
C17—C18—C11123.28 (16)C37—C38—C31122.92 (17)
C17—C18—N1113.43 (16)C37—C38—N21116.45 (16)
C11—C18—N1123.04 (16)C31—C38—N21120.41 (17)
N3—C19—H19A109.5N23—C39—H39A109.5
N3—C19—H19B109.5N23—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
N3—C19—H19C109.5N23—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
N3—C19—H19D109.5N23—C39—H39D109.5
H19A—C19—H19D141.1H39A—C39—H39D141.1
H19B—C19—H19D56.3H39B—C39—H39D56.3
H19C—C19—H19D56.3H39C—C39—H39D56.3
N3—C19—H19E109.5N23—C39—H39E109.5
H19A—C19—H19E56.3H39A—C39—H39E56.3
H19B—C19—H19E141.1H39B—C39—H39E141.1
H19C—C19—H19E56.3H39C—C39—H39E56.3
H19D—C19—H19E109.5H39D—C39—H39E109.5
N3—C19—H19F109.5N23—C39—H39F109.5
H19A—C19—H19F56.3H39A—C39—H39F56.3
H19B—C19—H19F56.3H39B—C39—H39F56.3
H19C—C19—H19F141.1H39C—C39—H39F141.1
H19D—C19—H19F109.5H39D—C39—H39F109.5
H19E—C19—H19F109.5H39E—C39—H39F109.5
N4—C20—H20A109.5N24—C40—H40A109.5
N4—C20—H20B109.5N24—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
N4—C20—H20C109.5N24—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
N4—C20—H20D109.5N24—C40—H40D109.5
H20A—C20—H20D141.1H40A—C40—H40D141.1
H20B—C20—H20D56.3H40B—C40—H40D56.3
H20C—C20—H20D56.3H40C—C40—H40D56.3
N4—C20—H20E109.5N24—C40—H40E109.5
H20A—C20—H20E56.3H40A—C40—H40E56.3
H20B—C20—H20E141.1H40B—C40—H40E141.1
H20C—C20—H20E56.3H40C—C40—H40E56.3
H20D—C20—H20E109.5H40D—C40—H40E109.5
N4—C20—H20F109.5N24—C40—H40F109.5
H20A—C20—H20F56.3H40A—C40—H40F56.3
H20B—C20—H20F56.3H40B—C40—H40F56.3
H20C—C20—H20F141.1H40C—C40—H40F141.1
H20D—C20—H20F109.5H40D—C40—H40F109.5
H20E—C20—H20F109.5H40E—C40—H40F109.5
C18—N1—N2—C13.1 (3)C38—N21—N22—C210.4 (3)
N1—N2—C1—C2108.0 (2)N21—N22—C21—C22104.5 (2)
N1—N2—C1—C880.7 (2)N21—N22—C21—C2882.0 (2)
C8—C1—C2—C30.3 (2)C28—C21—C22—C230.0 (3)
N2—C1—C2—C3170.52 (14)N22—C21—C22—C23173.23 (16)
C1—C2—C3—C61.5 (2)C21—C22—C23—C262.0 (3)
C1—C2—C3—C4178.86 (15)C21—C22—C23—C24179.93 (17)
C2—C3—C4—O15.6 (3)C22—C23—C24—O215.1 (3)
C6—C3—C4—O1176.78 (16)C26—C23—C24—O21176.64 (18)
C2—C3—C4—N3174.53 (16)C22—C23—C24—N23175.73 (17)
C6—C3—C4—N33.10 (17)C26—C23—C24—N232.54 (19)
O1—C4—N3—C5176.38 (15)O21—C24—N23—C25176.75 (17)
C3—C4—N3—C53.50 (17)C23—C24—N23—C252.46 (19)
O1—C4—N3—C196.0 (3)O21—C24—N23—C393.9 (3)
C3—C4—N3—C19173.93 (14)C23—C24—N23—C39175.32 (16)
C4—N3—C5—O2178.44 (15)C24—N23—C25—O22179.65 (17)
C19—N3—C5—O27.9 (2)C39—N23—C25—O226.8 (3)
C4—N3—C5—C62.54 (17)C24—N23—C25—C261.46 (19)
C19—N3—C5—C6173.06 (14)C39—N23—C25—C26174.31 (17)
C2—C3—C6—C72.2 (2)C22—C23—C26—C272.5 (3)
C4—C3—C6—C7179.94 (14)C24—C23—C26—C27179.01 (15)
C2—C3—C6—C5176.28 (14)C22—C23—C26—C25176.78 (16)
C4—C3—C6—C51.62 (17)C24—C23—C26—C251.68 (19)
O2—C5—C6—C71.1 (3)O22—C25—C26—C270.6 (3)
N3—C5—C6—C7177.83 (15)N23—C25—C26—C27179.46 (17)
O2—C5—C6—C3179.41 (16)O22—C25—C26—C23178.60 (18)
N3—C5—C6—C30.45 (17)N23—C25—C26—C230.23 (19)
C3—C6—C7—C80.9 (2)C23—C26—C27—C280.9 (3)
C5—C6—C7—C8177.17 (15)C25—C26—C27—C28178.22 (17)
C6—C7—C8—C10.9 (2)C26—C27—C28—C211.0 (3)
C6—C7—C8—C9178.32 (15)C26—C27—C28—C29178.33 (16)
C2—C1—C8—C71.5 (2)C22—C21—C28—C271.5 (3)
N2—C1—C8—C7169.28 (15)N22—C21—C28—C27171.66 (16)
C2—C1—C8—C9177.72 (15)C22—C21—C28—C29177.86 (17)
N2—C1—C8—C911.5 (2)N22—C21—C28—C299.0 (3)
C7—C8—C9—C10103.58 (19)C27—C28—C29—C30111.8 (2)
C1—C8—C9—C1075.6 (2)C21—C28—C29—C3067.5 (2)
C8—C9—C10—C1124.9 (2)C28—C29—C30—C317.7 (3)
C9—C10—C11—C12132.48 (17)C29—C30—C31—C3866.5 (2)
C9—C10—C11—C1852.9 (2)C29—C30—C31—C32118.0 (2)
C18—C11—C12—C132.6 (2)C38—C31—C32—C333.6 (3)
C10—C11—C12—C13172.29 (16)C30—C31—C32—C33172.12 (16)
C11—C12—C13—C160.9 (3)C31—C32—C33—C360.3 (3)
C11—C12—C13—C14176.91 (17)C31—C32—C33—C34176.74 (17)
C12—C13—C14—O35.3 (3)C32—C33—C34—O235.6 (3)
C16—C13—C14—O3178.23 (19)C36—C33—C34—O23177.63 (19)
C12—C13—C14—N4175.21 (18)C32—C33—C34—N24175.08 (18)
C16—C13—C14—N41.23 (19)C36—C33—C34—N241.68 (19)
O3—C14—N4—C15179.75 (18)O23—C34—N24—C35179.27 (18)
C13—C14—N4—C150.3 (2)C33—C34—N24—C350.1 (2)
O3—C14—N4—C200.9 (3)O23—C34—N24—C401.3 (3)
C13—C14—N4—C20179.58 (16)C33—C34—N24—C40179.33 (16)
C14—N4—C15—O4175.77 (18)C34—N24—C35—O24176.70 (18)
C20—N4—C15—O43.5 (3)C40—N24—C35—O242.7 (3)
C14—N4—C15—C161.5 (2)C34—N24—C35—C361.4 (2)
C20—N4—C15—C16179.14 (16)C40—N24—C35—C36179.15 (16)
C12—C13—C16—C172.8 (3)C32—C33—C36—C372.9 (3)
C14—C13—C16—C17179.63 (16)C34—C33—C36—C37179.96 (16)
C12—C13—C16—C15174.62 (16)C32—C33—C36—C35174.60 (15)
C14—C13—C16—C152.2 (2)C34—C33—C36—C352.54 (19)
O4—C15—C16—C172.2 (3)O24—C35—C36—C371.6 (3)
N4—C15—C16—C17179.48 (18)N24—C35—C36—C37179.70 (18)
O4—C15—C16—C13174.94 (19)O24—C35—C36—C33175.58 (19)
N4—C15—C16—C132.31 (19)N24—C35—C36—C332.48 (19)
C13—C16—C17—C181.0 (3)C33—C36—C37—C381.3 (3)
C15—C16—C17—C18175.87 (17)C35—C36—C37—C38175.60 (17)
C16—C17—C18—C112.7 (3)C36—C37—C38—C312.9 (3)
C16—C17—C18—N1177.19 (15)C36—C37—C38—N21177.46 (15)
C12—C11—C18—C174.6 (3)C32—C31—C38—C375.3 (3)
C10—C11—C18—C17170.06 (17)C30—C31—C38—C37170.33 (17)
C12—C11—C18—N1178.51 (16)C32—C31—C38—N21179.70 (16)
C10—C11—C18—N13.9 (3)C30—C31—C38—N214.1 (3)
N2—N1—C18—C17114.4 (2)N22—N21—C38—C37113.5 (2)
N2—N1—C18—C1171.1 (2)N22—N21—C38—C3171.8 (2)
 

Acknowledgements

This work was supported by the State of Schleswig-Holstein.

Funding information

Funding for this research was provided by: Deutsche Forschungsgemeinschaft (grant No. HE 1530/24-1).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurk, M. H., Langbehn, D., Hernández Rodríguez, G., Reichstein, W., Drewes, J., Schröder, S., Rehders, S., Strunskus, T., Herges, R. & Faupel, F. (2021). ACS Appl. Polym. Mater. 3, 1445–1456.  CrossRef CAS Google Scholar
First citationBusinski, A., Ta, T. C., Unterriker, L., Gindullis, N., von Glasenapp, J. S., Näther, C. & Herges, R. (2025). Chem. Eur. J. A71, 3–8.  Google Scholar
First citationCabré, G., Garrido-Charles, A., González-Lafont, À., Moormann, W., Langbehn, D., Egea, D., Lluch, J. M., Herges, R., Alibés, R., Busqué, F., Gorostiza, P. & Hernando, J. (2019). Org. Lett. 21, 3780–3784.  Web of Science PubMed Google Scholar
First citationCorrado, F., Bruno, U., Prato, M., Carella, A., Criscuolo, V., Massaro, A., Pavone, M., Muñoz-García, A. B., Forti, S., Coletti, C., Bettucci, O. & Santoro, F. (2023). Nat. Commun. 14, 6760–6760.  CrossRef CAS PubMed Google Scholar
First citationDeng, J., Wu, X., Guo, G., Zhao, X. & Yu, Z. (2020). Org. Biomol. Chem. 18, 5602–5607.  CrossRef CAS PubMed Google Scholar
First citationDuval, H. (1910). Bull. Soc. Chim. Fr. 7, 727–732.  CAS Google Scholar
First citationEwert, J., Heintze, L., Jordà-Redondo, M., von Glasenapp, J. S., Nonell, S., Bucher, G., Peifer, C. & Herges, R. (2022). J. Am. Chem. Soc. 144, 15059–15071.  CrossRef CAS PubMed Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationJoshi, D. K., Mitchell, M. J., Bruce, D., Lough, A. J. & Yan, H. (2012). Tetrahedron 68, 8670–8676.  CrossRef CAS Google Scholar
First citationJun, M., Joshi, D. K., Yalagala, R. S., Vanloon, J., Simionescu, R., Lough, A. J., Gordon, H. L. & Yan, H. (2018). Chem. Sel. 3, 2697–2701.  CAS Google Scholar
First citationKrämer, R., Nöthling, N., Lehmann, C. W., Mohr, F. & Tausch, M. W. (2018). ChemPhotoChem 2, 6–11.  Google Scholar
First citationLancia, F., Ryabchun, A. & Katsonis, N. (2019). Nat. Rev. Chem. 3, 536–551.  CrossRef CAS Google Scholar
First citationLi, S., Bamberg, K., Lu, Y., Sönnichsen, F. D. & Staubitz, A. (2023). Polymers 15, 1306.  CrossRef PubMed Google Scholar
First citationLiu, Y., Li, F., Li, D., Dong, W. & Jin, B. (2023). J. Electroanal. Chem. 944, 117644.  CrossRef Google Scholar
First citationLópez-Cano, M., Scortichini, M., Tosh, D. K., Salmaso, V., Ko, T., Salort, G., Filgaira, I., Soler, C., Trauner, D., Hernando, J., Jacobson, K. A. & Ciruela, F. (2024). J. Am. Chem. Soc. 147, 874–879.  PubMed Google Scholar
First citationMartino, S., Mauro, F. & Netti, P. A. (2020). Riv. Nuovo Cim. 43, 599–629.  Google Scholar
First citationMoormann, W., Tellkamp, T., Stadler, E., Röhricht, F., Näther, C., Puttreddy, R., Rissanen, K., Gescheidt, G. & Herges, R. (2020). Angew. Chem. Int. Ed. 2020 59, 15081–15086.  CrossRef CAS Google Scholar
First citationMukherjee, A., Seyfried, M. D. & Ravoo, B. J. (2023). Angew. Chem. Int. Ed. 62, e202304437.  CrossRef Google Scholar
First citationPaudler, W. W. & Zeiler, A. G. (1969). J. Org. Chem. 34, 3237–3239.  CrossRef CAS Google Scholar
First citationPerlllmutter, H. D. (1990). Adv. Heterocycl. Chem. 50, 1–83.  CrossRef Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F. & Temps, F. (2009). J. Am. Chem. Soc. 131, 15594–15595.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSiewertsen, R., Schönborn, J. B., Hartke, B., Renth, F. & Temps, F. (2011). Phys. Chem. Chem. Phys. 13, 1054–1063.  CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Q. (2020). CSD Communication (CCDC 1902659). CCDC, Cambridge, England.  Google Scholar
First citationZhu, Q., Wang, S. & Chen, P. (2019). Org. Lett. 21, 4025–4029.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds