research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Synthesis and structure of 1′,4′-di­phenyl-1a,1′,4′,4′′,5′′,9b-hexa­hydro-2′′H-di­spiro­[cyclopropa[l]phenanthrene-1,2′-[1,4]ep­­oxy­naphthalene-3′,3′′-thio­phene]

crossmark logo

aDepartment of Chemistry, Colby College, Waterville, ME 04901, USA
*Correspondence e-mail: dmthamat@colby.edu

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 5 May 2025; accepted 6 May 2025; online 13 May 2025)

The title compound, C39H30OS, was inadvertently prepared as a Diels–Alder adduct between 1,3-di­phenyl­isobenzo­furan and 3-(1a,9b-di­hydro-1H-cyclo­propa[l]phenanthren-1-yl­idene)tetra­hydro­thio­phene. A combination of fused, bridged, and spiro­cyclic ring systems are all featured within a single mol­ecular structure of this highly crowded polycyclic compound.

1. Chemical context

We recently reported (see Scheme below) that the photolysis of 3-(1a,9b-di­hydro-1H-cyclo­propa[l]phenanthren-1-yl­idene)tetra­hydro­thio­phene (1) produces the alkyl­idenecarbene 2 with the concomitant loss of phenanthrene (Anderson et al., 2023[Anderson, T. E., Thamattoor, D. M. & Phillips, D. L. (2023). Org. Lett. 25, 1364-1369.]). Carbene 2 subsequently rearranges into the strained thia­cyclo­hexyne 3. When the photolysis was carried out in the presence of 1,3-di­phenyl­isobenzo­furan (4), in an attempt to inter­cept 3, the title compound 5, which is the Diels–Alder adduct between 1 and 4, was obtained instead. The crystal structure and Hirshfeld surface analysis of 5 is described herein.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of 5, C39H30OS, is shown in Fig. 1[link]. The structure shows that the thia­cyclo­pentyl ring is on the same side of the mol­ecule as the dibenzonorcarane framework, which is understandable as 4 likely prefers to approach from the less sterically encumbered exo side of 1 to form the 4 + 2 cyclo­adduct.

[Figure 1]
Figure 1
The mol­ecular structure of 5. Displacement ellipsoids are shown at the 50% probability level.

The highly crowded adduct 5 displays a variety of ring connections within a single mol­ecule. Besides the fused rings that were inherited from the dibenzonorcarane moiety in 1, the structure of 5 also includes the bridged bicyclic system, 7-oxabi­cyclo­[2.2.1]heptane, which is involved in spiro­cyclic connections with the thia­cyclo­pentyl and cyclo­propyl rings on one side and a fused connection to a benzene ring on the other side. There are six stereogenic centres (C1, C14, C15, C16, C23, C24) in 5; in the arbitrarily chosen asymmetric unit, they have R, R, R, R, S and S configurations, respectively, but crystal symmetry generates a racemic mixture. Both the C16/C17/C22/C23/O1 and C16/C15/C24/C23/O1 five-membered rings are well described as envelopes with the shared O atom as the flap in both cases, whereas the C24/C25/C26/S1/C27 ring is twisted on the C25—C26 bond. The dihedral angles between the C17–C22 phenyl group and the pendant C28–C33 and C34–C39 rings are 28.56 (10) and 47.14 (9)°, respectively; the dihedral angle between the pendant rings is 21.53 (10)°. Some of the C—C—C bond angles associated with the fused rings are notably distorted, such as C17—C16—C28 = 120.88 (15)° and C16—C17—C22 = 104.55 (15)°. The centroid of the thia­cyclo­pentane ring is 3.5062 (11) Å from the centroid of the six-membered ring of the norcarane group. Ten intra­molecular short contacts between atoms (shorter than sum of vdW radii – 0.3 Å) were identified and are presented in Table 1[link].

Table 1
Intra­molecular short contacts (Å) in 5

Atom1⋯Atom2 Length Atom1⋯Atom2 Length
O1⋯H29 2.38 O1⋯H39 2.33
C2⋯H25A 2.35 C13⋯H27A 2.38
C22⋯H27B 2.50 C28⋯H1 2.40
C34⋯H26A 2.58 C35⋯H26A 2.52
H6⋯H9 2.07 H18⋯H33 2.05

3. Supra­molecular features

The unit cell of 5, comprising four mol­ecules, is shown in Fig. 2[link], and a section of the packing diagram viewed along the b-axis direction is depicted in Fig. 3[link]. The only identified directional contact in the extended structure of 5 is a weak C31—H31⋯S1i [symmetry code: (i) −[{1\over 2}] + x, [{1\over 2}] − y, [{1\over 2}] + z] hydrogen bond with H⋯S = 2.85 Å and C—H⋯S = 135°, which generates [001] chains.

[Figure 2]
Figure 2
The monoclinic unit cell of 5 with four mol­ecules.
[Figure 3]
Figure 3
Packing diagram of of 5 viewed along the b-axis direction.

A dnorm Hirshfeld surface (Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19-32.]) was generated for 5 with Crystal Explorer 21.5 (Spackman et al., 2021[Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006-1011.]) to investigate inter­molecular contacts, and is shown in Fig. 4[link]a. There are very few significant short contacts among mol­ecules of 5 as can be seen from the limited number of red regions, which are mostly quite small, on the surface. These contacts primarily stem from the thia­cyclpentane ring and one of the phenyl rings attached to the bridgehead of the 7-oxabi­cyclo­[2.2.1]heptane group. The shape-index map (Fig. 4[link]b) reveals hardly any ππ inter­actions but complementary red and blue regions indicate possible C—H⋯π inter­actions. The curvedness map (Fig. 4[link]c) shows a ‘crumpled’ structure with many valleys and ridges but no extensive planarity that could facilitate ππ inter­actions.

[Figure 4]
Figure 4
The Hirshfeld surface shown as: (a) dnorm plot over the range −0.12 to 1.43 Å, (b) shape index plot over the range −1.00 to 1.00 Å, and (c) curvedness map plot over the range −4.00 to 4.00 Å.

A composite, color-coded reciprocal two-dimensional fingerprint plot (Spackman & McKinnon, 2002[Spackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378-392.]) of di versus de, where di and de are distances from any given point on the surface to the nearest inter­nal and external atom, respectively, is shown in Fig. 5[link]. This plot indicates that H⋯H (61.7%) and C⋯H/H⋯C (30.2%) inter­actions account for nearly 92% of the inter­molecular contacts within the crystal structure of 5. The remaining contributions come from S⋯H/H⋯S (5.4%), O⋯H/H⋯O (1.4%), and C⋯C (1.3%) contacts.

[Figure 5]
Figure 5
The reciprocal two-dimensional fingerprint plot of de versus di showing the different types of inter­molecular contacts by color.

4. Database survey

A survey of the Cambridge Structural Database (CSD; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) using WebCSD (version 1.9.66; accessed April 29, 2025) did not find the title compound 5 reported previously. The survey also showed that there were 23 structures featuring the dibenzonorcarane unit. Of these, only three (CSD refcodes DOTJOP, DOTJUV, Roth et al., 2024[Roth, A. D., Ramgren, D. R., Wen, Y., Michie, M. S. & Thamattoor, D. M. (2024). J. Org. Chem. 89, 7503-7512.]; HOJLIF, Roth & Thamattoor, 2024[Roth, A. D. & Thamattoor, D. M. (2024). Org. Lett. 26, 3840-3843.]) had the cyclo­propyl ring in a spiro­cyclic system.

5. Synthesis and crystallization

The title compound 5 was inadvertently synthesized while performing the photolysis of 1 (556 mg, 2 mmol) with 4 (559 mg, 2 mmol) in benzene (5 ml). It was isolated in extremely low yield (0.6%) after flash chromatography on silica gel using hexa­nes as the eluent. Crystals suitable for X-ray diffraction were obtained by slow evaporation of column fractions.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were positioned geometrically (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C39H30OS
Mr 546.69
Crystal system, space group Monoclinic, P21/n
Temperature (K) 173
a, b, c (Å) 10.2352 (14), 14.3939 (14), 19.120 (3)
β (°) 98.121 (12)
V3) 2788.6 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.15
Crystal size (mm) 0.21 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker D8 QUEST ECO
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.700, 0.745
No. of measured, independent and observed [I > 2σ(I)] reflections 34580, 5692, 4424
Rint 0.035
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.117, 1.04
No. of reflections 5692
No. of parameters 370
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.51, −0.71
Computer programs: APEX4 and SAINT-Plus V8.40B (Bruker, 2021[Bruker (2021). APEX4 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Computing details top

1',4'-Diphenyl-1a,1',4',4'',5'',9b-hexahydro-2''H-dispiro[cyclopropa[l]phenanthrene-1,2'-[1,4]epoxynaphthalene-3',3''-thiophene] top
Crystal data top
C39H30OSF(000) = 1152
Mr = 546.69Dx = 1.302 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.2352 (14) ÅCell parameters from 9835 reflections
b = 14.3939 (14) Åθ = 2.6–26.4°
c = 19.120 (3) ŵ = 0.15 mm1
β = 98.121 (12)°T = 173 K
V = 2788.6 (6) Å3Prism, clear colourless
Z = 40.21 × 0.15 × 0.10 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
5692 independent reflections
Radiation source: sealed X-ray tube, Siemens KFFMO2K–90C4424 reflections with I > 2σ(I)
Curved graphite monochromatorRint = 0.035
Detector resolution: 7.9 pixels mm-1θmax = 26.4°, θmin = 2.8°
ω and φ scansh = 1211
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
k = 1817
Tmin = 0.700, Tmax = 0.745l = 2323
34580 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0449P)2 + 1.7735P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
5692 reflectionsΔρmax = 0.51 e Å3
370 parametersΔρmin = 0.71 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.50970 (8)0.41369 (5)0.15667 (4)0.0686 (2)
O10.44774 (11)0.32159 (8)0.39494 (6)0.0243 (3)
C10.21870 (16)0.21536 (12)0.27250 (8)0.0242 (4)
H10.1722120.1941880.3122770.029*
C20.13212 (16)0.25996 (12)0.21334 (9)0.0252 (4)
C30.02796 (18)0.31451 (13)0.22878 (10)0.0323 (4)
H30.0125050.3199880.2764490.039*
C40.05379 (19)0.36102 (14)0.17650 (11)0.0380 (5)
H40.1250980.3976120.1878900.046*
C50.0298 (2)0.35332 (14)0.10711 (11)0.0398 (5)
H50.0835400.3862770.0707460.048*
C60.0713 (2)0.29818 (14)0.09073 (10)0.0362 (5)
H60.0864030.2939210.0429330.043*
C70.15291 (18)0.24800 (13)0.14271 (9)0.0288 (4)
C80.24977 (18)0.17904 (14)0.12482 (9)0.0313 (4)
C90.2579 (2)0.15425 (18)0.05462 (10)0.0469 (6)
H90.2066550.1873840.0174520.056*
C100.3381 (2)0.0833 (2)0.03820 (12)0.0576 (7)
H100.3420440.0683780.0098580.069*
C110.4130 (2)0.03367 (18)0.09116 (12)0.0529 (6)
H110.4675540.0159650.0798620.064*
C120.4078 (2)0.05710 (15)0.16109 (11)0.0389 (5)
H120.4589390.0228750.1976770.047*
C130.32889 (17)0.12991 (13)0.17858 (9)0.0286 (4)
C140.32479 (17)0.14966 (12)0.25452 (9)0.0261 (4)
H140.3358780.0931160.2851800.031*
C150.36395 (16)0.23926 (12)0.29390 (8)0.0226 (4)
C160.41919 (17)0.22644 (12)0.37444 (8)0.0258 (4)
C170.55821 (18)0.18749 (12)0.37587 (9)0.0281 (4)
C180.6166 (2)0.10124 (14)0.38863 (10)0.0412 (5)
H180.5670220.0497900.4015330.049*
C190.7495 (2)0.09164 (16)0.38213 (12)0.0504 (6)
H190.7906630.0327810.3906750.060*
C200.8226 (2)0.16548 (16)0.36359 (11)0.0469 (5)
H200.9133220.1570790.3595110.056*
C210.76479 (19)0.25235 (15)0.35078 (10)0.0357 (4)
H210.8149750.3037230.3382660.043*
C220.63206 (17)0.26214 (12)0.35671 (9)0.0263 (4)
C230.53653 (16)0.34333 (12)0.34482 (8)0.0229 (4)
C240.44049 (16)0.32564 (11)0.27199 (8)0.0223 (3)
C250.35150 (17)0.41160 (12)0.25493 (9)0.0258 (4)
H25A0.2668600.3925780.2269910.031*
H25B0.3320920.4403390.2993710.031*
C260.42069 (19)0.48164 (13)0.21327 (10)0.0342 (4)
H26A0.4820160.5207230.2454530.041*
H26B0.3555810.5224290.1849480.041*
C270.51737 (18)0.30983 (13)0.20922 (9)0.0278 (4)
H27A0.4783000.2572140.1801330.033*
H27B0.6104860.2944980.2268750.033*
C280.32541 (19)0.18490 (14)0.41952 (9)0.0328 (4)
C290.24205 (19)0.24318 (17)0.45050 (10)0.0416 (5)
H290.2509920.3086690.4472390.050*
C300.1447 (2)0.2052 (2)0.48655 (11)0.0581 (7)
H300.0877990.2449760.5080240.070*
C310.1315 (3)0.1098 (2)0.49090 (11)0.0645 (8)
H310.0642660.0841730.5146000.077*
C320.2143 (3)0.0523 (2)0.46137 (11)0.0597 (8)
H320.2056330.0131210.4652960.072*
C330.3107 (2)0.08884 (16)0.42580 (10)0.0445 (5)
H330.3679040.0482050.4053120.053*
C340.59274 (17)0.43911 (12)0.35865 (9)0.0251 (4)
C350.69184 (18)0.47270 (14)0.32219 (10)0.0337 (4)
H350.7274570.4336800.2895380.040*
C360.7387 (2)0.56281 (14)0.33335 (12)0.0412 (5)
H360.8047900.5855890.3075450.049*
C370.6896 (2)0.61945 (14)0.38189 (11)0.0423 (5)
H370.7219620.6809840.3896310.051*
C380.5933 (2)0.58619 (13)0.41900 (10)0.0387 (5)
H380.5602810.6247480.4528350.046*
C390.54436 (18)0.49685 (13)0.40730 (9)0.0294 (4)
H390.4772280.4749420.4327410.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1024 (6)0.0599 (4)0.0558 (4)0.0274 (4)0.0535 (4)0.0297 (3)
O10.0262 (6)0.0279 (6)0.0188 (6)0.0041 (5)0.0036 (5)0.0013 (5)
C10.0240 (9)0.0310 (9)0.0173 (8)0.0051 (7)0.0017 (6)0.0003 (7)
C20.0212 (9)0.0314 (9)0.0222 (8)0.0060 (7)0.0002 (7)0.0008 (7)
C30.0264 (10)0.0399 (11)0.0299 (9)0.0049 (8)0.0017 (7)0.0017 (8)
C40.0286 (10)0.0380 (11)0.0448 (11)0.0031 (8)0.0034 (8)0.0025 (9)
C50.0429 (12)0.0343 (11)0.0363 (11)0.0006 (9)0.0148 (9)0.0028 (8)
C60.0458 (12)0.0374 (11)0.0224 (9)0.0049 (9)0.0052 (8)0.0014 (8)
C70.0276 (9)0.0350 (10)0.0222 (8)0.0067 (8)0.0016 (7)0.0003 (7)
C80.0281 (10)0.0431 (11)0.0219 (9)0.0064 (8)0.0013 (7)0.0042 (8)
C90.0367 (12)0.0783 (17)0.0249 (10)0.0049 (11)0.0016 (8)0.0067 (10)
C100.0424 (13)0.099 (2)0.0315 (11)0.0078 (13)0.0049 (10)0.0235 (12)
C110.0388 (12)0.0702 (16)0.0497 (13)0.0075 (11)0.0061 (10)0.0269 (12)
C120.0314 (10)0.0435 (12)0.0402 (11)0.0000 (9)0.0002 (8)0.0095 (9)
C130.0249 (9)0.0335 (10)0.0265 (9)0.0062 (8)0.0005 (7)0.0062 (7)
C140.0265 (9)0.0279 (9)0.0225 (8)0.0042 (7)0.0010 (7)0.0011 (7)
C150.0226 (9)0.0279 (9)0.0164 (7)0.0009 (7)0.0003 (6)0.0014 (6)
C160.0301 (9)0.0269 (9)0.0189 (8)0.0043 (7)0.0013 (7)0.0012 (7)
C170.0329 (10)0.0303 (9)0.0181 (8)0.0000 (8)0.0063 (7)0.0002 (7)
C180.0516 (13)0.0327 (11)0.0358 (11)0.0027 (10)0.0065 (9)0.0055 (8)
C190.0548 (14)0.0439 (13)0.0493 (13)0.0233 (11)0.0041 (11)0.0067 (10)
C200.0349 (12)0.0567 (14)0.0470 (12)0.0172 (10)0.0018 (9)0.0027 (11)
C210.0278 (10)0.0439 (12)0.0341 (10)0.0043 (9)0.0003 (8)0.0000 (9)
C220.0271 (9)0.0298 (9)0.0200 (8)0.0011 (7)0.0034 (7)0.0014 (7)
C230.0218 (8)0.0277 (9)0.0192 (8)0.0012 (7)0.0027 (6)0.0006 (7)
C240.0216 (8)0.0262 (9)0.0188 (8)0.0010 (7)0.0020 (6)0.0002 (6)
C250.0241 (9)0.0277 (9)0.0251 (8)0.0014 (7)0.0018 (7)0.0022 (7)
C260.0351 (11)0.0319 (10)0.0354 (10)0.0029 (8)0.0040 (8)0.0098 (8)
C270.0283 (9)0.0333 (10)0.0223 (8)0.0030 (8)0.0058 (7)0.0015 (7)
C280.0349 (10)0.0461 (11)0.0152 (8)0.0134 (9)0.0041 (7)0.0043 (8)
C290.0343 (11)0.0661 (14)0.0238 (9)0.0162 (10)0.0025 (8)0.0001 (9)
C300.0406 (13)0.106 (2)0.0276 (11)0.0251 (14)0.0062 (9)0.0057 (12)
C310.0600 (16)0.104 (2)0.0269 (11)0.0535 (16)0.0015 (11)0.0117 (13)
C320.0750 (18)0.0756 (17)0.0241 (11)0.0432 (15)0.0077 (11)0.0115 (11)
C330.0558 (13)0.0506 (13)0.0231 (9)0.0228 (11)0.0085 (9)0.0097 (9)
C340.0227 (9)0.0278 (9)0.0231 (8)0.0003 (7)0.0023 (7)0.0006 (7)
C350.0266 (10)0.0352 (10)0.0395 (11)0.0029 (8)0.0058 (8)0.0015 (8)
C360.0313 (11)0.0396 (12)0.0517 (12)0.0095 (9)0.0025 (9)0.0079 (10)
C370.0468 (13)0.0277 (10)0.0486 (12)0.0076 (9)0.0069 (10)0.0009 (9)
C380.0498 (13)0.0300 (10)0.0338 (10)0.0017 (9)0.0024 (9)0.0047 (8)
C390.0324 (10)0.0298 (9)0.0247 (9)0.0008 (8)0.0001 (7)0.0001 (7)
Geometric parameters (Å, º) top
S1—C261.799 (2)C19—H190.9500
S1—C271.7968 (18)C19—C201.375 (3)
O1—C161.443 (2)C20—H200.9500
O1—C231.4451 (19)C20—C211.390 (3)
C1—H11.0000C21—H210.9500
C1—C21.481 (2)C21—C221.386 (3)
C1—C141.516 (2)C22—C231.520 (2)
C1—C151.525 (2)C23—C241.607 (2)
C2—C31.389 (3)C23—C341.503 (2)
C2—C71.407 (2)C24—C251.544 (2)
C3—H30.9500C24—C271.542 (2)
C3—C41.383 (3)C25—H25A0.9900
C4—H40.9500C25—H25B0.9900
C4—C51.387 (3)C25—C261.520 (2)
C5—H50.9500C26—H26A0.9900
C5—C61.375 (3)C26—H26B0.9900
C6—H60.9500C27—H27A0.9900
C6—C71.405 (3)C27—H27B0.9900
C7—C81.477 (3)C28—C291.388 (3)
C8—C91.403 (3)C28—C331.398 (3)
C8—C131.406 (3)C29—H290.9500
C9—H90.9500C29—C301.400 (3)
C9—C101.374 (3)C30—H300.9500
C10—H100.9500C30—C311.385 (4)
C10—C111.380 (3)C31—H310.9500
C11—H110.9500C31—C321.363 (4)
C11—C121.387 (3)C32—H320.9500
C12—H120.9500C32—C331.379 (3)
C12—C131.392 (3)C33—H330.9500
C13—C141.486 (2)C34—C351.396 (3)
C14—H141.0000C34—C391.390 (2)
C14—C151.518 (2)C35—H350.9500
C15—C161.574 (2)C35—C361.389 (3)
C15—C241.558 (2)C36—H360.9500
C16—C171.526 (3)C36—C371.382 (3)
C16—C281.502 (2)C37—H370.9500
C17—C181.385 (3)C37—C381.379 (3)
C17—C221.392 (3)C38—H380.9500
C18—H180.9500C38—C391.387 (3)
C18—C191.390 (3)C39—H390.9500
C27—S1—C2695.84 (8)C21—C20—H20119.8
C16—O1—C2398.48 (12)C20—C21—H21120.8
C2—C1—H1114.5C22—C21—C20118.35 (19)
C2—C1—C14117.89 (14)C22—C21—H21120.8
C2—C1—C15124.25 (14)C17—C22—C23105.72 (15)
C14—C1—H1114.5C21—C22—C17121.18 (17)
C14—C1—C1559.93 (11)C21—C22—C23133.08 (17)
C15—C1—H1114.5O1—C23—C22100.71 (13)
C3—C2—C1118.49 (15)O1—C23—C24100.10 (12)
C3—C2—C7119.86 (16)O1—C23—C34110.06 (13)
C7—C2—C1121.65 (16)C22—C23—C24108.03 (13)
C2—C3—H3119.2C34—C23—C22117.18 (14)
C4—C3—C2121.62 (17)C34—C23—C24118.02 (13)
C4—C3—H3119.2C15—C24—C2399.36 (12)
C3—C4—H4120.6C25—C24—C15113.10 (13)
C3—C4—C5118.83 (19)C25—C24—C23109.05 (13)
C5—C4—H4120.6C27—C24—C15115.01 (14)
C4—C5—H5119.9C27—C24—C23112.38 (13)
C6—C5—C4120.28 (18)C27—C24—C25107.73 (13)
C6—C5—H5119.9C24—C25—H25A109.7
C5—C6—H6119.1C24—C25—H25B109.7
C5—C6—C7121.81 (18)H25A—C25—H25B108.2
C7—C6—H6119.1C26—C25—C24109.72 (14)
C2—C7—C8120.13 (16)C26—C25—H25A109.7
C6—C7—C2117.44 (17)C26—C25—H25B109.7
C6—C7—C8122.23 (16)S1—C26—H26A110.6
C9—C8—C7121.69 (17)S1—C26—H26B110.6
C9—C8—C13117.75 (18)C25—C26—S1105.53 (13)
C13—C8—C7120.32 (15)C25—C26—H26A110.6
C8—C9—H9119.1C25—C26—H26B110.6
C10—C9—C8121.7 (2)H26A—C26—H26B108.8
C10—C9—H9119.1S1—C27—H27A109.9
C9—C10—H10119.8S1—C27—H27B109.9
C9—C10—C11120.3 (2)C24—C27—S1109.01 (12)
C11—C10—H10119.8C24—C27—H27A109.9
C10—C11—H11120.4C24—C27—H27B109.9
C10—C11—C12119.2 (2)H27A—C27—H27B108.3
C12—C11—H11120.4C29—C28—C16119.05 (18)
C11—C12—H12119.4C29—C28—C33118.78 (19)
C11—C12—C13121.1 (2)C33—C28—C16121.88 (19)
C13—C12—H12119.4C28—C29—H29120.1
C8—C13—C14121.69 (16)C28—C29—C30119.8 (2)
C12—C13—C8119.78 (17)C30—C29—H29120.1
C12—C13—C14118.43 (17)C29—C30—H30120.0
C1—C14—H14113.6C31—C30—C29119.9 (3)
C1—C14—C1560.32 (11)C31—C30—H30120.0
C13—C14—C1117.45 (15)C30—C31—H31119.8
C13—C14—H14113.6C32—C31—C30120.4 (2)
C13—C14—C15127.23 (15)C32—C31—H31119.8
C15—C14—H14113.6C31—C32—H32119.9
C1—C15—C16115.97 (13)C31—C32—C33120.2 (2)
C1—C15—C24128.04 (14)C33—C32—H32119.9
C14—C15—C159.75 (11)C28—C33—H33119.6
C14—C15—C16114.74 (14)C32—C33—C28120.8 (2)
C14—C15—C24130.69 (14)C32—C33—H33119.6
C24—C15—C16103.40 (13)C35—C34—C23121.14 (16)
O1—C16—C15100.69 (12)C39—C34—C23120.17 (15)
O1—C16—C17101.03 (13)C39—C34—C35118.68 (17)
O1—C16—C28110.07 (14)C34—C35—H35119.8
C17—C16—C15105.41 (13)C36—C35—C34120.43 (18)
C28—C16—C15115.96 (14)C36—C35—H35119.8
C28—C16—C17120.88 (15)C35—C36—H36119.9
C18—C17—C16135.31 (18)C37—C36—C35120.22 (19)
C18—C17—C22120.09 (18)C37—C36—H36119.9
C22—C17—C16104.55 (15)C36—C37—H37120.2
C17—C18—H18120.8C38—C37—C36119.67 (19)
C17—C18—C19118.5 (2)C38—C37—H37120.2
C19—C18—H18120.8C37—C38—H38119.8
C18—C19—H19119.3C37—C38—C39120.47 (19)
C20—C19—C18121.4 (2)C39—C38—H38119.8
C20—C19—H19119.3C34—C39—H39119.7
C19—C20—H20119.8C38—C39—C34120.51 (18)
C19—C20—C21120.4 (2)C38—C39—H39119.7
O1—C16—C17—C18150.6 (2)C15—C16—C28—C2988.3 (2)
O1—C16—C17—C2232.00 (15)C15—C16—C28—C3385.5 (2)
O1—C16—C28—C2925.1 (2)C15—C24—C25—C26162.68 (14)
O1—C16—C28—C33161.04 (16)C15—C24—C27—S1143.94 (12)
O1—C23—C24—C1537.87 (14)C16—O1—C23—C2250.74 (14)
O1—C23—C24—C2580.66 (15)C16—O1—C23—C2459.98 (13)
O1—C23—C24—C27159.96 (13)C16—O1—C23—C34175.06 (13)
O1—C23—C34—C35173.15 (15)C16—C15—C24—C233.87 (15)
O1—C23—C34—C398.2 (2)C16—C15—C24—C25111.59 (15)
C1—C2—C3—C4177.54 (17)C16—C15—C24—C27124.06 (15)
C1—C2—C7—C6175.70 (16)C16—C17—C18—C19177.38 (19)
C1—C2—C7—C89.3 (3)C16—C17—C22—C21178.63 (16)
C1—C14—C15—C16106.82 (15)C16—C17—C22—C230.32 (17)
C1—C14—C15—C24116.06 (19)C16—C28—C29—C30173.38 (17)
C1—C15—C16—O1113.93 (15)C16—C28—C33—C32173.09 (17)
C1—C15—C16—C17141.36 (15)C17—C16—C28—C29142.26 (17)
C1—C15—C16—C284.8 (2)C17—C16—C28—C3343.9 (2)
C1—C15—C24—C23143.16 (16)C17—C18—C19—C200.1 (3)
C1—C15—C24—C2527.7 (2)C17—C22—C23—O131.36 (16)
C1—C15—C24—C2796.66 (19)C17—C22—C23—C2473.07 (16)
C2—C1—C14—C133.8 (2)C17—C22—C23—C34150.67 (14)
C2—C1—C14—C15115.42 (16)C18—C17—C22—C210.7 (3)
C2—C1—C15—C14105.06 (18)C18—C17—C22—C23178.22 (15)
C2—C1—C15—C16150.18 (16)C18—C19—C20—C210.0 (3)
C2—C1—C15—C2415.1 (3)C19—C20—C21—C220.4 (3)
C2—C3—C4—C50.6 (3)C20—C21—C22—C170.8 (3)
C2—C7—C8—C9169.39 (19)C20—C21—C22—C23177.82 (18)
C2—C7—C8—C134.8 (3)C21—C22—C23—O1149.87 (18)
C3—C2—C7—C64.5 (3)C21—C22—C23—C24105.7 (2)
C3—C2—C7—C8170.51 (16)C21—C22—C23—C3430.6 (3)
C3—C4—C5—C61.8 (3)C22—C17—C18—C190.3 (3)
C4—C5—C6—C70.2 (3)C22—C23—C24—C1566.99 (15)
C5—C6—C7—C23.3 (3)C22—C23—C24—C25174.48 (13)
C5—C6—C7—C8171.56 (18)C22—C23—C24—C2755.10 (17)
C6—C7—C8—C95.4 (3)C22—C23—C34—C3559.0 (2)
C6—C7—C8—C13179.58 (17)C22—C23—C34—C39122.44 (17)
C7—C2—C3—C42.7 (3)C23—O1—C16—C1557.04 (14)
C7—C8—C9—C10173.1 (2)C23—O1—C16—C1751.15 (14)
C7—C8—C13—C12172.01 (17)C23—O1—C16—C28179.94 (13)
C7—C8—C13—C144.2 (3)C23—C24—C25—C2687.78 (16)
C8—C9—C10—C110.4 (4)C23—C24—C27—S1103.34 (14)
C8—C13—C14—C18.3 (2)C23—C34—C35—C36177.19 (17)
C8—C13—C14—C1563.9 (2)C23—C34—C39—C38178.31 (16)
C9—C8—C13—C122.4 (3)C24—C15—C16—O131.22 (15)
C9—C8—C13—C14178.58 (18)C24—C15—C16—C1773.49 (15)
C9—C10—C11—C120.9 (4)C24—C15—C16—C28149.93 (15)
C10—C11—C12—C130.3 (3)C24—C23—C34—C3572.9 (2)
C11—C12—C13—C82.0 (3)C24—C23—C34—C39105.69 (18)
C11—C12—C13—C14178.27 (19)C24—C25—C26—S136.09 (17)
C12—C13—C14—C1167.93 (16)C25—C24—C27—S116.81 (16)
C12—C13—C14—C15119.9 (2)C26—S1—C27—C243.34 (14)
C13—C8—C9—C101.3 (3)C27—S1—C26—C2522.57 (14)
C13—C14—C15—C1103.49 (19)C27—C24—C25—C2634.44 (18)
C13—C14—C15—C16149.69 (17)C28—C16—C17—C1829.0 (3)
C13—C14—C15—C2412.6 (3)C28—C16—C17—C22153.60 (15)
C14—C1—C2—C3174.99 (15)C28—C29—C30—C310.3 (3)
C14—C1—C2—C74.8 (2)C29—C28—C33—C320.7 (3)
C14—C1—C15—C16104.76 (16)C29—C30—C31—C321.2 (3)
C14—C1—C15—C24120.13 (18)C30—C31—C32—C331.1 (3)
C14—C15—C16—O1179.19 (13)C31—C32—C33—C280.1 (3)
C14—C15—C16—C1774.48 (17)C33—C28—C29—C300.6 (3)
C14—C15—C16—C2862.1 (2)C34—C23—C24—C15157.17 (14)
C14—C15—C24—C23136.68 (17)C34—C23—C24—C2538.64 (19)
C14—C15—C24—C25107.85 (19)C34—C23—C24—C2780.74 (18)
C14—C15—C24—C2716.5 (2)C34—C35—C36—C371.4 (3)
C15—C1—C2—C3114.01 (19)C35—C34—C39—C380.3 (3)
C15—C1—C2—C766.2 (2)C35—C36—C37—C380.3 (3)
C15—C1—C14—C13119.26 (17)C36—C37—C38—C390.8 (3)
C15—C16—C17—C18105.0 (2)C37—C38—C39—C340.8 (3)
C15—C16—C17—C2272.46 (16)C39—C34—C35—C361.4 (3)
Intramolecular short contacts (Å) in 5 top
Atom1···Atom2LengthAtom1···Atom2Length
O1···H292.38O1···H392.33
C2···H25A2.35C13···H27A2.38
C22···H27B2.50C28···H12.40
C34···H26A2.58C35···H26A2.52
H6···H92.07H18···H332.05
 

Funding information

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (award No. CHE2400007 to D. M. Thamattoor).

References

First citationAnderson, T. E., Thamattoor, D. M. & Phillips, D. L. (2023). Org. Lett. 25, 1364–1369.  CrossRef CAS PubMed Google Scholar
First citationBruker (2021). APEX4 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationRoth, A. D., Ramgren, D. R., Wen, Y., Michie, M. S. & Thamattoor, D. M. (2024). J. Org. Chem. 89, 7503–7512.  CrossRef CAS PubMed Google Scholar
First citationRoth, A. D. & Thamattoor, D. M. (2024). Org. Lett. 26, 3840–3843.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationSpackman, M. A. & McKinnon, J. J. (2002). CrystEngComm 4, 378–392.  CrossRef CAS Google Scholar
First citationSpackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst. 54, 1006–1011.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds